
國 立 交 通 大 學
應 用 數 學 系

博 士 論 文

分散式系統之自我穩定極小控制集演算法
與凱氏圖之正負號星控制數

Self-stabilizing Minimal Dominating Set Algorithms of
Distributed Systems and the Signed Star Domination

Number of Cayley Graphs

研 究 生：邱鈺傑

指導教授：陳秋媛

中 華 民 國 一 百 零 三 年 七 月

分散式系統之自我穩定極小控制集演算法
與凱氏圖之正負號星控制數

Self-stabilizing Minimal Dominating Set Algorithms of
Distributed Systems and the Signed Star Domination

Number of Cayley Graphs

研 究 生：邱鈺傑 Student: Well Y. Chiu
指導教授：陳秋媛 Advisor: Chiuyuan Chen

國 立 交 通 大 學
應 用 數 學 系
博 士 論 文

A Dissertation
Submitted to Department of Applied Mathematics

College of Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Applied Mathematics
July 2014

Hsinchu, Taiwan, Republic of China

中 華 民 國 一 百 零 三 年 七 月

摘要

圖論的控制集問題的研究始於 1960年代。一個分散式系統 (例
如：一個隨意網路) 可以用一個無向簡單圖 G = (V,E) 來表
示，其中 V 表示點集，而 E 表示點跟點之間的聯結關係。圖

G 的點集 V 的子集合 D 被稱為是控制集，若此子集 D 具有

性質：V 中的任一元素 v 屬於 D 或與 D 中的元素相鄰。如果

一個控制集不真包含另一控制集，則稱其為極小控制集 (簡記
為 MDS)。極小控制集在無線網路中的應用之一是使所需的資
源中心保持為較少數目。

自我穩定是一個可用於設計分散式系統容忍暫時性錯誤的一個

概念，並且是在 1974 年由 Dijkstra 提出。一個分散式系統是
自我穩定的，如果它滿足：不論初始組態為何，系統總是能保

證在有限時間內達到一個合法的 (正確的) 組態。此處所稱的
系統組態是由系統中所有節點的狀態所組成。一個自我穩定演

算法由一些規則所組成，每個規則都有其觸發條件及其對應動

作，該動作能通過更新節點的變數來改變節點的狀態。每執行

一個規則稱為是一步。本論文所提出的演算法的效能皆是以執

行總步數來計算。自我穩定演算法有許多不同的執行模式，且
執行模式是以排程器的概念來呈現。排程器分為公平的及不公
平的兩種。眾所皆知，不公平的分散式排程器比其他類型的排

程器更貼近實際使用狀況。

i

令 n 表示給定的分散式系統的節點數。在 2007 年，Turau 對
於 MDS 問題，提出了不公平的分散式排程器下的第一個線性
時間的自我穩定演算法，此演算法在最多 9n 步之後穩定。在
2008 年，Goddard 等人改進了上述演算法並做到最多 5n 步。
我們將在本論文中提出一個採用不公平分散式排程器下最多

4n 步的自我穩定 MDS 演算法。

理想中，MDS演算法是希望能做到 MDS-靜止的，亦即，若分
散式系統的初始組態已經是一個 MDS，則演算法將不執行任
何動作。值得注意的是，在正常模式中，一個節點只能取得其

一步內鄰居的資訊，我們稱這些資訊為 1 步資訊。不幸的是，

在本論文中，我們將證明：1 步資訊不足以建立一個 MDS-靜
止的演算法。在本論文中，我們將討論此一問題，並針對自我

穩定 MDS 演算法提出一個新的性能評量，稱為穩定性。我們
推廣這部份的結果至其他自我穩定演算法，並將自我穩定演算

法分類為四個層次。特別的是，我們將證明：在 2 步資訊模式
下，可建構出自我穩定 MDS-靜止的演算法，且其穩定時間之
上界為 2n 步。

在 2005年，Xu提出了圖的帶正負號星控制集的概念，在 2007
年，Wang 給出了完全圖的帶正負號控制數，詳細定義請參見
本論文的第五章。在 2010 年，Atapour 等人定義了帶正負號
星控制劃分數，並利用完全圖具有可完全 1-因子分解或可完全
漢米爾頓圈分解的性質，計算出完全圖的帶正負號星控制劃分

數。在 2012 年，我與印度學者 Chelvam 等人合作，定義了有
向圖的帶正負號星控制數，給出了全部有向凱式圖的帶正負號

星控制數，與無向凱式圖的帶正負號星控制數的部份結果，並

推廣這些結果至可完全 {2, 1}-因子分解的正則圖。

ii

Abstract

The study of the domination problem in graph theory began in the
nineteen-sixties. A distributed system such as an ad hoc network can be
modeled by an undirected simple graph G = (V,E), where V represents the
set of nodes (i.e., processes) and E represents the set of interconnections
between processes of the distributed system. A subset D of the vertex set
V of G is a dominating set if each vertex v ∈ V is either a member of D or
adjacent to a vertex in D. A dominating set of G is a minimal dominating
set (MDS) if none of its proper subsets is a dominating set of G. An MDS
has an application of clustering in wireless networks and is maintained for
minimizing the number of required resource centers.

Self-stabilization is a concept of designing a distributed system for tran-
sient fault toleration and was introduced by Dijkstra in 1974. A distributed
system is self-stabilizing if, regardless of its initial configuration, the system
is guaranteed to reach a legitimate (i.e., correct) configuration in a finite
time. Here the system configuration consists of the state of every process. A
self-stabilizing algorithm comprises a collection of rules and each rule has a
trigger precondition and an action. The action changes the state of the node
by updating its variables. An execution of a rule is called a move. The per-
formance of the proposed algorithms of this thesis is measured by the total
number of moves executed by an algorithm. Various execution models have
been used in self-stabilizing algorithms and these are encapsulated with the
notion of daemons. A daemon can be fair or unfair. It is well-known that an
unfair distributed daemon is more practical than other types of daemons.

iii

Let n denote the number of nodes (processes) in a given distributed sys-
tem. In 2007, Turau proposed the first linear-time self-stabilizing algorithm
for the MDS problem under an unfair distributed daemon; this algorithm
stabilizes in at most 9n moves. In 2008, Goddard et al. improved the re-
sult to a 5n-move algorithm. It is interesting to develop an algorithm that
takes less moves than the best known result—5n moves using an unfair dis-
tributed daemon. In this thesis, we will present a 4n-move self-stabilizing
MDS algorithm using an unfair distributed daemon.

It is desired that an MDS algorithm is MDS-silent, which means that
if the original configuration of the distributed system is already an MDS,
then the algorithm should not make any move. Note that in the normal
model, a node can only access the information of its 1-hop neighbors and we
call such information distance-1 information. Unfortunately, in this thesis
we will prove that distance-1 information is not sufficient for building up an
MDS-silent algorithm for a distributed system. Therefore it is impossible
for an algorithm to be MDS-silent under a normal model, in which only
distance-1 information is accessible. What will happen if a node can access
the information of its k-hop neighbors for k ≥ 2? In this thesis, we will discuss
this problem and propose a new performance measure, called stableness, for
self-stabilizing MDS algorithms. We also generalize this result to categorize
all self-stabilizing algorithms into four levels. In particular, we will show that
a self-stabilizing MDS-silent algorithm can be built up under the distance-2
model and the stabilizing time is upper bounded by 2n.

Let G be a simple connected graph with vertex set V (G) and edge set
E(G). A function f : E(G) → {−1, 1} is called a signed star dominating
function (SSDF) on G if

∑
e∈E(v) f(e) ≥ 1 for every v ∈ V (G), where E(v)

is the set of all edges incident to v. The signed star domination number of
G is defined as γSS(G) = min{

∑
e∈E(G) f(e)| f is an SSDF on G}. Let D

be a finite digraph with vertex set V (D) and arc set A(D). For each vertex
v ∈ V (D), let A(v) be the set of all out-going arcs from v. By replacing E(v)

by A(v), one can define SSDF on D and γSS(D) = min{
∑

a∈A(D) f(a) | f is

iv

an SSDF on D}. Let Γ be a finite nontrivial group and S be a nonempty
subset of Γ. The Cayley digraph CayD(Γ, S) is the digraph whose vertices
are the elements of Γ, and there is an arc from α to ασ whenever α ∈ Γ and
σ ∈ S. Let Ω be a symmetric generating subset of nonidentity elements of Γ.
The Cayley graph Cay(Γ,Ω) corresponding to Γ and Ω is the ordinary graph
with vertex set Γ and edge set E = {{α, ασ} | α ∈ Γ, σ ∈ Ω}. In this thesis,
we obtain exact values for the signed star domination number of all Cayley
digraphs CayD(Γ, S) and certain classes of Cayley graphs Cay(Γ,Ω), which
is later generalized to {2, 1}-factorable graphs. Note that these solutions are
from a joint work with Chelvam and Kalaimurugan.

v

Acknowledgments

由衷感謝兩大貴人：我的指導教授陳秋媛老師與我未來的老婆

陳怡樺。

vi

Contents

Abstract (in Chinese) i

Abstract iii

Acknowledgements vi

Contents vii

List of Tables x

List of Figures xi

List of Algorithms xiii

1 Introduction 1

1.1 Basic graph definitions . 1

1.2 Graph domination and related definitions . 3

1.3 Applications of graph domination . 5

1.4 Thesis outline . 6

vii

2 Self-stabilization 8

2.1 The early draft of self-stabilizing systems . 9

2.2 Fundamental concepts of self-stabilizing systems 9

2.3 Daemons and fairness . 12

2.4 Self-stabilizing algorithms on graphs . 14

2.5 Applications to wireless sensor networks . 15

3 Self-stabilizing MDS algorithms 16

3.1 Previous results . 17

3.1.1 The first self-stabilizing MDS algorithm 18

3.1.2 The second self-stabilizing MDS algorithm 18

3.1.3 The first linear-move self-stabilizing MDS algorithm assuming the dis-

tributed daemon . 18

3.1.4 The second linear-move self-stabilizing MDS algorithm 20

3.2 A (4n− 2)-move MDS algorithm . 21

3.3 Correctness and convergence . 23

3.4 Simulations and comparisons . 28

4 The stableness of MDS algorithms 31

4.1 Motivation . 32

4.2 Transition diagrams . 35

4.3 Four levels of stableness . 37

4.4 Multi-self-stabilization . 42

5 The distance-2 model 48

5.1 The extended model and the expression model 49

5.2 Implementing the distance-2 model . 49

5.3 Developing an MDS-silent algorithm . 51

6 The signed star domination 55

6.1 Definitions and previous results . 56

6.2 SSD of Cayley digraphs . 57

6.3 SSD of Cayley graphs . 60

6.4 SSD of {2, 1}-factorable graphs . 65

7 Conclusions 67

References 70

List of Tables

3.1 Self-stabilizing algorithms for the minimal dominating set problem. 17

4.1 The levels of stableness and convergence of self-stabilizing algorithms. 40

4.2 Self-stabilizing MDS algorithms on general graphs with different levels of

stableness. 40

4.3 Self-stabilizing independent set algorithms. 46

4.4 Self-stabilizing dominating set algorithms. 47

x

List of Figures

3.1 The state diagram of Well4n. 24

3.2 The average number of moves made by Well4n, Goddard5n, and Turau9n with

regard to the transmission ranges, where the vertical line segments denote the

standard deviations. 29

3.3 The average number of membership moves made by Well4n, Goddard5n, and

Turau9n in terms of the transmission ranges, where the vertical line segments

denote the standard deviations. 30

4.1 The transition diagram of a distributed system. The structures of a loop, a

path, a tree, and a 3-cycle are shown in the areas a to d, respectively. Area

e depicts a node with out-degree 3; this node denotes a configuration with

three possible following configurations. 36

4.2 The transition diagram of the algorithm Kakugawa. A dominating set (DS)

is feasible and a minimal dominating set (MDS) is optimal. The algorithm

converges to a single point, which is the lexicographically first minimal inde-

pendent domination set. 44

xi

4.3 The transition diagram of a multi-self-stabilizing system with respect to three

layers of legitimacy. 45

6.1 An illustration of the signed star domination number of CayD(Z6, {1, 2, 5})

and the corresponding SSDF. 59

6.2 An illustration of the signed star domination number of Cay(Z7, {1, 2, 5, 6})

and the corresponding SSDF. 64

6.3 An illustration of the signed star domination number of Cay(Z15, {3, 5, 10, 12})

and the corresponding SSDF. 65

List of Algorithms

1 Dijkstra . 10

2 Turau3n . 19

3 Turau9n . 20

4 Goddard5n . 21

5 Well4n . 23

6 Kakugawa . 43

7 Well2n . 51

xiii

Chapter 1

Introduction

Graph theory has multiple applications in the real world. In this thesis, we consider a

distributed system whose topology is represented by an undirected simple graph G = (V,E),

where V represents the set of nodes (i.e., processes) and E represents the set of edges (i.e.,

the interconnections between processes) of the distributed system. We discuss the problem of

developing efficient self-stabilizing minimal dominating set algorithms, the existence of self-

stabilizing minimal dominating set algorithms with respect to different levels of stableness,

and finding the signed-star domination number of graphs. Throughout this thesis, we use

the terms “vertex” and “node” interchangeably, and we use the terms “distributed system”

and “graph” interchangeably. Also, unless otherwise specified, all graphs are assumed to be

simple.

1.1 Basic graph definitions

A graph G is a nonempty finite set V along with a finite set E of 2-element subsets of V .

The elements of V are called vertices and the elements of E are called edges. The number

of elements in a set S is called the cardinality of S and is denoted by |S|. We use n and

1

CHAPTER 1. INTRODUCTION 1.1. BASIC GRAPH DEFINITIONS

m to denote the order and the size of a graph, respectively; that is, n = |V | and m = |E|.

An edge with endpoints u and v is denoted as uv. Two vertices u and v in V are said to

be adjacent in G, denoted by u ∼ v, if there exists an edge uv ∈ E. Let v ∈ V . A vertex

u is a neighbor of v if they are adjacent. The open neighborhood (or shortly, neighborhood)

of v is the set of vertices to which v is adjacent; that is, N(v) := {u ∈ V | u ∼ v}. The

degree of a vertex v is defined as deg(v) := |N(v)|. We use the notation N [v] = N(v) ∪ {v}

to denote the closed neighborhood of v. The definition of the maximum degree ∆ of G is

∆(G) := max{deg(v) | v ∈ V }. We define the diameter of G to be max{d(u, v) | u, v ∈ V }

and the radius of G to be min{max{d(u, v) | v ∈ V } | u ∈ V }.

The length of a path or a circle is defined to be the number of edges in the path or the

circle. The distance between any two vertices u and v in G, denoted as d(u, v), is the length

of a shortest path between u and v in G. A vertex u is called a k-neighbor of a vertex v if

d(u, v) = k. The (open) k-neighborhood Nk(v) of vertex v is the set of vertices u such that

1 ≤ d(u, v) ≤ k. The closed k-neighborhood Nk[v] of vertex v is Nk(v)∪{v}. For a vertex set

S, Nk(S) =
∪

i∈S Nk(v). Conventionally, the subscript k is omitted if k = 1, as a neighbor

of v or the neighborhood N(v).

To color the vertices in a graph G = (V,E) is to give each vertex a positive integer color

value in such a way that no two adjacent vertices get the same color. In many practical

considerations, it is desirable to minimize the number of colors used. If at most k colors

are used, the result is called a k-coloring. The smallest possible positive integer k for which

there exists a k-coloring of G is called the chromatic number of G and is denoted as χ(G).

Given an undirected graph G = (V,E), a matching is defined to be a subset M ⊆ E

such that for all nodes v ∈ V at most one edge of M is incident with v. A matching M is

maximal if there does not exist another matching M ′ such that M ⊂ M ′. A subset M ⊆ E

is called a k-matching of G if |E(v) ∩M | ≤ k for all nodes v ∈ V , where E(v) is the set of

edges incident from v. Note that a 1-matching is a simple matching.

2

CHAPTER 1. INTRODUCTION 1.2. GRAPH DOMINATION AND RELATED DEFINITIONS

A vertex cover for a graph G = (V,E) is a subset C ⊆ V such that, for each edge uv ∈ E,

at least one of the two endpoints u and v belongs to C.

1.2 Graph domination and related definitions

Although the study of the graph domination problem began in the nineteen-sixties, the

first paper which addresses the queens dominating chessboard problem dates back to 1862.

Given an undirected graph G = (V,E), a dominating set D is a subset of V such that

N [v] ∩ D ̸= ∅ for every v ∈ V . We say a node in D dominates its neighbors and a node

in V \D is dominated if it has a neighbor in D. Nodes in the dominating set D are called

dominators, and nodes not in D are called dominatees.

A dominating set D of G is a minimal dominating set (MDS) if D does not properly

contain another dominating set of G. The MDS problem is that of finding a minimal domi-

nating set for any given undirected graph G and this is the problem discussed in this thesis.

A dominating set D of G is a connected dominating set (CDS) if the subgraph of G induced

by D is connected; minimality is defined similarly. The problem of finding a minimum

connected dominating set is known to be NP-complete [22].

Dominating sets are closely related to independent sets. In an undirected graph G =

(V,E), a subset I ⊆ V is independent if no two nodes in I are adjacent. An independent set

I of G is a maximal independent set (MIS) if it is not a proper subset of any independent

set of G. It is well-known that a maximal independent set of G is a dominating set of G.

Therefore a maximal independent set of G is also called an independent dominating set of

G. The independent set problem is the optimization problem of finding an independent set

of maximum cardinality in a graph. The independent set problem is NP-complete [22].

Given a non-negative integer k, we define a k-cluster of G to be a nonempty subgraph

of G of radius at most k. If C is a k-cluster of G, we say that v ∈ V (C) is a clusterhead of

3

CHAPTER 1. INTRODUCTION 1.2. GRAPH DOMINATION AND RELATED DEFINITIONS

C if, for any u ∈ V (C), there is a path of length at most k in C from v to u. We define a

k-clustering of G to be a set {C1, . . . , Cℓ} of k-clusters of G such that every vertex v ∈ V

lies in exactly one of the Ci. A set of vertices D ⊆ V is a k-dominating set of G if, for every

v ∈ V , there exists u ∈ D such that d(u, v) ≤ k. Building a k-dominating set in a graph is

useful because it allows to split the graph into k-clusters. We say that a k-dominating set

D is minimum if no k-dominating set of G has fewer dominators than D. The problem of

finding a minimum k-dominating set is known to be NP-hard [22].

