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ABSTRACT 
 

 

VM-based inspection tools generally implement probes in the hypervisor to 

monitor events and the state of kernel of the guest system. The most important 

function of a probe is to carve information of interest out of the memory of the 

guest when it is triggered. Implementing probes for a closed-source OS demands 

manually reverse-engineering the undocumented code/data structures in the 

kernel binary image. Furthermore, the reverse-engineering result is often non-

reusable between OS versions or even kernel updates due to the rapid change of 

these structures. This dissertation proposes ProbeBuilder, a system automating the 

process to inference kernel data structures. Based on dynamic execution, 

ProbeBuilder searches for data structures matching the recursive “pointer-offset-

pointer” pattern in guest memory. The sequences of these offsets, which are 

referred to as dereferences, are refined with a repetitive training process. 

ProbeBuilder further prepare stable probe locations for them with control flow 

analysis, and generate code snippets of probes for QEMU, KVM, and Xen. The 

experiment on Windows kernel shows that ProbeBuilder efficiently narrows 

hundreds of thousands of choices for kernel-level probes down to dozens, and the 

generated probes effectively capture both user-level and kernel activities. The 

finding allows analysts to quickly implement probes, facilitating rapid 

development/update of inspection tools for different OSes. With these features, 

ProbeBuilder is the first system capable of automatically generating practical 

probes that extracts information through dereferences to opaque kernel data 

structures. 
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ProbeBuilder - 透過挖掘隱藏作業系統核心資料結構以自動化虛擬機器外
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摘 要       
 

Virtual Machine Introspection, VMI為一藉由虛擬機器運行目標程式，由虛擬

機器外部進行行為觀察之分析方法。而此種分析工具為了能攔截客戶端系

統事件並監視作業系統核心狀態，皆需要在虛擬機器管理器(Hypervisor)中

插入程式探針(Probe) 。插入程式探針的目的在於，使客戶端作業系統內的

程式執行流程觸及目標點時，虛擬機器管理器能暫停其執行並取得控制權。

更重要的是，程式探針必須能從客戶端機器的記憶體內挖掘出與該事件有

關的資訊。然而，若要為原始程式碼不公開的商用作業系統實作程式探針，

往往需要對其核心進行手動軟體逆向工程，以得知其內部的程式流程與資

料結構。更甚者，作業系統核心的頻繁更新，以及整體作業系統的更新，經

常導致其程式與資料結構改變，因此逆向工程所得之結果，往往無法重覆利

用。本篇論文提出 ProbeBuilder，為一自動化推斷作業系統核心程式與資料

結構之系統化方法。經由動態執行，ProbeBuilder在客戶端機器的記憶體中，

不斷挖掘遞迴的「指標-偏移量-指標」的資料模式，以搜尋可能的資料結構。

此外，透過程式流程分析， ProbeBuilder 可為所發現的資料結構，產生相對

應的探針位置，並自動生成可插入 QEMU,KVM 以及 Xen 的程式片段，達

成自動化的探針建構。經實驗驗證，ProbeBuilder可自動為 Windows作業系

統快速地產生數十至數百的程式探針，並且可正確地捕捉使用者層級與核

心層級的事件。本論文所提出之方法將可為分析人員利用，為不同的作業系

統或核心版本，快速進行 VMI工具之開發與更新。本論文所提出的系統核

心資料結構挖掘方法，讓 ProbeBuilder成為第一個具有自動化探針建購功能

的系統。 
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I. Introduction 

Chapter 1 

 

Introduction 

 
Virtual machine introspection, or VMI, has received much attention in digital forensics 

and malware analysis. Executing unknown programs inside a dynamically created, isolated 

virtual machine, VMI systems allow analysts to observe the behaviors exposed by the subject 

program. Unlike conventional monitors and profilers, which co-exist with the subject program 

in the same execution environment, VMI is generally implemented at the level of the virtual 

machine manager, or the so-called hypervisor, that is, a VMI-based monitor (VMM) executes 

even beneath the operating system, allowing analysts to observe without causing interference. 

There are various types of VMI applications. A specific type of VMI usage, that is, probing, 

is particularly useful for program behavior analysis. Probing refers to the process to suspend 

the guest virtual machine at specific moments, in which the state of the guest system can be 

collected and analyzed. Probing is used to monitor system events as well as program behaviors. 

In order to correctly capture every single event without manual operation, a trapping mechanism 

is generally needed to transfer execution to the hypervisor every time sensitive library functions 

are entered.  

Although different virtualization methodologies (e.g. emulation, binary translation, 

hardware-assisted virtualization, etc.) have completely different trapping mechanisms, all of 

them need the same piece of information to be activated: the location of the trap. The trap 

location is generally specified with a memory address. Once the address is specified, the 

trapping mechanism is responsible of hijacking the execution every time the program counter 
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of the guest system matches the specified address. The implementation of traps on different 

virtualization platforms had been widely discussed in Sandbox-based analysis tools [1][2], 

since they often adopt probing to profile malware behaviors. This dissertation focuses on 

another issue: finding suitable location for placing the trap (probe). 

Inserting probes in high-level functions like Win32 API or system calls can easily lead to 

incomplete profile results. First, the powerful functionality of modern operating systems allows 

a task to be done through different API or system calls. Exhaustively placing probes in all high-

level functions is time consuming and error-prone due to the large number of these functions. 

Secondly, rootkits often invade the OS kernel to conceal their existence and disguise their 

malicious activities. Trojans Srizbi [55] and Stuxnet exemplify rootkits implemented in the 

kernel space. Merely probing high-level functions can be easily circumvented. 

Instead, kernel functions are excellent candidates for placing probes due to their 

inevitability in all execution paths. Yet, kernel-level probing is a much more difficult task. The 

 

Figure 1 : A probe example. 

(a) A revealed internal kernel data structure (dereference) from stack parameter to target data. 

(b) A probe placed in PspCreateThread() to retrieve command line parameters through walking 

this dereference. 

 a  

 b  

    
      

                               

            

           

      

             -  
                   

          

u32 ebp = guest.EBP; 

u32 L1 = guest.mem[ebp-0x94]; 

u32 L2 = guest.mem[L1 + 0x1B0]; 

u32 L3 = guest.mem[L2 + 0x10]; 

u32 L4 = guest.mem[L3 + 0x48]; 

Read buffer at guest.mem[L4] 

Completing process 
creation 

Completing process 
creation 
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following two challenges are often encountered. 

Data Structure Inference – A useful probe extracts data of interests when it is triggered 

For instance, a probe logging process creation activities is often demanded to capture the 

program image path and the command line parameters. However, this usually demands 

traversing through undocumented kernel data structures. As shown in Figure 1(b), given a probe 

placed on the thread creation routine PspCreateThread() in the Windows kernel, it takes the 

traversing steps shown in Figure 1(a) to reach the buffer storing the command line parameter 

string. For conciseness, these traversing steps are referred as dereferences. Reverse-engineering 

the undocumented kernel function PspCreateThread() leads to the fact that the pointer to the 

data structure EPROCESS is the fifth function parameter, which locates at [EBP-0x94] by 

the standard calling convention. The rest of the steps are acquired through reverse-engineering 

undocumented data structures. In addition, the revealed dereferences vary between kernel 

versions since they are only for internal use. A simple update could easily invalidate all the 

effort. 

Execution Flow Inference –Generally speaking, each probe is dedicated to profiling a 

single class of behaviors. Therefore, a probe must be placed on and only on the execution path 

of that specific behavior. For instance, MmCreateProcessAddressSpace() is a good candidate 

for profiling Windows process creation. It is used to create the page table of a process being 

created, that is, it is only invoked during process creation. This function is referred to as 

dedicated to process creation. Unfortunately, these kernel functions are often insufficiently 

documented. Facing a close-source operating system like Windows, one must reverse-engineer 

the OS kernel to reveal its execution flow to determine whether a code chunk is dedicated to a 

subject behavior. 
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In this dissertation, a novel system, ProbeBuilder, is proposed. ProbeBuilder is the first 

system capable of automatically generating practical probes that extracts information through 

dereferences to opaque kernel data structures. It can minimize the effort of kernel-level probing 

through resolving the two aforementioned challenges. ProbeBuilder is able to automatically 

infer the kernel execution flow and data structures that are traversed in occurrence of an event 

or behavior. Initially, to identify the data of interest in memory, ProbeBuilder requests an 

operator to specify the identification method. Currently, ProbeBuilder supports the following 

three methods: fixed pattern, regular expression, and taint tracking. Based on the QEMU 

emulator, ProbeBuilder exercises the guest operating system and mines for valid dereferences 

to the data of interest. 

We give an example herein to demonstrate the usability of ProbeBuilder. Supposed that an 

analyst is requested to implement a kernel-level probe to monitor file-writing operations in a 

file system. The probe is expected to capture three attributes, namely the path to the accessed 

file, the data written, and the ID of the process that issues the request. Table 1 illustrates a 

sequence of steps taken to create this probe with ProbeBuilder. The first column indicates where 

each step is taken. As shown, only eight steps are needed, where the human operator 

Table 1 : An exemplified procedure to create probe w/ ProbeBuilder 

Target Sequence of steps 

Guest Run notepad.exe. 

Guest Acquire the PID of the notepad.exe process. 

Guest Enter a unique string str1 in the notepad. 

Guest Open the “Save As” dialog, and name it with a unique string, str2.   

ProbeBuilder Specify search pattern 1: Fixed-Pattern, PID 

ProbeBuilder Specify search pattern 2: Regular-Expression, str1 

ProbeBuilder Specify search pattern 3: Regular-Expression, str2 

Guest Click the “save” button. 
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involvement is minimal. The entire procedure only takes a few hours to complete. The results 

in Table 2 illustrate the output of ProbeBuilder. Each generated probe consists of a code location, 

dereferences to the three attributes, and the string captured in the process. With these pieces of 

information, the code generator of ProbeBuilder can generate corresponding code snippets. The 

demonstrated procedure shows that ProbeBuilder effectively convert the difficult task of 

inspecting the OS kernel to a trivial user-space routine. 

The most flexible way to specify data of interest is through the third method provided by 

ProbeBuilder: taint tracking. Taint tracking, also known as dynamic information flow tracking, 

DIFT, has been a widely-adopted analysis technique for software testing, malware analysis, and 

intrusion detection [3][4][5][6]. Using emulation [7] or binary instrumentation [8][9], executed 

instructions and accesses on memory or peripherals can therefore be monitored and analyzed. 

An application of this technique is taint analysis where CPU registers, memory cells, and sectors 

of hard-disks are augmented with a “dirty bit” to indicate whether a memory byte is tainted or 

not. The states of these bits are updated according to information flow caused by data movement 

or calculation. 

Although the effectiveness of DIFT and taint analysis has been demonstrated in much past 

research [10][11][12][13], it comes at the cost of high performance overhead. Although various 

research works toward software-based DIFT speeding-up were proposed in the last few years, 

Table 2 : The probes generated by ProbeBuilder 

EIP Dereference Data 

0x804e7461 

IopUpdateWrite 

TransferCount 

esp +16 +12 +0 +60 0xAC,0x0E (3756) 

esp +0 +84 +36 +60 __ProbeContent__\0a\00 

esp +12 +36 +52 \0P\0r\0o\0b\0e\0T\0e\0s\0t\0.\0t\0x\0t\0 

0xf9926d22 

<Unknown> 

esp +4 +120 +0 +32 0xAC,0x0E (3756) 

esp +4 +192 +36 +12 __ProbeContent__\0a\00 

esp +20 +0 +40 +16 \0P\0r\0o\0b\0e\0T\0e\0s\0t\0.\0t\0x\0t\0 
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they are limiting their scopes in one or several individual user-level process 

[14][15][16][17][18][19][20]. Since ProbeBuilder focuses on the data structure and execution 

flow inside the kernel of the operating system, none of the existing approaches can be applied. 

An ideal approach is to decouple the analysis task from the system emulation so that the 

two tasks can be performed in parallel. However, in reality the analysis task has heavy data and 

control-flow dependency on the outcome of the emulation process. Due to register-indirect 

addressing and virtual address translation, memory addresses are unpredictable and can only be 

acquired after being generated by emulator’s MMU. Consequently, causal relation and data 

dependency are introduced. Furthermore, to track information flows correctly, analysis must 

follow the execution path of the emulator, and therefore control-flow dependency is introduced. 

Delivering physical address to the analysis thread after each instruction execution is an intuitive 

but apparently inefficient approach since the massive data exchange between the two threads 

could sabotage the benefit of decoupling. Things become even worse when control-flow 

dependency enters the picture. Since most IA-32 instructions could lead to exceptions such as 

page faults and privilege violation, control-flow transfer could happen for each instruction. If 

analysis thread wishes to follow execution path of the emulator, it must be informed of whether 

an instruction has been successfully executed, which introduces dependency on a per-

instruction basis. 

To accelerate the taint tracking process of ProbeBuilder, an efficient system-wide 

information flow tracking platform, SWIFT, is also proposed in this dissertation. Two novel 

approaches were proposed to aggressively eliminate both data and control-flow dependency 

between emulator and analysis thread. For data (accessed physical address) dependency, 

SWIFT alleviates it with the fact that many memory accesses are EBP-based addressing and 

the value of EBP itself is changed less frequently. This observation is leveraged to make the 

physical addresses of such memory accesses can be calculated by the analysis helper itself. On 

the other hand, to reduce control-flow dependency, a communication mechanism is proposed 

by informing the analysis helper of the execution path transfer on a per-block basis. 

Consequently, fewer message transfers are required. The proposed approach maintains 
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correctness even if exceptions are introduced. Our evaluations indicate that SWIFT operates 

2.74~7.48 times faster than conventional interleaved design while being benchmarked by 

PassMark Performance Test 6.0. Although the performance penalty on CPU-bound tasks is still 

high (12.74X~35.55X) in comparison with native execution, the overhead is mainly attributed 

to the inherent emulation nature. 

1.1 Contribution 

The drastic evolution of malware and frequent change of operating systems can easily 

make VMI systems out of date. To keep up, analysts need to continuously update their VMI 

systems in an extremely fast pace, and lots of manual effort are invested in reverse-engineering. 

The methods proposed in my dissertation make the following major novel contributions, 

benefiting analysts in their development process. 

 ProbeBuilder automatically discovers the recursive dereference structures in the 

kernel. This novel feature helps automatically generate practical probes. The only 

portion requiring human assistance is the specification of the method to identify the 

data of interest. 

 ProbeBuilder also generates accurate locations to probe after exercising the system. 

Control-flow analysis is applied to guarantee that generated probes will locate on 

location is dedicated to the subject behavior. 

 The generated probes can profile kernel-level activities that conventional approaches 

cannot deal with. 

 All malware profiler (ThreatExpert, Anubis) development can benefit from the result 

of ProbeBuilder since it eliminates the demand for reverse-engineering and greatly 

reduces the effort of implementing probes for a new OS and transplanting them 

between OS versions. 

 A decoupled design, SWIFT, is proposed to accelerate system-wide, taint tracking by 

executing analysis task and system emulation in parallel. 

 Approaches are proposed to aggressively eliminate the needs for the taint tracking 
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thread to communicate with the emulator. The performance is hence accelerated due 

to less L2-cache confliction. 

 Information flows incurred by IA-32 instructions are studied in detail. The result is 

used to propose a concise encoding format to preserve complete IA-32 instruction 

information flows. Meanwhile, the conciseness enables efficient processing. 

 

1.2 Synopsis 

In this subsection the organization of this dissertation is described. Since virtual machine 

introspection and dynamic information flow tracking are very active research fields, in Section 

2 research work related to VMI applications, DIFT, and DIFT acceleration are introduced to 

help readers understand the state of the art in VMI development and taint tracking. 

 Section 3 surrounds the central topic of this dissertation: ProbeBuilder. The description 

of Section 3 is organized in a top-down paradigm. An overall architecture of ProbeBuilder is 

firstly given. The architecture illustrates the input and the output of ProbeBuilder. Like any 

other large systems, ProbeBuilder consists of sub-modules, each of which is further elaborated 

in the sub-sections.  

An important functionality of ProbeBuilder is allowing users to label data of interest 

through taint tracking. To provide practical taint tracking speed, a decoupled design of DIFT, 

namely SWIFT, is proposed. Note that the design of SWIFT does not rely on ProbeBuilder. It 

provides standalone use for any taint-based analysis. Therefore, the design of SWIFT is 

separately introduced in Section 4. And each proposed acceleration technique is described in 

the subsection. 

To evaluate the proposed methods, experiments are conducted on both ProbeBuilder and 

SWIFT. The effectiveness of ProbeBuilder is tested through checking if user-level and kernel-

level activities can be logged by the generated probes, and the results are compared with the 

log generated by commercial tools. The performance of SWIFT is benchmarked with both 

commercial test suite and common workload, and the result is compared with the famous taint-
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tracking system TEMU. These experiments are included in Section 5. 

Section 6 introduces a practical application of ProbeBuilder and SWIFT: recognizing 

rootkit with kernel function invocation patterns. This system firstly utilizes the probes generated 

by ProbeBuilder to automatically generate a kernel-level activity monitor. Then, the monitor is 

executed on top of SWIFT again to profile the tainted argument of kernel functions. The 

sequence of the occurrence of tainted kernel functions can be used to recognize rootkits. 

Section 7 discusses the limitation of ProbeBuilder and SWIFT. Possible solutions are also 

discussed. Section 8 concludes this dissertation. 
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II. Related Work 

Chapter 2 

 

Related Work 

 
The conventional approach to implementing a probe is through hooking. A hook is a chunk 

of code injected into a program to intercept execution flow. Advanced rootkits and anti-virus 

software often compete with each other on the depth they implant hooks, seeking the priority 

of execution [21]. SIM [22], Lares [23], PsycoTrace [24], Process Implanting [25] realize 

probing with this technique. With the assistance of virtualization and emulation, probes can 

now be implemented in the hypervisor, providing better stealthiness. Sandbox-based analysis 

tools [1][2][26] generally adopt this approach to intercept malware behaviors. VMwatcher [27], 

VMDriver [28], VSyscall [29] also use similar techniques to intercept critical system events for 

inspection. However, the “out-of-box” implementation paradigm does not re-solve the issue of 

depth competition. For instance, a VM-based probe placed on EnumProcess(), which is a user-

level Win32 API, will be always misguided by the root-kits manipulating the kernel function 

NtQuerySystemInformation(), even if the probe itself is implemented in the hypervisor. 

