5 17 A% 38 N E2

Z I TREWEr

Wt W X

d A A EE S e
A Study on the Stable LEGO Sculpture Generation
GEE RN E
hERE B L R

BALF R

hERE —S2= F/8



dZ A 2 AR B

A Study on the Stable LEGO Sculpture Generation

Foyo4 D EEE Student : Jhen-Yao Hong
hERR DL Advisor : Prof. Zen-Chung Shih
Ay, & Prof. Der-Lor Way
R = & i@ + F

A Thesis
Submitted to Institute of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Multimedia Engineering
August 2014

Hsinchu, Taiwan, Republic of China

pa

t’%fl\@i}—’ﬁ?;_&,\a



d - WA S REEF A AT

A2
2

S
\‘\‘%

ELEis

ERHAL-AFRIABREFTIRE S AR TART g IR A RS

BHALBRAL T Z LI TPREIBRDE R HIE A EPIET A a#H NET
R o Fpt o AR A — B kAL @ —ﬁ ¥ Z #- closed polygonal model ﬁi«%l »
e se >k kg KT polygon £F voxel 4P % {735 > #- polygonal model #
# = volumetric model » & 3% i 5 A $% voxel 17 VA BERCA ehE o o B 4
EHAFAOEEF AR ARG I A B R AE - KSR

% TV kR Rl R R A -



A Study on the Stable LEGO Sculpture Generation

Student: Jhen-Yao Hong Advisor: Prof. Zen-Chung Shih
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ABSTRACT

LEGO is a popular toy all over the world. The LEGO sculptures have been applied
in lots of occasions, such as an exhibition and a movie. However, building a stable
sculpture is difficult for novices. Even a well-experienced user also need to spend much
time to construct it. This thesis presents-a-system to build a LEGO sculpture easier.
Given a closed polygonal model as the input, our system transforms this model to a
volumetric model first. Secondly, by removing proper inner voxels, the model’s center
of mass is adjusted to an appropriate position to make the model stand stably. Finally,
the greedy merge algorithm builds the structures of a sculpture by optimize the trade-
off between the connection and brick cost of each bricks. Consequently, users can build

a stable and low-cost LEGO sculptures by following the assembly instructions.
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Chapter 1

Introduction

LEGO is a popular toy all over the world. People can show their imagination by
building a wonderful work with Lego bricks. As shown in Figure 1.1, LEGO sculptures
have been applied in lots of occasions. We can appreciate magnificent works in LEGO
exhibitions. Besides, some movies are:created based on these LEGO sculptures [16].
LEGO was originated in 1940s [18], despite it has been 60 years, it was still voted as
the favorite toy in 2008 [17]. As mentioned, LEGO is popular and close to life. There
are many different kinds of bricks. The specialized LEGO pieces allow orthogonal
connections [5], and the “nanoblock”, which was created by a Japanese company in
2008 [15], can build mini size sculptures. The brick we use is the.common one. Its
width and length of a unit LEGO brick is 8 mm,and height is 9.6mm. There are various

types of bricks, and we would like to build a stable sculpture by assembling them.

Figure 1.1: The left image is the publicity of LEGO exhibitions. The right image is

one scene of the movie “THE LEGO MOVIE” [16]



Some previous papers focus on optimizing the structure of a LEGO sculpture. A
few researches discuss about the center of mass of a sculpture. Most of the models they
used can stand originally. However, if we tilt a model, it might be not able to stand
anymore, even its structure is firm. In other words, it is necessary to consider center of
mass when building a stable LEGO sculpture. Moreover, users can build a sculpture
with different poses by adjusting the center of mass, so that the selection of a polygonal

model becomes more flexible.

1.1 Motivation and System Design

Building a stable sculpture-is not easy for a novice, even a well-experienced user
also needs lots of time to build it. Therefore, “How to build a wonderful sculpture”
becomes a challenge for the LEGO Company. They brought up this question in 1998
[3]. Up to now, this question is still be researched. Appearance and stability are the two
important elements for judging a good sculpture. If the sculpture is not stable, it might
be broken easily. More serious is that the sculpture is not able to stand stably. Therefore,
there are lots of research to discuss how-to-build @ sculpture with stable structure.
[3][6][13], but most of these researches use optimal method which spend too much time,

and none of them build the sculpture practically to ensure their correctness.

Synthetically, creating a system that makes the process of building a LEGO
sculpture easier is necessary for people. It is the main purpose of this paper.
Furthermore, we increase the flexibility when choosing a polygonal model. In our
proposed system, users input a closed polygonal model first, then they can scale or
rotate the model. After that, the system transforms the polygonal model to a set of

voxels by testing whether voxels and polygons overlap, and recording the center



position of voxels. Next, to adjust the center of mass of a model to a suitable position,
we remove proper inner voxels. Finally, the system apply a greedy merge algorithm for
this voxelized model. We merge voxels into a set of bricks to get stable structures, which
are outputted as the assembly instructions. Users can build a sculpture by following the

instructions.