Now, we define the problem of computing an MDS in distributed systems. LetG = (V,E)

be a graph that represents a distributed system. By v.id, we denote the process identifier of

v for each process v of the distributed system. In discussing the process identifier, we can

use v to denote v.id when it is clear from contexts. For a distributed system, the minimal

dominating set problem is defined as follows:

• For each process v ∈ V , its identifier and its neighbors are given as an input.

• Each process v ∈ V must decide its decision dv as an output.

• The set {v ∈ V : dv = 1} must be an MDS.

The decision dv of v can be encoded by the local state qv of v in an arbitrary way by an

algorithm. Formally, dv ≡ Dec(qv) for some decoding function Dec on the local states defined

by an algorithm.

In summary, given an undirected graph G = (V,E), a subset S of V is:

• independent if for each pair i, j ∈ S, ij ̸∈ E;

• dominating if for every i ∈ V , either i ∈ S or i ∈ N(S);

• maximal independent if S is independent and any subset properly containing S is

not independent;

4

CHAPTER 1. INTRODUCTION 1.3. APPLICATIONS OF GRAPH DOMINATION

• minimal dominating if S is dominating and no proper subset of S is dominating.

1.3 Applications of graph domination

A minimal dominating set needs to be maintained to optimize the number and location of

resource centers in a network [35]. Some applications of this area include school bus routing,

computer communication networks, resource allocation schemes, radio stations with limited

broadcasting range, etc. An important concept in the study of a vertex subset problem is

the difference between a “minimum” and a “minimal” set with a given property. To find a

minimum cardinality of dominating set is hard, but we can easily find a minimal dominating

set in polynomial time in a distributed manner.

Specifically, a minimal dominating set can be usefully applied in wireless sensor networks.

One way to find a connected dominating set is to firstly find a minimal dominating set

and then connect each dominator by including more nodes into the dominating set. A

connected dominating set of a communication graph can serve as the virtual backbone for

supporting the communication between sensors in a wireless sensor network. This is because

its domination property ensures that every node is either in the backbone or adjacent to a

node in the virtual backbone, and its connectivity property guarantees that any two nodes

can send messages to each other via a series of intermediate nodes in the virtual backbone.

In a connected component of a wireless sensor network’s communication graph, sensors are

linked with one another so that they can interchange messages and deliver messages along

a simple path to make the communications between non-adjacent sensors become possible.

5

CHAPTER 1. INTRODUCTION 1.4. THESIS OUTLINE

1.4 Thesis outline

This thesis is organized as follows. Chapter 2 gives the fundamentals of self-stabilizing

algorithms on a distributed system. Self-stabilization is a concept of designing a fault-

tolerant distributed system for a finite number of transient faults, such as message loss

and memory corruption. The concept of self-stabilization was first proposed by Dijkstra in

1974 [15]. The configuration, also called the global state, of a distributed system consists of

the state of every node and the content of every communication channel. Given an illegal

starting configuration, such a system has to be able to reach a legal configuration in a finite

time. Once in a legal configuration, the system may only move to another legal configuration

if there is no external interference. The concept of self-stabilization has been proven to be

an effective and cost-effective paradigm for localized state-based computation to implement

distributed algorithms, especially in networks with resource-constrained nodes like sensor

networks or ad hoc networks. The objective of self-stabilization is to recover the system

from failure in a reasonable time and without intervention by any external agency.

The purpose of Chapter 3 is to discuss the problem of designing efficient self-stabilizing

algorithms for the minimal dominating set problem. We consider a distributed system whose

topology is represented by an undirected graph G. The MDS problem is to find a minimal

dominating set for the given undirected graph G. Let n denote the number of nodes in the

system. The main contribution of this chapter is to propose a (4n− 2)-move self-stabilizing

algorithm for the MDS problem under an unfair distributed daemon. We also compare our

algorithm with other self-stabilizing algorithms in this chapter.

The purpose of Chapter 4 is to discuss the levels of stableness of self-stabilizing al-

gorithms for the MDS problem. Obviously, a node in a distributed system has limited

information about the whole system. Usually, a node can only access the information of

nodes in its 1-neighborhood. Let k be a positive integer. We say a distributed system is

6

CHAPTER 1. INTRODUCTION 1.4. THESIS OUTLINE

in the distance-k model if a node in the system can access the information of nodes in its

k-neighborhood. For convenience, we say a distributed system is in the normal model if it is

in the distance-1 model. What will happen if a node can access the information of nodes in

its k-neighborhood for k ≥ 2? In this chapter, we discuss the above problem and propose a

new performance measure, called stableness, for self-stabilizing MDS algorithms. We define

MDS-silent algorithms and MDS-stable algorithms, and we classify four levels of stableness

for self-stabilizing algorithms.

It is desired that an MDS algorithm is MDS-silent, meaning that if the original configu-

ration is already an MDS, then the algorithm should not make any moves. In Chapter 5, we

discuss the problem of designing a self-stabilizing MDS-silent algorithm. In the distance-2

model, a node can instantaneously access the information of all nodes within distance two

from it. The main contribution of this chapter is to propose a (2n− 1)-move self-stabilizing

MDS-silent algorithm for the MDS problem under an unfair distributed daemon in the

distance-2 model.

The purpose of Chapter 6 is to find out the signed star domination number (a variant

of the domination number) of Cayley digraphs and Cayley graphs. A function f : E(G) →

{−1, 1} is called a signed star dominating function (SSDF) on G if
∑

e∈E(v) f(e) ≥ 1 for every

v ∈ V (G), where E(v) is the set of all edges incident with v. The signed star domination

number of G is defined as γSS(G) = min{
∑

e∈E(G) f(e)| f is an SSDF on G}. In Chapter 6,

we obtain exact values for the signed star domination number for certain classes of Cayley

digraphs and Cayley graphs.

Concluding remarks are given in Chapter 7.

7

Chapter 2

Self-stabilization

The concept of self-stabilization was first proposed by Dijkstra [15] in 1974. This concept

has been proven to be an effective and cost-effective paradigm for localized state-based

computation to implement distributed algorithms, especially in networks with resource-

constrained nodes like sensor or ad hoc networks. The objective of self-stabilization is to

recover the system from failure in a reasonable time and without intervention by any external

agency. Self-stabilization is based on two basic ideas: (i) the code executed by a node is

incorruptible (as if written in a fault-resilient memory) and transient faults affect only data

values; (ii) the goal system behavior can be checked by evaluating some predicates of the

system state variables.

This chapter is organized as follows. Section 2.1 gives the early draft of self-stabilizing

systems. Section 2.2 states the fundamental concepts of self-stabilizing systems. Section 2.3

introduces various execution models which are encapsulated with in the notion of daemons

and fairness. Section 2.4 gives a brief review of self-stabilizing algorithms on graphs (span-

ning tree construction, independent sets, dominating sets, and so on). An application of

self-stabilizing algorithms to wireless sensor networks is given in Section 2.5.

8

CHAPTER 2. SELF-STABILIZATION 2.1. THE EARLY DRAFT OF SELF-STABILIZING SYSTEMS

2.1 The early draft of self-stabilizing systems

Self-stabilization is a concept of designing distributed systems for transient fault toleration.

The original idea of self-stabilization was introduced by Dijkstra in a seminal paper in 1974

[15]. The earliest definition of a self-stabilizing system requires that:

(i) in each legitimate (i.e., legal) state, one or more privileges will be present;

(ii) in each legitimate state, each possible move will bring the system again in a legitimate

state;

(iii) each privilege must be present in at least one legitimate state; and

(iv) for any pair of legitimate states, there exists a sequence of moves transferring the

system from the one into the other.

Dijkstra considered machines placed in a ring, and had chosen the legitimate configura-

tion in which exactly one privilege is present. Imagine there is a group of people sitting in

a circle. If they want to speak, they have to raise their hands and wait for calls. A central

chairman chooses a person to speak once at a time. In a while, the situation becomes stable:

exactly one person raises his or her hand and is chosen to speak.

Three solutions were given. The first one with K-state machines is easy since K is larger

than the number n of machines. The second one is a solution with four-state machine. The

most complicated one with three-state machines is shown in Algorithm 1. These algorithms

are correct: in a finite time, exactly one privilege will be present.

2.2 Fundamental concepts of self-stabilizing systems

In spite of the fact that the concept of self-stabilization was introduced by Dijkstra in 1974

[15], serious work only began in the late nineteen-eighties. See Dolev’s book for an overview
9

CHAPTER 2. SELF-STABILIZATION 2.2. FUNDAMENTAL CONCEPTS OF SELF-STABILIZING SYSTEMS

Algorithm 1 Dijkstra

variables

Mi.S ∈ {0, 1, 2} with addition taken modulo 3;

for the machine M0

if M0.S + 1 = M1.S then M0.S := M0.S + 2;

for the machine Mn−1

if Mn−2.S = M0.S and Mn−2.S + 1 ̸= Mn−1.S then Mn−1.S := Mn−2.S + 1;

for the other machines Mi

if Mi.S + 1 = Mi−1.S then Mi.S := Mi−1.S;
if Mi.S + 1 = Mi+1.S then Mi.S := Mi+1.S;

[16].

Self-stabilizing algorithms are specified as a collection of rules executed on each node.

Each rule has a trigger precondition and an action. The precondition of a rule is a Boolean

predicate involving the states of the node and its neighbors, and the action changes the state

of the node by updating its variables. A rule is enabled if its precondition evaluates to be

true. A node is privileged if at least one of its rules is enabled. A node moves by changing

state if it is selected by the control scheduler. Therefore the execution of an action is called

a move, no matter how many variables it changes in the action.

A fundamental idea of self-stabilizing algorithms is that the distributed system may be

started from an arbitrary configuration. After a finite time, the system reaches a correct

configuration, called a legitimate configuration. We say that the system has stabilized if

no nodes are privileged. An algorithm on a distributed system is called self-stabilizing

[15, 16, 18, 65] if the following two properties hold:

Convergence The convergence property ensures that, starting from any illegitimate state,

the distributed system reaches a legitimate state in a finite time without any external

intervention.

10

CHAPTER 2. SELF-STABILIZATION 2.2. FUNDAMENTAL CONCEPTS OF SELF-STABILIZING SYSTEMS

Closure The closure property ensures that, after convergence, the system remains in the

set of legitimate states.

The concept of self-stabilization has been developed for different communication styles,

and algorithms on a distributed system may assume the inter-node communication mod-

els: message-passing model and shared memory model. In communication computer net-

works, computers communicate by exchanging messages, which is called the message-passing

model. In the message-passing model, asynchronous computers sending and receiving mes-

sages through first-in first-out (FIFO) queues which may cause message losing. Other dis-

tributed systems usually use the shared memory model of communication, where neighboring

communicating entities may communicate via common variables or registers. We distinguish

two variants of the shared memory models. The link-register model is associated with a mul-

tiprocessor computer or a multitasking single computer, in which each processor/process can

communicate with each other only by using separate registers. By using a global clock pulse,

writing in and reading from the shared memory of two or more neighboring entities can be

synchronized without losing information. The other is the state reading model, which is

wildly used in the communicating graph algorithms. In the state reading model, each node

can directly read the internal states of its neighboring nodes. Our algorithms assume the

state reading model of communication.

Nodes in a distributed system can be modeled as state machines performing a sequence

of steps. More precisely, we use composite atomicity, meaning that a node may read all

its input variables, perform a state transition, and write all its output variables in a single

atomic step. We assume that rules are atomically executed, that is, the evaluation of a

precondition and the move are performed in one atomic step. All of the self-stabilizing

algorithms presented in this thesis are concerned with composite atomicity and the state

reading model unless otherwise specified. Note that the weakest communication model with

register is known as the read/write atomicity model where a process can only atomically
11

CHAPTER 2. SELF-STABILIZATION 2.3. DAEMONS AND FAIRNESS

read the state of its neighbors or update its own state [18].

When estimating the time complexity of a self-stabilizing algorithm, we consider the

stabilization time not the running time, since a self-stabilizing algorithm is usually a do

forever loop and it does not terminate. The stabilization time of a self-stabilizing algorithm

is the maximum amount of time it takes for the system to reach a legitimate configuration.

The stabilization time is estimated in terms of time-steps or in terms of rounds. A time-step

of a system is the amount of time in which a process can make an atomic step. A round is a

minimal sequence of time-steps where every process privileged at the start is either tapped

or sees its move disabled by the move of a neighbor. In general, the number of time-steps is

bounded above by the number of moves.

We assume in a self-stabilizing algorithm, each node maintains its local variables and can

make up decisions based on its local variables and its neighbor’s local variables. A node can

change its state by making a move, that is, by changing the value of at least one of its local

variables. In this thesis, we will follow the conventions used in [30, 34, 75]. In particular,

every node executes the same set of rules, and maintains and changes its own state based on

its current state and the states of its neighbors [66]. These algorithms can be implemented

on wireless sensor networks by using the beacon messages [30]. During the execution, every

sensor node broadcasts its state to its neighbors after every change of the state.

2.3 Daemons and fairness

Various execution models have been used in self-stabilizing algorithms and these are encapsu-

lated within the notion of daemons (or schedulers). Under different daemons, the algorithms

differ greatly. Three commonly used daemons are: distributed daemon, synchronous dae-

mon, and central daemon. In order to consider the worst-case scenario, a self-stabilizing

algorithm is assumed to face an adversarial daemon. The central daemon picks up only

12

CHAPTER 2. SELF-STABILIZATION 2.3. DAEMONS AND FAIRNESS

one privileged node to execute an atomic step at each time-step. If a synchronous daemon

is supposed, then all the privileged nodes execute an atomic step at each time-step. The

distributed daemon chooses an arbitrary subset of the privileged nodes to execute an atomic

step at each time-step. For the synchronous daemon, the measures time-steps and rounds

coincide.

A scheduler can be fair or unfair. A fair daemon guarantees that every node is eventually

selected to make a move. Otherwise it is unfair. If a daemon is unfair, then a round is not

guaranteed to finish. It is well-known that an unfair distributed daemon is more practical

than the other types of daemons and it is the daemon used by our algorithms and by [30, 75].

A distributed algorithm is said to be uniform if all of the individual processes run the

same set of rules. If all processes run the same set of rules except a single process, called

the root or the leader, then the algorithm is semi-uniform. When algorithms are designed

for anonymous systems, the processes do not have any identification [67]. Some algorithms

assume that processes have globally unique identifiers. Also, when a process can make moves

with random outputs, the algorithm is said to be probabilistic (or randomized); otherwise

it is deterministic. A distributed algorithm is dynamic if it can tolerate changes in the

topology of the system during its execution. In [18] it is pointed out that self-stabilizing

uniform algorithms designed for systems of arbitrary topology are dynamic.

Symmetry breaking is essential for algorithms in distributed systems assuming syn-

chronous or distributed daemons [46]. For some problems it has been shown that determin-

istic uniform self-stabilizing algorithms are impossible for an anonymous system because the

difficulty encountered in symmetry breaking [68]. We assume that each node is designated

a unique numeric identifier (ID) so that two neighboring nodes can compete against each

other by comparing their IDs. It is to be noted that most self-stabilizing algorithms actually

only require locally unique identifiers (i.e., no closed neighborhood contains two identical

identifiers). We denote by v.id the identifier of a node v, or by v itself if no ambiguity is

13

CHAPTER 2. SELF-STABILIZATION 2.4. SELF-STABILIZING ALGORITHMS ON GRAPHS

caused.

2.4 Self-stabilizing algorithms on graphs

Graph algorithms have natural applications to networks and distributed systems since graphs

can be used to model networks or distributed systems. For example, dominating sets are

suitable for cluster formation. Colorings are used in mutual exclusion and resource allocation

problems. Spanning trees are used in tasks like routing and broadcasting, while matchings

can be used in situations of communication where a node must be coupled with exactly one

of its neighbors. Thus, many distributed graph algorithms have been developed to be used

in network protocols or distributed systems.

Since the publication of Dijkstra’s pioneering paper, lots of self-stabilizing algorithms for

a variety of problems have been proposed in the literature. Here, we are interested in the

category of graph theoretic problems, which has been deeply investigated since nineteen-

nineties. Self-stabilizing algorithms for a variety of graph theoretic problems have been

published in recent years. Some problems such as spanning tree construction [2, 6, 10, 23,

39, 63, 69, 71, 73], independence [21, 30, 32, 36, 45, 66, 67, 75], domination [4, 21, 28, 29,

30, 36, 43, 44, 50, 51, 75, 76, 83], coloring [24, 26, 38, 41, 42, 48, 53, 56, 59, 70, 72, 77], and

matching [8, 27, 37, 40, 57, 58] have received more attention than other problems such as

finding centers [5], vertex covering [54], clustering [13], etc.

In a graph algorithm for finding a vertex subset such as the MDS or MIS, the states

of processes are categorized into two types. The first type is IN, with which the process is

considered in the set S with the desired property (MDS or MIS). On the other hand, if the

process is considered not in S, then we say it is OUT. The nodes are referred to as IN nodes

and OUT nodes according to their states. A neighbor is an IN (resp., OUT) neighbor if it is

an IN (resp., OUT) node.

14

CHAPTER 2. SELF-STABILIZATION 2.5. APPLICATIONS TO WIRELESS SENSOR NETWORKS

In such a setting when a node makes an execution and therefore changes the values of

its variables, we will say it makes a move. A membership move is a move such that the

state of the node changes from IN to OUT or from OUT to IN after the execution. An MDS

of a distributed system consists of the set of IN nodes after the algorithm stabilizes. If the

system is self-stabilizing with respect to MDS, one must show that the convergence and

closure properties both hold. While self-stabilizing algorithms exist for computing an MDS,

no self-stabilizing algorithm is known to compute a minimal CDS; the predicate seems to

be locally non-computable, due to its nature of global predicates [33].

2.5 Applications to wireless sensor networks

Self-stabilization has applications to wireless sensor networks (WSNs). In a wireless system,

sensor nodes broadcast their local states to neighbors after each move. The asynchronous

execution of an algorithm in each sensor node can be described as of an unfair distributed

daemon independently selects a nonempty subset of privileged nodes. The sensor nodes in

the network are influenced by the natural forces which make them mobile. A sensor node

would be dead when its limited battery power depletes and if this happens then it leaves

the WSN. Hence the topology of a WSN may change frequently. A WSN can model by a

distribution system and each node maintains its own neighbor list and can communicate

to neighbors via broadcasting messages. When the topology of the system changes, we

say an external interference occurs and the system is not stable any more, thus we need a

self-stabilizing algorithm to recover the system from an illegitimate configuration.