Consequently, the emergence of hypervisor-level implementation does not relax the need for 

deeper probes. All work above focus on application of probes, instead of their construction. 

To ease the pain of semantic reconstruction in VMI, Virtuoso [30] executes the user-level 

profiling tools in the guest operating system and collects the code trace generated by QEMU 

for repetitive use. LiveWire [31], VMST [32], and VIX [33][34] automate VMI through 

executing the profiling process in a separated shadow VM and redirecting its memory access to 

the target VM. HookMap [35] and HookSafe [36] are dedicated to dis-covering indirect-branch-
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based hooks to hijack execution flows. TZB [37] analyzes memory access patterns to acquire 

code locations that construct strings matching the specified, fixed pattern. However, neither 

does it reveal recursive pointer dereference structures nor the execution flow. ProbeBuilder 

simultaneously resolves these two issues, making it powerful for VMI probe construction. 

Dynamic information flow tracking has been widely studied. It is demonstrated as a 

powerful tool for malware behavior analysis [10][11][12][13][38] and software testing [8][9].  

By executing the target executable in an emulated environment, these systems are allowed to 

watch each CPU instruction execution at runtime and to track information flows dynamically. 

Paranoma [10] is a generic, extensible whole-system DIFT analysis platform on top of which 

multiple analysis plug-ins such as Panorama have been developed. Although Paranoma is 

equipped with complete functionalities for malware analysis, its performance downgrade is 

severe. Due to interleaved system emulation and analysis routines, it runs about 20 times slower 

than native execution [10] when tainting is enabled. The same condition applies to all other 

work as well. 

PinOS [39] is another binary instrumentation framework proposed for whole-system 

dynamic analysis. With Intel hardware virtualization support (VT-x) and dynamic binary 

translation, PinOS is capable of instrumenting CPU execution at instruction granularity. 

However, the usage of virtualization cannot prevent its execution from being encumbered by 

interleaved analysis. 7 out of 9 performance benchmarks in [39] shows a 48X~121X slowdown 

even when PinOS runs with no instrumentation. 

Aftersight [40] records non-deterministic events of a virtualized environment so that 

events can be replayed later. Since event recording produces much lighter overhead than the 

analysis does, the system can provide online services. However, Aftersight has a different 

intention from SWIFT because Aftersight tries to postpone the heavy-weight task rather than to 

accelerate the process of dynamic analysis. 

Due to the performance issue, optimization on DIFT received extensive attention within 

past few years. Designs sped up with additional customized hardware are discussed widely. 

Hardware architectures with native taint propagation support are proposed in [41][42]. In these 
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architectures, a taint tag is augmented for every value in memory, cache, and the processor. 

While executing instructions, the modified processor automatically propagates these tags and 

hence dirty data flows are tracked. However, the hardware extension requires corresponding 

modification on operating systems. The modification can be huge or even impossible on certain 

closed-source operating systems, such as Windows. Besides, since only architectures of 

processors and memory are extended, taint analysis cannot track information flow in peripherals. 

Another effective approach is to decouple the analysis process from the program execution 

itself. There are two ways to realize the idea. One is to extend processors so that instructions 

executed on one core are recorded and en-queued in a hardware message queue, and processes 

running on other cores could “peek” logged instructions with a special de-queuing instruction. 

Processors with this capability are called Log-Based Architecture, LBA [14][15][16][17]. The 

most significant advantage of LBA-based CPUs is that the overhead of instruction tracing is 

eliminated by hardware. However, the mechanism mentioned above makes them suitable for 

process-level testing and monitoring, but not for system-wide information flow tracking. The 

other decoupling methodology is to dynamically instrument instructions to execute so that 

instructions can be logged or monitored [18][19][20]. Since the binary instrumentation 

framework all limit their scope within one process, they cannot be applied in system-wide 

information flow tracking, either. 

Using aggressive dynamic binary instrumentation and optimization, LIFT [19] performs 

DIFT-based security checks on applications. LIFT analyzes the loaded process before execution 

and tries to locate code regions which can only interact with safe data. Since unsafe input can 

usually enter the system through certain data paths, fewer blocks need to be instrumented. 

However, performing security checks and malware behavior analysis differ in two ways, which 

make their methodologies unsuitable in our applications. To perform malware analysis, massive 

amount of data will be considered as unsafe inputs, such as the whole body of the malware. 

Therefore, eliminating safe code regions becomes much less likely. Minemu [43] is an efficient 

process-level taint tracker. However, tracking information flows inside one process cannot 

benefit observing effects exerted by the malware in the operating system. Although most 
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infections of the kernel are caused by a user space program, there are pure kernel-level 

malicious programs. In fact, Srizbi, which is a Trojan program responsible for 40% of all the 

spam on the Internet in 2008, hides its file and sends out spams without any user-space 

components [55]. This kind of malware can only be analyzed at the system level. 

Demand emulation [44] performs DIFT with emulation still. It accelerates by removing 

tainted pages from the page table and switching to virtualization once none of CPU registers 

contains tainted information and multiple untainted memory pages are consequently accessed. 

When accessing a tainted page, it will fall back to emulation to track information flows. 

Demand emulation is intended for system-level DIFT. However, it does not truly solve the 

problem that emulation with analysis enabled is catastrophically slow. As indicated in their 

original paper, frequent switches between virtualization and emulation even lead to worse 

performance overhead than pure emulation due to unpredictably frequent memory accesses. In 

addition, demand emulation requires modification on guest system so that tainted and untainted 

data would be placed on different pages, since it relies on page fault to leave virtualization.  

In the technical report PTT, Ermolinskiy et al [45][45] proposed another novel system-

level DIFT tool. It implements the technique of demand emulation and proposes a concept of 

separating the analysis and the emulation. Their work partially covered the decoupling idea, but 

there are clear differences distinguishing our contribution from PTT. First of all, formal taint 

propagation rules are provided in SWIFT, but PTT lacks of these information. In addition to the 

decoupled design, two more optimization techniques are proposed in SWIFT. One is the per-

block-basis delivering and the other one is the elimination of EBP (or ESP) base memory 

address delivering. Meanwhile, our work consists of not only the decoupled design but also the 

methods to apply such a design to practical malware analysis. Unlike SWIFT, PTT only 

demonstrates the possibility of decoupling whole-system taint tracking. 
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III. System Design of ProbeBuilder 

Chapter 3 

 

System Design of ProbeBuilder 

 
In this section, the architecture of ProbeBuilder is introduced. An overview of the 

ProbeBuilder workflow is depicted in Figure 2, The workflow is traversed using the same 

example illustrated in Section 1. However, for conciseness, it is assumed that only the second 

search pattern exists, namely the regular expression specifying the keyed-in string. These search 

patterns are referred to as a predicate P: Addr  {TRUE, FALSE}. They are used to instruct 

ProbeBuilder how to determine whether the data stored on a given memory address are of 

interest or not. 

The process starts with the data dereference analysis module, which is built upon the 

QEMU emulator installed with Windows XP. The system is exercised either manually or 

programmatically to force the kernel to execute the behavior that the operator wish to create 

probes for. Along the execution, the data dereference analysis is invoked at the entry of each 

code block. The intermediate output will be a set of pairs consisting of a deferencing point and 

the corresponding deferencing steps. The deferencing point is simply an instruction address, 

and the deferencing steps preserve the dereferences to the string matching the predicate. Let’s 

assume that the data dereference analysis gives the following output. 

< 0x804f54af, (ESP, +4, +192, +36, +12)> 

< 0x804f13ba, (ESP, +4, +120, +4, +32)> 

Note that the module of data dereference analysis guarantees that if the CPU is “freezed” 

every time it executes through the instruction at 0x804f54af (and, of course, under the same 
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process context) and take the dereference *((((ESP+4)+192)+36)+12), ProbeBuilder 

will (almost) always find the string matching the given regular expression. 

However, not every one of these results can be used as probes. For instance, 0x804f13ba 

could be the location of function RtlCopyMemory(), which is invoked widely as long as a buffer-

copy is needed. Placing a probe here can lead to false positive output. The control flow graph, 

CFG, builder and the dominance analysis are designed to eliminate these non-dedicated code 

locations. The CFG builder constructs the graph from memory dump of the kernel, not the 

image file on the hard disk, so that certain control flows bound at runtime can be also captured. 

Indirect branches (e.g. jmp EAX) are filled with the indirect branch traces recorded during the 

execution of the emulator. The control flow analysis utilizes the generated control flow graph 

to eliminate dereferencing points not dedicated to the subject behavior. With the discovered 

dereference structures, the code generator is hence able to produce code snippets, which can be 

directly inserted into the hypervisor. 

Sections 3.1 to 3.4 will introduce the details of the three core modules illustrated in Figure 

2: data deference analysis, control flow graph builder, control flow graph analysis, and code 

generator respectively. 

3.1 Data Dereference Analysis 

This section illustrates the method that the data dereference analysis module uses to 

identify valid dereference sequence to data of interest. As aforementioned, a useful probe must 

extract numerous attributes accompanied with the probed behavior or event. Therefore, this 

 

Figure 2 : An overview of ProbeBuilder workflow. 
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component plays the most essential role in ProbeBuilder. 

The example listed in Figure 1(a) shows an intuitive, general principle of discovering a 

valid dereference sequence to data. The sequence in general starts with some register, say r, 

because the processor has to load the address into the register before it can access that memory 

location. The register often can be the stack (or frame) register if the pointer to the outermost 

data structure is a passed argument or a local variable on the stack. In this case, an non-zero 

offset σ1 is often added to the value of stack (or frame) register to address that object, as the 

first +0x18 offset shown in Figure 1(a). However, the pointer to the outermost data structure is 

not necessarily stored on the stack. It can be directly loaded into other registers. In this case, 

the offset σ1 added to the register is simply zero. 

If the data of our interest reside in the outermost data structure, the dereference sequence 

ends up with r and σ1. Otherwise, the sequence can continue with more offsets σ2, σ3, ..., σn, 

which are used to traverse through the subsequent data structures. 

The data dereference analysis is described below. For formal presentation, the definitions 

and notations will be introduced first. Let’s assume that the machine provides a set of general 

purpose registers Reg, and a virtual memory address space Addr. A machine  S = (pc, R, M, P) 

is a 4-tuple, where pc is the value of the program counter, R: Reg  Value gives the value of 

CPU registers. M: Addr  Value returns the memory content at the specified address in a special 

way. Instead of returning a single byte, M returns the whole word at the address. Note that the 

word size is architecture-dependent, and this abstraction makes the analysis applicable on 

different architectures. P: Addr  {TRUE, FALSE} is a predicate indicating whether the data 

(byte) at that address is of interest. More discussion on this predicate is given in section 3.1.1. 

Note that pc, R, M, and P change along with the system execution because the execution 

modifies the system state. Fortunately, the analysis only utilizes the state at the present instant. 

Therefore, pc, R, M, and P always reflect the present state of the machine. The state transition 

is based on the architecture of the emulated machine, which is out of the scope of this 

dissertation. 

In addition to pc, R, M, and P, another special predicate Valid: Addr  {TRUE, FALSE}, 
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indicates whether the virtual memory address is an accessible address, meaning whether the 

address is actually mapped within the current page table. Since the page directory structure is 

also stored in the memory, Valid can be implemented solely with queries to M. Therefore, Valid 

is not considered as an extra input. 

The analysis aims at collecting possible dereference sequences to data of interest. As 

aforementioned, a dereference sequence p begins with a register r and a series of offsets σ1, 

σ2, ..., σn, denoted as p.r and p.σ[.], respectively. Note that p.σ[.] is a list structure, and the 

notation || denotes concatenation with another list <.>. 

The analysis procedure is shown in Algorithm 1. Lines 1 and 20 in AnalysisLoop() show 

that the analysis procedure between lines 2 and 19 is invoked before each dynamic code block 

is executed. The idea is to sweep through the memory region that is currently pointed by some 

register. In the region, the analysis searches for any data (words) that can be viewed as a pointer 

to a valid memory address. If any pointers are found, the procedure recursively traverses 

through them and repeats the similar sweeping operation until the maximal search depth 

SRCH_DEPTH is reached. 

Algorithm 1 : System Emulation with Dereference Analysis 
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Line 2 checks whether the current code block has been analyzed before or not by looking 

up the table D with the value of the program counter. If not, the search process will be activated. 

Lines 4 through 5 enumerate all combinations of CPU register and possible offsets, and use 

them as starting points for the search. As indicated in the algorithm, the scanned offset ranges 

from 0 to SRCH_WIDTH[d]. The range contains negative offsets so that both local variables 

and passed arguments on the stack can be covered. The parameter K controls the increase to the 

variable offset in each iteration. Since the analysis searches for pointers, K is assigned with the 

pointer size of the target architecture in this dissertation. Line 6 checks if R(r) + offset points to 

a valid memory address. If so, the recursive routine Search() is started on line 7. 

The routine Search() begins on line 21 by checking if it has reached the maximal search 

depth. If not, on line 23 it scans offset ranges from m to m+SRCH_WIDTH[d], where m is the 

base address of the search range and d indicates the current depth of the recursion. Line 24 

queries the predicate Valid to determine whether pointer m+offset refers to a valid memory 

address or not, just like line 6 does. This prevents the recursion from walking on an invalid data 

path. On line 25, the predicate P is queried to determine if any target data locate on m + offset. 

If not, it recursively invokes Search(), passing the current path σ||offset as the base address for 

the search range at the next level. Note that in Search() the enumeration is confined in the scope 

from 0 to MAX_WIDTH because it is assumed that in consequent dereferencing steps, the 

passed-in argument m is the base address of some data structure. The offset should be always 

positive since it is supposed to point to its member variables. 

Unfortunately, the collected dereferences may not be always valid because S only reflects 

a transient state. The pointer in each dereferencing step can be changed and becomes invalid. 

To eliminate unstable dereferences, lines 9-19 are executed. When pc has been included in D, 

the procedure enumerate through every paths collected in the previous search. Each 

dereferencing path is walked through again so that its validity on each step is verified. Each 

time a dereference passes through this test its counter p.f is increased. To find truly stable 

dereferences, the exercise should be repeated multiple times. These dereferences survived every 

elimination test with p.f greater than some threshold will be selected for later processing. 
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Figure 3 shows an example of the search process, which is given with the SRCH_DEPTH 

and the SRCH_WIDTH array depicted in the figure. The search starts with the register EAX, 

which contains value 0x80ff4000. At the first level, the range [0x80ff4000-0x10, 

0x80ff4000+0x10] is searched, as described in algorithm 1. At deeper levels, only [m, 

m+SRCH_WIDTH[d] is searched. Note that the search width becomes smaller at deeper levels. 

This is an optimization based on the fact that the size of a child object is usually smaller than 

that of its parent. Otherwise, the search tree will quickly exhaust the memory. However, the 

search range at the last level should be enlarged again so that those data prefixed other strings. 

In our implementation, SRCH_DEPTH is set to 5 and SRCH_WIDTH is set to [512, 256, 128, 

64, 512] 

Also note that the search is only performed after a branch or jump instruction. The analysis 

collects only the dereference sequences that can be traversed at the beginning of a dynamic 

code block. The per-block basis is employed mainly due to the performance issue. Invoking the 

procedure at every instruction will lead to unacceptable overhead. In addition, checking every 

instruction is often overkill because between two adjacent instructions the machine state S does 

not vary significantly enough to expose different dereference sequences. 

 

Figure 3 : A simplified example of the search process. 
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3.1.1 Implementation of the Predicate P 

ProbeBuilder queries the predicate P to check whether it reaches any data of operators’ 

interests. The predicate is simply a C function returning a Boolean value, and ProbeBuilder sets 

no limit on its implementation. Operators can always create new predicates to fit their needs. 

Nevertheless, ProbeBuilder provides three basic predicates: fixed pattern matching, regular 

expression, and taint checking, each of which has its pros and cons. Here their characteristics, 

usage, and application are discussed. 

A. Fixed Pattern Matching 

An operator can specify a fixed sequence of characters as the predicate. For efficiency, 

under this mode ProbeBuilder will execute the predicate, which is originally executed on line 

25 in Algorithm 1, before the for-loop on line 23. Namely, the pattern matching is shifted out 

of the loop and is executed only once in every invocation of Search(). This mode works in high 

performance and gives no false positives, yet it also demands operators to know exactly the 

pattern of the data of their interests. A suitable application scenario is matching against the data 

buffer of a transmitted TCP/UDP packet. The buffer content will always stay unchanged since 

it is fed into the user-level API send(). If the immutability of the data can be predicted, fixed 

pattern matching should be used for higher performance. 

B. Regular Expression 

Likewise, under this mode ProbeBuilder also move up the execution of the predicate 

before the for-loop, and only the memory region M[0..SRCH_WIDTH[d]] is matched against 

the expression. A regular expression provides more flexibility than a fixed pattern does, 

however it may also incur false positives and extra overhead, depending on the expression 

specified. This mode should be chosen when the mutation rules of the data are predictable. For 

instance, Windows kernel often performs conversion between Unicode and multi-byte strings. 

These variants can be captured with regular expression. 

C. Taint Checking 

In certain cases the mutation rules of the target data may not be easily predictable. For 



 

- 21 - 

instance, the DNS look-up module has to convert the domain name to match the format of 

question portion of   S query message  e.g. a query “google.com” will be converted to 

“\6google\3com\0” . ProbeBuilder provides a fine-grained dynamic taint tracker, SWIFT, 

which is introduced later in this dissertation, for operators to perform a fussier matching. The 

utilization of taint analysis is straight-forward. P: Addr  {TRUE, FALSE} simply returns the 

status of the taint tag on that address. This mode searches comprehensively since all data flows 

are tracked, but it also inevitably incur high overhead and large amount of false 

positives/negatives. 

Before taint tracking starts, operators have to manually specify contaminant sources. Here 

possible contaminant sources and their application scenarios are discussed. 

User-Level API Parameters 

Using API parameters as contaminant sources is extremely effective to reveal valid 

dereferences in kernel space. For example, in CreateProcess(), tainting the argument specifying 

the program path to execute can quickly identify the kernel functions dedicated to process 

creation. Since user-level APIs are exported and well documented, tainting these arguments is 

a trivial task. 