Our contribution is to present a system which can adjust the center of mass of a
model dynamically, making the chosen of model more flexible. The trade-off between
the connection and brick cost is-dealt with in our greedy merge algorithm. So the result
balances the stability and the cost of a sculpture. As long as the structure satisfies the
conditions we set, the sculpture-is-strong enough to stand stably. Therefore, we do not

need to search the most optimal-structure. It speed up the process of optimization.

1.2 Thesis Organization

This thesis is organized as follows: In chapter 2, we review the related work about
voxelization, the stability of a LEGO sculpture, and legolization. Then, we will show
the flow of our proposed system and describe the detail of each process in chapter 3.
Chapter 4 shows our implementation and result. Conclusion and future work are

discussed in chapter 5.



Chapter 2
Related Works

2.1 Voxelization

A LEGO sculpture is assembled by lots of bricks. Therefore, before analyzing a
LEGO structure, we should transform the polygonal model to voxels. We denote this
process as “voxeliztion”, which is.a mature topic. Silva et al. [8] voxelized a polygonal
model to a set of colored voxels and showed them on-a screen. They subdivided a
triangle to smaller sub-triangles-in-order to guarantee that a triangle only intersects with
one voxel. Therefore, the color of a voxel can be determined by the triangle which it
intersects with. However, the color of a voxel is not necessary for our system so we do
not need to subdivide triangles. Voorhies [14] tested the intersection between a cube
and a triangle to voxelize a polygonal model. He reduced the number of voxels by doing
a series of acceptance/rejection tests to speed up the intersection test. Green and Hatch
[4] improved the efficiency of Voorhies’ approach. They tested whether the point is in
the skewed rhombic dodecahedron in acceptance/rejection tests to make the test more
robust. In addition, they made the test be able to deal with arbitrary triangles. We use
Akenine-Moller’ method [1] to test intersections among triangles and cubes based on
separating axis theorem (SAT). This approach tests whether the projections of a triangle
and a cube onto an axis are overlap or not. It is 2.3 times faster than Green and Hatch’s

approach.



2.2 Stable Structure of LEGO Sculptures

Several researches are proposed after the LEGO Company presents the question
“how to build a sculpture fast”. Gower et al. [3] proposed six heuristic rules, which are
shown as follows:

1. High percentage area of each brick should be covered. It can increase the stability
of the LEGO sculpture and the connection of each brick.

2. Larger bricks are better. Large bricks are not only increase the connection, but also
decrease the sum of brick number.

3. The direction of each consecutive layer should not be the same. It increases the
stability of the full sculpture, and-decrease the chance of local connection (Figure
2.1 (a) (b)).

4. The vertical boundary (Figure 2.1 (a) (b)) must be covered by the above and below
layer. It can help to avoid local connection and unconnected sculpture.

5. If two bricks form T-shaped boundary with its neighborhood, its middle will be at
the boundary of its neighborhood (Figure 2.1 (c)).

6. If abrick covers a vertical boundary-in-previous layer, it should match the boundary

(Figure 2.1 (d)).



(c) (d)

Figure 2.1: The illustrations [9]. (a)(b) The arrows are the directions of bricks. The
black boundaries of the twao bricks are the vertical boundary. (c) Both of the two red
bricks form a T-shaped boundary with their neighborhood (the blue and yellow
bricks). The middle of the red bricks are match the boundaries of their neighbors. (d)
When the center of the red brick match the boundary of the bricks.in previous layer, it

reinforce the stability.

The direction is the longer side of a brick. Vertical boundary is the boundary of a
brick looked in top view. Gower used these heuristics to design a penalty function and
calculated the minimum penalty value with simulated annealing algorithm. The more
heuristics this model satisfies, the less the penalty value is. In other words, the sculpture
is more stable. However, it spends too much time and they never built a LEGO sculpture
practically. Petrovic [6] proposed a gene algorithm to replace simulated annealing

algorithm. But they still did not build any sculpture in reality.

Van Zijl and Smal [13] used cellular automata to merge and split voxels. Based on



Gower’s heuristics [3], they designed a cost function to determine whether to merge a
voxel into a brick. Although this method is not a traditional optimal algorithm, it still

needs lots of time to check the rules of heuristics.

Another methods to increase the stability of a sculpture is interlocking. Song et al.
[10] was inspired by the interlocking puzzle, whose puzzles can be locked by another
puzzles. They used a recursive method to design a puzzle one by one from a voxelized
model and ensured that the newest puzzle can lock others. Their approach indeed
creates a stable sculpture, but the shape of the puzzles designed by them is various, as
shown in Figure 2.2. Thus, this method cannot be used in LEGO sculpture. Stava et al.
[9] proposed a stress relief method. - The method we use to adjust center of mass is
similar to theirs. They reduced- thepressure of some frail parts by hollowing the inner
areas. However, they still needed struts to reinforce the stability of models. In our
approach, we remove inner voxels to adjust the center of mass of the whole model
instead of the frail parts. Therefore, if the center of mass is moved to the ideal position.

The model can stand stably without any struts.

Figure 2.2: The left image shows the puzzle pieces Song et al. created [8]. The right

one shows the common bricks we use.