15

Chapter 3

Self-stabilizing MDS algorithms

In this chapter, we consider a distributed system whose topology is represented by an undi-

rected, simple graph G = (V,E). Let n denote the number of nodes in the system. Assume

each node can read the local state of its neighboring nodes in G. The MDS problem is

that of finding a minimal dominating set in any given graph G and this is the problem

concerned in this chapter. The main contribution of this chapter is to propose a (4n − 2)-

move self-stabilizing algorithm for the MDS problem under an unfair distributed daemon.

A preliminary version of this chapter appeared as [12].

This chapter is organized as follows. In Section 3.1, we give previous results in self-

stabilizing MDS algorithms. Section 3.2 presents a (4n− 2)-move self-stabilizing algorithm

called Well4n for the MDS problem. Section 3.3 proves the correctness and convergence

properties of Well4n and gives an upper bound of 4n − 2 moves. Simulations in average

analysis of our algorithm and comparisons with other linear-move MDS algorithms are given

in Section 3.4.

16

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.1. PREVIOUS RESULTS

3.1 Previous results

In [36], Hedetniemi et al. proposed the first self-stabilizing algorithm for the MDS problem;

their algorithm assumes the central daemon. In [83], Xu et al. presented an algorithm

under the synchronous daemon. In [75], Turau proposed a 9n-move algorithm under an

unfair distributed daemon; this algorithm is the first linear-time self-stabilizing algorithm

for the MDS problem. In [30], Goddard et al. presented a 5n-move algorithm. A good

survey for the self-stabilizing algorithms for the MDS problem can be found in [34].

For simplicity of notation in the context, we say that a configuration conforms to MDS

if the set of IN nodes is an MDS of G; otherwise the configuration violates MDS. The

time complexity of a self-stabilizing algorithm is estimated in terms of moves or in terms of

rounds. As was mentioned in the literature, for a wireless system with bounded resources,

the number of moves is at least as important as the number of rounds. The reason is that a

node has to broadcast the state to its neighbors after taking a move and therefore a reduction

of the number of moves prolongs the lifetime of a network. In the paper [83], Xu uses the

number of rounds to estimate the time complexity; but [30, 36, 75] and this thesis use the

number of moves. All the known results are summarized in Table 3.1.

Table 3.1: Self-stabilizing algorithms for the minimal dominating set problem.

stabilization time daemon type

Hedetniemi et al. [36] (2n+ 1)n moves central

Xu et al. [83] 4n rounds synchronous

Turau [75] 9n moves distributed

Goddard et al. [30] 5n moves distributed

this thesis (in Sec. 3.2) 4n− 2 moves distributed

In the following, we review algorithms in the previous results.

17

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.1. PREVIOUS RESULTS

3.1.1 The first self-stabilizing MDS algorithm

In [36], Hedetniemi et al. proposed the first MDS self-stabilizing algorithms. Under a central

daemon, the configuration of a graph stabilizes in O(n2) moves. In their MDS algorithm,

every node has two variables: a Boolean variable indicating its state is IN or OUT, and a

pointer pointing to one of its neighbors. For convenience, the neighbors of state IN are called

IN neighbors. A node will point to the unique IN neighbor, otherwise it will point to null.

A node is allowed to enter the MDS if it has no IN neighbor. In contrast, a node will leave

the MDS if it has at least one IN neighbor and there is no neighbor pointing to it.

3.1.2 The second self-stabilizing MDS algorithm

In [83], Xu et al. presented a self-stabilizing algorithm for the MDS problem using unique

identifiers under the synchronous daemon. The stabilization time is O(n). Like Hedetniemi’s

algorithm, every node has two variables: a Boolean variable and a pointer. A node will point

(i) to the unique IN neighbor, (ii) to itself if it has no IN neighbor, or (iii) to null if it has

more than one IN neighbor. A node will enter the MDS if it has no IN neighbor and it has

the smallest identifier within its closed neighborhood. A node will leave the MDS under the

same condition as in Hedetniemi’s algorithm.

3.1.3 The first linear-move self-stabilizing MDS algorithm assum-

ing the distributed daemon

In [75], Turau proposed a linear-time self-stabilizing algorithm (we call it Turau3n) for the

MIS problem with the unique identifier assumption. Every node has a variable that may

have one of three different values: IN (in the set), OUT (out of the set), or WAIT (an OUT node

with no IN neighbor, waiting to join the set). So, Turau3n runs as follows: an OUT node that

has no neighbor in the MIS will first change its variable to WAIT. After doing so, the node

18

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.1. PREVIOUS RESULTS

may change its variable to IN if it has no WAIT neighbor with a lower identifier. Also, an IN

node may leave the MIS and change its variable to OUT if it has an IN neighbor. Algorithm

Turau3n is self-stabilizing under an unfair distributed daemon and stabilizes after at most

3n moves with an MIS. Turau3n is shown in Algorithm 2.

Algorithm 2 Turau3n

variables

v.state ∈ {IN, OUT, WAIT}; // I = {v | v.state = IN} is an MIS

macros

inNeighbor(v) ≡ ∃w ∈ N(v) : w.state = IN;
waitNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.state = WAIT ∧ w < v;
inNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.state = IN ∧ w < v;

rules

1: if v.state = OUT ∧ ¬inNeighbor(v)
then v.state := WAIT; // wait for change

2: if v.state = WAIT ∧ inNeighbor(v)
then v.state := OUT; // stop waiting

3: if v.state = WAIT ∧ ¬inNeighbor(v) ∧ ¬waitNeighborWithLowerId(v)
then v.state := IN; // enter I

4: if v.state = IN ∧ inNeighbor(v)
then v.state := OUT; // leave I

Based on Turau3n, Turau extended the rules to design the first self-stabilizing MDS

algorithm and we call it Turau9n. Each node has two variables. The first three-valued

variable state is defined as the one in Turau3n. The second variable is a pointer variable

called dependent. An IN node changes dependent to null. An OUT node changes dependent to

null if there is more than one IN neighbor, or to the only one IN neighbor. The entering rule

is the same as in Turau3n. Besides, the leaving rule is modified by adding the precondition

“there is no neighbor pointing to it”. Turau proved that Algorithm Turau9n is self-stabilizing

under an unfair distributed daemon and stabilizes after at most 9n moves with an MDS.

The detail of Turau9n is shown in Algorithm 3.

19

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.1. PREVIOUS RESULTS

Algorithm 3 Turau9n

variables

v.state ∈ {IN, OUT, WAIT}; // D = {v | v.state = IN} is an MDS

v.dependent ∈ N(v) ∪ {null}; // point to the dominator if |N(v) ∩ D| = 1

macros

inNeighbor(v) ≡ ∃w ∈ N(v) : w.state = IN;
waitNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.state = WAIT ∧ w < v;
inNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.state = IN ∧ w < v;
uniqueInNeighbor(w, v) ≡ ∃!w ∈ N(v) : w.state = IN;
dependentNeighbors(v) ≡ ∃w ∈ N(v) : w.dependent = v;

rules

1: if v.state = OUT ∧ ¬inNeighbor(v)
then v.state := WAIT; // wait for change

2: if v.state = WAIT ∧ inNeighbor(v)
then v.state := OUT; // stop waiting

3: if v.state = WAIT ∧ ¬inNeighbor(v) ∧ ¬waitNeighborWithLowerId(v)
then v.state := IN; v.dependent := null; // enter D

4: if v.state = IN ∧ inNeighbor(v) ∧ ¬dependentNeighbors(v)
then v.state := OUT; // leave D

5: if v.state = IN ∧ v.dependent ̸= null
then v.dependent := null; // modify the pointer

6: if v.state = OUT ∧ uniqueInNeighbor(w, v) ∧ v.dependent ̸= w
then v.dependent := w; // modify the pointer

7: if v.state = OUT ∧moreThanOneInNeighbor(v) ∧ v.dependent ̸= null
then v.dependent := null; // modify the pointer

3.1.4 The second linear-move self-stabilizing MDS algorithm

In [30], Goddard et al. proposed a 5n-move algorithm (we call it Goddard5n) for the MDS

problem with nodes having locally distinct identifiers under an unfair distributed daemon.

When Algorithm Goddard5n stabilizes, the set S = {i : x(i) = 1} is an MDS of the given

distributed system. In detail, each node maintains a Boolean variable x and a three-valued

variable c. The value x(i) = 1 indicates that i ∈ S, while x(i) = 0 indicates that i ̸∈ S.

The counter c(i) counts the number of IN neighbors: c(i) = 0 indicates that i has no IN

neighbor, c(i) = 1 means that i has exactly one IN neighbor, and c(i) = 2 means that i has
20

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.2. A (4N − 2)-MOVE MDS ALGORITHM

at least two IN neighbors. The value of c(i) is rectified only when x(i) = 0 and is ignored

if x(i) = 1. A node is allowed to join S if it has no IN neighbor and its counter evaluates 0

and it has no lower identifier neighbor having c = 0. On the other hand, a node is allowed

to leave the MDS if it has an IN neighbor and the counters of all OUT neighbors evaluate

to 2, which means that they all have more than one IN neighbor. Algorithm Goddard5n is

shown in Algorithm 4.

Algorithm 4 Goddard5n

variables

flag x(i) ∈ {0, 1}; // S = {i : x(i) = 1}

integer c(i) ∈ {0, 1, 2}; // counter of N(i) ∩ S

rules

D1: if c(i) incorrect ∧(x(i) = 0)
then correct c(i); // rectify counter

D2: if (|N(i) ∩ S| = 0) ∧ (x(i) = 0) ∧ (c(i) = 0) ∧ (̸ ∃j ∈ N(i) : j < i, c(j) = 0)
then x(i) := 1; // enter S

D3: if (|N(i) ∩ S| > 0) ∧ (x(i) = 1) ∧ (∀j ∈ N(i)\S : c(j) = 2)
then x(i) := 0 and make sure c(i) is correct; // leave S

In [30], Goddard et al. showed that Algorithm Goddard5n stabilizes in at most 5n

moves under the distributed daemon and it stabilizes in at most 4n + 1 time-steps under

the synchronous daemon. Although the publication time of [30] is in 2008 which is later

then [75] in 2007, I personally suggest that this paper gives birth to the first linear-time

self-stabilizing MDS algorithm since it is received in May 2006, and there is a two month

gap before Turau submitted for publication of [75] in July 2006.

3.2 A (4n− 2)-move MDS algorithm

The purpose of this section is to present our main result: Well4n, a (4n − 2)-move self-

stabilizing algorithm for the MDS problem under an unfair distributed daemon. Algorithm
21

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.2. A (4N − 2)-MOVE MDS ALGORITHM

Well4n uses four states, which are defined by the four-valued variable state. The range of

values of state is: IN, OUT1, OUT2, and WAIT. A node with state = IN will be referred to as an

IN node. Let S = {v : v.state = IN}; i.e., S is the set of IN nodes. Nodes with state = OUT1

or OUT2 or WAIT will be referred to as an OUT node.

The values of state have the following meanings. The value IN indicates that the node is

in the MDS. The value OUT1 means that the node is not in the MDS and it has a unique IN

neighbor. The value OUT2 indicates that the node is not in the MDS and it has at least one

IN neighbor. The value WAIT means that the node is not in the MDS and it does not have

any IN neighbors. For the MDS problem, a legitimate state means: the distributed system

reaches the desired global property that the configuration conforms to MDS. To make it

precise, in our self-stabilizing MDS algorithm, a legitimate configuration is: the set of IN

nodes form an MDS, and every OUT node with state = OUT1 has a unique IN neighbor,

state = OUT2 has at least one IN neighbor, and state = WAIT has no IN neighbor. Notice

that a legitimate configuration will not contain any WAIT node.

To formally define the rules of Well4n, the following predicates defined for each node v

are needed:

• noBtNbr(v) ≢ ∃w∈N(v) : w.state=WAIT ∧ w.id<v.id.

• noDpNbr(v) ≢ ∃w∈N(v) : w.state = OUT1.

We now explain the meaning of noBtNbr and noDpNbr and the idea of using local

distinct identifier to break symmetry assuming the distributed daemon. When two or more

neighboring nodes want to enter the MDS simultaneously, our algorithm chooses the one

with the smaller (smallest) id. According to this, if v is an OUT node and has a neighbor

w such that w.state = WAIT and w.id < v.id, then w is called a better neighbor of v. The

predicate noBtNbr indicates that v has no better neighbor. Also, if v is an IN node and

has a neighbor w with w.state = OUT1, then w is called a dependent neighbor of v since w

22

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.3. CORRECTNESS AND CONVERGENCE

depends on its unique neighbor in the MDS (the neighbor is v). The predicate noDpNbr

indicates that v has no dependent neighbor.

For convenience, we introduce

• InNbr(v) = |{u ∈ N(v) | u.state = IN}|.

In the algorithm Well4n, each node executes the six rules shown in Algorithm 5. The state

diagram of Well4n is given in Figure 3.1.

Algorithm 5 Well4n

variables

v.state ∈ {IN, OUT1, OUT2, WAIT}; // S = {v : v.state = IN}

macros

InNbr(v) = |{u ∈ N(v) | u.state = IN}|;
noBtNbr(v) ≢ ∃w ∈ N(v) : w.state = WAIT ∧ w.id < v.id;
noDpNbr(v) ≢ ∃w ∈ N(v) : w.state = OUT1;

rules

R1: if v.state = WAIT ∧ InNbr(v) = 0 ∧ noBtNbr(v)
then v.state := IN; // enter S

R2: if v.state = IN ∧ InNbr(v) = 1 ∧ noDpNbr(v)
then v.state := OUT1; // leave S

R3: if v.state = IN ∧ InNbr(v) > 1 ∧ noDpNbr(v)
then v.state := OUT2; // leave S

R4: if v.state = WAIT ∧ InNbr(v) = 1
then v.state := OUT1; // rectify the counter

R5: if (v.state = OUT1 ∨ v.state = WAIT) ∧ InNbr(v) > 1
then v.state := OUT2; // rectify the counter

R6: if (v.state = OUT1 ∨ v.state = OUT2) ∧ InNbr(v) = 0
then v.state := WAIT; // rectify the counter

3.3 Correctness and convergence

We now prove the correctness of Well4n.
23

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.3. CORRECTNESS AND CONVERGENCE

IN

OUT1

OUT2

WAIT
InNbr=0 noBtNbr

InNbr=1 noDpNbr

InNbr>1 noDpNbr

InNbr=1

InNbr>1

InNbr=0

InNbr>1

InNbr=0

Figure 3.1: The state diagram of Well4n.

Lemma 3.3.1. In any configuration in which no node is privileged, (a) the number of

IN neighbors of every OUT node consistent with its state, and (b) the set S is a minimal

dominating set for G.

Proof. For (a), it is easy to check that if the state of an OUT node is inconsistent with the

description on the number of its IN neighbors, then a rule can be enabled for this node.

For (b), suppose to the contrary that S is not a minimal dominating set for G. Then

either (i) S is not a dominating set or (ii) S is a dominating set but not minimal. First

consider (i). Since S is not a dominating set, there exists at least one node u /∈ S which has

no IN neighbor; let S ′ be the set of all such nodes. Since rule R6 is not enabled, every node

in S ′ has state = WAIT. Let u0 be the node in S ′ with minimum id. Then u0 satisfies all

the constraints of rule R1. Hence rule R1 is enabled and this contradicts to the assumption

that no node is privileged.

Next consider (ii). Since S is a dominating set but not minimal, there must exist at

least one node u ∈ S such that S\{u} is also a dominating set for G. Then |N(u) ∩ S| ≥ 1

and for all u′ in N(u)\S, we have |N(u′) ∩ S| ≥ 2. Thus, every node u′ in N(u)\S has

InNbr(u′) > 1. Hence, every node u′ in N(u)\S must have u′.state = OUT2; otherwise rule

R5 is enabled on u′. Consequently, node u has noDpNbr(u) = true and either InNbr(u) = 1

(if |N(u)∩ S| = 1) or InNbr(u) > 1 (if |N(u)∩ S| > 1). Hence, either rule R2 or rule R3 is
24

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.3. CORRECTNESS AND CONVERGENCE

enabled on node u, which is a contradiction.

Note that when the algorithm terminates, there is no node with state = WAIT. Since

R6 is not enabled, any OUT node without an IN neighbor must have state = WAIT. Hence

to prove that there is no node with state = WAIT, it suffices to prove that S is a minimal

dominating set of G.

We now show that Well4n converges in a finite time. In particular, we show that the num-

ber of moves of Well4n is at most 4n−2. Let k be a nonnegative integer and ⟨r1, r2, . . . , rk⟩

be a sequence of rules (ri’s are not necessarily distinct). The sequence ⟨r1, r2, . . . , rk⟩ is

called a move sequence if a node can execute rule r1, then rule r2, . . ., then rule rk. The

following two lemmas show that in any possible move sequence of a specific node, rule R1

and rule R6 appear at most once when a distributed system run Well4n for a time period

without any external intervention.

Lemma 3.3.2. If a node executes rule R1, then it will not execute any other rule. Conse-

quently, if a node enters the set S, then it will never leave S.

Proof. Let v be a node which executes rule R1. Then v.state has been set to IN and thereafter

v enters S. By the precondition of rule R1, v has no IN neighbor and no better neighbor;

therefore no neighbor of v enters S at the same time when v enters S. Thus, no node in

N(v) that enters S and therefore InNbr = 0. After executing rule R1, v.state is IN and the

possible rule that v can execute is either rule R2 or rule R3. Rule R2 is impossible since it

requires InNbr(v) = 1; similarly rule R3 is also impossible since it requires InNbr(v) > 1.

Therefore, v will not execute any other rule. The second statement of this lemma now

follows.

Lemma 3.3.3. A node can execute rule R6 at most once, or equivalently, a node can set

its state to WAIT at most once.

25

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.3. CORRECTNESS AND CONVERGENCE

Proof. Let v be a node which executes rule R6 once. By the precondition of rule R6, v has

no IN neighbor when executing rule R6. After executing rule R6, v.state is set to WAIT and

the possible rules that v can execute is rule R1 or rule R4 or rule R5. If v executes rule

R1, then by Lemma 3.3.2, v will not execute any other rule and we have this lemma. If v

executes rule R4 or R5, then InNbr(v) = 1 or InNbr(v) > 1 must be true before rule R4

or R5 is enabled, meaning that v has a neighbor (say, u) which has executed rule R1; by

Lemma 3.3.2 again, u will never leave S. Therefore it is impossible to have InNbr(v) = 0,

which means that v cannot execute rule R6 again.