Figure 4 shows a typical approach to tainting arguments of a user-level API. In this case, 

 

Figure 4 : A typical approach to label arguments of a user-level API as taint source. 

char buf[16]; 
buf[0] = ‘T’; buf[1] = ‘_’;  
buf[2] = ‘A’; buf[3] = ‘_’; 
buf[4] = ‘R’; buf[5] = ‘_’; 
buf[6] = ‘G’; buf[7] = ‘_’; 
buf[8] = ‘E’; buf[9] = ‘_’;  
buf[10] = ‘T’; buf[11] = ‘.’; 
buf[12] = ‘E’; buf[13] = ‘X’;  
buf[14] = ‘E’; buf[15] = ‘\0’; 

 
system(“pause”); 

 
CreateProcess( NULL, buf, 
 NULL,NULL,TRUE,0,NULL,NULL, 
 &stInfo,&procInfo ); 

 

 

 . Search for all occur 
rences of the pattern 
                
in the guest memory. 

 . Taint all discovered 
occurrences 

 . Continue the suspend 
ed process. 

 uest  MM 



 

- 22 - 

the program path of CreateProcess() is targeted. Initially two programs are prepared. One is a 

dummy program with a unique file name. In this example, it is named as 

“T_A_R_G_E_T.EXE” and it will exits immediately after being executed. The other program 

is built to execute the operations listed in the left column of Figure 4. As illustrated, it constructs 

in the buffer the file name of the dummy program, suspends until operators press any key, and 

then finally invoke CreateProcess() to execute the command string constructed in the buffer. 

Hard Disk Sectors and NIC RX buffer 

ProbeBuilder also supports the functions of specifying any hard disk sectors and the RX 

buffer of the network adaptor as taint sources. This feature allows operators to quickly locate 

kernel functions used for disk-reading or packet-receiving. 

We refer to a predicate as byte-wide if it returns TRUE only when the byte at the specified 

address is tainted. A byte-wide predicate provides the highest precision. However, under certain 

circumstances a byte-wide predicate may miss the data of interest. For example, the converted 

DNS query string “\6google\3com\0” can fail the predicate because the first byte ‘\6’ is 

the result through control-flow-based calculation, which is difficult to deal with taint analysis. 

To cope with this issue, ProbeBuilder allows operators to specify the checking range of the 

predicate, that is, the predicate checks all the taint tags in the byte sequence locating in [Addr, 

Addr+n), where n is the length specified by operators. In our implementation, n is set to 8 to 

cover the whole 64-bit machine word of the IA-32 architecture. 

3.2 Control Flow Graph Builder 

This section discusses the reason why control flow analysis is needed and how the control 

flow graph is constructed for the later analysis components. 

Consider the program structure shown in Figure 5. Both functions NtWriteFile() and 

CmSetValueKey() for modifying Windows registry entries utilize RtlCopyMemory() to perform 

data movement. At first sight, placing a probe on RtlCopyMemory() seems to be a good choice 

for capturing file writing operation. However, it will also capture the data from 

CmSetValueKey(), causing the mixture of produced profile with unwanted information. In 
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addition, RtlCopyMemory() is extremely frequently used by other parts of the system. Placing 

a probe in this function will produce massive unwanted data.  

The probe candidate refinement procedure begins by converting the kernel image to a 

graph with code blocks as nodes, and branches as edges. In the graph, there should be a sub-

graph containing all nodes used to implement the subject behavior (e.g. registry modification). 

This sub-graph is referred to as behavior sub-graph. Through reachability analysis, probe 

candidates reachable without walking through this sub-graph should be identified and 

eliminated. Details are described below. 

The control flow graph builder construct the control flow graph, CFG, for the kernel image 

from two sources. One is the static CFG, acquired through statically disassembling the runtime 

memory dump of the kernel. The other source is the trace of indirect branches occurred during 

the execution of data dereference analysis. The collected indirect branches are transformed to 

edges and added to the static CFG. 

The collection of indirect branches is realized through monitoring the exit of a dynamic 

code block emulated by QEMU. If the last instruction emulated is one of the following classes: 

1) indirect jump, 2) conditional branch, or 3) procedure call, and the target address is not 

immediately encoded in the instruction, it is collected. All other cases are not counted as indirect 

branches. Control flow transfers caused by interrupts (emulated) or exceptions will not be 

 

Figure 5 : Examples of undesired probe candidates. 
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included in the final CFG. Procedure-return instructions are not included, either. 

3.3 Control Flow Graph Analysis 

Recall that the analysis requires behavior sub-graph to be distinguished from the rest of 

kernel CFG. Unfortunately, it is a difficult problem because the subject behavior itself is often 

ambiguously or informally defined.  or instance, the term “process creation” is a quite loose 

term referring to the process of loading executable image into memory, parsing the executable 

header, creating memory address space for the process, and transferring execution to its entry 

point. To determine the scope of these tasks inevitably requires human knowledge of the code 

structure. 

To resolve this issue, a heuristic method to approximate the sub-graph is required. Note 

that the kernel CFG built upon the granularity of code blocks. The CFG can be simplified by 

merging the nodes belonging to the same function, thereby constructing a function-level CFG. 

According to our study, recursion is seldom used by the kernel, and this function-level CFG is 

nearly acyclic. Based on this observation, the behavior sub-graph is approximated with all 

nodes reachable from the probe candidates which are not descendants of any other candidates 

in the graph. Note that this approximation is neither sound nor complete since these leading 

candidate nodes are not guaranteed to be in the precise behavior sub-graph. 

Algorithm 2 : Search for Leading Nodes. 
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The algorithm of selecting leading nodes is listed in Algorithm 2. The loop on line 2 

iterates through each candidate. Lines 3-7 check if it can be reached by any other candidates. If 

not, it will be collected as a leading node into T. If the reachability predicate used on line 5 is 

simply realized with a depth-first or a breadth-first search on G, the complexity of Algorithm 2 

will be in O(|C|2|G|). However, the size of G, namely the block-level kernel CFG, contains 

millions of nodes (i.e., code blocks). It is time-consuming to conduct the reachability analysis 

directly on G.  Fortunately, the process can be accelerated in light of the fact that programs are 

organized into functions. Code blocks can be grouped into larger units (functions), and each 

unit has a single entrance. The reachability can be computed in two steps: first on an inter-

procedural CFG and then on an intra-procedural CFG. 

The elimination of non-dedicated nodes is performed as described in Algorithm 3. The 

algorithm takes as input the same kernel CFG G, the set C of probe candidates, and the set T of 

leading nodes given by algorithm 2. In the beginning, another two graphs are created from G. 

On line 2, GR is created by revering every edge in G. On line 3,  ’ is built through removing 

all nodes of T and the edges attached to them from G. The algorithm guarantees that each node 

f in the output set D can never be reached (from any other node in G) without passing at least 

Algorithm 3 : Elimination of Non-Dedicated Code Blocks 

 

       
      ,     A kernel C   with code-block granularity. 

    A set of hook candidates.    ⊆      

    A set of leading nodes.    ⊆      
        
    A subset of  , excluding non-dedicated nodes. 

 liminate on edicated   

     ←    

     ←  everse every edge in   

    ’ ←({              ∉  }, {( ,  )|( ,  )          ∉       ∉  }) 

                 

                  ← {      is a reachable node from   in   .  

                ← True 

                              

              is reachable from   respect to  ’ 

                        ←  alse 

                  

                    

           ←    ∪       
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one of the nodes of T. The reason is as follows. If f is included in D, the constraint on line 8 

must have not been fulfilled in all iterations of line 7. Since line 7 loops through all ascendants 

of f (computed on line 5), and the predicate on line 8 checks if f can be reached from them in 

 ’, which contains no node in T, the property holds. 

The output of Algorithm 3, D, is a subset of G.V. Computing the reachability between all 

pairs of vertices in D with respect to the original G gives a simplified control flow graph. 

Namely, a new graph F can be generated by defining: 

 

F.V := D and 

(u, v)   F.E iff (u, v)   G.E, where u   F.V and v   F.V 

Figure 6 gives an example of the output of Algorithm 3. The exit nodes are simply those 

vertices without any descendants. To minimize the effort of probe insertion, it is essential to 

find the minimal set of vertices in F that separates the leading nodes and exits nodes. This is a 

classical vertex separator problem, which is proved to be NP-Hard [46]. Fortunately, in practice 

F only consists of hundreds of vertices, and the size of the separating vertices is usually less 

than 3. In this dissertation brute-force is used to test if the elimination of a node will cause the 

separation of leading nodes and exits nodes. 

With non-dedicated nodes removed, ProbeBuilder passes the output of Algorithm 3 and 

their dereference paths generated in Algorithm 1 to code generator to generate code snippets 

 

Figure 6 : An example of the output of Algorithm 3 
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that can be inserted into the hypervisor. 

3.4 Code Generator 

Figure 7 gives an instance of the code snippets generated by ProbeBuilder for KVM.  The 

corresponding probe information <0x804e7461, ESP +12 +36 +52>, which is shown in 

Table 2. The generated snippet follows the dereference path of the final output of Algorithm 3 

and copies data of interests to the specified buffer. Users can directly invoke the function 

gen_probe_804e7461() in the hypervisor. As shown, line 4 initializes the pointer with the value 

of the ESP register of guest. The deference path is stored in the array created in lines 6 and 7. 

Lines 12-16 iteratively dereferences the memory with the discovered offsets. In addition, a 

validity check is performed in each round to avoid invalid memory access. A non-zero return 

value of the function kvm_read_guest() (provided by KVM kernel module) indicates a failure. 

Finally lines 17-18 copy the data of interest from the memory of guest to the specified buffer. 

The generated code of probes shows that ProbeBuilder can be practically applied to the 

hypervisor for the VMI usage. Yet, the mechanism to trap the VM back to the hypervisor is 

hypervisor-dependent, and this issue is considered out of the scope of this dissertation. 

  

 

Figure 7 : Example of the generated probe for KVM. 

1  int gen_probe_804e7461(unsigned char* buf, size_t len) 

2  { 

3   int ret = 0; 

4   unsigned long ptr = kvm_register_read(vcpu, VCPU_REGS_RSP); 

5 

6   unsigned int offset[]= {12, 36, 52}; 

7   unsigned int offsets = 3; 

8 

9   int i; 

10   gpa_t pb_gpa; 

11  

12   for(i = 0; i < offsets-1; ++i) { 

13  pb_gpa = kvm_mmu_gva_to_gpa_system(vcpu, ptr+offset[i], NULL);  

14  if((ret=kvm_read_guest(vcpu->kvm, pb_gpa, &ptr, sizeof(ptr))) != 0) 

15   return ret; 

16   } 

17   pb_gpa = kvm_mmu_gva_to_gpa_system(vcpu, ptr+offset[i], NULL);  

18   if((ret = kvm_read_guest(vcpu->kvm, pb_gpa, buf, len)) != 0) 

19  return ret; 

20 

21   return 0; 

22 } 
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IV. System Design of SWIFT 

Chapter 4 

 

System Design of SWIFT 

 
As aforementioned, ProbeBuilder provides a flexible method to mark data of interest 

through the taint tracking functionality. Unfortunately, existing system-wide taint trackers 

commonly suffer from the performance issue, and research on its improvement either rely on 

support from customized hardware or only deal with information flow tracking inside one 

process. To realize practical taint tracking, a system-wide, fast dynamic information flow 

tracking technique is indispensable for ProbeBuilder. SWIFT, a decoupled design for system 

emulation and DIFT, is therefore proposed to resolve this issue. 

Before proceeding to the rest of this section, certain preliminary knowledge and 

terminology about dynamic binary translation and QEMU are introduced to lay down the basis 

of our system. QEMU is system-wide emulator, which is capable of emulating the whole 

operation of certain architecture on other machines. To be specific and concise, the emulated 

architecture will be referred to as the guest and the machine running the emulation as the host 

in the rest of the dissertation. Any hardware devices and mechanisms existing in the architecture 

of guest machine such as registers, MMU, or peripherals are realized by software. The two 

architectures need not to be different. In our application, both the emulated guest and the hosting 

machine are of IA-32 architecture. Note that such coincidence does not make binary programs 

inside the guest machine directly runnable. Having the instruction “add EAX, 1” executed 

inside the emulated guest machine, it is expected that the emulated EAX register, not the real 

one of the host machine, will be increased. Therefore, all instructions must be translated before 
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execution so they can reflect expected behaviors. QEMU adopts dynamic binary translation to 

perform the translation.  n addition, the translation is done “on the fly.”  amely, the binary 

translator would be invoked when the emulator encounters a code region which had not been 

translated. The translation is done on a per-block basis. Namely, the process of translating 

instructions continues until a branch or jump instruction is discovered. All guest instruction 

sequences (the branch or jump included) translated in the process above forms a basic block, 

and the binary code generated for actual execution on the host will be the corresponding code 

block. Code blocks are stored in a hash table for next time use, since the translation is 

computationally expensive. 

The original architecture of QEMU is included in the left part of Figure 8. On core 1, the 

system emulation is executed. As any hardware processor operating in a fetch-decode-execute 

loop, the software emulator also behaves similarly. The dispatcher always tries to search the 

code block pool with its instruction pointer to locate next block to execute. If the corresponding 

code block is found, it will be invoked. The emulation starts and then returns to the dispatcher 

after the code block finishes its task. Recall that all code blocks end with emulation of any jump 

or branch instructions. The dispatcher selects next code block to execute according to current 

target CPU status, and the process above repeats itself. However, if nothing is found in the 

search, the binary translator will be invoked to translate the basic block. 

Previous DIFT acceleration research inject desired binary routines directly into code 

 

Figure 8 : An overview on the basic system architecture of SWIFT. 
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blocks to perform specific task after examining each instruction during the translation phase. 

For system-wide taint analysis, these routines propagate taint status of registers and physical 

memory addresses which the instruction accesses. This approach, which adopted in prior works, 

has been demonstrated to be effective yet inefficient because the injected code usually involve 

with complicated computation. This encumbers system emulation in both explicit and implicit 

ways. The injected analysis routines could perform tasks as complicated as the emulation itself. 

In addition, the alternation between system emulation and analysis makes software optimization 

much more difficult or even disables coherent hardware acceleration such as cache mechanism. 

Instead of being injected directly into basic blocks, analysis routines in SWIFT are 

executed by another helper thread. Additional code is injected only for delivering information 

flows and physical memory addresses for the helper thread to accomplish its analysis task. 

Decoupling the analysis from the system-wide emulation enables SWIFT to shift the analysis 

workload such as updating the taint map or security check onto a different core. 

Figure 8 also gives the basic system architecture of SWIFT. While generating code blocks 

for emulation, the binary translator of SWIFT in the meantime extracts information flow 

semantics of instructions. With the proposed DIFT model, extracted semantics are converted to 

the so-called IF-codes, such as MEM_EBP_DW_BW_OVRWRT or EBP_ESP_DW_BW_OVRWRT, 

for delivery. The binary translator also injects code for delivering IF-codes to the helper thread. 

Note that the delivery is always done immediately after the instruction which generate the 

information flow is emulated. Through inter-thread communication the helper thread running 

on core 2 can therefore perform corresponding taint analysis or security checks. 

In the following subsections, the encoding technique used to encode information flows of 

instructions of IA-32 is introduced. Then, two important optimization techniques are proposed 

to aggressively eliminate message exchange between system emulation and taint analysis. 

4.1 Encoding Information Flows of Instructions 

Since taint analysis is decoupled and executed on another thread, the information that 

should be passed to the thread to accomplish the task must be identified. Passing raw 
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instructions executed by the emulator, like LBA-based architecture does, could be an option. 

This preserves most complete information for analysis, but the helper thread will be required to 

decode these raw instructions by itself to perform corresponding analysis tasks. Another option 

is passing only data necessary for information flow tracking. This approach loses part of the 

information due to discarded instructions. However, it preserves the performance because the 

tedious decoding process can be removed from the helper thread. In SWIFT, the latter approach 

is chosen to meet the performance requirement. 

4.1.1 IA-32 Instruction Data-Flow Modeling 

As aforementioned, an IA-32 instruction frequently uses an operand as both input and 

output. In these cases, a single information flow will be sufficient to describe it. Since the goal 

is to track system-wide dynamic information flow at byte-granularity, source and destination 

will always refer to a single byte of registers, memory, hard disks and network interface buffers. 

In addition to the source and destination, another essential factor should be included in 

modeling information flows. Consider a data transfer instruction such as “mov”. The two 

operands obviously serve as the source and the destination in the information flow, and the 

original information in the destination operand is overwritten. For a binary arithmetic operation 

such as addition or bitwise exclusive-or, however, one of the operands will be used as both the 

input and the outcome variables. For example, the EBX register in the instruction “xor EBX, 

EAX“ is used as input in the exclusive-or operation and also storage for the output value. Instead 

of being overwritten, data of EBX is combined with the information flowing out of EAX. 

Therefore, the two flowing effects, which are referred to as overwriting and appending, should 

be encoded also. 

An information flow always originates from a certain source, denoted by A, and flows into 

a destination, denoted by B. For the CPU instructions accessing registers and the memory, A 

and B can only be register names or memory addresses. For concise expression, the overwriting 

information flows and appending ones from B to A are denoted as  and , 

respectively. 
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However, complicated information flows could be generated by a single instruction. If the 

encoding format encodes only the information flow of a single byte, the complication could 

lead to lengthy expressions. A few more observations can be leveraged to avoid this. Although 

our system tracks information flows at byte-granularity, IA-32 instructions always perform 

operations on specific widths such as byte, word (2 bytes), double-word (4 bytes), or quad-word 

(8 bytes). Specifying the width of operands directly in the encoding of information flows can 

therefore bring us a much more succinct processing. 

In Table 3 are listed typical information flows from B to A when the operand width and 

information flow effect of an instruction are considered simultaneously. In the formula, A and 

B are both variables of n-byte, and the lowest significant byte of A is denoted as A[0]. For each 

category, a notation is also defined for succinct expression in later context. The information 

flows falling into one of these categories are referred to as multi-byte information flows. 

In Figure 9, each category is demonstrated with a representative instruction. An edge in 

Table 3 : Typical Aggregated IA-32 Information Flow. 

