

National Chiao Tung University

Department of Computer Science

Dissertation

ProbeBuilder - Automating Probe Construction in Virtual Machine

Introspection through Uncovering Opaque Kernel Data Structures

ProbeBuilder - 透過挖掘隱藏作業系統核心資料結構以自動化

虛擬機器外部觀察的探針建構

Student: Chi-Wei Wang

Advisor: Shiuhpyng Shieh

July, 2014

ProbeBuilder - 透過挖掘隱藏作業系統核心資料結構以自動化虛

擬機器外部觀察的探針建構

ProbeBuilder – Automating Probe Construction in Virtual Machine

Introspection through Uncovering Opaque Kernel Data Structures

研 究 生：王繼偉 Student: Chi-Wei Wang

指導教授：謝續平 Advisor: Shiuhpyng Shieh

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

July 2014

Hsinchu, Taiwan, Republic of China

中華民國一百零三年七月

i

ProbeBuilder - Automating Probe Construction in Virtual Machine Introspection

through Uncovering Opaque Kernel Data Structures

Student: Chi-Wei Wang Advisors: Shiuhpyng Shieh

Department of Computer Science

National Chiao Tung University

ABSTRACT

VM-based inspection tools generally implement probes in the hypervisor to

monitor events and the state of kernel of the guest system. The most important

function of a probe is to carve information of interest out of the memory of the

guest when it is triggered. Implementing probes for a closed-source OS demands

manually reverse-engineering the undocumented code/data structures in the

kernel binary image. Furthermore, the reverse-engineering result is often non-

reusable between OS versions or even kernel updates due to the rapid change of

these structures. This dissertation proposes ProbeBuilder, a system automating the

process to inference kernel data structures. Based on dynamic execution,

ProbeBuilder searches for data structures matching the recursive “pointer-offset-

pointer” pattern in guest memory. The sequences of these offsets, which are

referred to as dereferences, are refined with a repetitive training process.

ProbeBuilder further prepare stable probe locations for them with control flow

analysis, and generate code snippets of probes for QEMU, KVM, and Xen. The

experiment on Windows kernel shows that ProbeBuilder efficiently narrows

hundreds of thousands of choices for kernel-level probes down to dozens, and the

generated probes effectively capture both user-level and kernel activities. The

finding allows analysts to quickly implement probes, facilitating rapid

development/update of inspection tools for different OSes. With these features,

ProbeBuilder is the first system capable of automatically generating practical

probes that extracts information through dereferences to opaque kernel data

structures.

ii

ProbeBuilder - 透過挖掘隱藏作業系統核心資料結構以自動化虛擬機器外

部觀察的探針建構

學生: 王繼偉 指導教授: 謝續平

國立交通大學

資訊科學與工程研究所

摘 要

Virtual Machine Introspection, VMI為一藉由虛擬機器運行目標程式，由虛擬

機器外部進行行為觀察之分析方法。而此種分析工具為了能攔截客戶端系

統事件並監視作業系統核心狀態，皆需要在虛擬機器管理器(Hypervisor)中

插入程式探針(Probe) 。插入程式探針的目的在於，使客戶端作業系統內的

程式執行流程觸及目標點時，虛擬機器管理器能暫停其執行並取得控制權。

更重要的是，程式探針必須能從客戶端機器的記憶體內挖掘出與該事件有

關的資訊。然而，若要為原始程式碼不公開的商用作業系統實作程式探針，

往往需要對其核心進行手動軟體逆向工程，以得知其內部的程式流程與資

料結構。更甚者，作業系統核心的頻繁更新，以及整體作業系統的更新，經

常導致其程式與資料結構改變，因此逆向工程所得之結果，往往無法重覆利

用。本篇論文提出 ProbeBuilder，為一自動化推斷作業系統核心程式與資料

結構之系統化方法。經由動態執行，ProbeBuilder在客戶端機器的記憶體中，

不斷挖掘遞迴的「指標-偏移量-指標」的資料模式，以搜尋可能的資料結構。

此外，透過程式流程分析， ProbeBuilder 可為所發現的資料結構，產生相對

應的探針位置，並自動生成可插入 QEMU,KVM 以及 Xen 的程式片段，達

成自動化的探針建構。經實驗驗證，ProbeBuilder可自動為 Windows作業系

統快速地產生數十至數百的程式探針，並且可正確地捕捉使用者層級與核

心層級的事件。本論文所提出之方法將可為分析人員利用，為不同的作業系

統或核心版本，快速進行 VMI工具之開發與更新。本論文所提出的系統核

心資料結構挖掘方法，讓 ProbeBuilder成為第一個具有自動化探針建購功能

的系統。

iii

Dedicated to my parents

獻給我的父母

iv

Acknowledgement

Though the following dissertation focuses on the reconstruction of kernel-level data

structures, it is actually based on a collection of resulted products of research topics that I

explored during my Ph.D. career. The development and implementation of these systems could

never be completed without the help, support, guidance and efforts of a lot of people.

Firstly, I would like to express my sincerest gratitude to my advisor, Professor Shiuhpyng

Shieh (謝續平教授) who gave me the chance to explore the topic of software security and

malware analysis. His altitude and strong experience on academic research helped me explore

my ideas in a depth that I could never imagine. His guidance on academic writing also helped

me transform my projects into academic publication. Working in the Distributed System and

Network Security Laboratory, DSNS Lab, which is led by Prof. Shieh, I was able to meet and

cooperate with the best researchers and students in the field. In my graduate life he unreservedly

gave me both abundant research resources and full financial support, which are indispensable

for me to complete these projects.