In the next, we firstly claim that the length of a move sequence of any node in G is at

most 4. If this is true, then the total number of moves among all nodes in G is at most 4n.

Furthermore, we improve the upper bound to 4n− 2 and show that this bound is tight.

Theorem 3.3.4. The proposed algorithm Well4n is self-stabilizing under an unfair dis-

tributed daemon and it stabilizes after at most 4n−2 moves with a minimal dominating set,

where n is the number of nodes. Moreover, the bound 4n− 2 is tight.

Proof. By Lemma 3.3.1, the algorithm Well4n is correct. To prove that Well4n stabilizes

after at most 4n − 2 moves, we first prove that it stabilizes after at most 4n moves, from

which we conclude that Well4n has the convergence property. To do this, it suffices to show

that any move sequence of a node is of length at most 4 under an unfair distributed daemon.

Let v be an arbitrary node in G. By Lemma 3.3.3, v can execute rule R6 at most once.

Thus, there are two cases: v never executes R6 and v executes R6 once.

First consider the case that v never executes rule R6. Then v.state never changes to

WAIT. Thus, the move sequence of v is either ⟨R1⟩ or ⟨R2,R5⟩ or ⟨R4,R5⟩. It follows that

any move sequence of v is of length at most 2.

Now consider the case that v executes rule R6 once. In this case, regard a move sequence

of v as the concatenation of a prefix and a suffix. By Lemma 3.3.2, the prefix of any move

26

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.3. CORRECTNESS AND CONVERGENCE

sequence of v cannot contain rule R1 since if v executes rule R1 then v will not execute any

other rule, including rule R6. Hence, the possible prefix of any move sequence of v is either

⟨R2,R6⟩ or ⟨R3,R6⟩ or ⟨R4,R6⟩ or ⟨R5,R6⟩. After v executes rule R6, v.state changes to

WAIT. Thus, the possible suffix of any move sequence of v is either ⟨R6,R1⟩ or ⟨R6,R4,R5⟩

or ⟨R6,R5⟩. Concatenating the prefix and suffix, we conclude that any move sequence of v

is of length at most 4.

From the above, Well4n stabilizes after at most 4n moves with a minimal dominating

set. We now prove that the bound can be strengthen to 4n−2. The cases of n = 1 and n = 2

are trivial. Suppose n ≥ 3 and one of the nodes makes 4 moves; by the above argument, this

node has two neighbors executing rule R1. Thus, at least two nodes in G make less than 4

moves and the upper bound can be strengthen to 4n− 2.

We now give an example to show that the upper bound 4n − 2 is tight. Consider the

complete bipartite graph K2,n−2, where n ≥ 3. Let the two nodes in the partite set of

cardinality two have the maximum and the minimum identifiers among the n nodes. If

initially all nodes are in state IN, then there is a way that all the rest of the nodes executes

⟨R3,R6,R4,R5⟩ but nodes with the maximum and minimum identifiers execute ⟨R3,R6,R1⟩.

All together 4n− 2 moves are made.

Note that our algorithm Well4n will be equivalent to Goddard5n if rule R4 is modified

as follows:

R4’: if (v.state = OUT2 ∨ v.state = WAIT) ∧ InNbr(v) = 1

then v.state := OUT1;

The idea of state OUT1 is to lock the unique IN neighbor. If node v change its state from

OUT1 to OUT2, there exists a neighbor u of v entering the set S. By Lemma 3.3.2, u will

never leave S. Hence, u will dominate v thereafter. Suppose then another IN neighbor w of

v wants to leave S, and somehow it really does. If u becomes the only one IN neighbor of
27

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.4. SIMULATIONS AND COMPARISONS

v, then there is no need for v to change its state back to OUT1 since neighbor u will never

leave S. Hence the modification we made is reasonable and it can shorten the longest move

sequence from ⟨R5,R4,R5,R4,R5⟩ to ⟨R3,R6,R4,R5⟩.

3.4 Simulations and comparisons

Theoretically, we have proven that: in the worst case, Well4n makes the smallest number of

moves to stabilize among Well4n, Goddard5n, and Turau9n. However, the average behaviors

of these algorithms are not known. This section presents simulations and comparisons of

these three algorithms. Notice that we implement the original version of Turau9n since the

modified version is incorrect (we explain the reason at the end of this section).

Simulation environments are conducted as follows and we calculate the mean and the

standard deviation. We regard the distributed system as a wireless sensor network, where

the transmission range of each node is the same. Thus the communication graph of the

distributed system is a unit disk graph (UDG). Notice that our simulations only consider

UDGs and the underlying graph may not be connected. We consider UDGs since they

are the most commonly used models for wireless sensor networks (of course, other classes

of graphs can be considered). In our simulations, the transmission range R of all of the

nodes is set to from 15m to 45m with a step of 5m (m means meter). For each R, each

algorithm is run 1000 times and each time 100 nodes are randomly placed in a square of

size 200m × 200m (again, m means meter). The resultant average node degrees are 1.64

(when R = 15), 2.84, 4.35, 6.12, 8.17, 10.40, and 12.86 (when R = 45). In each simulation,

we randomly assign each node an initial state and each state of the node is equally likely to

happen. In particular, in Goddard5n, each node has four possible states: x(i) = 0∧ c(i) = 0,

x(i) = 0 ∧ c(i) = 1, x(i) = 0 ∧ c(i) = 2, and x(i) = 1.

Recall that a move is called a membership move if its execution makes an IN node

28

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.4. SIMULATIONS AND COMPARISONS

changes to an OUT node and vise versa, i.e., if the node executes rule R1, R2, or R3. In each

simulation, every node independently computes the next state then summons the distributed

daemon. The daemon then chooses a nonempty subset of nodes to make moves. The

simulation continues until no node is privileged.

Figures 3.2 and 3.3 show the comparisons of the three algorithms. Figure 3.2 depicts

the average number of “moves” with regard to the transmission ranges. In our simulations,

Well4n always made fewer moves than Goddard5n and Turau9n. Figure 3.3 illustrates

the average number of “membership moves” in terms of the transmission ranges. In our

simulations, Goddard5n and Well4n make fewer membership moves than Turau9n. The

simulation results show that if the average number of “moves” is considered, then Well4n

outperforms Goddard5n; if the average number of “membership moves” is considered, then

Goddard5n outperforms Well4n.

Transmission ranges

N
u

m
b

e
rs

 o
f

m
o

v
e

s

0

50

100

150

200

250

300

350

400

450

15 20 25 30 35 40 45

Well4n

Goddard5n

Turau9n

Figure 3.2: The average number of moves made by Well4n, Goddard5n, and Turau9n with regard to the
transmission ranges, where the vertical line segments denote the standard deviations.

Before ending this section, we would like to point out an error in the modified Turau9n,

which is called modified AMDS in [75]. Turau claimed (in page 93 in [75]) that rule 4 can

29

CHAPTER 3. SELF-STABILIZING MDS ALGORITHMS 3.4. SIMULATIONS AND COMPARISONS

Transmission ranges

N
u

m
b

e
r

o
f

m
e

m
b

e
rs

h
ip

 m
o

v
e

s

0

10

20

30

40

50

60

70

15 20 25 30 35 40 45

Well4n

Goddard5n

Turau9n

Figure 3.3: The average number of membership moves made by Well4n, Goddard5n, and Turau9n in terms
of the transmission ranges, where the vertical line segments denote the standard deviations.

be changed by replacing the predicate inNeighbor with inNeighborWithLowerId so that

the total number of moves can be further reduced. We now show that Turau’s claim is

incorrect and should be eliminated. Suppose the replacement is done and the resultant rule

is called rule 4′. Let G be a path of three nodes v1, v2, v3 and edges v1v2, v2v3; suppose the

initial configuration is: v1, v2 are IN nodes with dependent = Λ and v3 is an OUT node with

dependent = v2. Suppose vi.id is i. Since {v1, v2} is not an MDS, modified AMDS must make

a move. It is not difficult to verify that no rule can be enabled by modified AMDS.

30

Chapter 4

The stableness of MDS algorithms

A node in a distributed system has limited information about the whole system. Usually,

a node can only access the information of nodes in its 1-neighborhood. Let k be a positive

integer. We say a distributed system is in the distance-k model if a node in the system can

access the information of nodes in its k-neighborhood. For convenience, we say a distributed

system is in the normal model if it is in the distance-1 model. What will happen if a node

can access the information of nodes in its k-neighborhood for k ≥ 2? In this chapter, we

will discuss the above problem and propose a new performance measure, called stableness,

for self-stabilizing MDS algorithms. We will define MDS-silent and MDS-stable algorithms,

and we will categorize self-stabilizing algorithms into four levels: S1-stable, S2-stable, S3-

stable, and S4-stable. In particular, Algorithms Turau9n, Goddard5n, and Well4n assume

the distance-1 model and none of them is MDS-silent.

This chapter is organized as follows. Section 4.1 gives the motivation of classifying

MDS algorithms into MDS-silent, MDS-covered, and MDS-stable algorithms. Section 4.2

introduces the transition diagram of a self-stabilizing system. Section 4.3 categorizes the

self-stabilizing algorithms into four levels of stableness. A variation of self-stabilization,

multi-self-stabilization, is formulated in Section 4.4.

31

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.1. MOTIVATION

4.1 Motivation

It is well-known that a maximal independent set is a minimal dominating set but the converse

is not true. Moreover, the stabilizing time of a self-stabilizing MIS algorithm is usually less

than that of a self-stabilizing MDS algorithm. Thus, why bother to develop a self-stabilizing

MDS algorithm? Why not use a self-stabilizing MIS algorithm instead of a self-stabilizing

MDS algorithm? In [75], Turau mentioned:

Since it is desirable that a self-stabilizing algorithm initialized with a minimal

dominating set does not make any moves, MIS-algorithms are not suitable solu-

tions for the MDS problem.

This characterizes an important feature of a self-stabilizing MDS algorithm:

The algorithm will not make any move if the given distributed system is initial-

ized with a minimal dominating set.

We call this important featureMDS-silent. The notion ofMIS-silent can be defined similarly.

We first prove a lemma.

Lemma 4.1.1. Any self-stabilizing MIS algorithm is a self-stabilizing MDS algorithm, but

not necessarily MDS-silent.

Proof. The former part of this lemma is straightforward and we only prove the latter part: a

self-stabilizing MIS algorithm is not necessarily MDS-silent. Let G be a path of four nodes,

labeled by v1, v2, . . . , v4 in order. More specifically, G has the vertex set V = {v1, v2, v3, v4}

and the edge set E = {v1v2, v2v3, v3v4}. Suppose initially v2 and v3 are IN nodes and v1 and

v4 are OUT nodes. Since {v2, v3} is not an MIS, any self-stabilizing MIS algorithm will make a

move. However, {v2, v3} is an MDS. If the algorithm is MDS-silent, then it should not make

any move. Therefore a self-stabilizing MIS algorithm is not necessarily MDS-silent.

32

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.1. MOTIVATION

Unfortunately, unlike self-stabilizing MIS algorithms which are usually MIS-silent (for

example, Algorithm MIS in [30] is MIS-silent), none of the self-stabilizing MDS algorithms

Turau9n [75], Goddard5n [30], and Well4n in Section 3.2 is MDS-silent. Notice that Turau9n,

Goddard5n, and Well4n are executed in the normal model. We now prove by contradiction

that a distributed system in the normal model cannot have an MDS-silent algorithm.

Theorem 4.1.2. There exists no self-stabilizing MDS-silent algorithm in the normal model.

Proof. Suppose this theorem is not true and there exists a self-stabilizing MDS-silent algo-

rithm A in the normal model. For convenience, let I and O denote the state IN and OUT,

respectively. Let G1 be a path of four nodes with initial configuration OIIO, G2 be a 4-path

with OIOI, and G3 a 5-path with OIIOI; see below.

G1: O − I − I −O

G2: O − I −O − I

G3: O − I − I −O − I

Run algorithm A on these three graphs. Since the initial configuration of G1 conforms to

MDS, which is legitimate, A will not make any move on G1. Similarly, since the initial

configuration of G2 is also legitimate, A will not make any move on G2.

Now consider G3. The first three nodes of G3 cannot distinguish themselves with the

first three nodes of G1, hence no rule is enabled for the first three nodes of G3. Also, the

last two nodes of G3 cannot distinguish themselves with the last two nodes of G2, hence no

rule is enabled for the last two nodes of G3. Therefore for G3, Algorithm A stabilizes with

initial configuration OIIOI, which violates MDS, a contradiction.

Another reason for developing self-stabilizing MDS algorithms is that while MIS algo-

rithms can only stabilize with an independent set, MDS algorithms are capable of stabilizing

with any minimal dominating set. In [36], Hedetniemi et al. mentioned that the significance

of MDS algorithms is that if the system is initialized to any MDS with the correct variable

33

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.1. MOTIVATION

settings (including minimal dominating sets that are not independent sets), then the system

will remain stable. They also pointed out that an MDS algorithm is usually more complex

than an MIS algorithm but can potentially produce any MDS. We call an algorithm MDS-

covered if it can potentially produce any MDS. All of the MDS algorithms Turau9n [75],

Goddard5n [30], and Well4n in Section 3.2 are MDS-covered.

Note that the proof of Theorem 4.1.2 also indicates that a self-stabilizing MDS-covered

algorithm cannot have only one Boolean variable as its state variable. Otherwise, the infor-

mation of non-minimality will not pass through the intermediate nodes. See the following

corollary.

Corollary 4.1.3. A self-stabilizing MDS-covered algorithm in the normal model cannot have

only one Boolean variable as its state variable.

By Corollary 4.1.3, as long as MDS-covered is a desired property of a self-stabilizing

MDS algorithm, we may assume that an MDS algorithm requires two (or more) variables.

The first variable is a Boolean variable with range {1, 0} indicating the state IN or OUT,

respectively; without loss of generality, call this variable membership. The second variable

can be regarded as a integer variable and it has no effect on the IN /OUT state; again, without

loss of generality, call this variable information.

Again, recall that a move of an MDS algorithm is a membership move if its execution

makes an IN node change to an OUT node or makes an OUT node change to an IN node.

This definition was originally given in [36]. Clearly, a non-membership move has no effect

on the variable membership. In Theorem 4.1.2, we have proved that there exists no MDS-

silent algorithm in the normal model. Now we relax the MDS-silent property (not to make

any move if the distributed system is initialized with an MDS) to allow the execution of

non-membership moves. Formally, an MDS algorithm is MDS-stable if it will not make any

membership move when the system is initialized with an MDS. The containment relation of

34

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.2. TRANSITION DIAGRAMS

properties MDS-silent, MDS-covered, and MDS-stable will be explored in Section 4.3.

Before ending this section, we propose a conjecture. None of Turau9n, Goddard5n, and

Well4n is MDS-stable.

Conjecture 4.1.4. There exists no self-stabilizing MDS-stable algorithm in the normal

model.

4.2 Transition diagrams

In this section we explain how to draw the transition diagram of a self-stabilizing system.

We approach self-stabilization from a different angle and give a method of visualization to

different levels of stableness.

Let Ωv be the set of all possible combinations of local variables of a process v ∈ V . Each

element Qv in Ωv denotes a local state of v. For simplicity, we assume V = {1, 2, . . . , n}. A

tuple (Q1, Q2, . . . , Qn) of local states of all the processes forms a global state (or configuration)

of a distributed systemG. For any configuration γt at time t, let γt+1 denote the configuration

that follows γt. Denote the transition relation by

γt → γt+1.

A computation sequence starting from γ0 is an infinite sequence of configurations γ0, γ1, . . .

such that γt → γt+1 for each t ≥ 0.

Let Γ be the set of all configurations of G. The transition diagram of a distributed system

is a digraph D = (Γ, A), where (γ, γ′) ∈ A if γ → γ′. The arc set of a transition diagram

may change under different execution daemon or due to external intervention, and here we

assume that the daemon is pre-designated and no external intervention during the execution

and hence the diagram will be fixed. In this way, computation sequences can be regarded as
35

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.2. TRANSITION DIAGRAMS

directed paths in the transition diagram. The transition diagram may have loops or cycles

and thus a computation sequence can be of infinite length. In the transition diagram, if

a node has out-degree 0, we assume it has a loop implicitly. As shown in Figure 4.1, the

out-degree of a configuration γ can be larger than one; hence the algorithm may not be

deterministic.

Γ
e

d

c

b

a

Figure 4.1: The transition diagram of a distributed system. The structures of a loop, a path, a tree, and
a 3-cycle are shown in the areas a to d, respectively. Area e depicts a node with out-degree 3; this node
denotes a configuration with three possible following configurations.

Recall that Γ is the set of all configurations of a distributed system. We say that a

distributed system is self-stabilizing with respect to Λ ⊆ Γ if the following conditions hold:

Convergence Starting from an arbitrary configuration γ0 ∈ Γ, there exists an integer t

such that γt ∈ Λ in any computation sequence;

Closure For every configuration λ ∈ Λ, any configuration that follows λ is also in Λ.

Each λ ∈ Λ is called a legitimate configuration.

36

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.3. FOUR LEVELS OF STABLENESS

4.3 Four levels of stableness

Stableness is the quality or state of being stable, or firmly established. In distributed

computing, stableness informally requires that “good configurations eventually stop” in a

distributed system or algorithm (i.e., the system or the algorithm “resists change”).

We have defined self-stabilizing MDS-covered, MDS-silent, and MDS-stable algorithms.

We now generalize these definitions. A configuration is silent if no rules are enabled at

any node. In the literature, self-stabilizing graph algorithms are usually silent, that is, the

algorithms eventually reach a silent configuration in a finite time. Let P denote a desired

property. Let Λ′ be the set of all decisions (d1, d2, . . . , dn) satisfy the desired property P ,

where dv is the decision of node v. Self-stabilizing algorithms can be described as having

different degrees of stableness with respect to property P .

Definition 4.3.1. An algorithm is P if after stabilizing, the configuration conforms the

desired property P . A P algorithm is:

P -covered if after stabilizing, the configuration potentially can be decoded to any possible

element in Λ′.

P -stable if the distributed system starts with an element in Λ′, the algorithm makes no

membership moves.

P -silent if the distributed system starts with an element in Λ′, the algorithm makes no

moves.