2.3 Legolization

Silvaetal. [8] provided a process of subdividing triangles and voxelization by using
GPU. They transformed a polygon model to a LEGO sculpture efficiently. However,
this technique just showed the models on screen after legolizating. They did not discuss
the stability of a sculpture and build it practically. Lambrecht [5] categorized LEGO
sculpture into two types: stud-up and stud-out model, as shown in Figure 2.3. They
focused on the stud-out model, whose bricks allowed orthogonal connections. Despite

the bricks make the sculptures more realistic, they are not used widely.

Figure 2.3: The illustrations [5] of (a) stud-up sculpture, and (b) stud-out sculpture.

Testuz et al. [12] replaced graphic algorithm with heuristic optimization algorithms.
Using their algorithm, the whole process does not need to consider all heuristics,
because most heuristics are related to the connections among bricks. The more
connection of a brick has, the more stable the sculpture is. Calculating the connection
of a brick and optimizing LEGO structures by graphic algorithm can enhance the
efficiency of computing a stable structure layer-by-layer. We propose our improvement

to extend to hollowing and center of mass adjusted models.



Chapter 3
Algorithm

The goal of this research is to build a LEGO sculpture easier. In this chapter, we
describe the process of the assembly instructions generation. By following the
instructions of each layer, users can build a stable and low-cost LEGO sculpture. Figure
3.1 explains the flow of our proposed system. The final output present the assembly
instructions of each layer. These instructions assist people to build a LEGO sculpture
of an input model in“any pose. Furthermore, the constructed LEGO sculpture can

always stand at the ground plane stably.

The input of our proposed system is a closed polygonal model. Users can rotate or
scale the model arbitrary. The first step is voxelization. The input model is voxelized
into a volumetric model. Secondly, in order to make the LEGO sculpture stand stably,
we need to adjust the center of mass (CoM) by removing proper inner voxels of the
LEGO sculpture. Finally, we optimize the trade-off between the connection and brick
cost to construct a suitable structure of each layer. The connection influences the

stability of a sculpture and the brick cost is related to the usage rate of different bricks.

The rest of this chapter is organized as follows. In section 3.1 we describe how to
test the intersection between a voxel and a triangle by Akenine-Moller’ approach [1].
We define “erasable voxel” and “safe region”, and explain the process of adjusting
center of mass in section 3.2. And the section 3.3 discuss about the greedy merge

algorithm which deals with the trade-off between the connection and each brick cost



(a) Input a polygon model.

(b) Voxelize into a volumetric

model.

(c) Adjust the center of mass.

(d) Optimize the structures and output the

assembly instructions of each layer. l

(e) Build a LEGO sculpture based on the
instructions.

Figure 3.1: The flow of our proposed system architecture. (a) The input model and its
axis-aligned bounding box. (b) The voxelized model. (c) It shows the center of mass
before and after adjusting center of mass. (d) The 2"¥ and 3™ layers’ assembly

instructions of the oblique bunny. (e) The bunny LEGO sculpture.

3.1 Voxelization

The first step of our algorithm is to transform a polygonal model into voxel data.

10



We apply Akenine-Moller’s approach [1] to detect the intersection among voxels and
triangles. Based on the separating axis theorem (SAT), if there exists an axis onto which
the projections of a voxel V and a triangle T do not overlap, V and T do not overlap.
The axes onto which V and T project are separating axes. If V and T are disjoint, there
IS a separating plane between them. And the axes is orthogonal to a separating plane.

We test 13 separating axes as shown in Figure 3.2:

1. [3tests] Let g, ej, and g are the normals of a voxel. Voxels always align with
the axes of 3D coordinates, so we define normals g = (0, 1, 0), 51 = (0, 0, 1),
and e, =(1,0,0).

2. [1tests] Let n ' be the normal of a triangle.
3. [9 tests] The cross product of an edge from a voxel with an edge from a triangle.

Treat the normals (eT) of a voxel as its edges, and E is the edge of a triangle.

Then we can define a; ‘as follows:

a, =€ x u (i) € {0,1,2) @

€

/%

Figure 3.2: The illustration of the 13 separating axes. e, €, €,,and n are the

normals of V and T. The other 9 axes are & x u; (i,j € {0,1,2}).
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To simplify the test, we move the triangle first, so that the voxel is centered on the

origin. Let a = (ax, ay,a,) stands for one of the 13 separating axes. The process of

intersection test is as follows:

1. Project triangle vertices (v, to v,) onto a.

pi=a- v (i €{0,1,2}) )
2. Project the voxel onto the same axis, where r is the radius of the voxel.
d=rla.l+ r|ay|+ 7]a, (3)

3. ifmin(p,,p1,p2) > d or max(pg ,py,p2) < —d, return false.

As illustrated in Figure 3.3, assoon as a separating axis is found that the projections
of a triangle T and a voxel V do-not overlap, we keep the voxel V and test other voxels
and triangles. Otherwise, we continue testing whether the projections of V and T overlap
on other separating axes. If V and T overlap on all the 13 separating axes, V intersects

with T

Vg 4

min(po. P1.p2) max(po, P1. P2)

(b)

Figure 3.3: (a) The projections of V and T onto a do not overlap, soVand T are

disjoint. (b) The projections of V and T are overlap on this separating axis. We test

other axes to ensure the intersection status of V and T.