 Category Information Flow Notation 

 
Byte-wise  

overwriting 

𝐴[0] ← 𝐵[0], 
𝐴[1] ← 𝐵[1], 
… , 
𝐴[𝑛] ← 𝐵[𝑛] 
 

𝐴 ⇐𝑛 𝐵 

 

Byte-wise 

appending 

 

𝐴[0]
+
←𝐵[0], 

𝐴[1]
+
←𝐵[1], 

… , 

𝐴[𝑛]
+
←𝐵[𝑛] 

 

𝐴
+
⇐𝑛 𝐵 

 

Incrementally 

mixed 

 
𝐴[0]

+
←𝐵[0], 

𝐴[1]
+
←𝐴[0], 𝐴[1]

+
←𝐵[1], 

𝐴[2]
+
←𝐴[1], 𝐴[2]

+
←𝐵[2], 

… , 

𝐴[𝑛]
+
←𝐴[𝑛 − 1], 𝐴[𝑛]

+
←𝐵[𝑛] 

 

𝐴
∆
⇐𝑛 𝐵 

 

All mixed-up 

 
𝑇 ← 𝐴[0], 𝑇

+
← 𝐴[1], … , 𝑇

+
← 𝐴[𝑛], 

𝑇
+
←𝐵[0], 𝑇

+
←𝐵[1], … , 𝑇

+
←𝐵[𝑛], 

𝐴[0] ← 𝑇, 𝐴[1] ← 𝑇, … , 𝐴[𝑛] ← 𝑇 

𝐵[0] ← 𝑇, 𝐵[1] ← 𝑇, … , 𝐵[𝑛] ← 𝑇 
 

𝐴
∗
⇐𝑛 𝐵 
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the figure represents the information flow from the sourcing byte to the destined byte in the 

calculation. One way to tell whether a variable A influences the other variable B is checking 

existence of a directed path from A to B. In Figure 9(a), the byte-wise overwriting flow caused 

by a mov instruction is shown. This flow copies data byte-wisely from the source to the 

destination and overwrite destination operands. In Fig. 2(b) is given an example of a byte-wise 

appending information flow, which can be caused by the xor instruction. It performs exclusive-

or on the EAX and EBX yet uses EAX as the output operand. The incrementally-mixed flow is 

used to depict the situation that all bytes are influenced by those with lower or equal significance. 

A good example would be arithmetic addition or subtraction, in which higher bytes are 

influenced by all lower bytes due to the carry. The detailed flows are shown in Fig. 2(c). 

 

Figure 9 : Representative instructions of aggregated information flow. 

(a) byte-wise overwriting, (b) byte-wise appending, (c) incrementally mixed, and (d) all 

mixed-up. Note that some edges are neglected in (d) for clearer depiction because they 

do not affect the net-effect inferred. 
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The complicated information flows caused by multiplication are shown in Fig. 2(d). Note 

that the entire output would be 8 bytes due to the multiplication on the two double-words. As it 

Table 4 : Information Flow of Common IA-32 Instructions 

Instructions Information Flow 

mov,cmovXX,push,pop,pushad,popad,movsXX, 

lodsXX,stosXX,inXX,outXX,lds,les,lfs,lgs, 

lss,fld,fst,fstp,fcmovXX 
𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶 

and,or,xor 𝐷𝑆𝑇
+
⇐𝑛 𝑆𝑅𝐶 

add,adc,sub,sbb 𝐷𝑆𝑇
∆
⇐𝑛 𝑆𝑅𝐶 

inc,dec,neg,movzx,movsx 𝐷𝑆𝑇
∆
⇐𝑛 𝐷𝑆𝑇 

mul,imul 
𝐸𝐴𝑋

∆
⇐𝑛 𝑀𝑈𝐿𝑇𝐼𝑃𝐿𝐼𝐸𝑅 

𝐸𝐷𝑋
∗
⇐𝑛 𝐸𝐴𝑋 

div,idiv 

𝐸𝐷𝑋
∗
⇐𝑛 𝐷𝐼𝑉𝐼𝑆𝑂𝑅 

𝐸𝐷𝑋
∗
⇐𝑛 𝐸𝐴𝑋 

𝐸𝐴𝑋 ⇐𝑛 𝐸𝐷𝑋 

xchg,cmpxchg,cmpxchg8b 

T⇐n 𝐷𝑆𝑇 

𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶 

𝑆𝑅𝐶 ⇐𝑛 𝑇 

xadd 
T ⇐n 𝐷𝑆𝑇, 𝑇

∆
⇐𝑛 𝑆𝑅𝐶, 

𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶, 𝑆𝑅𝐶 ⇐𝑛 𝑇 

jXX 𝐸𝐼𝑃 ⇐𝑛 𝑆𝑅𝐶 

call 
𝑀𝐸𝑀⇐𝑛 𝐸𝐼𝑃 

𝐸𝐼𝑃 ⇐𝑛 𝑆𝑅𝐶 

ret 𝐸𝐼𝑃 ⇐𝑛 𝑀𝐸𝑀 

enter 
𝑀𝐸𝑀⇐𝑛 𝐸𝐵𝑃 

𝐸𝐵𝑃 ⇐𝑛 𝐸𝑆𝑃 

leave 𝐸𝐵𝑃 ⇐𝑛 𝑀𝐸𝑀 

lea 
𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶1 

𝐷𝑆𝑇
∆
⇐𝑛 𝑆𝑅𝐶2 

(all other FPU insn.) 𝐷𝑆𝑇
∗
⇐𝑛 𝑆𝑅𝐶 
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turns out, category (c) would suffice to describe the net information flowing effect on the four 

lower bytes (stored back in EAX). Note that all four higher bytes (stored in EDX) are influenced 

by all bytes of the two input operands. These flows are referred to as all-mixed-up ones. It turns 

out that information flow of most IA-32 instructions can be totally described with these four 

categories and operand widths. 

Table 4 lists IA-32 instructions and their information flow encoded in the notation  

invented. Instruction mnemonics are listed in the first column. The second column shows their 

operand formats. Note that herein the Intel syntax is adopted for the explanation. Namely, the 

destination operand is always encoded in op1. Rows 1-6 show the encoded information flows 

of all the data movement and arithmetic operations. In rows 7-8 the case for data exchanging 

instructions are given. To correctly model their flows, an extra variable T is introduced, which 

does not exist in the architecture, to store the transient status. Rows 9-12 give the data flows 

incurred by procedure-related instructions. The lea instruction deserves a little more attention. 

In modern operating systems which adopt the flat memory model, this instruction simply 

assigns op1 with the value of op2 + op3. Since most operating systems such as Windows and 

Linux adopt this model, our interpretation for this instruction holds. 

With all discussion above, we are now ready to encode any information flow caused by 

IA-32 instructions with its destination, source, width, and effect. Figure 10 shows the two 

encoding formats of information flows. In Figure 10(a), the format used to describe multi-byte 

ones is depicted. Fields D and S specify types of source and destination. WTH and EFF are used 

to specify the operand width n and the category in effect mentioned in Table 3. For the 

information flows that cannot be properly described by multi-byte rules, the format depicted in 

Figure 10(b) should be used, which lacks WTH but provides two fields D_OFF and S_OFF to 

specify offsets of referred bytes. 
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For registers, DST_REG and SRC_REG store their identities. The two fields cover 

general-purpose registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI), segment registers 

(CS, DS, ES, SS, FS, and GS), program counter (EIP), floating-point registers (ST0~ST7), 

control registers (CR0~CR4), debug register (DR0~DR7), GDTR, IDTR, TR and LDTR.  

MMX registers, XMM registers, MTRRs, MSRs, and any other registers are viewed as a null 

source and sink for information flow, that is, information flowing out of them is always labeled 

as clean, and information flowing into them is not tracked. In addition, instructions of MMX, 

SSE, SSE2, and SSE3 extension are ignored. The simplification is simply an implementation 

issue. Tracking information flow for the enormous instructions and registers introduced by these 

extensions requires huge implementation efforts but brings less effectiveness since they are 

seldom used. Note that 8 bits are leaved for the DST_REG and SRC_REG fields so that DIFT 

for these instructions and registers can always be implemented incrementally without 

modifying the current IF-code design. Note that these encoded information flows are simply 

32-bit integers, and they could be generated when translating an instruction. These codes are 

referred to as IF-codes. 

Although field DST_REG and SRC_REG seemed useless for memory operands, they keep 

 

Figure 10 : Formats of IF-codes. 

(a) Format for describing multi-byte information flows. (b) Format for describing 

information flow from a single byte to another. 



 

- 37 - 

important information for the next special case. 

4.1.2 IA-32 Indirect Memory Access 

Information can be propagated in multiple ways. Information flows that have been 

discussed so far can be all attributed to the direct relation between input and output variables in 

a calculation. Namely, these inputs are directly used in the calculation to generate the output. 

However, for those registers used as a base or an index in an instruction using indirect 

addressing mode, their values indeed influence the result yet they do not take part in the 

calculation directly. 

Indirect memory access occurs due to dereferencing pointers or accessing arrays. Tracking 

information flows caused by indirect memory access can generate massive unwanted false 

alarms. To avoid this problem, previous studies simply ignore them or limit the tracking depth 

on indirection. However, this could totally invalidate a DIFT system because Windows 

operating systems use table look-up extremely frequently in string conversion routines such as 

RtlMultiByteToUnicodeN(), and  RtlUnicodeToMultiByteN(). 

After investigating these conversion functions, two facts can be observed. First, these 

conversions are done mostly by table look-up, which is actually an indirect memory-read 

operation with a register used as the index in address calculation. Secondly, these functions are 

used mainly for Unicode/Multibyte character set conversion. Since UTF-8 and UTF-16 are the 

most common implementations for Unicode characters, tables that these instructions look up 

are composed of 8-bit or 16-bit characters. Therefore, the indexing register is encoded in 

DST_REG or SRC_REG to propagate their taint status for IF-codes with BYTE or WORD as 

the width and  as the effect. 

The approach above is based on the assumption of the non-existence of UTF-32 encoding, 

which holds only for Windows. However, the condition is no longer valid for Linux. In Linux, 

UTF-32 is utilized in certain parts of the system, and the character conversion is done with a 

DWORD indirect memory access. Therefore, these indirect information flows cannot be easily 

distinguished as those in Windows.  Further investigation is needed to determine how to hook 
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these conversion functions of glibc. These flows are left for the future enhancement and 

implementation. 

4.2 Delivering IF-codes and Memory Addresses  

In SWIFT, binary code to assist the helper thread, instead of analysis itself, is injected. The 

major task of injected binary is delivering IF-codes of each emulated instruction to the helper 

thread, so the helper could analyze information flows of the original program and hence the 

overall performance could be improved since the analysis could be processed in parallel by 

another core. 

However, since the delivering will be done for each information flow incurred by all 

emulated instructions, the mechanism must be efficient enough or it could impose a new 

overhead on the emulation. To be light-weight, the one-way communication is achieved through 

a circular queue residing on a shared memory region as depicted in Figure 11. To utilize the 

queue more efficiently, entries in the circular queue are actually pointers to chunks of 

continuous space. In code blocks, en-queuing routines are injected so that IF-codes are 

delivered after each instruction is emulated. Next chunk will be asked for once the current chunk 

is full. By selecting 4 KB as the chunk size and aligning all chunks on 4 KB boundary, the en-

queuing could be accomplished with following code snippet injected. 

 

Figure 11 : Circular queue for IF-code delivering. 
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mov EAX, dword ptr [LOC_enqptr] 

mov dword ptr [EAX], CONST IFCODE 

add EAX, 0x4 

and EAX, 0xfff 

jne L1 

call nextblock 

L1: 

mov dword ptr [LOC_enqptr], EAX 

Note that CONST_IFCODE will be decided in the trans-lation phase. 

So far we have introduced how an information flow is extracted and encoded. Nevertheless, 

the system-wide information flow tracking cannot be done unless addresses of memory 

variables are also tracked. Recall that a memory access can be indirect. In an indirect memory 

access, the memory address depends on the value in a certain register, and it is hence impossible 

to predict these addresses in advance. Therefore, watching addresses of memory operands is 

postponed until runtime. 

Prior DIFT works based on binary instrumentation framework such as PIN or StarDBT 

watch virtual addresses of memory operands. This approach seems intuitive and may even be 

the only feasible method since the binary instrumentation tool can only monitor a user-level 

process. Instead, SWIFT watches physical addresses of memory operands. Since QEMU 

provides software MMU for system-wide emulation, watching physical addresses of accessed 

memory is nothing harder than watching virtual addresses. QEMU is modified so that any 

physical memory addresses generated by the software MMU emulation will be recorded in 

last_phyaddr_written and last_phyaddr_read, depending on whether operation is writing or not. 

To deliver a memory address just read, the following codes are injected. 

mov EAX, dword ptr [LOC_enqptr] 

mov EDX, dword ptr [last_phyaddr_read] 

mov dword ptr [EAX], EDX 

add EAX, 0x4 

and EAX, 0xfff 

jne L2 

call nextblock 

L2: 
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mov dword ptr [LOC_enqptr], EAX 

4.3 Optimization 

Although approaches proposed so far successfully decouple the execution of system 

emulation and analysis task, the en-queuing operations still incur performance downgrade in 

three ways. First, extra instructions injected for en-queuing inherently introduce latency in the 

emulation process and the helper thread. Secondly, the massive memory accesses to the queue 

can consume hardware cache or causes cache misses generated by the producer-consumer 

communication. Thirdly, the more data en-queued, the faster the circular queue will be saturated. 

Therefore, reducing en-queuing operations can accelerate the emulation operation in multiple 

ways. Two optimizations were proposed to aggressively remove them. 

4.3.1 OPT1 : Delayed-Delivering on a Per-Block Basis  

Avoiding en-queuing IF-codes frequently can bring us substantial performance 

improvement because they form the major part of messages delivered to the helper thread. One 

possible optimization toward this is to deliver IF-codes on a per-block basic. While translating 

a basic block, the translator could group all IF-codes generated into a special entity, called the 

IF-code block. In the IF-code block, IF-codes are stored in the order as corresponding 

instructions are arranged. Instead of delivering IF-codes between every emulated instruction, 

code are only injected in the beginning of the code block to inform the helper thread which code 

block is being emulated so the correct IF-code block can be traced. In doing so only one en-

queuing operation is needed to deliver all IF-codes for a whole code block. 

However, above optimization does not reflect correct information flows always. Consider 

the third emulated instruction of the exampling basic block listed in Figure 8. Since the “mov 

EAX, [EBP+8]” instruction accesses a memory address indirectly, it can potentially lead to 

a page fault exception as long as EBP register contains an inappropriate value. To emulate such 

behaviors correctly, a code block must exit itself when things go wrong. Therefore, only first 

two IF-codes would be effective in such a case because rest instructions had not been emulated. 

Since an exception is unpredictable, the amount of effective IF-codes may vary between each 
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execution of the code block. 

To amend the problem, a counter should be added to accumulate instructions emulated for 

each code block. Between each emulated instruction, code are injected to increase the counter 

so it reflects the amount of emulated instruction. The accumulation will continue until the code 

block exits. The value of the counter will be delivered to the helper thread in the very beginning 

of next code block. An example of this amendment is shown in Figure 12. In the beginning of 

every code block, the counter is delivered as the IF-code accumulation of the previous code 

block. Meanwhile, the sequence number of the current code block is also delivered. IF-codes 

are no longer delivered in execution of code blocks. Instead, they are only delivered once by 

the binary translator on a per-block basis. After that, only the counter is delivered so that the 

IF-code interpreter could decide how many IF-codes should be tracked for each execution of a 

code block. It is easy to see that communications between the two threads are reduced. In 

addition, the counter addition could be realized with the following instruction, which is far more 

concise than previous IF-code en-queuing routine. 

inc dword ptr [LOC_counter] 

OPT1 eliminates en-queuing operations effectively with the observation that once a basic 

 

Figure 12 : An improved system design with OPT1. 

Communications between the two threads are reduced since IF-codes are no longer 

delivered in execution of code blocks. 
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block is generated, its IF-codes would be fixed also. However, OPT1 cannot entirely eliminate 

the slow, per-code delivering mechanism. Even without exceptions, the total number of 

executed instructions of a code block can be still unpredictable if it contains conditional 

execution. The CMOV of the IA-32 ISA is such an instruction. When the emulator translates 

these instructions, it will fall back to the slow delivering mode. Fortunately, they are seldom 

used in ordinary programs, and hence their presences do not impede the acceleration of OPT1. 

On the other hand, large amount of en-queuing operation are still needed to pass physical 

memory addresses. As stated earlier, these physical memory addresses can only be watched 

when the code block is being executed. To reduce the overhead incurred by memory address 

delivery, another optimization is proposed below. 

4.3.2 OPT2 : Stack-based Indirect Accessing  

The foundation of the second optimization relies on several phenomena observed on the 

frame pointer register and stack pointer register, namely EBP and ESP of the IA-32 architecture. 

Due to the conventional design of common compilers, this register stores the beginning address 

of an activation record and top of the stack in EBP and ESP respectively. In addition, their 

values usually change only when a new activation record is created. Referencing memory 

indirectly with these two registers is a common way to access local variables and function 

arguments. The third emulated instruction “mov EAX, [EBP+8]” listed in Figure 12 is a 

representative instance. More, in more than 90 percent of EBP or ESP-based memory accesses, 

their offsets distribute over the range from -1024 to +512 bytes. The clustering phenomenon is 

understandable since local variables and arguments usually locate near the beginning of the 

frame and occupy little space. 
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In Figure 13 are depicted the three scenarios could occur when adding offsets within the 

range above to EBP. It is easy to see that two pages at most could be cross by the ranging offset. 

Note that although the two pages are continuous in virtual address space, their physical 

locations may be not due to the virtual memory mapping. For the two physical pages, the page 

pointed by EBP is referred to as the base page and the other one as the siding page. The physical 

address generated by EBP-based addressing with such offsets could be acquired using 

Algorithm 4. Note that the discussion above also applies on ESP-based indirect addressing. 

Using the algorithm the helper thread could calculate the physical address generated by 

EBP (or ESP) -based addressing instructions as long as the instruction has a proper offset.  

Let’s consider the four inputs needed for the algorithm. Since the offset is encoded in the 

instruction, it could be determined in translation phase and stored as part of the IF-code. This 

 

Figure 13 : Scenarios of EBP-based memory address with offset within range -1024~+512. 