Let ΣA be the set of all silent configurations in a silent self-stabilizing algorithm A. If ΣA

is a proper subset of Λ, i.e., all silent configurations are legitimate, then it is easy to design

a self-stabilizing P algorithm by shrinking the definition of legitimate configurations ΛA of

an algorithm A from Λ to ΣA. One advantage of doing this is that we do not need to prove

the closure property. Thus, by setting ΛA := ΣA, a silent self-stabilizing graph algorithm
37

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.3. FOUR LEVELS OF STABLENESS

only needs to prove the convergence property and the correctness, where correctness is that

all silent configurations are legitimate, that is, ΣA ⊆ Λ

Now consider a silent self-stabilizing P algorithm and let Λ ⊆ Γ be the set of all legitimate

configurations in a input graph G, which conform to P . By the arguments in previous

section, there exists a variable called membership and a variable called information which

keeps the neighborhood information. Let Γ′ be the vector space expanded by decisions of

all nodes, and let Proj : Γ → Γ′ be the projection function defined by

Proj((q1, q2, . . . , qn)) = (d1, d2, . . . , dn),

where dv = Dec(qv) for all v ∈ V . An equivalent definition of stableness can be given by

setting the legitimate configurations of algorithm ΛA equal to the silent configurations ΣA,

which conform to the desired property P as follows.

Definition 4.3.2. A silent self-stabilizing P algorithm A is

• S1-stable : if Proj(ΛA) ⊆ Λ′.

• S2-stable : if Proj(ΛA) = Λ′.

• S3-stable : if Proj(ΛA) = Λ′ and

for all γ ∈ Proj−1(Λ′) and γ → γ′, Proj(γ′) = Proj(γ).

• S4-stable : if Proj−1(Λ′) = ΛA.

The level of stableness is shown by the index i of Si. The larger index will be seen as

being more stable. Note that these are increasingly stringent requirements; see the following

theorem.

Theorem 4.3.3. Si+1-stableness implies Si-stableness, for i ∈ {1, 2, 3}.

Proof. We give one line proof for each index i:
38

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.3. FOUR LEVELS OF STABLENESS

(S4 ⇒ S3) : Proj−1(Λ′) = ΛA implies ∀γ ∈ Proj−1(Λ′), γ′ = γ; hence Proj(γ′) = Proj(γ).

(S3 ⇒ S2) : by definition, S3 satisfies Proj(ΛA) = Λ′.

(S2 ⇒ S1) : Λ′ ⊆ Λ′.

Another way to classify the degrees of stableness is to describe the convergence of an

algorithm A.

Definition 4.3.4. If the desired property is P , we say an algorithm A is

• single-point-stable: if A converges to one specific point in Λ′.

• subset-stable: if A converges to a subset of Λ′.

• whole-set-stable: if A potentially can converge to every point in Λ′.

• no-membership-move: if A makes no membership move when the initial configuration

is in Λ′.

• no-move: if A makes no move when the initial configuration is in Λ′.

For example, MDS algorithms Turau9n, Goddard5n, and Well4n are whole-set-stable,

and MIS algorithm Turau3n is subset-stable with respect to MDS. The containment relations

and the corresponding proofs are listed below.

• whole-set-stable ⇒ subset-stable: Λ′ ⊆ Λ′.

• single-point-stable ⇒ subset-stable: For all λ′ ∈ Λ′, {λ′} ⊆ Λ′.

• no-membership-move ⇒ whole-set-stable: For all λ′ ∈ Λ′, if A is initialized with λ′,

then the projection of the configuration after stabilizing is λ′.

• no-move ⇒ no-membership-move: membership moves are moves.

39

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.3. FOUR LEVELS OF STABLENESS

Table 4.1: The levels of stableness and convergence of self-stabilizing algorithms.

Stableness defined by

Level Degree Convergence Algorithms w.r.t. MDS

S1-stable P subset-stable MIS algorithms (e.g. Turau3n)
S2-stable P -covered whole-set-stable Turau9n, Goddard5n, Well4n
S3-stable P -stable no-membership-move ?
S4-stable P -silent no-move none

We now summarize the levels of stableness and convergence in Table 4.1.

In the remaining tables, Dist-2 means Distance-2. Table 4.2 summarizes the levels of

stableness of self-stabilizing MDS algorithms. As can be observed from Table 4.2, Algorithm

Well4n has the best performance among known S2-stable MDS algorithms.

Table 4.2: Self-stabilizing MDS algorithms on general graphs with different levels of stableness.

Reference Degree Model Daemon Complexity

Hedetniemi et al. [36] MDS-covered Normal Central (2n+ 1)n moves
Xu et al. [83] MDS-covered Normal Synchronous 4n rounds
Turau [75] MDS-covered Normal Distributed 9n moves
Goddard et al. [30] MDS-covered Normal Distributed 5n moves
Sec. 3.2 in this thesis MDS-covered Normal Distributed 4n− 2 moves
Sec. 5.3 in this thesis MDS-silent Dist-2 Distributed 2n− 1 moves

Similar to the tables in [34], we list the stableness of each self-stabilizing independent

set and dominating set algorithms in Table 4.3 and Table 4.4.

Recall that for a graph G = (V,E), a vertex subset S is independent if no two nodes

in S are adjacent. A maximal independent set (MIS) is an independent set that is not

properly contained in any independent set. Note that an MIS is also an MDS. A 1-maximal

independent set (1-MIS) is an MIS, with the additional property that one cannot increase

the cardinality of the independent set by removing one node and adding more nodes. A

vertex subset of S is a k-packing if d(u, v) > k for all pairs of distinct vertices u and v of

S [61]. A maximal 2-packing (M2P) is a 2-packing that is not properly contained in any

40

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.3. FOUR LEVELS OF STABLENESS

2-packing.

In a graph G = (V,E), a vertex subset S is called a dominating set (DS) if every vertex

is either a member of S or is adjacent to a member of S. A minimal dominating set (MDS)

is a dominating set such that no proper subset of it is a dominating set. A vertex subset S

is a total dominating set (TDS) if each vertex of the graph is adjacent to a member in S. A

vertex subset S is a k-dominating set (kDS) if each nonmember of S is adjacent to at least

k members in S. When the positive integer k = 1, it is a question of (single) domination.

The minimal total dominating sets (MTDS) and minimal k-dominating sets (MkDS) can

be similarly defined. A function f : V → N is {k}-dominating if for every v ∈ V we have∑
u∈N [v] f(u) ≥ k. The case k = 1 is a normal dominating set [21].

In summery, a subset S of V is:

independent if ∀i, j ∈ S, ij ̸∈ E.

maximal independent if S is independent and any subset of V properly containing S is

not independent.

k-packing if ∀i ∈ V , either i ∈ S or i ∈ Nk(S).

dominating if ∀i ∈ V , either i ∈ S or i ∈ N(S).

minimal dominating if S is dominating and no proper subset of S is dominating.

total dominating if ∀i ∈ V , i ∈ N(S).

k-dominating if ∀i ∈ V , either i ∈ S or |N(i) ∩ S| ≥ k.

The stableness of each algorithm in Table 4.3 is S1 if the output is replaced by MDS.

41

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.4. MULTI-SELF-STABILIZATION

4.4 Multi-self-stabilization

In [17], Dolev and Herman introduced superstabilizing algorithms for dynamic distributed

system. An algorithm is superstabilizing if it is (i) self-stabilizing, meaning that it is guar-

anteed to respond to any transient fault and eventually reach a legitimate configuration,

and (ii) it is guaranteed to satisfy a passage predicate all the times when the system under-

goes topology changes starting from a legitimate configuration. The passage configuration

is a safety property that should hold while the algorithm makes progress towards the re-

establishing legitimacy following a topology change. The illegitimate configurations are

partitioned into two layers, depending on whether or not they satisfy a passage predicate.

The concept of fault containment of self-stabilizing algorithms was introduced by Ghosh

et al. [25]. They gave a transformer which uses newly added local repair actions to modify

the original self-stabilizing algorithm in order to improve the stabilization time when the

system is subject to only one transient fault. It has been shown that the stabilization time

of a fault-containing MIS self-stabilizing can be reduced to O(∆) moves [55]. For other

variations of self-stabilization and transformers, see [7, 19, 20, 52, 62] for references.

Similarly to superstabilizing, Kakugawa and Masuzawa formulated a concept of safe

convergence in the frame work of self-stabilization in [49]. A safely converging self-stabilizing

system defines two layers of legitimate configurations. One is a set of configurations in which

the property or service is feasible, i.e., minimum quality of service is guaranteed. The other

is a set of configurations in which the property or service is optimal. The safe convergence

property guarantees that, from any initial configuration, a system quickly converges to a

feasible configuration, and then, it continuingly moves to an optimal configuration without

leaving the feasible configurations.

Kakugawa et al. took the MDS problem as an example. They considered the minimal

dominating set problem and gave an algorithm called Kakugawa with safe convergence in

42

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.4. MULTI-SELF-STABILIZATION

which any dominating set is defined to be feasible; see Algorithm 6. In addition, Algorithm

Kakugawa computes the lexicographically first minimal independent domination set which is

defined to be optimal. Since there exists only one lexicographically first minimal independent

domination set (MIDS) for a given graph, Algorithm Kakugawa is single-point-stable. The

transition diagram of the algorithm Kakugawa is shown below; see Figure 4.2.

Algorithm 6 Kakugawa

variables

Boolean di ∈ {0, 1}; // i is a dominator iff di = 1

pointer mi ∈ N [i]; // a dominator that node i depends on

macros

LocalMax(i) ≡ ∀j ∈ N(i) : j < i; // true iff node i is the maximum among its neighbors

ExIndDomNbr(i) ≡ ∃j ∈ N(i) : (dj = 1) ∧ (mj = j);
// true iff there exists an independent dominator neighbor

MaxIndDomNbr(i) ≡ max{j ∈ N(i) : (dj = 1) ∧ (mj = j)};
// the max independent dominator in neighbors; NIL if none exists

NoDepend(i) ≡ ∀j ∈ N(i) : mj ̸= i; // true iff no neighbor depends on i

rules

1: if LocalMax(i) ∧ ((di ̸= 1) ∨ (mi ̸= i))
then di := 1;mi := i; // If i is the locally max, it becomes an independent dominator.

2: if ¬LocalMax(i) ∧ ¬ExIndDomNbr(i) ∧ ((di ̸= 1) ∨ (mi ̸= i))
then di := 1;mi := i; // If there is no independent dominator neighbor, i becomes an independent dominator.

3: if ¬LocalMax(i)∧ExIndDomNbr(i)∧(MaxIndDomNbr(i) < i)∧((di ̸= 1)∨(mi ̸= i))
then di := 1;mi := i;// If i is the max among independent dominator neighbors, it becomes an independent dominator.

4: if ¬LocalMax(i) ∧ ExIndDomNbr(i) ∧ (MaxIndDomNbr(i) > i)
∧((MaxIndDomNbr ̸= mi) ∨ (di ̸= 1))
then di := 1;mi := MaxIndDomNbr(i); // If i is not the max among independent dominator neighbors,

// it becomes a dominator (for safety) and depends on the max independent dominator neighbor.

5: if ¬LocalMax(i) ∧ ExIndDomNbr(i) ∧ (MaxIndDomNbr(i) > i)
∧(MaxIndDomNbr = mi) ∧ (di ̸= 0) ∧NoDepend(i)
then di := 0; // i turns to be a dominatee only when (1) i is not the max independent dominator among neighbors,

// (2) i depends on the max independent dominator neighbor, and (3) (for safety) no neighbor depends on i.

Under the synchronous daemon, Algorithm 6 converges to a domination set in one step,

and further converges to the lexicographically first MIDS in at most 4D = O(D) steps,

43

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.4. MULTI-SELF-STABILIZATION

where D denotes the diameter of the input graph. The authors conjectured their algorithm

still works under the distributed daemon. It can be proved that their conjecture appears

correct, since in each step the configuration moves toward the optimal one (which is the

lexicographically first MIDS). Unfortunately, the number of moves can be exponential in

n. If the input graph is a path of n nodes in the increasing order, and initially all di in

Algorithm 6 are set to 0. A bad example of execution is given by letting the distributed

daemon always choose the privileged node with the lowest ID first, one at each time. Then

it takes Ω(2n) moves to reach the optimal configuration.

Γ

DS

MDS

Figure 4.2: The transition diagram of the algorithm Kakugawa. A dominating set (DS) is feasible and
a minimal dominating set (MDS) is optimal. The algorithm converges to a single point, which is the
lexicographically first minimal independent domination set.

The concept of safe stabilization can be generalized as follows. Suppose there are a finite

number of layers of legitimate configurations which we want the higher layer the better.

Let Λ0 = Γ and Λk be the k-th layer of legitimate configuration, and moreover, Λi ⊂ Λi−1

for all i = 1 to k. We say a distributed algorithm is multi-self-stabilizing with respect to

{Λ1,Λ2, . . . ,Λk} if the following two properties hold for all i = 1 to k:

Convergence Starting from an arbitrary configuration in Λi−1, the distributed system

44

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.4. MULTI-SELF-STABILIZATION

reaches a configuration in Λi in a finite time.

Closure For any configuration in Λi, any configuration that follows is also in Λi.

Algorithm Kakugawa is an example of a multi-self-stabilizing algorithm with respect to

three layers of legitimate configurations; see Figure 4.3. The first layer of legitimacy is

domination, which makes the service feasible. The second layer of legitimacy is minimality,

which provides a better quality of service. And the third layer of legitimacy is independence,

which further reduces the number of dominators. Note that the Λ0 is defined to be the set

of all configurations. This makes the definition of multi-self-stabilizing and the original

definition of self-stabilizing coincide and we can omit the prefix multi without confusion or

ambiguity. Hence we merely say that Algorithm Kakugawa is self-stabilizing with respect to

{DS, MDS, MIDS}.

Λ0

Λ1

Λ2
Λ3

Figure 4.3: The transition diagram of a multi-self-stabilizing system with respect to three layers of legitimacy.

45

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.4. MULTI-SELF-STABILIZATION

T
a
b
le

4.
3:

S
el
f-
st
ab

il
iz
in
g
in
d
ep

en
d
en
t
se
t
al
go

ri
th
m
s.

R
ef
er
en
ce

O
u
tp
u
t
S
ta
b
le
n
es
s
R
eq
u
ir
ed

to
p
ol
og
y

A
n
on

y
m
ou

s
U
n
if
or
m

D
a
em

o
n

M
o
d
el

C
o
m
p
le
x
it
y

S
h
u
k
la

et
al
.
[6
7]

M
IS

S
4

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
2
n
m
ov
es

Ik
ed
a
et

al
.
[4
5]

M
IS

S
4

A
rb
it
ra
ry

N
o

Y
es

D
is
tr
ib
u
te
d

N
o
rm

a
l

≤
(n

+
2
)(
n
+
1
)

4
m
o v
es

H
ed
et
n
ie
m
i
et

al
.
[3
6]

M
IS

S
4

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
2
n
m
ov
es

G
o
d
d
ar
d
et

al
.
[3
2,

30
]
M
IS

S
4

A
rb
it
ra
ry

N
o

Y
es

S
y
n
ch
ro
n
o
u
s
N
o
rm

a
l

≤
n
ro
u
n
d
s

G
ai
ri
n
g
et

al
.
[2
1]

M
2P

S
4

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

D
is
t-
2

O
(n
)
m
ov
es

S
h
i
et

al
.
[6
6]

1-
M
IS

S
2

T
re
e

Y
es

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
n
2
m
ov
es

T
u
ra
u
[7
5]

M
IS

S
3

A
rb
it
ra
ry

N
o

Y
es

D
is
tr
ib
u
te
d

N
o
rm

a
l

≤
3
n
m
ov
es

G
o
d
d
ar
d
et

al
.
[3
0]

M
IS

S
4

A
rb
it
ra
ry

N
o

Y
es

S
y
n
ch
ro
n
o
u
s
N
o
rm

a
l

≤
n
ro
u
n
d
s

46

CHAPTER 4. THE STABLENESS OF MDS ALGORITHMS 4.4. MULTI-SELF-STABILIZATION

T
ab

le
4.
4:

S
el
f-
st
ab

il
iz
in
g
d
om

in
at
in
g
se
t
al
go

ri
th
m
s.

R
ef
er
en
ce

O
u
tp
u
t
S
ta
b
le
n
es
s
R
eq
u
ir
ed

to
p
ol
og
y

A
n
on

y
m
ou

s
U
n
if
or
m

D
a
em

o
n

M
o
d
el

C
o
m
p
le
x
it
y

H
ed
et
n
ie
m
i
et

al
.
[3
6]
-1

D
S

S
1

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
n
−

1
m
ov
es

H
ed
et
n
ie
m
i
et

al
.
[3
6]
-2

M
D
S

S
2

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
(2
n
+
1
)n

m
ov
es

X
u
et

al
.
[8
3]

M
D
S

S
2

A
rb
it
ra
ry

N
o

Y
es

S
y
n
ch
ro
n
o
u
s
N
o
rm

a
l

≤
4
n
ro
u
n
d
s

G
o
d
d
ar
d
et

al
.
[2
8,

29
]
M
T
D
S

S
2

A
rb
it
ra
ry

N
o

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
2n

m
ov
es

T
u
ra
u
[7
5]

M
D
S

S
2

A
rb
it
ra
ry

N
o

Y
es

D
is
tr
ib
u
te
d

N
o
rm

a
l

≤
9
n
m
ov
es

G
o
d
d
ar
d
et

al
.
[3
0]

M
D
S

S
2

A
rb
it
ra
ry

N
o

Y
es

D
is
tr
ib
u
te
d

N
o
rm

a
l

≤
5
n
m
ov
es

K
am

ei
et

al
.
[5
0]
-1

M
k
D
S

S
1

T
re
e

Y
es

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
n
2
m
ov
es

K
am

ei
et

al
.
[5
0]
-2

M
k
D
S

S
1

T
re
e

N
o

Y
es

D
is
tr
ib
u
te
d

N
o
rm

a
l

≤
3
(n

−
1
)2

m
ov
es

H
u
an

g
et

al
.
[4
3]

M
2D

S
S
1

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

N
o
rm

a
l

≤
1
0
n
+
1
m
ov
es

K
am

ei
et

al
.
[5
1]

M
k
D
S

S
1

A
rb
it
ra
ry

N
o

Y
es

S
y
n
ch
ro
n
o
u
s
N
o
rm

a
l

≤
n
ro
u
n
d
s

H
u
an

g
et

al
.
[4
4]

M
2D

S
S
1

A
rb
it
ra
ry

N
o

Y
es

D
is
tr
ib
u
te
d

N
o
rm

a
l

G
ai
ri
n
g
et

al
.
[2
1]

M
D
S

S
4

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

D
is
t-
2

≤
2
n
m
ov
es

T
u
ra
u
et

al
.
[7
6]

M
k
D
S

S
4

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

D
is
t-
2

≤
2
n
m
ov
es

B
el
h
ou

l
et

al
.
[4
]

M
T
D
S

S
4

A
rb
it
ra
ry

Y
es

Y
es

C
en
tr
a
l

D
is
t-
2

≤
2
n
m
ov
es

S
ec
.
3.
2
in

th
is

th
es
is

M
D
S

S
2

A
rb
it
ra
ry

N
o

Y
es

D
is
tr
ib
u
te
d

N
o
rm

a
l

≤
4
n
−

2
m
ov
es

S
ec
.
5.
3
in

th
is

th
es
is

M
D
S

S
4

A
rb
it
ra
ry

N
o

Y
es

D
is
tr
ib
u
te
d

D
is
t-
2

≤
2
n
−

1
m
ov
es

47

Chapter 5

The distance-2 model and

self-stabilizing MDS-silent algorithms

The purpose of this chapter is to develop a self-stabilizing MDS-silent algorithm. Let k be

a positive integer. In the previous chapter, we have defined the distance-k model. Recall

that the normal model is the distance-1 model. For convenience, we use the extended model

to refer to the distance-2 model. In the extended model, a node can instantaneously access

the information of all nodes within distance two from it. Clearly, if a distributed system is

in the distance-(k + 1) model, then it is in the distance-k model. See also [21].