12



3.2 Center of Mass Adjustment

A model can stand stably if the projection of the center of mass is located on the
suitable area, which is denoted as the “safe region” of the sculpture. However, for an
arbitrary solid model, the center of mass may not lie in the safe region. Thus, we remove
voxels to adjust the center of mass. In addition, to avoid destroying the appearance of a

model, only the inner voxels can be removed.

3.2.1 Erasable Voxel

To ensure the appearance and the stability of a LEGO sculpture, voxels on the shell
cannot be removed. As shown-in-Figure 3.4, a shell is composed of the outer voxels of
a voxelized model. The thickness of a shell is the number of voxels counted from the
interior to the exterior of a model. A sculpture is more stable with a thicker shell. In
order to strengthen the connections of bricks on a shell, the thickness of a shell should
be greater than 2-unit-brick. If voxels are not on the shell, they are denoted as the

“erasable voxel”.

Figure 3.4: (a) The shell in the 8" layer of the voxelized bunny model in (b). The

thickness of the shell is 3-unit-birck.

13



The method of determining an erasable voxel is to count the number of its
surrounded voxels. If the surrounded voxels of the voxel V is over the shell’s thickness
in all the six directions, V is an “erasable voxel”, as displayed in Figure 3.5(a). Figure
3.5(b) illustrates the example of erasable voxels. Voxel A is not an erasable voxel
because its number of surrounded voxels in right and behind side is less than the shell’s

thickness. In contrast, Voxel B is an erasable voxel.

Y z
behind
top / X
|
left vV 9

/ right
z / bottom
f

ront

(a)

Figure 3.5: (a) The six direction of a voxel V. (b) The shell’s thickness is 2-unit-birck.
For voxel A, the number of surrounded voxels is 0 in the right side, and it is 1 in the

behind side. For voxel B, the number of surrounded voxels is over 2 in all directions.

3.2.2 Safe Region

A safe region means the convex hull of the area where voxels in the lowest layer
contacting the ground plane. Based on Prevost’s approach [7], the model can stand

stably without any struts when the projection of center of mass onto the ground plane

14



lies

in the safe region. We apply Andrew's Monotone Chain convex hull algorithm [2]

to build the convex hull. The pseudo codes are presented in Pseudocode 1 and 2.

Pseudocode 1: Build the convex hull of a safe region

Input A list of center positions of voxels P

e I A AN il Sl o

hY

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

Sort voxels by x and z value. (x is first)

Initial L and U as empty lists // record the vertices in lower and upper hull
qg=0 /I q: the quantity of vertices in L
r=20 /I t: the quantity of vertices in U
fori=1ton // n: the quantity of voxels in P
while ( g >= 2 and CrossProduct( L|g-2], L[g-1], P[1] ) <0)
qg-=1
end while
Lig++] = P[i];
end for // finish lower hull
fori=ntol /L n: the quantity of voxels.in P
while ( r >= 2 and CrossProduct( Ulr-2], U[r-1], P[i] ) £0)
r-=1
end while
Ulr++] = P[i];
end for // fimish upper hull

Remove the last point of L and U
Concatenate L and U to obtain the convex hull of safe region

Pseudocode 2: cross product two vectors

1: procedure CrossProduct (vec3.0, vec3 4, vec3.B) // vec3 v={vx, vy, vz}

2:
3:
4:

04=4-0
OB =B-0
return (OAx*OB )—(OBx * O4z)

5: end procedure

In this algorithm, we build a lower hull and an upper hull separately, and

concatenate them to form a complete convex hull. Both of the lower hull and upper hull

connect to the center of voxels counterclockwise, but a lower hull connects voxels form

the leftmost to the rightmost, and the other is reverse, as shown in Figure 3.6.
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A J

Figure 3.6: The top view of voxels in the bottom layer. The green line is the upper

hull and the red line is the lower hull: If itisclockwise from AE to AF A Eand F

are the vertices of the convex hull.

The processes of building a lower and upper hull are the same. We use a list (L and
U, as shown in pseudocode 1) to record the vertices of them. As described at line 7 and
14 in pseudocode 1, the last two vertices in the list and P[i] are-used to determine
whether the vertices in the list are real vertices or-not. For example, as displayed in
figure 3.6, voxel A and E are vertices of the lower hull and recorded in list L, and voxel
F is the current P[i]. If the cross product of AE-and AF s lower than 0, which
means they are clockwise, we remove E from L, and then compute the cross product
for the current last two vertices and F iteratively. In contrast, F is the new vertex of the
convex hull, so we insert B into L. Figure 3.7 displays the safe region built by this
algorithm and the center of mass’s projection (c,, as shown in Figure 3.7) that is not in

the safe region.
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Figure 3.7: The voxelized bunny model. The blue convex is the safe region of the

bunny model. ¢ is the projection of center of mass onto the ground plane.