Algorithm 4 : Calculation of the physical address generated by EBP-based accessing. 
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observation saves us from en-queuing memory address for each EBP (or ESP) -based memory 

access. However, the benefit comes with the trade-off that the helper must possess correct 

paddr_base and paddr_siding for calculation. This is done by having the emulator perform 

virtual address translation and deliver translated addresses to the helper every time that EBP or 

ESP is modified. However, sometimes their values can change so frequently that the cost to 

perform address translation may attenuate the benefit. 

To resolve the limitation, the following technique is used. Note that in most cases, both 

EBP and ESP point at locations inside the stack segment (if the program has one). Therefore, 

an out-of-box hook is implemented on the part in charge of segment allocation to acquire the 

physical pages mapped to pages of the stack segment. These physical pages are specially 

labeled so that we can identify whether EBP or ESP points at a labeled page when their values 

are modified. All the addresses of these physical pages are delivered to the helper thread only 

at the infrequent context switch or user/kernel mode switch. As a result, the helper can be 

informed of paddr_base and paddr_siding without demanding the emulator to perform address 

translation every time when EBP or ESP is modified. If EBP or ESP point at an unlabeled page, 

the delivering operation automatically falls back to the slower translate-then-deliver mode upon 

each EBP or ESP modification. 

4.4 Peripherals 

Tracking information flows across peripherals is a primary goal of SWIFT. For the time 

being SWIFT tracks information flows in hard disks and network interfaces 

For hard disks, any DMA operation and port I/O between the hard disk buffer and memory 

are watched, and taint tags are propagated along the data movement. Their taint maps are stored 

hierarchically just as page directory mechanism in conventional MMU to avoid excessive 

memory consumption. In this way, no taint tags would be allocated to those sectors which had 

never been tainted.  

The watching on network interfaces follows a similar pattern. Since packet exchange 

between the NIC and memory is usually done with DMA, only DMA operations are watched 
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in SWIFT implementation. 
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V. Evaluation 

Chapter 5 

 

Evaluation 

 
Algorithm 1 is implemented on the QEMU emulator. The algorithm generally requires 

8~12 Gigabytes of memory space to store the acquired dereference paths. Ubuntu 12.04 64-bit 

is chosen as the host environment and have 16 Gigabytes RAM installed so that the QEMU 

process can utilize as much memory as it demands. To implement Algorithm 2 and Algorithm 

3, IDA Pro and IDAPython are used to parse the memory dump and construct the basic graph. 

Then, the graph is converted to a NetworkX graph object with edges of indirect branches added. 

The code generator is implemented within 127 lines of ruby scripts. 

The effectiveness of ProbeBuilder is evaluated through executing the following six subject 

behaviors: process creation, file creation, registry creation, process termination, file deletion, 

and registry deletion. All these behaviors are performed with upper layer Win32 API with 

tainted arguments. Windows XP SP3 32-bit is installed as the guest operating system. 

ProbeBuilder generates probe locations for these behaviors and the corresponding data 

dereferences. To verify the correctness and quality of the automatically generated probes, for 

each behavior three probes are selected at random and implemented in another QEMU instance 

dedicated to behavior monitoring. In the QEMU instance, Process Monitor produced by 

Sysinternals and Wireshark are installed. The log trace generated by our probes is then 

compared with the ones generated by the above two tools. To demonstrate the strength of 

ProbeBuilder, a kernel-level VMI profiler is implemented using the generated probe locations 

and dereferences. 
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5.1 Probe Generation 

As aforementioned, Algorithm 1 will be executed repetitively to eliminate unstable probe 

locations. After that, graph analysis (Algorithm 2 and Algorithm 3) is used to eliminate non-

dedicated code locations. To better illustrate effectiveness of the process, an entry in Table 5 

shows the total number of remaining probe candidates for a specific behavior after runs of 

Algorithm 1. Since only identical probe locations and data dereferences are kept after each 

round, the total number decreases as the process continues. Note that each test is repeated 50 

times to ensure the stability of sieved probe candidates. However, in all these tests the total 

number of probe candidates soon stabilized in less than 10 rounds. As an example, the test item 

for process termination takes only 3 rounds to converge. The experiment indicates two 

important facts. First, a large portion of candidates found in the first round are eliminated in 

later rounds. This shows the benefit of multi-run elimination. Secondly, the fact that all these 

numbers converge to stable points guarantees the existence of stable probe locations and data 

dereferences. 

In Table 6, the analysis results of Algorithm 2 and Algorithm 3 are listed. The set of the 

Table 5 : Remainder candidates after each run of Algorithm 1. 

 

Behavior 
1 2 3 4 5 6 7 8 9 10 11 

 Process 

Creation 
474 311 308 303 300 295 294 281 277 276 - 

File 

Creation 
220 183 181 178 177 177 173 168 168 167 - 

Registry 

Creation 
83 70 64 62 58 - - - - - - 

Process 

Termination 
42 38 35 - - - - - - - - 

File 

Deletion 
104 100 99 99 98 - - - - - - 

Registry 

Deletion 
86 67 67 66 62 60 55 51 - - - 
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probe candidates discovered by Algorithm 1 is used as an input variable C to Algorithm 2 and 

Algorithm 3, that is, the numbers listed in the first row of Table 6 are identical to the final stable 

numbers in Table 5. The second row in Table 6 gives the total number of leading nodes 

generated by Algorithm 2. The third row gives the total number of dedicated nodes as the final 

output of ProbeBuilder. As shown, a large portion of candidates are again eliminated by 

Algorithm 3. The test on registry creation filtered 44 non-dedicated probe candidates, leaving 

14 candidates as the final answer. 

To understand the effectiveness of the refinement phase, the eliminated probe candidates 

are inspected. However, the massive amount of code and its assembly form make manual 

examination extremely difficult. To simplify the task, the non-dedicated probe candidates (code 

blocks) are mapped back to the owner functions with IDA Pro. Functions with human-readable 

names recognized by IDA Pro and WinDbg are then collected. The functionality of these 

“named” functions are manually checked on MSDN, looking for those dedicated to the subject 

behavior. Subroutines called by these non-dedicated functions are also considered as non-

dedicated. 

The results of examination are shown in Table 7. For each subject behavior, a certain 

amount of functions are manually discovered to be non-dedicated. Their names are listed in the 

first column. Among the non-dedicated functions recognized by Algorithm 2 and Algorithm 3, 

the proportion of these manually verified functions p is listed in the second column. For instance, 

the test on file creation shows that 80% of discovered non-dedicated probe candidates are 

manually verified. Tests on behaviors like registry deletion and registry creation give low 

proportion of the successfully verified functions. However, the test merely investigates the 

Table 6 : Remainder candidates after Algorithm 2 and Algorithm 3. 

 
 

Process 

Creation 

File 

Creation  

Registry 

Creation 

Process 

Term. 

File 

Deletion 

Registry 

Deletion 

Input 276 167 58 35 98 51 

Top Nodes 32 20 6 4 27 12 

Dedicated 

(Output) 
176 88 14 22 58 25 

Non-dedicated 100 79 44 13 40 26 
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documented functions, which can be recognized by IDA Pro and WinDbg, and hence the 

number may be underestimated. Considering this fact, it is reasonable to deduce that this test 

has successfully verified the effectiveness of Algorithm 2 and Algorithm 3. 

In Table 8, a few concrete examples of generated probes and their data dereferences are 

shown. During the execution of Algorithm 1, the first 512 bytes of the data captured by the 

taint-based predicate P are captured. However, for conciseness only the part before the 

terminating null character is listed. The first and the second columns give the probe locations 

and the corresponding dereference data paths, respectively. As expected, the large offsets in 

Table 7 : Eliminated non-dedicated functions. 

  

 
Names p% 

Process 

Creation 

ExAcquireSharedWaitForExclusive, RtlRandom, 

RtlCopyUnicodeString, SePrivilegeCheck,  

FsRtlDoesNameContainWildCards, 

RtlEqualUnicodeString,  ObfDereferenceObject, 

SeReleaseSecurityDescriptor, ObGetObjectSecurity, SeDelet

eAccessState, ObOpenObjectByName, 

RtlLengthRequiredSid, RtlUpcaseUnicodeChar 

32% 

File 

Creation 

CcUnpinData, RtlSplay, CcPinRead, CcRemapBcb, 

SeDeassignSecurity, CcPinMappedData 

RtlLookupElementGenericTableFullAvl, 

CcMapData, RtlCopyUnicodeString, 

ObOpenObjectByName, RtlAreBitsClear, 

RtlInsertElementGenericTableFullAvl 

80% 

Registry 

Creation 

ExDisableResourceBoostLite, SeDeassignSecurity, 

CcPinMappedData, IoSetThreadHardErrorMode, 

SeAssignSecurity, RtlUpcaseUnicodeChar 

27% 

Process 

Termination 
MmMapViewOfSection 77% 

File 

Deletion 

IoSetShareAccess, ObOpenObjectByName, 

IoIsOperationSynchronous, RtlCopyUnicodeString 
63% 

Registry 

Deletion 

RtlCreateSecurityDescriptor, 

ExDisableResourceBoostLite, CcPinMappedData, 

SeQuerySecurityDescriptorInfo 

13% 
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dereference paths show the existence of huge data structures in Windows kernel. The given 

SRCH_WIDTH: [512, 256, 128, 64, 512] may not be enough to cover all possible dereferences. 

Nevertheless, it is not necessary to identify all of them in this application. 

Note that our dummy program invokes the ANSI-string-based API. Yet, the corresponding 

Table 8 : Examples of probes, data dereferences, and data collected by Algorithm 1. 

 EIP Dereference Path Captured Data 

Process Creation 

0x804d9050 ESP, +20, +0 T_A_R_G_E_T.exe\0 

0x804e447f EAX, +184, +16, +0 

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e\0x\0e\0\

0\0 

0x804efe53 ESP, +12, +160, +124, +6 

C\0:\0\\0T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e

\0x\0e\0\0\0 

File Creation 

0x804e875a ESI, +100, +52, +0 

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0t\0x\0t\0\

0\0 

0x80577af2 
ESP, +24, +20, +108, +60, 

+0 

T_A_R_G_E_T.txt\0 

Registry Creation 

0x804e8a61 ESP, +0, +0, +96, +60, +0 

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e\0x\0e\0\

0\0 

0x804edb22 ESP, +24, +32, +28, +60, +0 

H\0K\0E\0Y\0_\0L\0O\0C\0A\0L\0_\0M\0A\0C\0H\0I

\0N\0E\0\\0S\0O\0F\0T\0W\0A\0R\0E\0\\0M\0i\0c\

0r\0o\0s\0o\0f\0t\0\\0W\0i\0n\0d\0o\0w\0s\0\\0

C\0u\0r\0r\0e\0n\0t\0V\0e\0r\0s\0i\0o\0n\0\\0R

\0u\0n\0\0\0 

Process Termination 

0x804e917d ESP, +20, +12, +0 T_A_R_G_E_T.exe\0 

File Deletion 

0x804e875a ESP, +4, +100, +52, +0 

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0t\0x\0t\0\

0\0 

0x804e883c EDI, +28, +148, +60, +6 

C\0:\0\\0T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0t

\0x\0t\0\0\0 

Registry Deletion 

0x80563db2 ESP, +8, +200, +0 

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e\0x\0e\0\

0\0 
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Unicode strings encoded by the operating system are also identified. In addition, prefixed 

Unicode strings are captured as well in process creation and file deletion. The results 

demonstrate the use of the taint-based predicate. 

 

5.2 Effectiveness of Generated Probes 

To verify effectiveness of the generated probes and dereferences, two experiments are 

performed. 

5.2.1 Monitoring User-Space Activities 

Since all the probes generated by ProbeBuilder locate in the OS kernel, they should 

produce profiles at least as complete as any user-level monitors. To verify this, for each behavior 

3, probes are randomly selected out of the output of ProbeBuilder, and are manually 

implemented in another QEMU instance (without the functionality of ProbeBuilder). In that 

guest machine, the same OS image is installed. Meanwhile, Sysinternal Process Monitor v3.04 

and API Monitor v2.0 from Rohitab are also installed. The system is then manually exercised 

for 30 minutes, producing more than one million activities recorded by the two commercial 

applications. The API trace logged by the probes of ProbeBuilder was compared with theirs. 

The comparison shows that all the occurrences of these six behaviors reported by Process 

Monitor and API Monitor are also logged by the probes of ProbeBuilder. The API arguments 

are also correctly captured by the generated data dereferences. We discover that the probes of 

ProbeBuilder recorded more activities than the two user-space profiling tools, especially for the 

file creation behavior. A large portion of these extra records are confirmed as expected to be 

kernel activities since the probes reside in the kernel space. However, there still exist 0.21% of 

the total recorded activities with meaningless binary data which are considered as false positives. 

5.2.2 Monitoring Kernel-Space Activities 

The kernel-level probe shows its effectiveness against kernel activities. For evaluation, a 

kernel module is implemented to simulate a pure kernel-level Trojan. The following tasks are 
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performed in sequence: 1) Establish a TCP connection with a HTTP server controlled by us. 2) 

Create a dummy file ProbeBuilderTest.txt at C:\ 3) Create a registry key 

ProbeBuilderRegistryInjection in the start-up program entries. Note that these 

tasks are executed purely in the kernel-space. This module is packed within a leading program 

in which the attached module is registered as a system service. The program is then profiled 

with the same QEMU instance used in the previous subsection. It is also uploaded to 

ThreatExpert and Anubis for comparison. 

The result shows that only our profiling tool successfully captures all the three activities. 

ThreatExpert only identified the created registry key, and Anubis only logged the TCP 

connection. (The user-space activities of the leading program are captured by all three platforms) 

Since both ThreadExpert and Anubis captured at least one of the three kernel-level behaviors, 

the success execution of the kernel module is confirmed. This experiment not only demonstrates 

the effectiveness of ProbeBuilder but also the necessity of kernel-level probes. 

Please note that this result does not imply that the probes generated by ProbeBuilder are 

more effective than those in existing VMI-based systems. Given sufficient time, any 

experienced analysts can discover probe locations and data dereferences through reverse-

engineering. The contribution of ProbeBuilder is automating these procedures in an effective 

way. 

5.3 Performance 

ProbeBuilder utilizes emulation to monitor the system state before each code block. Under 

the taint checking mode, additional taint analysis must be performed for each executed 

instruction. The data dereference analysis (Algorithm 1) runs about 30 times slower than the 

native machine. It takes 1~3 minutes to complete an upper-layer API invocation. The time 

required by the control flow analysis (Algorithm 2 and Algorithm 3) heavily depends on the 

size of the probe candidates discovered by Algorithm 1, varying from 6 minutes (for process 

termination) to 167 minutes (for process creation). However, note that ProbeBuilder is designed 

to reduce the effort of manually building VMI tools. Compared with the enormous effort 
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generally required by manually reverse-engineer a closed-source kernel image, the execution 

time needed by ProbeBuilder is trivial. In addition, the probes and the data dereferences 

generated by ProbeBuilder should be transferred to systems implemented with faster emulation, 

virtualization, or even native machines, not directly on ProbeBuilder itself. Consequently, the 

schemes proposed in this dissertation do not impose overhead on the final application system. 

On the other hand, the performance of SWIFT should be carefully evaluated since its 

contributions focus on the performance boost led by the optimizations proposed in this 

dissertation. To evaluate performance improvement attributed to techniques proposed in this 

study, both commercial test suites are used and common workloads to acquire benchmark scores 

for following configurations. 

(a) Native QEMU 

(b) SWIFT (decoupled design) 

(c) SWIFT w/ only OPT1 enabled 

(d) SWIFT w/ both OPT1 and OPT2 enabled 

(e) QEMU with inline taint propagation 

(f) TEMU (Based on QEMU Ver. 0.9.1) 

To set up a baseline for our evaluations, a native version of QEMU, which our system base 

on, is tested in configuration (a). Note that neither KQEMU nor KVM was activated because 

we want to benchmark the performance of the pure emulation. In (b), solely the decoupling 

mechanism is enabled so that its performance advantage could be measured. Configuration (c) 

and (d) operate with the decoupled design as well as (b), yet OPT1 and OPT2 are enabled 

respectively. To understand how much performance gain could be achieved with the proposed 

schemes, we also set up a configuration (e), which inlines taint propagation routines of SWIFT 

directly in code blocks generated by original QEMU. The comparison also included TEMU, a 

well-known system-wide taint analysis system, as configuration (f) in this benchmark 

evaluation. 

A little more explanation is needed to elaborate the goal of this evaluation. For 

configuration (b), (c), (d), and (e) all data in guest memory or received from network are labeled 
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as tainted. Although this leads to considerable memory usage since the companied shadow 

memory becomes as large as the allocated RAM size of the guest machine, it is necessary for 

measuring the performance gain under the worst case. Moreover, it is difficult to fairly compare 

TEMU with our scheme directly. TEMU is designed with extremely high flexibility, and it thus 

contains large taint record for each byte and many callbacks for additional plug-ins. These 

features inherently incur severe overhead on performance of TEMU. However, it is also 

difficult to port its code into SWIFT for direct comparison because TEMU is based on an older 

version of QEMU. Due to reasons above, only the taint propagation of TEMU is activated and 

remove any other plug-ins in configuration (f). In addition, no taint data is introduced in 

configuration (f) among all experiments. 

All the evaluations are performed on an IBM System x3650, with one unit of Intel Xeon 

E5430 2.66 GHz Quad-Core Processor, 8GB DDR2 RAM, and a 150GB SATA-II hard disk 

installed. In each configuration one identical virtual machine snapshot is loaded into the 

emulator to ascertain fairness. The virtual machine is allocated with 512 MB RAM and a 10GB 

hard disk. Windows XP with service pack 3 is installed and booted in the snapshot. In addition, 

512 MB are allocated for the IF-code delivering circular queue. 

To perform information flow tracking SWIFT consumes more memory than the original 

emulator does. First of all, an extra 512 MB space was allocated to construct the circular queue 

for IF-code delivering. In addition, each byte in the guest memory is augmented with an extra 

shadow byte to preserve its taint status. Since in our evaluation every byte in memory is labeled 

as tainted, the shadow memory occupies the same size as the physical memory size of the guest. 

To enable OPT1, a shared 128MB memory region is pre-allocated to store IF-code blocks 

generated in the translation phase. We also force the emulator to flush all the code blocks when 

this region is full. Therefore, all these extra memory usage can be statically calculated to be 

512+512+128=1152MB. 