A distributed system in the normal model can be implemented on an ad hoc network

by using the beacon messages and the neighbor list messages of a node to inform neighbors

of its continued presence and the change of the local state [30]. In this chapter we give

a generalization to implement the distance-2 model by enlarging the beacon messages to

contain the local states of nodes in one’s neighborhood.

This chapter is organized as follows. Section 5.1 briefly reviews previous results in the

distance-2 model. Section 5.2 generalizes the neighbor list messages in an ad hoc network to

implements a distance-2 model by enlarging the beacon messages to contain the local states

48

CHAPTER 5. THE DISTANCE-2 MODEL 5.1. THE EXTENDED MODEL AND THE EXPRESSION MODEL

of nodes in one’s neighborhood. Section 5.3 discuss the development of a self-stabilizing

MDS-silent algorithm.

5.1 The extended model and the expression model

Before going further, we briefly review previous results in the extended model. In [21], the

authors considered algorithms run in the extended model, where a node can instantaneously

see the states of all nodes within distance two from it. The extended model is a distance-2

model.

In [76], the author considered a generalization of the extended model and called it the

expression model. In particular, [21] proposed an n(k + 1)-move self-stabilizing minimal

{k}-dominating set algorithm; when k = 1, the algorithm finds an MDS using at most 2n

moves. The paper [21] also showed how to implement the algorithm in the normal model

by using a conversion mechanism ([76] called it a transformer). The paper [76] presented

a 2n-move self-stabilizing minimal k-dominating set algorithm; when k = 1, this algorithm

finds an MDS. In [76], Turau introduced two techniques (the transformers C and D) that

can emulate algorithms for the expression model in the normal model and this technique

improves [21].

5.2 Implementing the distance-2 model by message pass-

ing

A distributed system in the normal model can be implemented on an ad hoc network by

using the beacon messages and the neighbor list messages of a node to inform neighbors

of its continued presence and the change of the local state [30]. In this section we give a

49

CHAPTER 5. THE DISTANCE-2 MODEL 5.2. IMPLEMENTING THE DISTANCE-2 MODEL

generalization to implement a distance-2 model by enlarging the beacon messages to contain

the local states of nodes in one’s neighborhood.

The distance-2 model assumes the following about the distributed system. A link-layer

protocol at each node v maintains the identifiers and states of its neighbors in the neighbor

list nbl(v). Furthermore, after exchange the neighbor lists, each node v constructs the 2-

neighbor list 2-nbl(v) which contains the identifiers and states of 2-neighbors of v. In detail,

each node periodically broadcasts a beacon message. When a neighboring node u broadcasts

a beacon message to node v, it includes the local state of the node u in the algorithm. A

beacon message provides information about its neighbor nodes synchronously, and a node

takes action after receiving beacon messages from all neighboring nodes. When node v

receives the beacon signal from a neighbor u which is not in nbl(v), it adds u to its neighbor

list to establishing link (u, v). After nodes v updating its neighbor list, node v broadcasts

nbl(v). All nodes in the neighborhood N(v) know the existence of link (u, v) according the

nbl(v) message and update their 2-neighbor lists. In the meantime, node v updates 2-nbl(v)

according to the nbl(u) message.

If node v does not receive the beacon message from u within a fixed period according the

timer tvu, it assumes the link (u, v) is no longer available and removes u from both nbl(v)

and 2-nbl(v). A node takes action only after receiving beacon messages or neighbor list

messages from its neighboring nodes. The self-stabilizing algorithm can tolerate transient

faults such as allowing nodes to join or leave the system and/or link creations or failures. In

this implementation, one move of nodes induces O(∆) broadcasting messages. As the con-

vergence time to a legitimate configuration have to be small with respect to the periodicity

of change, the quickness of self-stabilization is crucial.

50

CHAPTER 5. THE DISTANCE-2 MODEL 5.3. DEVELOPING AN MDS-SILENT ALGORITHM

5.3 Developing an MDS-silent algorithm

The purpose of this section is to discuss the development of a self-stabilizing MDS-silent

algorithm.

The algorithms in both [21] and [76] operate with a central daemon; we now propose

an algorithm that operates with a distributed daemon. In particular, we propose a self-

stabilizing MDS-silent algorithm Well2n under an unfair distributed daemon in a distance-2

model. Our algorithm uses a two-valued variable state, which has values IN and OUT. We

use the same terminology as in Section 3.2 unless otherwise indicated.

To formally define the rules of Well2n, three predicates defined for each node v are

needed: noInNbr, noBtNbr2, and noDpNbr2; see Algorithm 7. Notice that noBtNbr2 and

noDpNbr2 require distance-2 knowledge since v has to check the states of its neighbor’s

neighbors. Algorithm Well2n uses only two simple rules: rule S1 is regarded as the entering

rule and rule S2, the leaving rule.

Algorithm 7 Well2n

variables

v.state ∈ {IN, OUT}; // S = {v : v.state = IN}

macros

noInNbr(v) ≢ ∃w ∈ N(v) : w.state = IN;
noBtNbr2(v) ≢ ∃w ∈ N(v) : w.state = OUT ∧ w.id < v.id ∧ w has no IN neighbor;
noDpNbr2(v) ≢ ∃w ∈ N(v) : w.state = OUT ∧ w has exactly one IN neighbor;

rules

S1: if v.state = OUT ∧ noInNbr(v) ∧ noBtNbr2(v)
then v.state := IN; // enter S

S2: if v.state = IN ∧ ¬noInNbr(v) ∧ noDpNbr2(v)
then v.state := OUT; // leave S

Recall that the output of Algorithm 7 is S = {v : v.state = IN}. An MIS algorithm

usually applies the following entering rule and leaving rule: “A node having no neighbor in

51

CHAPTER 5. THE DISTANCE-2 MODEL 5.3. DEVELOPING AN MDS-SILENT ALGORITHM

S joins S and a node having a neighbor in S leaves S.” Algorithm 7 modifies the entering

rule and leaving rule to be: “A node enters S if (i) it has no neighbor in S and (ii) its

identifier is smaller than any OUT neighbor having no IN neighbor, and a node leaves S if

(a) it has a neighbor in S and (b) every neighbor is either in S or has at least two neighbors

in S.”

We now prove the correctness of Algorithm 7. First, by using the method for the cor-

rectness of Well4n in Lemma 3.3.1, one can prove that in any configuration in which no

node is privileged, the set S is a minimal dominating set of G.

Lemma 5.3.1. In any configuration in which no node is privileged, the set S is a minimal

dominating set for G.

Proof. Suppose to the contrary that S is not a minimal dominating set for G. Then either

(i) S is not a dominating set or (ii) S is a dominating set but not minimal. Consider case

(i). Since S is not a dominating set, there exists an OUT node having no IN neighbor. Let

u be such a node with the minimum identifier. Since u has no IN neighbor and no better

neighbor, rule S1 is enabled, which is a contradiction. Now consider case (ii). Since S is a

dominating set but not minimal, there must exist at least one node u ∈ S such that S\{u}

is also a dominating set for G. Then |N(u)∩S| ≥ 1 and |N(w)∩S| ≥ 2 for all w in N(u)\S.

Since both ¬noInNbr(u) and noDpNbr2(u) are true, rule S2 is enabled on node u, which

is a contradiction.

We now show that Algorithm Well2n is MDS-silent. Note that in each node, rule S1 is

not enabled if S is dominating, and rule S2 is not enabled if S is minimal.

Lemma 5.3.2. Algorithm 7 will not make any move if the initial configuration conforms to

MDS.

Proof. Recall that Well2n modifies the entering rule and leaving rule of an MIS algorithm

to be: “A node enters S if (i) it has no neighbor in S and (ii) its identifier is smaller than
52

CHAPTER 5. THE DISTANCE-2 MODEL 5.3. DEVELOPING AN MDS-SILENT ALGORITHM

any OUT neighbor having no IN neighbor, and a node leaves S if (a) it has a neighbor in S

and (b) every neighbor is either in S or has at least two neighbors in S.” Suppose the initial

configuration conforms to MDS. Let S be the set of nodes with state = IN. First consider an

arbitrary node u in S. The only rule can be enabled on u is the leaving rule. Since S is an

MDS, it is impossible that u has an IN neighbor but has no dependent neighbor; otherwise

S\{u} is also a dominating set for G. Thus, at least one of (a) and (b) is false and the

leaving rule cannot be enabled on node u. Next consider an arbitrary node w not in S. The

only rule that can be enabled on w is the entering rule. Since S is an MDS, it is impossible

that w has no IN neighbor. Thus, (i) is false and the entering rule cannot be enabled on

node w. We have this lemma.

It is not difficult to see that if a node executes the entering rule, then it enters S and

will never leave S afterward; furthermore, neighbors of this node will not enter S. See the

following lemma.

Lemma 5.3.3. If a node executes rule S1, then it will never leave. Furthermore, neighbors

of this node will not enter the set S.

Proof. Let v be a node that executes rule S1. At this moment all neighbors of v have state

OUT and with identifier larger then v. Thus, none of these neighbors can execute rule S1

or rule S2. After v enters S, its neighbors have at least one IN neighbor v so they cannot

execute rule S1. The only rule that v can execute next is rule S2, but in order to do so, one

neighbor of v has to change into state IN first. As long as v is in state IN this is impossible.

Therefore, v will never execute any rule, and its neighbors will not move, either.

We now give the main theorem of this section.

Theorem 5.3.4. Algorithm 7 is self-stabilizing and MDS-silent under an unfair distributed

daemon in the distance-2 model. It stabilizes after at most 2n − 1 moves with a minimal

dominating set, where n is the number of nodes.

53

CHAPTER 5. THE DISTANCE-2 MODEL 5.3. DEVELOPING AN MDS-SILENT ALGORITHM

Proof. The theorem follows from Lemmas 5.3.1, 5.3.2, and 5.3.3. The “minus one” part

comes from the fact that in a connected graph of order larger than 1, the size of any MDS

is at most n− 1.

To see 2n − 1 in Theorem 5.3.4 is tight, consider the star graph of order n with initial

state of each node to be IN. Before ending this section, we would like to point out that a

preliminary version of this thesis has discussed how to execute our MDS-silent algorithm;

see [11]. In particular, a transformation from the distance-2 model to the distance-1 model

is needed. Although the transformers described in [21] and [76] provide ways to transform

from an algorithm assuming distance-2 model and central daemon to the distance-1 model,

the output algorithm is still not MDS-silent even when we relax the definition of stableness

to consider only “membership moves”.

54

Chapter 6

The signed star domination number

of Cayley graphs

The purpose of Chapter 6 is to find out the signed star domination number (a variant of the

domination number) of Cayley digraphs and Cayley graphs. A function f : E(G) → {−1, 1}

is called a signed star dominating function (SSDF) on G if
∑

e∈E(v) f(e) ≥ 1 for every

v ∈ V (G), where E(v) is the set of all edges incident with v. The signed star domination

number of G is defined as γSS(G) = min{
∑

e∈E(G) f(e)| f is an SSDF on G}. In this

chapter, we obtain exact values for the signed star domination number of all Cayley digraphs

CayD(Γ, S) and certain classes of Cayley graphs Cay(Γ,Ω). Throughout this chapter, we

write {u, v} for an edge with endpoints u and v if undirected graphs are considered. For

directed graphs, we write (u, v) for “there is an arc from u to v”, that is, the first vertex of

the ordered pair is the tail of the arc, and the second is the head.

This chapter is organized as follows. In Section 6.1, we give basic definitions and re-

view previous results. In Sections 6.2 and 6.3, we study the signed star domination of the

Cayley digraphs and Cayley graphs, respectively. In Section 6.4, we study the signed star

domination of {2, 1}-factorable graphs (defined later). A preliminary version of this chap-

55

CHAPTER 6. THE SIGNED STAR DOMINATION 6.1. DEFINITIONS AND PREVIOUS RESULTS

ter appeared as [9]. Note that these solutions are from a joint work with Chelvam and

Kalaimurugan.

6.1 Definitions and previous results

Our graph terminologies are standard unless otherwise indicated; see [35, 79]. Let G be a

simple connected graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G),

let E(v) = {{u, v} ∈ E(G) | u ∈ V (G)}. A function f : E(G) → {−1, 1} is called a signed

star dominating function (SSDF) on G if
∑

e∈E(v) f(e) ≥ 1 for every v ∈ V (G). The signed

star domination number of G is defined as γSS(G) = min {
∑

e∈E(G) f(e) | f is an SSDF on

G} and such an f attaining the minimum value is called a minimum SSDF on G. Note

that γSS(G) is well-defined only if G contains no isolated vertex. A set {f1, f2, . . . , fd} of

SSDFs on G with the property that
∑d

i=1 fi(e) ≤ 1 for each e ∈ E(G) is called a signed

star dominating family (of functions) on G. The maximum number of functions in a signed

star dominating family on G is called the signed star domatic number of G and is denoted

by dSS(G). Let D be a digraph with vertex set V (D) and arc set A(D). For each vertex

v ∈ V (D), let A(v) be the set of all out-going arcs from v. By replacing E(v) by A(v), one

can define the SSDF on D and γSS(D) = min{
∑

a∈A(D) f(a) | f is an SSDF on D}.

Let Γ be a finite nontrivial group with the identity element ι and S be a nonempty subset

of Γ. The Cayley digraph CayD(Γ, S) is the digraph whose vertices are the elements of Γ,

and there is an arc from α to ασ whenever α ∈ Γ and σ ∈ S. A subset S of Γ is symmetric

if σ−1 ∈ S whenever σ ∈ S. A generating set of Γ is a subset that is not contained in any

proper subgroup of Γ. Let Ω be a symmetric generating subset of nonidentity elements of

Γ. The Cayley graph Cay(Γ,Ω) corresponding to Γ and Ω is the ordinary graph with vertex

set Γ and edge set E = {{α, ασ} | α ∈ Γ, σ ∈ Ω}. Note that in the Cayley graph, the edges

α to ασ and ασ to α are considered one and the same.

56

CHAPTER 6. THE SIGNED STAR DOMINATION 6.2. SSD OF CAYLEY DIGRAPHS

In the past few years, several types of domination problems in graphs have been studied

by various authors, most of these belonging to the vertex domination. Xu [81] initiated

the study of signed star domination numbers of graphs and for more study on signed star

domination, one can refer [3, 47, 64, 78, 80, 82]. Following are some known results on signed

star domination numbers of graphs without isolated vertices.

Theorem 6.1.1. [80] For all graphs G of order n ≥ 2, γSS(G) ≥ ⌈n
2
⌉.

Theorem 6.1.2. [80] For all graphs G of order n ≥ 4, γSS(G) ≤ 2n− 4, and this bound is

sharp.

Theorem 6.1.3. [3] Let G be a graph of size m with signed star domination number γSS(G)

and signed star domatic number dSS(G). Then γSS(G) · dSS(G) ≤ m.

Theorem 6.1.4. [3] Let G be an r-regular and 1-factorable graph. Then

dSS(G) =


r when r is odd,

r
2

when r ≡ 2 (mod 4),

r
2
− 1 when r ≡ 0 (mod 4).

Theorem 6.1.5. [3] Let G be factorable into r Hamiltonian cycles. Then

dSS(G) =

 r when r is odd,

r − 1 when r is even.

6.2 Signed star domination of the Cayley digraphs

In this section, we obtain the signed star domination number of the Cayley digraph D =

CayD(Γ, S) constructed out of a finite group Γ and a nonempty subset S = {σ1, σ2, . . . , σr}

57

CHAPTER 6. THE SIGNED STAR DOMINATION 6.2. SSD OF CAYLEY DIGRAPHS

of Γ. Note that each vertex of D has the same out-degree r. Given σi ∈ S, let Ci denotes

the set of all the arcs generated by σi, i.e., Ci = {(α, ασi)} | α ∈ Γ}. Then A(D) =
∪r

i=1 Ci.

Fact 1. Let f be an SSDF on D and let v ∈ V (D). If
∑

a∈A(v) f(a) = 1 for every vertex v

of odd out-degree and
∑

a∈A(u) f(a) = 2 for every vertex u of even out-degree, then f is a

minimum SSDF on D.

Theorem 6.2.1. Let Γ be a finite group of order n and S = {σ1, σ2, . . . , σr} be a nonempty

subset of Γ. Then

γSS(CayD(Γ, S)) =

 n if r is odd,

2n if r is even.

Proof. By the construction of Cayley digraph D = CayD(Γ, S), A(D) is the disjoint union

of Ci’s, 1 ≤ i ≤ r. Define a function f : A(D) → {−1, 1} by

f(a) =

 (−1)i−1 if a ∈ Ci, 1 ≤ i ≤ r − 1,

1 if a ∈ Cr.

Now, for each vertex v ∈ V (D)

∑
a∈A(v)

f(a) =

 1 if r is odd,

2 if r is even.

By Fact 1, f is a minimum SSDF on D; thus we have this theorem.

Example 6.2.2. Consider the group Z6 = {0, 1, . . . , 5} under addition and S = {1, 2, 5}.

The signed star domination number of CayD(Z6, S) is 6 and the corresponding SSDF is

given in Figure 6.1.