3.2.3 Adjusting Center of Mass

According to Prevost’ approach [ 7]. If the distance from a voxel to center of mass
is greater, removing the voxel can adjust center of mass much closer to the safe region.
Therefore, we sort the voxels in decreasing order by the distance and remove the voxels.
We calculate the distance as follows:

di=(c;—c) - (c—c") (4)
, Where c; is the center of a voxel. c¢* is the center of the safe region and its height
equals to the center of mass. c* is also treated as the ideal center of mass. c is the

center of mass’s position, and we get it by Eg. 5:

_ ZisoCi
c = &= (5)
, Where n is the total number of voxels in a model. As shown in Figure 3.8, a model is
separated into two half spaces by a plane which is perpendicular to the ground plane

and passes through c*. Removing the voxels located in the half space, which contains
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the center of mass, can make ¢ closer to c*. In contrast, removing the voxels in the
other half space makes ¢ further away from c*. Consequently, voxels can be removed

if they are in the same half space with center of mass. We remove voxels whose

distances are greater than 0.

Figure 3.8: We separate the model into two half spaces based on the ideal center of
mass (c*). When ¢ and c; are in the same half space, removing c; can make c

closer to c*.

The effect of adjusting center of mass is presented in Figure 3.9. ¢, is moved into
the safe region after adjusting center of mass, so the model can stand stably after built
in reality. Although a model is stable while the center of mass lies in the safe region,

we continue removing erasable voxels to decrease the number of voxels as less as
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possible. At last, we will remove all voxels which are in the same half space with center

of mass.

(¢) (d)

Figure 3.9: The model (a) before and (b) after adjusting center of mass. (c) and (d)

Compare the inner structure of the model before and after adjusting center of mass.

3.3 LEGO Brick Merging

To build a stable LEGO sculpture more easily in reality, we need the assembly
instructions of each layer. Because the types of LEGO bricks are various, it costs too
much time to test all types of bricks and choose the proper one. Therefore, we constrain

the usable types, as shown in Figure 3.10, and denote them as “legal brick™.
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Figure 3.10: The legal bricks [12].

We construct the instructions layer-by-layer by a greedy merge algorithm, which
merges voxels into a legal brick with highest value. The process of optimizing an
assembly instruction is presented in Pseudocode 3. We describe the details of each step

in the following sub-sections:

Pseudocode 3: Optimize the structure of a layer

1: Input: voxel list in a layer, VL
2: Output: brick list in a layer, BL
3: repeat

4:  Select a voxel v from FL randomly

5:  Search a set of valid legal bricks LBL

6: b= Optimization (LBL)

7:  Insert b nto BL

8: Remove v and its neighbors in b from VL
9: until VL is empty

3.3.1 Voxel Selection

The shell of a LEGO sculpture is often difficult to build because there are too many
1*1 bricks. It causes weak connection of the bricks on the shell, as displayed in Figure
3.11. Thus, we raise the probability of being selected for the voxels which are on a shell
in order to merge them into bricks first. The probability is determined by the number of

a voxel’s neighbors and computed as Eg. 6,

1, ifnum <3
1/ exp(num), otherwise

probability = { (6)

, Where num is the number of neighbors. We make the voxels with less neighbors are
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chosen more easily because they are usually on the shell, as shown in Figure 3.12.

| |
II_II_I o I |

(a) (b)

Figure 3.11: (a) A shell is composed of 1*1 bricks. It cannot be built in reality

because of the weak connection of bricks. (b) Using proper bricks makes the shell

stable and buildable.

Figure 3.12: Ignore the vertical neighbors. Red voxel: the number of neighbors is 2.
Yellow voxels: the number of neighbors is 3. The voxels with few neighbors usually

exist on the shell.
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3.3.2 A Set of Valid Legal Bricks

We combine the chosen voxel and its neighbors to form a legal brick. A brick can
be put laterally or longitudinally, which means that a brick is able to involve in the
chosen voxel with different positions. For example, there exists 16 different selections

for a 2*4 brick as presented in Figure 3.13.

(a) (b)
Figure 3.13: The yellow voxel is a chosen voxel. The green brick is a 2*4 brick. (a)

Two examples of putting a 2*4 brick on the chosen voxel laterally. (b) Two examples

of putting a 2*4 brick on the chosen voxel longitudinally.

We test all the selections of each legal brick to confirm whether they are valid or
not. As illustrated in Figure 3.14, a brick becomes valid if all the voxels in this brick
exist; otherwise, the brick is invalid. Therefore, each brick’s type can produce several
“valid legal bricks”. We compute the connections and brick costs of all the valid legal

bricks, and merge the chosen voxel and its neighbors to the optimal one.
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valid valid invalid

Figure 3.14: The chosen voxel (yellow) and its neighbors is merged into a 2*4 brick
(red). We put the brick in different positions. The positions of a brick in (a) and (b) are
valid legal bricks. (c) A 2*4 brick with unsuitable position is invalid because it does

not contains 8 voxels

3.3.3 Merging LEGO Bricks

In order to build a stable and low-cost sculpture, we need to consider the vertical
connections and brick costs of all the valid legal bricks in the greedy merge algorithm.