The first result of performance evaluation is acquired with PassMark Performance Test 6.0, 

which is an off-the-shelf commercial test suites adopted extensively in CPU and system 

benchmarking. Benchmark items could be categorized into CPU-intense jobs and memory-
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intense ones. To present overhead imposed by each configuration more clearly, benchmark 

scores of configuration (b), (c), (d), (e), and (f) are divided by the score of baseline configuration 

(a). As indicated in Figure 14, although the design with decoupled DIFT still imposes high 

overhead (1.43X ~ 5.00X) among all test items, it already outperforms configuration (e) 

significantly. When OPT1 and OPT2 are enabled, the overall performance downgrade can be 

reduced to 1.28X~3.16X, which are 2.74X~7.48X times faster than the interleaved design (f). 

The result demonstrates effectiveness of optimizations proposed in this dissertation. In addition, 

close scores between (e) and (f) give us faith on the representativeness of configuration (f). 

There is an interesting fact presented in Figure 14. First of all, memory-intense benchmark 

items benefit a lot from OPT2, but no significant improvement is shown on CPU-intense ones. 

After analyzing instruction traces of those experiments, it is discovered that EBP-based memory 

accesses in the benchmark program occur less frequently than expected. In such cases, the 

overhead of delivering memory addresses cannot be effectively removed by the optimization. 

Next, same configurations with common workload such as file transferring or source code 

compiling are benchmarked to further investigate the analysis overhead in real applications. 

Details of these workloads are explained below. All measurements are repeated certain times 

and average values are calculated. The number of repetition of each item is listed after the name 

 

Figure 14 : Overhead imposed by different configurations. 

To present overhead imposed by each configuration more clearly, benchmark scores of 

configuration (b), (c), (d), and (e) are divided by the score of baseline configuration (a). 
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of the workload. 

System Booting (50) 

The time needed for booting Windows XP is measured. More precisely, the time elapsed 

from powering on the emulator until Windows loads Graphical Identification and 

Authentication, GINA, which brings up the Windows Security dialog for users to log on, is 

measured. It is chosen as the termination of the measurement because its loading represents that 

the booting-up sequence has come to an end. 

Web Browsing (50) 

Since web-browsing is an extremely frequent user behavior and a common way to get 

attacked by malware, this item is included in benchmark to investigate how our implementation 

can affect the browsing speed. The experiment is carried out by measuring the time needed for 

sequentially browsing top 50 websites, which are ranked by Alexa Internet, an authoritative 

Internet information provider. The sequential browsing mechanism is implemented with a 

Firefox plugin, which automatically visits next website once it receives an event of page loading 

complete. 

Communication over SCP (20) 

In this benchmark a large file is downloaded into the emulator through Secure Copy, a file 

transfer mechanism based on SSH protocol to provide confidentiality and authentication. The 

file consists of 120 MB random binary sequence and resides on a host locating in the same 

100BASE-TX local area network. The benchmark is performed with Putty SCP, which is a 

Win32 implementation of the protocol. The time needed to accomplish the following command 

is measured. 

pscp -l dummy_user -pw dummy_password \ 

192.168.0.254:dummy.dat ./ 

Kernel Compiling (5) 

Compiling the kernel of an operating system is a common workload used to benchmark 

the overall performance of a computer. To be consistent with previous benchmark items, which 

all target on Windows environment, this experiment is carried out by building the Windows 
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Research Kernel in the emulated machine. 

Table 9 shows the time needed by each configuration to accomplish common workload. 

In addition, except for configuration (a) the overhead is calculated by dividing the time needed 

by the configuration by the time needed by configuration (a). To illustrate the overhead more 

clearly a comparison chart is given in Figure 15. As shown, configurations with analysis 

decoupled showed enormous performance advantage over those with inline analysis routines. 

In addition, effectiveness of the two optimizations are also demonstrated in configuration (c) 

and (d). The result shows that our system remains 50%~85% performance of a native emulator 

when both optimizations are enabled. Moreover, compared with configuration (e), a greater 

than 2X performance advantage is given by configuration (e) in nearly all commercial 

benchmark items and workload tests. The observation justifies that the investment of utilizing 

an addition CPU core is paid off. 

To show the overhead imposed on the native machine by the system-wide emulation and 

the decoupled design, we also benchmarked the native performance. In Table 10, the 

comparison of native machine and SWIFT+OPT1+OPT2 is listed. The values shown in the 

 
Figure 15 : The common workload overhead comparison between each configuration. 

Table 9 : Time needed to accomplish common workloads for each configuration. 
  a b (b/a) c (c/a) d (d/a) e (e/a) f (f/a) 

System Booting (50) 27.7 62.1 (2.24X) 58.4 (2.11X) 53.4 (1.93X) 97.2 (3.51X) 195.0 (7.38X) 

Web Browsing (50) 536.1 945.1 (1.76X) 730.6 (1.36X) 632.7 (1.18X) 1554.2 (2.90X) 1754.3 (3.34X) 

SCP Communication(20) 164.6 386.5 (2.35X) 227.5 (1.38X) 214.6 (1.30X) 688.0 (4.18X) 722.8 (4.08X) 

Kernel Compiling (5) 1364.7 3605.9 (2.64X) 2837.7 (2.08X) 2757.1 (2.02X) 5751.2 (4.21X) 14653.2 (12.83X) 

Unit: sec 
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group of CPU-intensive and memory-intensive tasks are the scores given by the PassMark 

benchmark suite. A higher value indicates a better performance. In the common workload group, 

the time needed to accomplish that task is listed. As indicated in the table, even if both 

optimizations were used, the system still suffers from huge performance penalty. The PassMark 

benchmark shows that the overhead can range from 12.74X up to 35.55X. However, in common 

workload the system generates lower overhead than it does in Passmark benchmark. The 

overhead ranges from 2.73X to 8.03X. The phenomenon is understandable because these 

common workloads do not demand CPU and memory as much as Passmark does. Instead, more 

time is spent on waiting for the I/O operations involved in network behaviors or file system 

accesses. 

Obviously, the performance penalty is non-negligible even if the proposed decoupling and 

optimization techniques are used. The performance degradation can be attributed to the inherent 

emulation characteristics. However, by comparing configurations (a) and (d) we understand 

that there is still overhead imposed by DIFT on pure emulation. One direct cause of the 

overhead is the routines injected in code blocks. Although OPT1 and OPT2 aggressively 

eliminate code injections, there are still plenty of them. We also suspect that the overhead is 

Table 10 : Comparison between SWIFT and Native Execution. 

 Benchmark Unit Native (d) 

CPU-intensive 

Integer Math MOps./s 523.4 24.1(21.72X) 

Compression KBytes/s 3128.2 103.0(30.37X) 

Encryption Mbytes/s 13.5 0.4(33.75X) 

Img Rotation Images/s 123.5 9.7(12.73X) 

String Sorting 1000 strings/s 1701.4 64.3(26.46X) 

Memory-intensive 

Mem Alloc Mbytes/s 2118.4 75.8(27.94X) 

MemRead Cached Mbytes/s 1371.2 66.5(20.62X) 

MemRead Uncached Mbytes/s 1340.2 62.2(21.55X) 

MemWrite Mbytes/s 1477.1 87.2(16.94X) 

Common Workload 

System Booting Sec. 10.3 53.4(5.18X) 

Web Browsing Sec. 231.7 632.7(2.73X) 

SCP Comm. Sec. 76.2 214.6(2.82X) 

Kernel Compiling Sec. 343.1 2757.1(8.03X) 
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also contributed by a saturated IF-code delivering queue. In current implementation, the 

analysis thread has not been optimized. Therefore, the speed of the analysis thread, which 

consumes IF-codes, cannot keep up with the emulator. Once the queue is saturated, the emulator 

must wait for the analysis thread. To investigate whether it is the code injection or the saturation 

degrades the performance, we implemented a dummy analysis thread, which performs nothing 

but solely consumes received IF-codes. With the dummy analysis thread, the queue is never 

saturated, and we can measure the overhead incurred solely by the code injected in the emulator. 

The result is shown in Table 11. As shown in the table, the fully-operational taint tracking thread 

causes substantially larger overhead than the dummy helper thread does. The observation 

indicates that, in current implementation, the overhead imposed by DIFT on pure emulation is 

mainly contributed by a slow taint tracker. 

To verify our conjecture, we set up an experiment with two additional profilers in SWIFT. 

One is installed in the emulation thread to measure how many code blocks are emulated per 

second. The other is installed in the DIFT thread to measure the distance between the en-

queuing pointer and the de-queuing pointer periodically. The distance indicates the usage of the 

message-delivering queue. By plotting the two kinds of measurements versus the system clock 

time on the same graph, we can study the correlation between the emulation speed and the 

queue usage. It is worth noting that in our experiment we allocated a 512 MB queue. This 

Table 11 : Performance of QEMU, Dummy Analysis, and SWIFT. 

 Benchmark Unit (a) Dummy (d) 

CPU-intensive 

Integer Math MOps./s 37.3 31.2 24.1 

Compression KBytes/s 213.2 168.2 103.0 

Encryption Mbytes/s 1.2 0.7 0.4 

Img Rotation Images/s 12.4 11.6 9.7 

String Sorting 1000 strings/s 189.0 127.8 64.3 

Memory-intensive 

Mem Alloc Mbytes/s 140.3 113.4 75.8 

MemRead 

Cached 
Mbytes/s 155.0 124.2 66.5 

MemRead 

Uncached 
Mbytes/s 150.5 108.6 62.2 

MemWrite Mbytes/s 171.7 130.9 87.2 
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assures that the saturation (if any) can be observed even if an impractically large queue is given.  

The result is shown in Figure 16. Figure 16 contains two plots, which are acquired in the 

process of running Passmask CPU integer operation and encryption benchmark, respectively. 

In each plot, the emulation speed versus time graph and queue usage versus time graph are 

plotted. The patterns circled by dashed boxes indicate that the emulation performance drop 

when the queue becomes saturated. Namely, the emulation thread will still be cumbered by the 

 
(a) 

 

(b) 

Figure 16 : Plots of emulation speed versus time and queue usage versus time. 

Plot (a) and (b) are acquired in the process of running Passmask CPU integer operation and 

encryption benchmark respectively. The patterns circled by dashed boxes indicate that the 

emulation performance drop significantly when the queue becomes saturated. Namely, the 

emulation thread will still be cumbered by the taint tracking thread eventually. 
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DIFT thread eventually. Namely, the emulation thread will still be cumbered by the DIFT thread 

eventually. The data indicates an interesting fact worth noting. In both plots, the drop is not 

negligible. Namely, the current taint tracking implementation in SWIFT is not able to keep up 

with the emulation part, and it indeed eventually incur significant overhead on long CPU-bound 

tasks. 

The finding above gives us a direction to the possible improvement. Due to the 

implementation effort, in the current implementation of SWIFT the taint tracking thread adopts 

a threaded dispatching way to interpret received IF-code blocks. Although the IF-codes are 

already stored in a very concise format, certain decoding steps are still required to inter-pret. 

To eliminate overhead incurred by the decoding step, it is possible to choose dynamic binary 

translation over interpretation. Namely, we can enhance the IF-code block generation module 

so that it produces not only IF-code blocks but also native binary codes to track taints. With the 

help of OPT1, it would be trivial for the DIFT thread to verify whether a code block is emulated 

without unexpected exceptions and to execute the corresponding taint tracking binary codes. 

The idea above is totally feasible, but it needs further implementation and evaluation. We leave 

it as future work. 

5.4 Malware Analysis with SWIFT 

Although SWIFT is originally designed for accelerate the taint tracking predicate P of 

ProbeBuilder, it also provides practical use for malware behavior analysis. In this section, we 

introduce behavior profiling functionalities and their designs. 

In the emulated IA-32 environment, Professional edition of Windows XP with SP3 is 

installed as the guest operating system. The emulator is powered on with a snapshot of the guest 

system already running so the booting sequence of the guest OS is skipped. The analysis process 

starts with having the file to examine imported into the file system in the emulated machine. 

While being imported, each byte written into the emulated hard disks will be labeled as tainted. 

Having all sectors occupied by the target tainted, we execute the target so that its effects on the 

whole operating system can therefore be revealed. Along the emulation, IF-codes will be 
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generated by the emulator and delivered continuously to the analysis thread as previously stated. 

In our implementation, we give the system only one minute for execution and then freeze it to 

finish analysis. 

Code Injection/Unpacking/Kernel-Level Execution 

Identifying instructions residing in tainted memory regions can reveal various suspicious 

behaviors such as code injection or unpacking. Whenever such an instruction is discovered, we 

could check the value of CR3 to determine in which process the instruction is executed. If it 

resides in processes other than the executable being analyzed, code injection is detected. 

Otherwise, it may be an unpacking behavior. In addition, we can also check the CPU privilege 

to detect execution in kernel space. 

The most intuitive idea toward this is to check whether an instruction fetched by the 

emulated processor locates at a tainted memory location. However, the idea above requires that 

the emulator can always access up-to-date taint tags before fetching instructions. It is obviously 

infeasible because taint tags may have not been updated due to the un-synchronized cooperative 

pattern between the emulator and the analysis thread. To solve this problem without introducing 

synchronization issues, the security check should be placed in the helper so that the status of 

taint tags is assured to be up-to-date. 

Here we state our solution toward this problem. Recall that when OPT1 is enabled the 

emulator generates IF-code blocks while translating instructions. In the IF-code block, we store 

not only IF-codes but also the physical address of the first instruction and the value of CR3 

register in that basic block. In this way, the helper could always detect dirty code execution by 

checking whether that physical address has been tainted every time it accesses an IF-code block. 

And the recorded CR3 value can help us determine in which process the instruction resides. 

Note that we taint data written by dirty code with a different taint color so that unpacked code 

can be distinguished from the original program loaded from disks. 

Outgoing Traffic 

Many malware perform network activities. However, those traffics which are not induced 

by the analyzed item can be annoying and distracting for analysts. These “noise traffics”, such 
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as NetBEUI messages broadcasted periodically by Windows, are usually generated 

spontaneously by the operating system itself. With taint analysis, our system can filter out 

traffics which are irrelevant to the target being examined and generate more concise and 

accurate report. To capture tainted packets we check each DMA operation which copies data to 

the TX-buffer of the emulated NIC as stated previously. To display content of the traffic, the 

first 256 bytes of each packet is recorded so that header information and part of the payload can 

be traced later. 

Dirty Code Execution 

One interesting problem in taint analysis is how to propagate taint tags when the executed 

instruction locates in a tainted memory region. Such cases indicate that potentially problematic 

codes are about to gain full control of the emulated environment, and therefore extra care should 

be taken when we propagate taint tags because crafted programming techniques could be used 

to evade information flow tracking.  

In our implementation we took an aggressive propagation policy for dirty code execution 

by tainting every memory cell written by instruction residing in tainted memory regions. This 

approach assures that all memory modifications done directly by those dirty codes are tracked 

by dirty taint tags. We set this rule with the highest priority in taint propagation to resist taint 

laundering. We do not claim that this approach disables all circumventions because dirty codes 

may still be able to modify memory without being tracked by taking advantage of other clean 

code blocks already existing in the system such as external libraries. 

The second kind of analysis is done at the end of the analysis process instead. They are 

postponed due to following reasons. First, these analysis items cost so much time that activating 

them on-the-fly could slow down the analysis thread dramatically. In addition, these items are 

used to identify persistent behaviors such as file modification. Therefore, postponing these 

analysis items until the end of the analysis cannot jeopardize effectiveness of our system. We 

show such items below. 

File Creation/Modification 

The most representative behavior of malicious persistence is modification on the file 
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system. To sustain their survival after rebooting process, malware always need to implant 

themselves into non-removable storage such as hard disks. Therefore, showing these 

modifications is essential for malware analysis. However, to present the result of taint analysis 

in a more readable way, tainted sectors in hard disks are reversely mapped to file objects which 

possess these sectors. The mapping could be done through parsing the metadata and the file 

allocation table of the file system. We realize the translation by integrating The Sleuth Kit 

(TSK), which is a popular open source toolset for disk forensics, with our system. With the 

functionality provided by TSK, files possessing tainted sectors can be easily inferred in the end 

of analysis. 

Registry Creation/Modification 

Another important behavior should be carefully profiled is modification on the registry. 

The registry is a database which stores configurations for Windows itself or various applications. 

Resembling files and directories in a file system, these data are well-organized in a hierarchical 

way. An entry stored in registry has its key, value, and path. The key and the value of an entry 

in registry can be viewed as the name and the content of a file in file system, and its path can 

be therefore conceived intuitively. Therefore, most malware create new items or modify 

existing settings at certain paths in the registry database, such as start-up application list or file 

extension associations. Monitoring modification on the registry is no less important than file 

system monitoring because locations modified actually give the rich semantics about the 

intention of the target. 

Most registry operation profiling tools do their jobs by hooking specific functions in 

Windows API or kernel since registry database are usually accessed through them. It is also 

possible to follow a similar design so that taint-based checks could be performed when these 

APIs or functions are invoked. However, we do not want to implement this feature with any 

hooking techniques because they can be easily circumvented once the modification does not 

rely on hooked functions. Besides, hooking is so system-dependent that a small update for 

Windows can easily invalidate our system. These considerations lead us to the following 

approach. 
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Modified or newly created keys in registry database files will be extracted in the end of 

analysis. With taint tags of hard disk sectors in hands, tainted fragments in registry database 

files can be therefore identified. Note that the taint analysis assures that these fragments are 

actually injected due to the behavior of the target file. If there is any registry key newly created 

or modified by the target, its key value will be therefore included in one of these fragments. 

With the key value located, we parse the database file and traverse the registry tree reversely to 

infer the name and the path of the key. Although the format of the registry database has never 

been full explained by Microsoft, yet previous papers had already demonstrated its internal data 

structure, which benefits implementation of our traversing algorithm. 

To verify correctness and usability of system-wide DIFT and taint analysis we designed, a 

malware behavior profiling system is implemented based on them. In this section we evaluate 

its effectiveness by profiling real malware spreading in the Internet. The report is presented on 

four dimensions: tainted file system objects, tainted processes, tainted registry keys and values, 

and tainted network traffics. In the meantime, we also submit the sample to ThreatExpert, which 

is a powerful online dynamic malware analysis tool, to check if our system gives matched 

reports. In the following paragraphs we discuss analysis results by case study. 

Case Study 1: TR/Dldr.FraudLoad 

SWIFT generates the following report for TR/Dldr.FraudLoad. 