Now we generalize the result of Cayley digraphs to general digraphs. Let D be an

arbitrary digraph. For a vertex v ∈ V (D), we say v is an odd vertex if its out-degree is odd.

58

CHAPTER 6. THE SIGNED STAR DOMINATION 6.2. SSD OF CAYLEY DIGRAPHS

t t

t t

t t

4 3

0 1

5 2

1

−1

−1

−1

−1

−1

−1

1 1

1

1

1

1

1 1

1

1

1

✲ ✛

✛✲

✟✟✟✟✟✟✟✙

✟✟✟✟✟✟✟✟✟✟✟✟✟✟ ❄
✻

✡
✡✣

❏
❏❪

✡
✡✣

❏
❏❪

❏
❏

❏
❏

❏
❏
❏

❏
❏❫

✡
✡

✡
✡

✡
✡

✡

✡
✡✢

✡
✡

✡
✡

✡
✡

✡

✡
✡✢

❏
❏
❏

❏
❏

❏
❏

❏
❏❫

❍❍❍❍❍❍❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❨

❍❍❍❍❍❍❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✯

Figure 6.1: An illustration of the signed star domination number of CayD(Z6, {1, 2, 5}) and the corresponding
SSDF.

See the following theorem.

Theorem 6.2.3. Let D be a digraph of order n in which every vertex has at least one

out-going arc. Then

γSS(D) = 2n− k,

where k is the number of odd vertices.

Proof. Let deg+(v) denote the out-degree of a vertex v. Since an SSDF on D requires every

vertex v ∈ V (D) to sum up the values of the arcs in A(v), each arc only contributes its value

to its tail vertex. Thus we can use the following procedure to assign the arcs in D either −1

or 1: For each vertex v, ignore all of its incoming arcs and assign 1 and −1, alternatively, to

its out-going arcs (the first arc receives 1, the second arc receives −1, and so on); reassign

1 to the last out-going arc if this arc receives −1.

The above procedure constructs a function f : A(D) → {−1, 1} on D. For each v, we

have ∑
a∈A(v)

f(a) =

 1 if deg+(v) is odd,

2 if deg+(v) is even.

By Fact 1, f is a minimum SSDF on D. Therefore γSS(D) =
∑

a∈A(D) f(a) = k + 2(n−
59

CHAPTER 6. THE SIGNED STAR DOMINATION 6.3. SSD OF CAYLEY GRAPHS

k) = 2n− k.

6.3 Signed star domination of the Cayley graphs

In this section, we give the signed star domination number of the Cayley graph G =

Cay(Γ,Ω) constructed out of a finite nontrivial group Γ and a symmetric generating subset

Ω of nonidentity elements of Γ. In the Cayley graph G, we arrange the elements of the

symmetric generating set Ω of Γ in the form

Ω = {σ1, σ2, . . . , σ2s, τ1, τ2, . . . , τt}

satisfying

σ−1
i = σi+s, 1 ≤ i ≤ s and τ−1

j = τj, 1 ≤ j ≤ t.

That is, σi’s are used to represent elements in Ω of order larger than 2 and τj’s, elements in

Ω of order exactly 2.

Do notice that in a Cayley graph, σi and σi+s generate the same cycles. Thus we define

two notations Ci and Mj as follows (these notations will also be used in the next section).

For 1 ≤ i ≤ s, let Ci denote the set of edges of all the (undirected) cycles in G generated by

σi (or σi+s). Similarly, for 1 ≤ j ≤ t, let Mj denote the matching in G generated by τj. By

the above setting, the edge set of G has a partition {C1, C2, . . . , Cs,M1,M2, . . . ,Mt}, i.e.,

E(G) =

(
s∪

i=1

Ci

)
∪

(
t∪

j=1

Mj

)
.

Example 6.3.1. Let Γ = ⟨σ⟩ be a finite cyclic group and Ω = {σ, σ−1}. Then Ω = {σ1, σ2},

s = 1 and t = 0. When Γ is the dihedral group D5 = {ι = σ5 = τ 2, σ, σ2, σ3, σ4, τ, στ, σ2τ,

σ3τ, σ4τ = τσ} and Ω = {τ, στ}, as per our notation Ω = {τ1, τ2}, s = 0 and t = 2.

60

CHAPTER 6. THE SIGNED STAR DOMINATION 6.3. SSD OF CAYLEY GRAPHS

Fact 2. Let f be an SSDF on G. If
∑

e∈E(v) f(e) = 1 for every vertex v of odd degree and∑
e∈E(u) f(e) = 2 for every vertex u of even degree, then f is a minimum SSDF on G. Thus

γSS(G) ≥ n− k
2
, where k is the number of odd degree vertices in G.

Lemma 6.3.2. Let G be an r-regular graph. Then we have

γSS(G) ≥


n
2

if r is odd,

n if r is even,

n+ 1 if r is a multiple of 4 and n is odd.

Proof. The first two cases are deduced from Fact 2. For the last case, suppose to the

contrary that there exists an SSDF f on G with
∑

e∈E(G) f(e) = n. Then f−1(1) = {e ∈

E(G) | f(e) = 1} forms a subgraph of G containing odd number of odd degree vertices,

which is impossible.

Lemma 6.3.3. Let Γ be a finite group of odd order. Then one cannot find a symmetric

generating set Ω of Γ with odd |Ω|.

Proof. If |Ω| is odd, then Ω contains an element of order 2. By Lagrange’s Theorem, the

order of any element of Γ divides the order of Γ. Therefore |Γ| is even.

For an r-regular graph G, if we can find a ⌊ r−1
2
⌋-matching M of G, then by setting

f(e) = −1 for all edges e ∈ M , we have γSS ≤ |E(G)| − 2|M |.

Theorem 6.3.4. Let Γ be a finite group of even order n, and let Ω be a symmetric generating

set of Γ. If |Ω| is odd, then γSS(Cay(Γ,Ω)) = n
2
.

Proof. Let Ω = {σ1, σ2, . . . , σ2s, τ1, τ2, . . . , τt}. Since |Ω| is odd, t must be odd. Let G =

Cay(Γ,Ω). Define a function f : E(G) → {−1, 1} by

f(e) =

 (−1)i−1 if e ∈ Ci, 1 ≤ i ≤ s,

(−1)s+j−1 if e ∈ Mj, 1 ≤ j ≤ t.
61

CHAPTER 6. THE SIGNED STAR DOMINATION 6.3. SSD OF CAYLEY GRAPHS

Then, for every vertex v ∈ V (G),
∑

e∈E(v) f(e) = 1. Thus γSS(G) ≤
∑

e∈E(G) f(e) =
n
2
. By

Fact 2 and Lemma 6.3.2, f is a minimum SSDF on G and γSS(G) = n
2
.

Theorem 6.3.5. Let Γ be a finite group of order n, and let Ω be a symmetric generating

set of Γ with even |Ω|. If Ω has an odd number of distinct {σ, σ−1} pairs, or contains an

element of even order, then γSS(Cay(Γ,Ω)) = n.

Proof. Let G = Cay(Γ,Ω). Arrange Ω = {σ1, σ2, . . . , σ2s, τ1, τ2, . . . , τt} with the condition

σ−1
i = σi+s, τ

−1
j = τj, 1 ≤ i ≤ s, 1 ≤ j ≤ t. Since |Ω| is even, t must be even. Define a

function f : E(G) → {−1, 1} as follows:

Case 1: s is odd. Define f by

f(e) =

 (−1)i−1 if e ∈ Ci, 1 ≤ i ≤ s,

(−1)j−1 if e ∈ Mj, 1 ≤ j ≤ t.

Case 2: s is even and t ̸= 0. Define f by

f(e) =


(−1)i−1 if e ∈ Ci, 1 ≤ i ≤ s,

(−1)j−1 if e ∈ Mj, 1 ≤ j ≤ t− 1,

1 if e ∈ Mt.

Case 3: s is even, t = 0 and there exists an element σ ∈ Ω of even order at least 4. In this

case, without loss of generality, we assume that Ω is arranged so that σs is an element of even

order ℓ ≥ 4. Let I = n/ℓ be the number of cycles in Cs, i.e., Cs = Cs(α1)∪Cs(α2)∪· · ·∪Cs(αI)

with each cycle of length ℓ. Define f by

f(e) =

 (−1)i−1 if e ∈ Ci, 1 ≤ i ≤ s− 1,

(−1)j if e = {αkσ
j
s, αkσ

j+1
s } ∈ Cs, 1 ≤ k ≤ I, 1 ≤ j ≤ ℓ.

For all cases, since |Ω| is even, we have
∑

e∈E(v) f(e) = 2 for every vertex v ∈ V (G). By

Fact 2 and Lemma 6.3.2, f is a minimum SSDF on G and γSS(G) = n.
62

CHAPTER 6. THE SIGNED STAR DOMINATION 6.3. SSD OF CAYLEY GRAPHS

Theorem 6.3.6. Let Γ be a finite cyclic group of odd order n. Assume that Ω is a symmetric

subset containing a generator of Γ. If |Ω| is a multiple of 4, then γSS(Cay(Γ,Ω)) = n+ 1.

Proof. By Lemma 6.3.3, Ω contains no element of order 2. Let Ω = {σ1, σ2, . . . , σ2s}. Since

|Ω| is a multiple of 4, s must be even. Let G = Cay(Γ,Ω). Without loss of generality,

assume that σs ∈ Ω is a generator, i.e., Γ = ⟨σs⟩ and Cs is a cycle of length n. Define a

function f : E(G) → {−1, 1} by

f(e) =

 (−1)i−1 if e ∈ Ci, 1 ≤ i ≤ s− 1,

(−1)j−1 if e = {σj−1
s , σj

s} ∈ Cs, 1 ≤ j ≤ n.

Since |Ω| is even, for each vertex v except ι,
∑

e∈E(v) f(e) = 2. Note that
∑

e∈E(ι) f(e) = 4.

Hence γSS(G) ≤
∑

e∈E(G) f(e) = n+ 1. By Lemma 6.3.2, γSS(G) ≥ n+ 1 and so γSS(G) =

n+ 1.

Example 6.3.7. Consider the group Z7 = {0, 1, . . . , 6} under addition and Ω = {1, 2, 5, 6}.

Then γSS(Cay(Z7,Ω)) = 8 and the corresponding SSDF is given in Figure 6.2.

By Theorems 6.3.4, 6.3.5 and 6.3.6, we have the following three corollaries.

Corollary 6.3.8. [64, Lemma 5] Let Zn be the cyclic group of order n ≥ 2 with identity 0.

Then Cay(Zn,Zn\{0}) is isomorphic to the complete graph Kn and

γSS(Kn) =


n
2

if n ≡ 0, 2 (mod 4),

n if n ≡ 3 (mod 4),

n+ 1 if n ≡ 1 (mod 4).

Corollary 6.3.9. [64, Lemma 6] Let Zn be the cyclic group of order n ≥ 3 with generators

1,−1. Then Cay(Zn, {1,−1}) is isomorphic to the cycle Cn and γSS(Cn) = n.

63

CHAPTER 6. THE SIGNED STAR DOMINATION 6.3. SSD OF CAYLEY GRAPHS

b

b

b

b

b
b

b

v1

v2

v3

v4

1

1

1
1

1

1

1

-1

1

1

-1

-1

1

1

v5

v6

v7

Figure 6.2: An illustration of the signed star domination number of Cay(Z7, {1, 2, 5, 6}) and the correspond-
ing SSDF.

Corollary 6.3.10. [64, Lemma 6] Let Z2n be the cyclic group of order 2n. Then Cay(Z2n,

{1, 3, . . . , 2n− 1}) is isomorphic to the complete bipartite graph Kn,n and

γSS(Kn,n) =

 n if n is odd,

2n if n is even.

Example 6.3.11. Consider the group Z15 = {0, 1, . . . , 14} under addition and Ω = {3, 5, 10, 12}.

Then γSS(Cay(Z15,Ω)) = 16 and the corresponding SSDF is given in Figure 6.3.

From Example 6.3.11, we have the following conjecture.

Conjecture 6.3.12. Let Γ be a finite group of order n, and let Ω = {σ1, σ2, . . . , σ2s} be a

symmetric generating set of Γ. If s is even and no element of Ω is of even order, then

γSS(Cay(Γ,Ω)) =

 n if n is even,

n+ 1 if n is odd.

64

CHAPTER 6. THE SIGNED STAR DOMINATION 6.4. SSD OF {2, 1}-FACTORABLE GRAPHS

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Cay(Z15, {3, 5, 10, 12})

−1
111 1

1
1
−1

−1

1

1
1

−1

1

1
1

1
1

1
−1

−1

−1

1

1

11

1 1

1

1

Figure 6.3: An illustration of the signed star domination number of Cay(Z15, {3, 5, 10, 12}) and the corre-
sponding SSDF.

6.4 Signed star domination of {2, 1}-factorable graphs

Before going further, we introduce a new definition: A graph is {2, 1}-factorable if it can

be decomposed into 2-factors and/or 1-factors. For the definitions of “k- factor”and “k-

factorable”refer to [79].

Theorem 6.4.1. All Cayley graphs are {2, 1}-factorable graphs.

Proof. For Cayley graphs G = Cay(Γ,Ω), Ci’s andMj’s (defined in Section 6.3) are 2-factors

and 1-factors, respectively, and hence G is {2, 1}-factorable.

Notice that although every Cayley graph is {2, 1}-factorable, a {2, 1}-factorable graph

may not be a Cayley graph. For example, the Petersen graph and the dodecahedral graph

are {2, 1}-factorable but not Cayley graphs [60]. Notice also that a {2, 1}-factorable graph

65

CHAPTER 6. THE SIGNED STAR DOMINATION 6.4. SSD OF {2, 1}-FACTORABLE GRAPHS

is regular but it is not necessarily 1-factorable; the Petersen graph is an example.

The property of Cayley graphs used in the proofs of Theorems 6.3.4, 6.3.5 and 6.3.6

is that: A Cayley graph can be decomposed into a bunch of Ci’s and Mj’s. Since Ci’s

are 2-factors and Mj’s are 1-factors, we now extend Theorems 6.3.4, 6.3.5 and 6.3.6 to

{2, 1}-factorable graphs in the following three theorems. We will omit the proofs of these

theorems since we can replace Ci’s with 2-factors and Mj’s with 1-factors in the proofs of

Theorems 6.3.4, 6.3.5 and 6.3.6.

Theorem 6.4.2. Let G be an r-regular and {2, 1}-factorable graph of order n. If r is odd,

then γSS(G) = n
2
.

Theorem 6.4.3. Let G be an r-regular and {2, 1}-factorable graph of order n with even r.

If there exists a {2, 1}-decomposition of G containing odd number of 2-factors, or a 1-factor,

or a 2-factor consisting of even cycles, then γSS(G) = n.

Theorem 6.4.4. Let G be an r-regular and 2-factorable graph of odd order n. If there

exists a 2-factorization of G containing a Hamiltonian cycle and r is a multiple of 4, then

γSS(G) = n+ 1.

We now have a conjecture.

Conjecture 6.4.5. Let G be an r-regular and 2-factorable graph of order n. Then

γSS(G) =

 n if r ≡ 2 (mod 4) or n is even,

n+ 1 if r ≡ 0 (mod 4) and n is odd.

66

Chapter 7

Conclusions

In this chapter, we present a summary of this thesis, and we discuss some directions for

further research.

A distributed system is self-stabilizing if, regardless of the initial state, the system guaran-

tees to reach a legitimate state in a finite time. In 2007, Turau proposed the first linear-time

self-stabilizing algorithm for the minimal dominating set (MDS) problem under an unfair

distributed daemon [75]; this algorithm stabilizes in at most 9n moves, where n is the num-

ber of nodes. In 2008, Goddard et al. [30] proposed a 5n-move algorithm. The main result

of this thesis is a (4n − 2)-move self-stabilizing algorithm for the MDS problem using an

unfair distributed daemon; the bound 4n− 2 is tight. The model that we use is the normal

model, also called the distance-1 model. It is challenging to design a self-stabilizing MDS

using a distributed daemon that makes fewer than 4n− 2 moves.

While MIS algorithms can only stabilize with an independent set, MDS algorithms are

capable of being stable with any minimal dominating set. In [36], the authors mentioned

that the significance of MDS algorithms is that if the system is initialized to any minimal

dominating set with the correct variable settings (including minimal dominating sets that

are not independent), then it will remain stable. They also pointed out that an MDS

67

CHAPTER 7. CONCLUSIONS

algorithm is usually more complex than an MIS algorithm but can potentially produce any

minimal dominating set. Following this idea, we give four different levels of stableness of

self-stabilizing algorithms. We also prove that if an MDS-silent algorithm is preferred, then

distance-1 knowledge is insufficient, where a self-stabilizing MDS algorithm is MDS-silent

if it will not make any move when the starting configuration of the system is already an

MDS. We conjecture that if we relax the MDS-silent property to MDS-stable (the execution

of non-membership moves is allowed), then there will not exist an MDS-stable algorithm in

the normal model.

We also consider developing self-stabilizing MDS-silent algorithms. In [21] and [76],

the authors considered the distance-2 model, in which every node can read the states of

nodes up to distance 2; see also [31] for the distance-k model. In particular, [21] proposed

an n(k + 1)-move self-stabilizing minimal {k}-dominating set algorithm; when k = 1, the

algorithm finds an MDS using at most 2n moves. The paper [76] presented a 2n-move self-

stabilizing minimal k-dominating set algorithm; when k = 1, this algorithm also finds an

MDS. However, the algorithms in both [21] and [76] operate correctly only with a central

daemon. In this thesis, we present an algorithm, which is also 2n-move but under an unfair

distributed daemon and hence is more practical. It is easy to generalize our MDS-silent

algorithm to self-stabilizing minimal {k}-dominating or k-dominating set algorithms under

an unfair distributed daemon for k ≥ 2.

Notice that the transformed version of algorithm A1 of [76] is not MDS-stable, even the

algorithm is transformed by the transformer C (here we set k = 1). For an counterexample,

consider a graph with five nodes v1, v2, v3, v4, and v5 lying on a path in order. Let the

states of v1, v2, . . . , v5 be OUT-IN-IN-OUT-IN. If vi.INcount are correct for all i, then only

rule R2 of v3 is enabled. By the transformer C, all nodes are consistent and v3 makes a

request. After that v2 and v4 approve it. Suppose then v5 fails (no longer alive) just before

v3 executes the leaving rule R2. At the mean time, v4 wants to make an update urgently,

68

but unfortunately the central daemon of the distance-1 model chooses v3 to make a move.