As shown in Figure 3.15, brick A connects with brick B:if they averlap in vertical.

brick Al .5

OO0

brick B OO

O|lO0|O|O}|O
ON NON NON NG

Figure 3.15: Two bricks are connected when they overlap.

The connection of a brick means how many bricks it connects with. It influences
the stability of a LEGO sculpture because bricks do not drop easily if they are connected

by a lot of other bricks. A large brick has higher connection commonly. For example, a
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2*4 brick can connect with 8 bricks at most, but a 1*4 brick only connect with 4 bricks.
The brick cost is determined by the number of each brick’s type. Larger bricks are less
in reality. Consequently, though the large bricks own higher connections, their brick
costs are higher because of their rarity. We can reduce the usage rate of the large bricks
to cost down. Our algorithm deals with the trade-off between connection and each brick
cost, then selects a valid legal brick with highest value. The value of a valid legal brick
is computed as Eg. 7,

Vpy = ac; — (1 — a)c, (7)
, Where ¢, is the connection, and ¢, is the cost of a brick’s type. We square the
connection in order to reinforce its influence. a is the weight of p,. Higher a-value
can strengthen the connections of bricks. Otherwise, the structure with low a-value is

frail, but the demands for rare bricks are decreased.

In some special cases, it is not enough to take care of only connections and brick
costs when merging bricks. Therefore, we propose three exceptions and show them as
follows:

(@) In the button layer. The bricks are as largeras possible.

(b) If the brick does not connect with other bricks. V,, = —

(c) If the brick connects with other bricks and its center does not overlap the bricks it
connect. V, = oo + dist, where dist is the minimal distance from the center of

the brick to the centers of voxels it connects.

As displayed in Figure 3.16, dist is the distance between B: and V.. Higher
distance means that B is a larger brick. We use larger bricks to avoid producing bricks
which are pendent. In Figure 3.18(a), B> does not connect with other bricks, thus it

cannot be built practically. Otherwise, there is not any brick pendent by using larger
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brick By, as shown in Figure 3.18(b). After increase exceptions, the process of

calculating optimal brick value is presented in Peeudocode 4. Exception (a)(b)(c) are

implemented at line 9, 11, and 14 respectively.

I S N o AN o AN i N i |

B, B,
el
1 _—dist
Vi 1V
[ ] [}
B, 1

(a)

M M r M r

B,
_7_/.
| st
AR
L [}
B, !
(b)

Figure 3.16: V1 and V2 are the voxels in the brick Bz, which connects with brick Bj.

B> is also a brick.

Pseudocode 4: Search the best valid legal brick

A A S

9.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Input: a set of valid legal bricks LBL,

Output: the optimal brick »

procedure optimization(LBL)

a = the weight of connection

val = -0 /I'the value of the optimal brick

fori=1ton //'n is the number of bricks in LBL

¢,; = the brick connection of LBLJi]
¢, = the brick cost of LBL][1]
if the brick is in the lowest layer

val’= ¢,
elseifc; =0

val’ = -0
else

if the brick’s center is pendent
val’ = dist + a large value
else
val'=a cl — (1-a)c2
end if
end if
if val'> val
b=LBLJi]
val =val'
end if
end for
end procedure
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These exceptions reduce the bricks which do not connect with other bricks. Figure
3.17 shows the parts of the bunny sculpture. Our system merges a 2*4 brick which
crosses the gap, as displayed in Figure 3.17 (c), so the brick does not drop into the gap

and it becomes a good base for the above bricks, as shown in Figure 3.17 (e).

(b) (d) (f)

Figure 3.17: (a) the 19", (c) 20", and () the 21" layers of-the bunny sculpture. (b),
(d) and (f) are the assembly instructions of them respectively. (c) The effect of the
exceptions. It chooses larger brick in priority, so that the bricks.in the 21" layer can be

built successfully:
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Chapter 4

Implementation and Results

In this chapter, we present our implementation and results. The explanation of how
to decide the brick costs is discussed in section 4.1. Moreover, there are two modes to
remove inner voxels. In section 4.2, we shows our results and the structures with

different parameters.

4.1 Implementation

The implementation was under the Intel Extreme CPU X9650 with 3.0 GHz and
4GB memory. The IDE is Microsoft Visual Studio 2012. All the polygonal models are

acquired from Google 3D warehouse, as shown in Figure 4.1.

Figure 4.1: (a) Coca. (b) Bunny. (c) Yoshi. (d) Dragon models.

There are two modes to remove the inner voxels: hollowing mode and adjusting
CoM mode. If the projection of center of mass is located on the safe region after
voxelizing, we can use hollowing mode. Therefore, all the erasable voxels are removed,

and the model can be built with fewer bricks. The sculpture turns into a stable status
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when the thickness of the shell is higher than 3-unit-brick, as shown in Figure 4.2. On
the other hand, while a model’s center of mass is not situated on the safe region, we use
adjusting CoM mode. Under this circumstance, the model’s center of mass is moved
into the safe region. However, not all the erasable voxels can be removed because the
current center of mass will be further away from the safe region, after removing the
inappropriate voxels. Figure 4.3 illustrates the effect on adjusting center of mass. The
voxels in the green dash area cannot be removed because they are not in the same half
space with center of mass. After adjusting the center of mass, we cannot use the

hollowing mode for the same maodel.