Taint Analysis Report #1 : TR/Dldr.FraudLoad 

===============  Files =============== 

//$Bitmap 

/Documents and Settings/All Users/Application 

Data/boost_interprocess/20101231030705.500000/GoogleImpl 

/Documents and Settings/dsns/Local Settings/Temporary Internet 

Files/Content.IE5/PH91KL45/flash3[1].exe 

/Documents and Settings/dsns/NTUSER.DAT 

/Documents and Settings/dsns/NTUSER.DAT.LOG 

/Documents and Settings/dsns/Desktop/sample1.exe 

//$LogFile 

//$MFT 

//$Secure:$SDH 



 

- 66 - 

//$Secure:$SDS 

//$Secure:$SII 

/WINDOWS/system32/config/software 

/WINDOWS/system32/config/software.LOG 

/WINDOWS/system32/config/system 

===============   Process =============== 

sample1.exe, PID : 1112 

===============   Registry =============== 

HKLM/software/Microsoft/Windows/CurrentVersion/Run  

Key: SmartIndex 

Value: C:\Documents and Settings\dsns\Desktop\sample1.exe 

HKLM/software/Microsoft/Cryptography/RNG 

Key: Seed 

Value: (binary) 

HKCU/Software/Google 

Key: ID3 

Value: (binary) 

HKCU/Software/Google 

Key: AppID 

Value: 

DFlQqm+e4GDgQ0G+5GTaW1+CtBpxNgwhPn5mcHoouaFMzYkUfw26cM0mM4OYMuKCxg== 

HKCU/Software/Google 

Key: ID2 

Value: (binary) 

===============   Packet =============== 

-> 188.229.90.5 , TCP 1035 -> 80 

GET  /flash3.exe  HTTP/1.1 0x0d 0x0a User-Agent: Mozilla/4.0 (compatible; 

MSIE 8.0; Windows NT 6.1; Trident/4.0) 0x0d 0x0a Host: 188.229.90.5 0x0d 

0x0a Cache-Control: no-cache 0x0d 0x0a 0x0d 0x0a 

-> 76.101.129.197 , TCP 1034 -> 80  

GET  /NS3/.htm HTTP/1.1 0x0d 0x0a Host: 76.101.129.197 0x0d 0x0a Content-

Length: 242 0x0d 0x0a User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; 

Windows NT 6.1; Trident/4.0) 0x0d 0x0a 0x0d 0x0a 

-> 95.168.185.46 , TCP 1031 -> 80 

GET  /Gnodu8Ir.htm HTTP/1.1 0x0d 0x0a Host: 95.168.185.46 0x0d 0x0a 

Content-Length: 242 0x0d 0x0a User-Agent: Mozilla/4.0 (compatible; MSIE 

8.0; Windows NT 6.1; Trident/4.0) 0x0d 0x0a 0x0d 0x0a 
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According to the report generated by ThreatExpert, the Trojan program establishes 

network connections to remote hosts and several registry keys are implanted. As shown in the 

report, several tainted packets and registry keys are captured by our system. The tainted payload 

indicates that it tries to download several files from remote servers. For the registry part, the 

captured tainted value shows a start-up item is registered. Items above agree with report 

reported by ThreatExpert. However, in the file system our report shows that the target program 

contaminates //$Secure, which is used to store NTFS security descriptor table for files and 

directories. The report generated by ThreatExpert gives no information about this. 

One odd phenomenon can be observed here. According to our report, three HTTP requests 

are issued to download different files, yet only flash3.exe is shown in the tainted file section. 

The reason causing this is that NTFS stores files with content less than 1Kbytes in the Master 

File Table (//MFT) directly to save disk space. Therefore, disk blocks occupied by the two 

small HTML files are actually possessed by //MFT. 

Case Study 2: Crypt.NSPM.Gen 

SWIFT generates the following report for Crypt.NSPM.Gen. 

Taint Analysis Report #2 : TR/Crypt.NSPM.Gen 

===============  Files =============== 

/ 

* /Documents and Settings/dsns/Local Settings/History/History.IE5/index.dat 

/Documents and Settings/dsns/Local Settings/Temp/wdagnb7.dll 

/Documents and Settings/dsns/NTUSER.DAT 

/Documents and Settings/dsns/NTUSER.DAT.LOG 

/Documents and Settings/dsns/Desktop/sample2.exe 

//$LogFile 

//$MFT 

//ntdelect.com 

/WINDOWS/system32/config/software 

/WINDOWS/system32/config/software.LOG 

/WINDOWS/system32/config/SysEvent.Evt 

/WINDOWS/system32/config/system 

/WINDOWS/system32/config/system.LOG 

/WINDOWS/system32/kavo0.dll 

/WINDOWS/system32/kavo.exe 
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===============   Process =============== 

System, PID : 4 

lsass.exe, PID : 544 

svchost.exe, PID : 696 

explorer.exe, PID : 1268 

IEXPLORE.EXE, PID : 1108 

IEXPLORE.EXE, PID : 1136 

sample2.exe, PID : 1116 

===============   Registry =============== 

HKLM/SYSTEM/ControlSet001/Enum/Root/LEGACY_GHTRFDCXDSWEA/0000 

Key: Service 

Value: ghtrfdcxdswea 

HKLM/SYSTEM/ControlSet001/Enum/Root/LEGACY_GHTRFDCXDSWEA/0000 

Key: DeviceDesc 

Value: ghtrfdcxdswea 

HKCU/Software/Microsoft/Windows/CurrentVersion/Run 

Key: kava 

Value: C:\WINDOWS\system32\kavo.exe 

HKLM/software/Microsoft/Cryptography/RNG 

Key: Seed 

Value: (binary) 

===============   Packet =============== 

168.95.1.1 , UDP 1027 -> 53  

0xa7 c 0x01 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x03 www 0x0b 

microsofttw 0x03 com 0x00 0x00 0x01 0x00 0x01 

As shown in the second report, several processes are tainted by the target program. The 

power of whole-system information flow tracking is demonstrated in this example. Based on 

the condition we label processes as tainted, we can be assured that dirty code is executed in in 

user-level processes and even kernel space (System, PID: 4). The tainted network packet also 

shows the target program tries to look up the domain name www.microsofttw.com, but no 

additional tainted packets is founded later. It turns out that the query for the domain name is 

responded with NXDOMAIN, and the site is considered as malicious by Google Web Search. 

 n nearly every report generated by S   T we discovered that the key “Seed” in the 

registry entry HKLM/software/Microsoft/Cryptography/RNG/ is tainted. As a 

matter of fact, our system reports it as tainted even if profiling a simple dummy program which 
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exits immediately. It is quite intriguing because the registry is used as the seed of the pseudo-

random number generator for various Windows CryptoAPI functions, of which our dummy 

program does not invoke any. 

To better understand the consequence between the taint source and the registry key, the 

information flow is dumped and traced backward manually with the help of IDAPro. It turns 

out that the pseudo-random number generator calculates a SHA-1 hash value on outputs of 

ZwQuerySystemInformation(), as it wishes to collect entropy from every aspects of the system. 

Above observation is also backed by the PRNG algorithm discussed in [47]. The query routine 

above fills the buffer with a SYSTEM_PERFORMANCE_INFORMATION structure. In the 

structure is contained an integer field named as ReadTransferCount, which is used as a counter 

to accumulate the number of bytes read by all calls to ZwReadFile(). Obviously, it will be 

affected by the argument specifying the length of the output buffer in every invocation of 

ZwReadFile(). The opaque information flow captured also justifies the correctness of our 

implementation. 
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VI. Applications – Kernel Rootkit Recognition 

Chapter 6 

 

Applications – Kernel Rootkit Recognition 

 
Techniques for malware pattern extraction and recognition had been discussed in previous 

research [48][49][50][51][52][53][54]. Among these studies, a very common characteristic 

taken into consideration is the invocation on Application Programming Interface, API, or 

system calls. Since malware are designed to carry out certain malicious tasks, they inevitably 

interact with the running environment through these interfaces. In addition, semantics of 

program behaviors are actually embedded in invocations on those functions since one important 

designing principle for API is descriptiveness. 

However, existing API-trace-based behavior analysis systems lose their advantages when 

facing advanced malware equipped with kernel-level rootkit. Successfully invading the OS 

kernel implies the acquisition of the privilege of system administrator, which is able to 

circumvent or to sabotage any other programs in the system. As aforementioned, Trojan.Srizbi, 

which is responsible for 40% of all the spam on the Internet in 2008 [55], executes all its 

functionalities such as hiding files and sending botnet traffic in the kernel space. 

To cope with problems above, in this dissertation a novel system, MrKIP, is proposed to 

recognize malware with invocation pattern of kernel functions. With the assistance of 

ProbeBuilder, MrKIP implements the generated probes to monitor kernel-level activities. These 

probes are implemented into SWIFT, which is capable of system-level taint tracking. As long 

as any arguments of the probed function are tainted, the invocation and the associated arguments 

are recorded. 
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MrKIP performs rootkit behavior recognition in two phases: pattern training and 

recognition. In the training phase, MrKIP executes variants known belonging to the same rootkit 

family and collects invocations of important in-kernel functions with the associated arguments. 

The collected invocation sequences and the arguments together are used to construct a behavior-

based pattern for that malware family. In the recognition phase, we again execute the given 

suspicious program inside our profiling emulator to collect its in-kernel function invocations as 

its behavior profile, which will be matched against patterns of those known rootkit families. 

6.1 MrKIP Internals 

In the section, we describe the methodology and design of MrKIP. Its task is to test whether 

the behavior of a suspicious program follows the pattern of a certain malware family. In Figure 

17, an overview on the flow chart is given. As shown in the figure, the system operation can be 

separated into the pattern training phase and recognition phase. In both phases, we rely on the 

BehaviorProfiler to dynamically execute programs and collect the in-kernel function 

invocation traces. In pattern training phase, traces of instances from the same malware family 

are fed into the PatternGenerator to construct a pattern for later recognition. The pattern 

consists of an HMM to recognize the temporal pattern hidden in the invocation sequence of in-

kernel functions and normalized string patterns for argument similarity measurement. In 

recognition phase the profiler is again used to record the behaviors in kernel space led by the 

testing subject. The PatternRecognizer is responsible for evaluating the deviation of the 

collected trace from patterns of families. 
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To avoid being detected by malware, the monitoring functionality should be realized with 

the so-called “out-of-box” hooking [2]. Namely, the code to capture in-kernel function 

invocation and their arguments should be implemented in the VMM to be unobservable for 

program running inside the guest operating system. In addition, to mitigate the possibility being 

detected by VM-aware malware, BehaviorProfiler renames the devices and wipe out VM-

related flags in memory, both of which are widely used to detect VM environment. The pre-

analysis phase shown in Figure 17 demonstrates that MrKIP utilizes ProbeBuilder to 

automatically generate probes for kernel functions to monitor. 

6.1.1 Behavior Profiler 

The BehaviorProfiler serves to generate the behavior trace of the subject program. It is 

constructed by installing the probes that ProbeBuilder generated in the pre-analysis phase. The 

profiling process begins with importing the subject program into the hard-disks of the guest 

system. Then, these sectors occupied by that imported file are tainted as the source of 

contamination. Then, the subject is executed and hence the tainted information will be 

propagated all over the system. Once a probe is hit by the execution, its dereference is walked 

through to check whether it reaches tainted information. 

A probe H is defined as a 3-tuple H = (n, locH, ITH), where locH is a memory address and 

ITH is an ordered sequence of 2-tuple (IH
k, T

H
k) for 1≦k≦n. Each IH

k: States {0,1}* is a 

function maps a machine state S to a binary string ω. Namely, it extracts certain information 

 

Figure 17 : MrKIP Architecture 
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according to the register, memory, and taint status of state S. Each TH
k is an element in the type 

collection T specifying how the output of IH
k should be interpreted in later analysis. Therefore, 

when a probe H = (n, locH, ITH) is triggered, a sequence of binary strings (IH
1(S), IH

2(S), …, 

IH
n(S)) will be generated respectively out of the machine state S. We define a behavior B profiled 

by a probe H at state S as a 3-tuple (locB, typeB, dataB), where locB = locH, typeB = (TH
1 , T

H
2, …, 

TH
n) and dataB = (IH

1(S), IH
2(S), …, IH

n(S)). For simplicity, from now on we denote the k-th 

element in typeB and dataB as typeB[k] and dataB[k] respectively. 

The type collection T is a finite set defined heuristically. To achieve generality, elements 

of T should be platform-independent while preserving maximal semantics since it provides 

clues for later data-processing. In our design we defined T as 

{bitmap,u8,u16,u32,text,path,raw,random} 

The bitmap type indicates that the data should be viewed as a vector of individual bits, 

which are generally used in simultaneously expressing states of multiple Boolean variables. 

The type u8, u16, and u32 stand for unsigned integers of 8-bit, 16-bit, and 32-bit data size 

respectively. A text is a sequence of readable characters with length less than 128. To capture 

Table 12 : Excerpts from the profiled behaviors of ad.zenosearch. 

 loc data type 
1 0x0a00020f u32 

0xa85f0101 u32 

0x0402 u16 

0x0035 u16 

“… 0x010x000x000x000x000x000x000x03 www 0x09 

think-adz 0x03 com 0x000x000x01 …” 

raw 

2 “C:\WINDOWS\system32\dbglogfolder\n_inst_05_01_11

.log” 

path 

3 “REGISTRY/USER/S-1-…1003/SOFTWARE/MICROSOFT/WINDO

WS/CURRENTVERSION/INTERNET SETTINGS” 

path 

“EnableAutodial” text 

“0x060xae0xc8” raw 

1 0x0a00020f u32 

0x48378cb8 u32 

0x0403 u16 

0x0050 u16 

“GET /instreport8_2.asp?uid=0 HTTP/1.1Ox0dOx0aUse

r-Agent: [ELT001]52-54-00-12-34-56:99-9E-E4-4C-:

0:...” 

raw 
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all those data used to express a path in tree-like structures such as file paths or Windows 

registry are classified into the type path. Entries which cannot be classified into any categories 

listed above are treated as raw data. 

The type random is a special attribute attached to those data are generated or mixed with 

random numbers. For example, the source port of a TCP or UDP connection is usually picked 

randomly by the system. Due to their randomness, they have negative impact on the learned 

behavior model. Therefore, it is necessary for us to filter out these meaningless data. To achieve 

this, MrKIP locates the pseudo random number generator in the system, and taints its output 

with this special tag. The taint propagation ensures that data calculated out of random numbers 

can be distinguished from ordinary ones. 

Table 12 shows an excerpt from the profiled behaviors of the adware zenosearch. Each 

behavior B is presented in three columns: locB, dataB and typeB. Note that the loc is substituted 

with merely a unique ID since the address is not meaningful. However, it is quite easy for us to 

“guess” which kind of information is processed by the codes near locB by observing dataB only. 

The adware performs DNS lookup for the name “www.think-adz.com”, tries to access a 

file named as “n_inst_05_01_11.log”, writes data into registry, and then issues an HTTP 

query. Note that all these information are acquired in kernel space while zenosearch is executed 

as a user-level application. 

6.1.2 Pattern Generator 

Given a set of malware known in the same family, PatternGenerator tries to build a 

model for that family. The control flow transition and the data characteristics are both powerful 

metrics for recognizing program behavior, and hence they should be both captured. In addition, 

the model should be able to associate a probability to a subject program so that the model 

predicts the probability with which a subject belongs to that family. In our design, 

PatternGenerator attempts to group behaviors with similar arguments together. By viewing 

each cluster as a state, the original sequence of profiled behaviors can be transformed to a 

sequence of transition between states, and a Markov chain can be hence learned. 
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To capture the execution context, we use a Markov chain to model the transferring 

probability between the hooks. An intuitive idea is to associate each locH with a state of the 

Markov chain. In this way, a sequence of behaviors can be viewed as a path in the chain by 

consequently walking through those states specified by locB, and the transition probability 

matrix states can be therefore trained. However, the approach stated above neglects the fact that 

even a single function may provide different functionalities when different arguments are given. 

Therefore, associating a locH with only a single state may lead to a rough model. 

To provide better recognition rate, we further partition those behaviors with the same locB 

into smaller groups based on their argument similarity. The partitioning is done with the 

agglomerative, complete linkage clustering algorithm, which progressively groups elements in 

a bottom-up way. We will describe the algorithm briefly but skip its details since it is a well-

known technique for data clustering. Before applying the algorithm the distance function d to 

measuring the similarity between any two objects in the group, a threshold δ specifying the 

stopping criterion must be determined. The clustering begins with forming a singleton for each 

element. The distance between any two clusters X and Y are given by max(d(x, y)) where x   X 

and  y   Y. The process continuously joins two clusters if the distance between them is less 

than δ. The value of δ determines how similar the elements in the same cluster will be, and it 

hence affects the quality of the learned model. We evaluate the effectiveness with different δ 

value in our experiments. 