Since the transformed algorithm AC
1 makes a membership move, AC

1 does not satisfy the

MDS-stable property. However, the expression model assumes distance-2 knowledge and

therefore v3 can see the failure of v5 and v3 will not leave the MDS; thus the transformer

may not derive the same result as the one in the distance-2 model.

Chapter 6 has provided the first study of the problem of finding the values of signed star

domination number of Cayley digraphs and Cayley graphs. We define the directed version

of an SSDF on a digraph D and give the value of signed star domination number of D. We

also obtain exact values for the signed star domination number for certain classes of Cayley

graphs. Using these results on Cayley graph, we deduce the signed star domination number

of Cn, Kn, andKn,n. We also generalize the notion of k-factorable graphs to {2, 1}-factorable

graphs, in which we address the signed star domination number. However, there remains

some Cayley graphs whose signed star domination number are unknown. Another future

work is to address the signed star domatic number for Cayley graphs.

69

References

[1] Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Maximal independent set,

weakly-connected dominating set, and induced spanners in wireless ad hoc networks.

International Journal of Foundations of Computer Science, 14(2):287–303, 2003.

[2] Gheorghe Antonoiu and Pradip K. Srimani. Distributed self-stabilizing algorithm for

minimum spanning tree construction. In European Conference on Parallel Processing,

pages 480–487. Springer-Verlag, 1997.

[3] M. Atapour, S. M. Sheikholeslami, A.N. Ghameshlou, and L. Volkmann. Signed star

domatic number of a graph. Discrete Applied Mathematics, 158(3):213–218, 2010.

[4] Yacine Belhoul, Said Yahiaoui, and Hamamache Kheddouci. Efficient self-stabilizing al-

gorithms for minimal total k-dominating sets in graphs. Information Processing Letters,

114(7):339–343, June 2014.

[5] Steven C. Bruell, Sukumar Ghosh, Mehmet Hakan Karaata, and Sriram V. Pemmaraju.

Self-stabilizing algorithms for finding centers and medians of trees. SIAM Journal on

Computing, 29(2):600–614, October 1999.

[6] Franck Butelle, Christian Lavault, and Marc Bui. A uniform self-stabilizing minimum

diameter spanning tree algorithm. In Jean-Michel Hélary and Michel Raynal, editors,

70

Distributed Algorithms, volume 972 of Lecture Notes in Computer Science, pages 257–

272. Springer Berlin Heidelberg, 1995.

[7] Sébastien Cantarell, AjoyK. Datta, and Franck Petit. Self-stabilizing atomicity refine-

ment allowing neighborhood concurrency. In Self-Stabilizing Systems, volume 2704 of

Lecture Notes in Computer Science, pages 102–112. Springer Berlin Heidelberg, 2003.

[8] Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dynamic and self-

stabilizing distributed matching. In Proceedings of the 21st Annual Symposium on

Principles of Distributed Computing, PODC’02, pages 290–297, New York, NY, USA,

2002. ACM.

[9] Thirugnanam Tamizh Chelvam, G. Kalaimurugan, and Well Y. Chou. The sighed star

domination number of Cayley graphs. Discrete Mathematics, Algorithms and Applica-

tions, 04(02):1250017, 2012.

[10] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huang. A self-stabilizing algorithm

for constructing spanning trees. Information Processing Letters, 39(3):147–151, 1991.

[11] Well Y. Chiu and Chiuyuan Chen. Linear-time self-stabilizing algorithms for minimal

domination in graphs. In Combinatorial Algorithms, volume 8288 of Lecture Notes in

Computer Science, pages 115–126. Springer Berlin Heidelberg, 2013.

[12] Well Y. Chiu, Chiuyuan Chen, and Shih-Yu Tsai. A 4n-move self-stabilizing algorithm

for the minimal dominating set problem using an unfair distributed daemon. Informa-

tion Processing Letters, 114(10):515–518, 2014.

[13] Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula. A self-stabilizing O(k)-

time k-clustering algorithm. The Computer Journal, 53(3):342–350, March 2010.

71

[14] Lyes Dekar and Hamamache Kheddouci. Distance-2 self-stabilizing algorithm for a

b-coloring of graphs. In Sandeep Kulkarni and André Schiper, editors, Stabilization,

Safety, and Security of Distributed Systems, volume 5340 of Lecture Notes in Computer

Science, pages 19–31. Springer Berlin / Heidelberg, 2008.

[15] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-

cations of the ACM, 17(11):643–644, November 1974.

[16] Shlomi Dolev. Self-stabilization. MIT Press, 2000.

[17] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed

systems. In Proceedings of the 2nd Workshop on Self-Stabilizing Systems, WSS’95,

pages 3.1–3.15, 1995.

[18] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems

assuming only read/write atomicity. Distributed Computing, 7(1):3–16, November 1993.

[19] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Resource bounds for self-stabilizing

message-driven protocols. SIAM Journal on Computing, 26(1):273–290, February 1997.

[20] Shlomi Dolev and Nir Tzachar. Empire of colonies: Self-stabilizing and self-organizing

distributed algorithm. Theoretical Computer Science, 410(6–7):514–532, February 2009.

[21] Martin Gairing, Wayne Goddard, Stephen T. Hedetniemi, Petter Kristiansen, and Al-

ice A. McRae. Distance-two information in self-stabilizing algorithms. Parallel Process-

ing Letters, 14(3–4):387–398, 2004.

[22] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

72

[23] Felix C. Gartner. A survey of self-stabilizing spanning-tree construction algorithms.

Technical report, Swiss Federal Institute of Technology Tech. Rep. IC/2003/38, School

of Computer and Communication Sciences, Lausanne, Switzerland, 2003.

[24] Cyril Gavoille, Ralf Klasing, Adrian Kosowski, Lukasz Kuszner, and Alfredo Navarra.

On the complexity of distributed graph coloring with local minimality constraints. Net-

works, 54(1):12–19, August 2009.

[25] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pemmaraju. Fault-

containing self-stabilizing algorithms. In Proceedings of the 15th Annual ACM Sympo-

sium on Principles of Distributed Computing, PODC’96, pages 45–54, New York, NY,

USA, 1996. ACM.

[26] Sukumar Ghosh and Mehmet Hakan Karaata. A self-stabilizing algorithm for coloring

planar graphs. Distributed Computing, 7(1):55–59, November 1993.

[27] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Srimani.

A robust distributed generalized matching protocol that stabilizes in linear time. In

Proceedings of the 23rd International Conference on Distributed Computing Systems,

ICDCSW’03, pages 461–465, Washington, DC, USA, 2003. IEEE Computer Society.

[28] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Srimani.

A self-stabilizing distributed algorithm for minimal total domination in an arbitrary

system graph. In Proceedings of the 8th International Symposium on Parallel and Dis-

tributed Processing, IPDPS’03, pages 240–243, Washington, DC, USA, 2003. IEEE

Computer Society.

[29] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Srimani.

Self-stabilizing global optimization algorithms for large network graphs. International

Journal of Distributed Sensor Networks, 1(3–4):329–344, 2010.
73

[30] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, Pradip K. Srimani, and

Zhenyu Xu. Self-stabilizing graph protocols. Parallel Processing Letters, 18(1):189–

199, 2008.

[31] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Vilmar Trevisan.

Distance-k knowledge in self-stabilizing algorithms. Theoretical Computer Science,

399(1–2):118–127, 2008.

[32] Wayne Goddard, Stephen T. Hedetniemi David P. Jacobs, and Pradip K Srimani.

Self-stabilizing protocols for maximal matching and maximal independent sets for ad

hoc networks. In Proceedings of the 5th IPDPS Workshop on Advances in Parallel

and Distributed Computational Models, WAPDCM’03, pages 162–167. IEEE Computer

Society, 2003.

[33] Wayne Goddard and Pradip K. Srimani. Anonymous self-stabilizing distributed algo-

rithms for connected dominating set in a network graph. In Proceedings of the 1st In-

ternational Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC’10,

2010.

[34] Nabil Guellati and Hamamache Kheddouci. A survey on self-stabilizing algorithms for

independent, domination, coloring, and matching in graphs. Journal of Parallel and

Distributed Computing, 70(4):406–415, 2010.

[35] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater. Fundamentals of Domi-

nation in Graphs. Monographs and Textbooks in Pure and Applied Mathematics. CRC

Press, 1998.

[36] Sandra M. Hedetniemi, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Sri-

mani. Self-stabilizing algorithms for minimal dominating sets and maximal independent

sets. Computer Mathematics and Applications, 46(5–6):805–811, 2003.
74

[37] Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Srimani. Maximal matching

stabilizes in time O(m). Information Processing Letters, 80(5):221–223, December 2001.

[38] Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Srimani. Linear time self-

stabilizing colorings. Information Processing Letters, 87(5):251–255, September 2003.

[39] Lisa Higham and Zhiying Liang. Self-stabilizing minimum spanning tree construction

on message-passing networks. In Distributed Computing, volume 2180 of Lecture Notes

in Computer Science. Springer-Verlag, October 2001.

[40] Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for maximal match-

ing. Information Processing Letters, 43(2):77–81, August 1992.

[41] Shing-Tsaan Huang, Su-Shen Hung, and Chi-Hung Tzeng. Self-stabilizing coloration in

anonymous planar networks. Information Processing Letters, 95(1):307–312, July 2005.

[42] Shing-Tsaan Huang and Chi-Hung Tzeng. Distributed edge coloration for bipartite

networks. In Proceedings of the 8th International Conference on Stabilization, Safety,

and Security of Distributed Systems, SSS’06, pages 363–377, Berlin, Heidelberg, 2006.

Springer-Verlag.

[43] Tetz C. Huang, Chih-Yuan Chen, and Cheng-Pin Wang. A linear-time self-stabilizing

algorithm for the minimal 2-dominating set problem in general networks. Journal of

Information Science and Engineering, 24(1):175–187, 2008.

[44] Tetz C. Huang, Ji-Cherng Lin, Chih-Yuan Chen, and Cheng-Pin Wang. A self-

stabilizing algorithm for finding a minimal 2-dominating set assuming the distributed

demon model. Computers and Mathematics with Applications, 54(3):350–356, August

2007.

75

[45] Michiyo Ikeda, Sayaka Kamei, and Hirotsugu Kakugawa. A space-optimal self-

stabilizing algorithm for the maximal independent set problem. In Proceedings of the

3rd International Conference on Parallel and Distributed Computing, Applications and

Technologies, PDCAT’02, pages 70–74, 2002.

[46] Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Information

and Computation, 88:150–158, 1981.

[47] S. Jahanbekam. A comment to: Two classes of edge domination in graphs. Discrete

Applied Mathematics, 157(2):400–401, 2009.

[48] Ankur Jain and Arobinda Gupta. A distributed self-stabilizing algorithm for finding a

connected dominating set in a graph. In Proceedings of the 6th International Confer-

ence on Parallel and Distributed Computing Applications and Technologies, PDCAT’05,

pages 615–619, Washington, DC, USA, 2005. IEEE Computer Society.

[49] Hirotsugu Kakugawa and Toshimitsu Masuzawa. A self-stabilizing minimal dominating

set algorithm with safe convergence. In Proceedings of the 20th International Conference

on Parallel and Distributed Processing, IPDPS’06, pages 263–263, Washington, DC,

USA, 2006. IEEE Computer Society.

[50] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing algorithm for the distributed

minimal k-redundant dominating set problem in tree networks. In Proceedings of the

4th International Conference on Parallel and Distributed Computing, Applications and

Technologies, PDCAT’03, pages 720–724, Washington, DC, USA, 2003. IEEE.

[51] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing approximation algorithm

for the distributed minimum k-domination. IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, E88-A(5):1109–1116, May 2005.

76

[52] Mehmet Hakan Karaata. Self-stabilizing strong fairness under weak fairness. IEEE

Transactions on Parallel and Distributed Systems, 12(4):337–345, April 2001.

[53] Adrian Kosowski and Lukasz Kuszner. Self-stabilizing algorithms for graph coloring

with improved performance guarantees. In Proceedings of the 8th International Con-

ference on Artificial Intelligence and Soft Computing, ICAISC’06, pages 1150–1159,

Berlin, Heidelberg, 2006. Springer-Verlag.

[54] Fabian Kuhn, Thomas Moscibroda, and Rogert Wattenhofer. What cannot be com-

puted locally! In Proceedings of the 23rd Annual ACM Symposium on Principles of

Distributed Computing, PODC’04, pages 300–309, New York, NY, USA, 2004. ACM.

[55] Ji-Cherng Lin and Tetz C. Huang. An efficient fault-containing self-stabilizing algorithm

for finding a maximal independent set. IEEE Transactions on Parallel and Distributed

Systems, 14(8):742–754, August 2003.

[56] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,

21(1):193–201, February 1992.

[57] Fredrik Manne and Morten Mjelde. A self-stabilizing weighted matching algorithm. In

Proceedings of the 9th International Conference on Stabilization, Safety, and Security of

Distributed Systems, SSS’07, pages 383–393, Berlin, Heidelberg, 2007. Springer-Verlag.

[58] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. A new self-

stabilizing maximal matching algorithm. In Proceedings of the 14th International

Conference on Structural Information and Communication Complexity, SIROCCO’07,

pages 96–108, Berlin, Heidelberg, 2007. Springer-Verlag.

[59] Toshimitsu Masuzawa and Sébastien Tixeuil. A self-stabilizing link-coloring protocol

resilient to unbounded Byzantine faults in arbitrary networks. In JamesH. Anderson,

77

Giuseppe Prencipe, and Roger Wattenhofer, editors, Principles of Distributed Systems,

volume 3974 of Lecture Notes in Computer Science, pages 118–129. Springer Berlin

Heidelberg, 2006.

[60] Brendan D. McKay and Cheryl E. Praeger. Vertex-transitive graphs which are not

cayley graphs, I. Journal of the Australian Mathematical Society (Series A), 56:53–63,

February 1994.

[61] A. Meir and J. W. Moon. Relations between packing and covering numbers of a tree.

Pacific Journal of Mathematics, 61(1):225–233, 1975.

[62] Mikhail Nesterenko and Anish Arora. Stabilization-preserving atomicity refinement.

Journal of Parallel and Distributed Computing, 62(5):766–791, May 2002.

[63] Reuay-Ching Pan, Jone-Zen Wang, and Louis R. Chow. A self-stabilizing distributed

spanning tree construction algorithm with a distributed demon. Tamsui Oxford Journal

of Mathematical Sciences, 15:23–32, May 1999.

[64] R. Saei and S.M. Sheikholeslami. Signed star k-subdomination numbers in graphs.

Discrete Applied Mathematics, 156(15):3066–3070, 2008.

[65] Marco Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, 1993.

[66] Zhengnan Shi, Wayne Goddard, and Stephen T. Hedetniemi. An anonymous self-

stabilizing algorithm for 1-maximal independent set in trees. Information Processing

Letters, 91(2):77–83, 2004.

[67] Sandeep K. Shukla, Daniel J. Rosenkrantz, and S. S. Ravi. Observations on self-

stabilizing graph algorithms for anonymous networks. In Proceedings of the 2nd Work-

shop on Self-Stabilizing Systems, WSS’95, pages 7.1–7.15, 1995.

78

[68] Sandeep K. Shukla, Daniel J. Rosenkrantz, and S. S. Ravi. Simulation and validation

tool for self-stabilizing protocols. In Proceedings of 2nd SPIN Workshop, Volume 32 of

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1997.

[69] Pradip K. Srimani and Zhenyu Xu. Self-stabilizing algorithms of constructing spanning

tree and weakly connected minimal dominating set. In Proceedings of the 27th Interna-

tional Conference on Distributed Computing Systems Workshops, ICDCSW’07, pages

3–11, Washington, DC, USA, 2007. IEEE Computer Society.

[70] Huang Sun, Brice Effantin, and Hamamache Kheddouci. A self-stabilizing algorithm

for the minimum color sum of a graph. In Proceedings of the 9th International Con-

ference on Distributed Computing and Networking, ICDCN’08, pages 209–214, Berlin,

Heidelberg, 2008. Springer-Verlag.

[71] Sumit Sur and Pradip K Srimani. A self-stabilizing distributed algorithm to construct

bfs spanning trees of a symmetric graph. Computers and Mathematics with Applications,

30, 1992.

[72] Sumit Sur and Pradip K. Srimani. A self-stabilizing algorithm for coloring bipartite

graphs. Information Sciences, 69(3):219–227, April 1993.

[73] Ming-Shin Tsai and Shing-Tsaan Huang. A self-stabilizing algorithm for the shortest

paths problem with a fully distributed demon. Parallel Processing Letters, 4(1–2):65–72,

June 1994.

[74] Shihyu Tsai. An efficient self-stabilizing algorithm for the minimal dominating set

problem under a distributed scheduler. Master’s thesis, Department of Applied Math-

ematics, National Chiao Tung University, Hsinchu, Taiwan, 2011.

79

[75] Volker Turau. Linear self-stabilizing algorithms for the independent and dominating

set problems using an unfair distributed scheduler. Information Processing Letters,

103(3):88–93, 2007.

[76] Volker Turau. Efficient transformation of distance-2 self-stabilizing algorithms. Journal

of Parallel Distribted Computing, 72(4):603–612, 2012.

[77] Chi-Hung Tzeng, Jehn-Ruey Jiang, and Shing-Tsaan Huang. A self-stabilizing (δ+4)-

edge-coloring algorithm for planar graphs in anonymous uniform systems. Information

Processing Letters, 101(4):168–173, February 2007.

[78] Changping Wang. The signed star domination numbers of the cartesian product graphs.

Discrete Applied Mathematics, 155(11):1497–1505, 2007.

[79] Douglas B. West. Introduction to Graph Theory. Prentice-Hall, Inc., 2nd edition, 2000.

[80] Baogen Xu. On signed edge domination numbers of graphs. Discrete Mathematics,

239(1–3):179–189, 2001.

[81] Baogen Xu. On edge domination numbers of graphs. Discrete Mathematics, 294(3):311–

316, 2005.

[82] Baogen Xu. Two classes of edge domination in graphs. Discrete Applied Mathematics,

154(10):1541–1546, 2006.

[83] Zhenyu Xu, Stephen T. Hedetniemi, Wayne Goddard, and Pradip K. Srimani. A syn-

chronous self-stabilizing minimal domination protocol in an arbitrary network graph.

In Proceedings of the 5th International Workshop on Distributed Computing, Springer

LNCS 2918, IWDC’03, pages 26–32, 2003.

80

	Chiu_PHD_THESIS
	Well_PHD_THESIS