Figure 4.2: The structures of 7" and 8" layers of the bunny sculpture. The thickness

is 3-unit-brick.
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(a) The structure of 9t

layer

(b) The structure of 8th
layer
Figure 4.3: (a) and (b) show the structures of the 8!".and 9" layers of the voxelized

coca model. The shell’s thickness of the model is @ 2-unit-brick length.

In a LEGO box, there are several types of bricks with different quantities. Figure
4.4 presents the quantities of the brick types in'a LEGO box. The less quantity of the
brick type, the higher the brick cost is. Take red bricks as an example, 1*2 and 2*2
bricks are more than others, thus, we can use them more frequently. In contrast, there
is only one 2*8 brick in this box, so we raise its cost to reduce the usage rate. The cost
is the quotient of dividing 1*2 brick’s quantity by each brick type’s quantity, and then
we modifying them by trail-and-error to get suitable costs. Most of the costs are based
on their quantities except for the 1*1 brick, since it owns little connection. We raise its

cost to avoid using it too often. Table 4.1 shows the actual costs of bricks in our system.
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Figure 4.4: The content of a LEGO box. It shows the quantities of each brick type.

Brick type | Number Cost Brick type | Number Cost
1*1 132 20 2*2 136 2
1*2 224 1 256 36 6
1*3 36 6 2*4 39 10
1*4 26 10 . 3 70
1*6 10 15 2*8 2 100
1*8 6 30

Table 4.1: The cost of each brick type in a LEGO box.
4.2 Results

Our method is powerful and flexible. For example, the same bunny model can be
rotated to a new pose that the tail is contacted the ground, as shown in Figure 4.5.
Because the projection of the center of mass is not in the safe region, the adjusting CoM
mode is applied to remove inner voxels. Figure 4.6 illustrates the structure of the lowest
layer. The oblique bunny sculpture can stand stably even though only a few bricks touch
to the ground. In Figure 4.7(b), we notice that although some bricks do not connect with
below layer, they can be connected by the bricks in the above layer. Finally, users can

still finish the bunny sculpture successfully, as shown in Figure 4.7.
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(b) (c)

Figure 4.5: (a) The oblique bunny model. (b) The voxelized model. (c) The LEGO
sculpture whose ear is pendent. The bricks in the bottom of the ear do not drop

because they are connected by the bricks in the above layer.

(d)

Figure 4.6: (a) The voxels in the lowest layer. (b) The structure of the lowest layer.

(c) Real LEGO bricks built based on (b). (d) The final sculpture.
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Figure 4.7: (a) to (d) are the 14", 15" 17" and 18" layers of the oblique bunny
sculpture. (a) and(b) show the right bricks cannot connect with the below layer. (c)

and (d) display the ears of the bunny finally connecting the bunny’s body positively.

Figure 4.8 displays the bunny sculpture. Because the center of mass lies in the safe
region, we use the hollowing mode to remove erasable voxels. Hence, the weight of the
sculpture will be lighter than the solid one. Figure 4.9 shows some inner structures of
the bunny sculpture and their assembly instructions. Our system can uses suitable bricks

to cover the gaps among the bricks.
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Figure 4.8: The polygonal bunny model is transformed to a LEGO sculpture with 19

layers.

(c)

Figure 4.9: (a) to (d) show the 9" to 12'" layers of the bunny sculpture and their

assembly instructions. Its thickness is 3-unit-brick.
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Figure 4.10 presents the sculpture of the dragon. The bottom layer of the dragon
model is separated into two parts, and will be assembled in the 6™ layer. Figure 4.11
exhibits the sculpture of Yoshi. The Yoshi model is not stable because it only uses one
leg to stand. After adjusting the center of mass, the sculpture can stand stably in real

world.

Our system can produce sculptures with different resolutions, and users can choose
a suitable one to create sculptures. The resolution of a LEGO sculpture is determined
by the number of layers. Figure 4.12 shows the coca sculptures with 33 layers and 22
layers. For the same polygonal model, the more layers the sculpture has, the more
precise the resolution gets. The partial inner structures of the coca sculpture with 22
layers are presented in Figure-4.13-and 4.14. In Figure 4.14 (e), the yellow 2*8 brick

crosses the gap, so users can finish the remaining layers.
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Figure 4.10: (a)(b) The polygonal and voxelized model of dragon. (c)(d) The

sculpture with 22 layers is built practically and shown in different views. (e) The
structure of the bottom layer. It is separated into two parts. (f) The structure of the 6™

Layer. The red brick is a 1*8 brick which assembles the two parts of the dragon.
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Figure 4.11: (a) The Yoshi polygonal-model.(b) The Voxelized model. (c) The Yoshi

sculpture. (d) The Yoshi sculpture use only one leg touching the floor.
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(c)

Figure 4.12: (a) The polygonal model of coca. (b) The sculpture with 33 layers. (c)
The sculpture with 22 layers. The sculpture in (b) is larger and more delicate than the

sculpture in (c).
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Figure 4.13: The layer’s structures of the coca sculpture. The order is from (a) to (f).