It is clear that the characteristic of distance function has a direct influence on the quality 

of partition. We use the following formula to measure the distance between the two behaviors 

B1 and B2. 

where wk are weighting constants defined heuristically in the range (0, 1), and satisfy w1 + w2 

+ … + wk = 1. Note that we do not discuss the distance between different types because our 

goal is to partition those behaviors with the same locB into smaller groups. Since given a locB 

its typeB = (TH
1 , TH

2, …, TH
n) is uniquely determined, the distance will be measured only 
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between two elements with the same type. As previously stated, there are seven possible 

attributes for dataB: bitmap, u8, u16, u32, text, path, and raw. For each of them, we define the 

distance function d(type), which measures the distance between behaviors B1 and B2. Note that 

we do not discuss the distance between different typeB because our goal is to partition those 

behaviors with the same locB into smaller groups. 

bitmap: Data labeled with this attribute are used as flags or attributes such as file opening 

modes. The purpose and meaning are assigned to each bit in the sequence. In addition, the bit 

sequence usually has fixed length. Therefore, the hamming distance function is a good metric 

for measuring the number of bits varying in the two binary strings. To normalize it, the hamming 

distance is divided by the length of the bit sequence. 

u8, u16, and u32: Numeric values in which an ordering relation is maintained are 

attributed with these types. Since they can be viewed as points residing on the line of real 

numbers, the most natural way to define their distance would be: 

Although numeric values may not be used as real numbers, in most cases they still 

preserves certain ordering relations and justify the meaning of above formula. For example, the 

distance between the IP address 64.233.171.18 (Google web server) and 64.233.179.19  

(another Google web server) is intuitively smaller than the distance  between 64.233.171.18 

and 220.181.6.6 (a web server of Baidu search engine in China) due to the geographical 

difference between the machines holding on to these addresses. Another important kind of data, 

which possess good characteristic of real numbers, is time-related values. To ensure the 

consistency among profiling, we always adjust the system time of the emulator to a fixed instant 

every time before profiling a subject. Note that those data originating (even partially) from 

random number generator had been filtered out by the profiler as stated previously. 

text and path: To compare the difference between two human-readable strings the 
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Levenshtein distance, which is usually referred as the edit distance, is widely adopted. The 

distance is defined as the minimum number of edit operations needed to transform the original 

string to another. However, it is obvious that two strings of length 10 differing in 1 bit show 

more difference than two strings of length 1000 differing in only 3 bits. Therefore, it is 

necessary to normalize the edit distance by taking the string length into account. To this end we 

adopted the normalized edit distance proposed by Marzal et al [56]. In their work, the 

normalized edit distance is acquired by minimalizing the average cost spent by each step in the 

edit path. Also, their algorithm works in O(m·n2), where m and n stand of the length of strings, 

and n≦m. Since only those data of lengths less than 128 should be attributed to the type Text, 

the computation is still acceptable. However, data labeled as Path such a pathname or a registry 

entry could be too long to compute the distance efficiently. To accelerate the distance 

computation, we substitute the substring of each level in the path with a 32-bit CRC value 

computed out of them. For example, the string “/Program Files/Microsoft Office” 

will be transformed to “/\x10\x97\xE8\x4A/\xC2\xDC\xC7\x7E” before being fed 

into the normalized edit distance calculator. 

raw: Due to performance issue we do not consider content-aware method to compute the 

distance between data larger than 128 bytes. In our approach, these data are compared with a 

conventional but effective metric, which is the Jensen–Shannon divergence [57]. With the 

occurrence frequency of each of the 256 possible byte patterns computed, the Jensen–Shannon 

divergence measures similarity between two probabilistic distributions. Due to its many 

desirable characteristics such as symmetry, non-negativity, and boundedness, the metric had 

been widely adopted in bioinformatics, genomic comparison, and various data mining 

techniques. 

The algorithm converting behaviors to state transitions is listed in Algorithm 5. A set of 

sequences of behaviors, which are acquired by profiling executions of malware known to be 

the same family, is fed into the Behavior-To-State procedure as input. Line 4-6 groups all 

behaviors with the same locb together so that the clustering is done on behaviors profiled by the 

same hook. With the distance functions defined in previous paragraphs, the complete-linkage 
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clustering algorithm invoked in line 7-8 further cluster behaviors according to their argument 

similarity. In line 9-14, the algorithm assigns an integer n to each group acquired by clustering 

as its state number. In addition, behaviors belonging to the same group are labeled with that 

number. The mapping is recorded in the key-value map C. Lines 15 and 16 convert each 

sequence of behaviors s   BS to a sequence of states by replacing each bk   s with C[bk]. 

With sequences of states SS in hands, it is trivial to learn the Markov transition probability 

matrix from them. However, only the Markov chain itself is not enough. Let’s consider what 

tasks the PatternRecognizer should perform. In recognition phase, a behavior profile, which 

is simply a sequence of behaviors, say bp, will be matched against a Markov chain learned by 

PatternGenerator. Therefore, the matching can only be performed after each behavior in bp 

Algorithm 5 : Behavior to HMM state. 

 

       
     A set of sequences of behaviors.  
 

        
    The number of states.  
     A set of sequences of states  
       ,   , …,  n  is a list of representative behaviors.  

Behavior To State     

      ← A key-value map  mapping an address to a set of behaviors  

      ← A key-value map  mapping a behavior to an integer  

      ←  ,   ← <>,    ←    

            sequence        

                behavior       

                    ←         ∪                   rouping behaviors by      

            value       

           ← Complete Link Cluster                contains sets of behaviors 

                       

                         

                    ←   

             ← pick   out of    and    minimizes 

            ←         

             ←       

            sequence        ,  ,…,          

           ←    ∪       ,      , …,        

            ,   ,    
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has been mapped to states in the chain. To this end, we generate a centroid for each group 

acquired in the clustering by picking the element which minimizes its distance summation to 

all other elements in that group. Behaviors in bp are compared with these centroids, and 

appropriate states can be therefore found. Line 12 and 13 are responsible for the task above, 

and the resulted centroids are preserved in R. 

6.1.3 Pattern Recognizer 

The task of PatternRecognizer is to generate the profile of behaviors of a subject program, 

and to evaluate its deviation from patterns of known malware families. The profiling 

mechanism is totally the same as the BehaviorProfiler, which had been introduced previously. 

In this subsection we discuss how the behavior profile, which is a sequence of behaviors actually, 

can be matched against the pattern generated by PatternGenerator. 
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With the state sequences SS acquired in the last subsection, a Markov chain M can be 

immediately learned from them. Together with the centroids R, the 3-tuple (n, M, R) can give a 

matching score to a given sequence of behaviors. The procedure is listed in Algorithm 6. The 

probability calculation basically follows the procedure of evaluating the probability of a state 

sequence. For each behavior, we calculate the distance between it and every centroid in R to 

figure out which state gives birth to that behavior in line 3-8 of the algorithm. In line 9 the 

transition probability is cumulated. In the end, the geometric mean of the cumulated product is 

returned as the output. 

Note that the distance between the behavior and its closest centroid could be still larger 

than the threshold δ. Since no appropriate state can be found for such behaviors in the matched 

Algorithm 6 : Calculation of Matching Degree 

 

       
    A sequence of behaviors. 

    A  -tuple    ,  ,   , where  

         is the number of states, 

         is the Markov transition matrix, where   ,  preserves initial  

            probability of state k. 

              ,   , …, r   is the list of centroids. 
        

   A value in   ,   indicating the matching degree between   and   . 

 

Calculate Matching  egree  ,    

      ←  ,   ←  ,   ←   

                  

          ←  ,   ←   

              ←   to   

              ←    ,     

                          

                 ←  ,   ←   

           ←       ,  

           ←   

          ←       
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pattern, they should be considered as total deviation from that model. In such a case, the index 

k remains as its initial value 0, which is assigned at line 3. Therefore, before the algorithm starts 

we search for the smallest value in the matrix M and replace all elements Mk,0 with it for all 1

≦k≦n. Behaviors whose arguments present huge deviation from that model will attenuate the 

value of the final output. 

6.2 Experiments 

In order to evaluate performance and precision of MrKIP, we conduct three sets of 

experiments. In the first experiment, the trojan Srizbi is used to demonstrate MrKIP’s profiling 

mechanism against pure kernel-level rootkits. The second experiment measures the 

performance of MrKIP, showing its capability to recognize rootkits in a reasonable time. In the 

last experiments, we cluster 536 kernel-level rootkit instances with VirusTotal, and divide them 

into training set and testing set randomly. Then, we evaluate the effectiveness of recognition. 

All our experiments are conducted on an Intel i7 machine with Windows 7 OS. Samples used 

in experiments are collected from offensive computing, a public sample sharing forum. Please 

note that MrKIP can be also applied on the recognition of ordinary user-level malware, since 

their behaviors are eventually executed through kernel-level functions. However, our 

experiments focus on the evaluation of the effectiveness of MrKIP against advanced, kernel-

level trojans. 

6.2.1 Case Study : Srizbi 

Srizbi is one of world’s largest botnet. With the capability to hide itself from both user and 

system level, it is difficult to remove and detect. Since Srizbi is executing totally in kernel mode, 

it can make its files and network traffic invisible to bypass detection. With these advanced 

rootkit technique, Srizbi is considered one of sophisticate rootkits. In order to demonstrate 

correctness of BehaviorProfiler, we use this famous rootkit family as a case study. We use two 

variants, Trojan.Win32.Srizbi.ah and Trojan.Win32.Srizbi.x, labeled by Kaspersky, to evaluate 

correctness of the extracted behavior profiles. 

Our tool records     behaviors in both sample’s profiles. We can observe that both Srizbi 
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samples first delete some system files and then do some file manipulation to driver files. It also 

registers itself as a system service. We also uploaded the Srizbi trojan instances onto two famous 

online malware analysis systems, Threat Expert and Anubis, for comparison. It turns out that 

Anubis does not generate information at all about it. Threat Expert captured certain registry 

modification behaviors, which form merely a subset of our profiling result. This comparison 

shows that our kernel-level behavior profiling is more effective than conventional approaches. 

The whole HMM model generated by PatternGenerator for Srizbi contains more than a 

hundred states, which are difficult to present in the article. To illustrate the idea, we show in 

Figure 18 a portion of the generated pattern. Each node is a clustered state, and the string inside 

the node is the data selected as the centroid for that cluster. On each edge the transition 

probability is also listed. In the model we can observe the three major types of captured 

behaviors: registry modification, packet transfer, and process creation. As shown, the transition 

probabilities between the sequential registry modifications are 1. This matches the convention 

that registering a program as a system service requires setting up multiple registry entries. 

 

Figure 18 : Constructed model for Srizbi. 
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6.2.2 Effectiveness of Recognition 

To evaluate the effectiveness of PatternRecognizer of MrKIP, the next experiment 

compares the clustering result of MrKIP with the clustering done by commercial an-ti-virus 

software. The comparison is performed as follows. For each collected rootkit instance, we 

upload it onto VirusTotal, which is a website providing simultaneously the analysis results of 

dozens of anti-virus software. Two instances which reported by any different anti-virus software 

as the same family will be grouped together. This is used as the ground truth, and our recognition 

result will be compared with it. The 536 rootkit in-stances are then separated into the training 

set and the testing set. We divide one family into two partitions with equal sizes, intending to 

keep the total size of the training set equal to that of the testing set. Yet, certain family contains 

so few variants that we have to maintain an enough amount of instances for training, leading to 

a slightly imbalanced partition. In the end, we have 351 rootkit samples in the training set and 

185 samples in the testing set. 

For each instance in the testing set, our PatternRecognizer compares it with each 

constructed model and generates a matching score. Thereby, through sorting we can observe in 

which place the correct group (the right answer) gets among all other families. We refer to the 

index of the correct group in the sequence of families (sorted with the similarity score, from 

high to low) as the rank of that instance. For instance, if the similarity score of family 

Trojan.Win32.Delf takes the fourth place among other families when we recognize 

Trojan.Win32.Delf.cit, which is confirmed a variant of Trojan.Win32.Delf, the rank of 

Trojan.Win32. Delf.cit is 4, which means Trojan.Win32.Delf is fourth similar to 

Trojan.Win32.Delf.cit. 

 The cumulative distribution of classification ranking is shown in Figure 19. The X-axis 

represents the rank and the Y-axis indicates the cumulative percentage of instances. A 

coordinate (x,y) in the figure indicates that y% instances of the whole testing have rank numbers 

less than x, which indicate the correct family of y% instance can be found in top x similar 

families. A steeper curve indicates more instances have lower rank numbers, which implies that 
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the correct family gets a higher score from our PatternRecognizer. 

Meanwhile, since there is a parameter δ in our algorithms, we repeat this experiment 

multiple times with different threshold values. When δ is set to 0, each behavior will form its 

own behavior group, even if their arguments are similar. As shown, without grouping similar 

behaviors, the classification result is poor. After raising the threshold value to 0.2, 60% of the 

instances in the testing set have rank number 1, indicating MrKIP finds correct answer. Note 

that the cumulative curve also indicates that 80% instances have rank less than 4. Namely, 

MrKIP can successfully sort the correct answer in the top three places for 80% test instances. 

The cumulative percentage even increases to 90% when rank reaches to 5. If we further raise 

the threshold value, unrelated behavior may be group together. Therefore the classification rate 

will decrease. As our experiments shows, the appropriate threshold is around 0.2. 

  

 

Figure 19 : Cumulative Ranking. 
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VII. Limitation and Discussion 

Chapter 7 

 

Limitation and Discussion 

 
Although the effectiveness of ProbeBuilder has been demonstrated in the experiments, it 

is neither complete nor sound in the perspective of code coverage. However, in this application, 

completeness is not required since ProbeBuilder only attempts to discover probable locations 

for VMI implementations. Finding all of them is not mandatory. ProbeBuilder tries to approach 

soundness by repetitively exercising the subject behavior. However, the validity of generated 

data dereferences is still not guaranteed either. The experiment in section 5.3 showed that the 

collected probes captured a small amount of irrelevant data, namely 0.21% of the total data. 

This ratio is competitively low as a human-implemented probe can get, considering the 

tremendous effort saved by ProbeBuilder. 

The scope of dereference analysis in current implementation only covers data originating 

from dedicated data sources. The API arguments demonstrated in the experiment fit in this 

category. However, it is sometimes desirable in a probe implementation to record data 

spontaneously generated by the operating system. For instance, a probe on process creation is 

often used to capture process ID or page directory base address of the created process. Since 

these data do not originate from a finite set of dedicated data sources, the predicate P 

implemented with taint analysis becomes less effective. To cope with the limitation, there exists 

a possible solution. Through virtual machine recording and replaying, the evolution of the 

system state can be faithfully reconstructed at bit-precision [52][58]. Since these methods are 

able to completely remove non-determinism of the machine state, the targeted data (e.g. process 
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ID, page directory base address, etc.) will possess the same values in the replaying phase. 

Therefore, implementing the predicate P with fixed pattern matching may solve the problem. 

However, combining ProbeBuilder with the replaying framework requires further 

implementation and is out of the scope of this study. We leave it as a future work. 

Another potential problem in current implementation is that the location (the EIP column 

in Table 5) of discovered probes may not be applicable directly to the target system since it may 

vary due to non-deterministic memory layout. This issue can be resolved by implementing the 

probe trigger with code-pattern matching instead of EIP-matching. It can be also optimized 

back to EIP-matching through scanning for the code patterns beforehand. 

The collected probes provide locations suitable for placing triggers to activate the 

corresponding VMI monitor. Theoretically, the generated probe candidates are applicable not 

only to this emulator, but also to all systems with the identical OS kernel installed, as they are 

supposed to share the same control flows. The inferred data dereferencing steps should be also 

applicable as long as the target system uses the same kernel. In addition, their applicability is 

not interfered by the type of virtualization (emulated, virtualized, etc), either. In practice, 

however, even with the identical OS kernel, two machines with different hardware 

configurations can still lead to partially inconsistent control flows due to the divergence of their 

device drivers. Currently, ProbeBuilder does not differentiate between the probe candidates 

located in driver modules and those in the main kernel body.  It simply attempts to discover as 

many probe candidates as possible. 

On the other hand, taint analysis has its own limitation. Although information flow 

tracking is a powerful technique for malware analysis, it suffers from certain well-known 

problems [59], namely the under-tainting and overtainting issues. To prevent SWIFT from 

being laundered by the circumvention, we taint all memory-writing operations performed by a 

code block existing in a tainted memory region as stated in the “Dirty Code Execution” 

paragraph in section 6. The over-tainting effects caused by the approach above was 

compensated by the conservative index-register tainting proposed in subsection 4.1.3, which 

only propagate information flow for 1-byte or 2-bytes indirect memory reading from index 
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register to the destination register. However, a crafty malware may still circumvent the approach 

above with return-to-libc or return-oriented programing techniques, since they do not introduce 

any dirty code blocks. 

Another possible way to elude information flow tracking is through control-flow. The issue 

has been discussed [10]. In addition, malware can hide their intentions with time-bomb or 

trigger-based behaviors. Revealing such behaviors is a well-known and very hard problem in 

this field. In this study we only focus on the decoupling techniques and how malware analysis 

should be performed in such a decoupled design. Solutions to these problems are out of the 

scope of this dissertation. 
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VIII. Conclusion 

Chapter 8 

 

Conclusion 

 
This dissertation introduces ProbeBuilder, a powerful framework to automate the probe 

construction process in the implementation of any VMI-based systems. To our knowledge, 

ProbeBuilder is the first system proposed to automatically uncover the opaque chaining 

relations between undocumented kernel data structures. Through recursively walking through 

the pointers in the guest memory, potential probe locations and data dereference are collected 

during the emulation process. With the control flow extracted from the kernel image, the 

proposed refinement algorithms eliminate non-dedicated probe candidates, producing probes 

of good quality. Our experiment shows that ProbeBuilder only needs 7 minutes for simpler 

behaviors, and 167 minutes for a complicated behavior like creating probe candidates for 

process creation. Although ProbeBuilder is based on a heuristic multi-run refining process, the 

experiment shows that the probes generated by ProbeBuilder can capture all events that 

conventional monitors captured. Only a small number of false positives and irrelevant data 

(0.21%) are generated. Furthermore, the generated probes can be practically applied to 

behaviors profiling for both user-space and kernel-space activities. ProbeBuilder works in a 

black-box paradigm, automatically generating code snippets of probes for KVM, Xen, and 

QEMU. Considering the effort and time spent in the conventional reverse-engineering way, 

ProbeBuilder is very effective in automatically generating probes. Developers of VM-based 

analysis tools can directly benefit from the deployment of ProbeBuilder. 

ProbeBuilder utilizes dynamic taint tracking to label data of interest. In order to provide 
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practical speed during analysis, a decoupled design of system-wide information flow tracking, 

SWIFT, is presented to shift the heavy overhead imposed by the analysis process onto another 

processor core. Unlike previous DIFT-capable system emulators injecting analysis routines 

directly into generated code blocks, our design extracts information flows only at translation 

phase, and therefore analysis to be performed on extracted information flows can be carried out 

by different threads. To further improve the analysis performance, two optimization techniques 

are proposed herein to eliminate unnecessary message exchanges between the emulator and the 

helper executing analysis routines. Compared with conventional interleaved design, SWIFT 

operates 1.82~3.22 times faster on common workloads. It runs 2.74~7.48 times faster than the 

interleaved design does in PassMark Performance Test 6.0. 

To evaluate the effectiveness, a malware behavior analysis platform is implemented based 

on SWIFT. Due to the feature of system-wide tracking, it successfully detected contaminated 

information flows spreading into file systems, processes, registry, and network interfaces. 

Based on the decoupled design and optimizations, the system can generate comprehensive 

reports on malware analysis at a much higher speed than previous research. 
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