In the adjusting CoM mode, we do not all erasable voxels.
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Figure 4.14: The layer’s structures of the coca sculpture. The order is from (a) to (f).

(d) shows how the large brick crosses the gap.
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In the process of merging bricks, users can modify the a-value based on their
demand. The structures with different a-value are shown in Figure 4.15. The structure
is assembled with lots of large bricks when « is equal to 1.0. On the other hand, if « is
equal to 0.0, the structure uses 1*2 bricks too often. All the assembly instructions of

our results are designed with « = 0.5.

Rl

a=1.0 a=05 a=0.0

Figure 4.15: The structures with different a-value. Structures with greater a-value use

more larger bricks.

The executing time of different models is'shown'in Table 4.2 and 4.3. Models with
greater number of voxels spend more time to remove voxels. Besides, Adjusting CoM
mode need more time than hollowing mode when the two models with similar number
of voxels. The models with high resolution contain more voxels, so it needs much more
time to merge voxels into bricks. Besides, if the structures of a model is more piecemeal,
it costs less time because of the smaller set of valid legal bricks. Figure 4.16 shows the
structures of the dragon and the coca. The dragon is piecemeal, so the executing time

is less than the small coca even though the voxels of the dragon is more.
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Voxel number

Object L After removing Removed voxel number Executing time (sec)
Original voxels

Bunny 2057 1352* 705 0.012
Obligue bunny 1577 1313 264 0.008
Coca 2695 2065 630 0.033
Dragon 3000 2350* 650 0.016
Yoshi 1826 1411 415 0.019
Bunny (L) 29491 12688* 16803 2.107
Ob"q”(i)b“""" 26763 14100 12663 6.595
Coca (L) 17664 13694 3970 1.182
Dragon (L) 40047 18496* 21551 6.512
Yoshi (L) 15062 8118 6944 1.564

* Remove voxels with hollowing mode
(L) Models with Higher resolution

Table 4.2: The executing time of removing voxels.

Object Voxel Brick Resolution I_Vlerging
number number (number of layers) | time (sec)
Bunny 1352* 485 19 0.516
Oblique bunny 1313 380 21 0.286
Coca 2065 542 22 0.707
Dragon 2350* 768 22 0.410
Yoshi 1411 437 23 0.234
Bunny (L) 12688* 3532 47 21.046
Obligue bunny (L) 14100 3507 56 23.742
Coca (L) 13694 2921 43 32.705
Dragon (L) 18496* 5575 56 14.445
Yoshi (L) 8118 2294 50 4.604

* Remove voxels with hollowing mode
(L) Models with Higher resolution

Table 4.3: The averages of the executing time and the numbers of generation bricks

for 20 runs of the five models
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(a) Structure of the dragon model (b) Structure of the coca model

Figure 4.16: The structures of the dragon and coca model.

4.3 Limitation

There are two limitationsare presented in this section. First, the assembly
instructions exist some bricks which cannot be assembled. Despite we merge voxels on
a shell in priority, some bricks cannot be built because there is not any brick supporting
them in the below layer, as illustrated in Figure 4.17. Second, if the object is too tilted,
we cannot move the center. of mass into the safe region. As shown in Figure 4.18,
although we have been adjusted the center of mass, the projection of the center of mass

moves slightly

Figure 4.17: The left image shows that there are some bricks cannot be built. The

bricks are connected by the above bricks in the right images.
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(a) (b)

Figure 4.18: (a) and (b) shows the projection of center of mass before and after

adjusting the center of mass.
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Chapter 5

Conclusion and future work

In this thesis, we presented a system to build a LEGO sculpture easier. By
adjusting center of mass, choosing a polygonal model becomes more flexible and users
can build various poses of sculptures from the same model. The proposed greedy merge
algorithm deals with the trade-off between the connection and brick cost. In addition,
we also proposed 3 exceptions to make the sculpture. more stable and buildable.
Therefore, the assembly instructions designed by our system let users be able to build

stable and low-cost sculptures.

The first step of our approach is transforming a closed polygonal model to a
voxelized model. Next, removing proper erasable voxels reduces the number of bricks
which makes the sculptures stand stably in any poses. Third, the proposed greedy
algorithm is used to optimize the structure of each layer. Finally, the structures of each
layer are treated as the assembly instructions for users to build wonderful and stable

sculptures.

Building colorful sculptures is one of our future work. The colorful sculptures can
be more like the original models by following the color of the polygonal models.
Moreover, the instructions can present structures in different modes. As shown in
Figure 5.1, the instruction illustrates the process of building a fox. It guides users to
build the head and the body separately and assemble legs in the last step. This mode

makes it easier to assemble the pendent parts, such as bunny’s ears.
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