Chia-Wei Wang (王嘉偉), Chia-Wei Hsu (許家維), Bing-Han Li (李秉翰), and Chong-

Kuan Chen (陳仲寬) are also Ph.D. candidates working in DSNS Lab. It is truly fortunate to

work with these talented programmers and creative researchers. We co-worked on many

research topics and projects in these years. Many thoughts and ideas are generated and gradually

refined in the discussion among us. The life in DSNS Lab is always accompanied with

responsibilities due to the close cooperation between our laboratory and industries or

government institutions. Without their support, implementations of these systems would take

much longer. They have my sincerest appreciation and best wishes on their graduation.

Ming-Hua Kuo (郭明華) works in the laboratory as our administrative assistant. She is one

of the most intellectual and capable woman I have ever known. The laboratory would never

operate as smoothly as it does right now without her effort. I already miss bickering with her

after all these years.

My parents, 王敏玉 and 王良知, gave me unconditional love and support throughout my

life. They made to ensure that I had all the resources to pursue excellence since I was a child.

They receive my deepest appreciation and love for their dedication and the faith in me.

Over the past eight years I met lots of people in DSNS Lab. We co-worked, played, travelled,

and laughed (got pissed-off, also) together. I will always treasure these moments. For慧雯, 政

仲, 經偉, 均翰, 穎昌, 汎勳, 芳瑜, 慶峯, 昀閔, 子建, 晏如, 佳惠, 宗賢, 居安, 怡嫻,

善新, 麟鈞, Sky, Michael, and all other friends that I met in this laboratory, I would like to say:

“Thank you for making the life of this nerd more colorful than he could’ve ever dreamed of.”

v

Table of Contents
Page

English Abstract ... i

Chinese Abstract ... ii

Acknowledgement ... iv

Table of Contents .. v

List of Tables .. vii

List of Figures .. viii

List of Algorithms .. ix

I. Introduction .. 1

1.1 Contribution .. 7

1.2 Synopsis .. 8

II. Related Work .. 10

III. System Design of ProbeBuilder ... 14

3.1 Data Dereference Analysis ... 15

3.1.1 Implementation of the Predicate P ... 20

3.2 Control Flow Graph Builder ... 22

3.3 Control Flow Graph Analysis ... 24

3.4 Code Generator ... 27

IV. System Design of SWIFT ... 28

4.1 Encoding Information Flows of Instructions .. 30

4.1.1 IA-32 Instruction Data-Flow Modeling .. 31

4.1.2 IA-32 Indirect Memory Access .. 37

4.2 Delivering IF-codes and Memory Addresses ... 38

4.3 Optimization ... 40

4.3.1 OPT1 : Delayed-Delivering on a Per-Block Basis ... 40

4.3.2 OPT2 : Stack-based Indirect Accessing.. 42

4.4 Peripherals .. 44

V. Evaluation ... 46

5.1 Probe Generation .. 47

5.2 Effectiveness of Generated Probes ... 51

5.2.1 Monitoring User-Space Activities .. 51

5.2.2 Monitoring Kernel-Space Activities ... 51

5.3 Performance .. 52

5.4 Malware Analysis with SWIFT .. 61

VI. Applications – Kernel Rootkit Recognition ... 70

6.1 MrKIP Internals .. 71

6.1.1 Behavior Profiler .. 72

vi

6.1.2 Pattern Generator ... 74

6.1.3 Pattern Recognizer ... 79

6.2 Experiments ... 81

6.2.1 Case Study : Srizbi ... 81

6.2.2 Effectiveness of Recognition ... 83

VII. Limitation and Discussion ... 85

VIII. Conclusion ... 88

Bibliographies .. 90

Autobiography ... 98

vii

List of Tables
Table 1 : An exemplified procedure to create probe w/ ProbeBuilder 4

Table 2 : The probes generated by ProbeBuilder.. 5

Table 3 : Typical Aggregated IA-32 Information Flow. ... 32

Table 4 : Information Flow of Common IA-32 Instructions .. 34

Table 5 : Remainder candidates after each run of Algorithm 1. ... 47

Table 6 : Remainder candidates after Algorithm 2 and Algorithm 3. 48

Table 7 : Eliminated non-dedicated functions. ... 49

Table 8 : Examples of probes, data dereferences, and data collected by Algorithm 1. 50

Table 9 : Time needed to accomplish common workloads for each configuration. 57

Table 10 : Comparison between SWIFT and Native Execution. .. 58

Table 11 : Performance of QEMU, Dummy Analysis, and SWIFT. .. 59

Table 12 : Excerpts from the profiled behaviors of ad.zenosearch. ... 73

viii

List of Figures
Figure 1 : A probe example. ... 2

Figure 2 : An overview of ProbeBuilder workflow. ... 15

Figure 3 : A simplified example of the search process. ... 19

Figure 4 : A typical approach to label arguments of a user-level API as taint source. 21

Figure 5 : Examples of undesired probe candidates. ... 23

Figure 6 : An example of the output of Algorithm 3 .. 26

Figure 7 : Example of the generated probe for KVM. ... 27

Figure 8 : An overview on the basic system architecture of SWIFT. 29

Figure 9 : Representative instructions of aggregated information flow. 33

Figure 10 : Formats of IF-codes. .. 36

Figure 11 : Circular queue for IF-code delivering. .. 38

Figure 12 : An improved system design with OPT1. ... 41

Figure 13 : Scenarios of EBP-based memory address with offset within range -1024~+512. 43

Figure 14 : Overhead imposed by different configurations. .. 55

Figure 15 : The common workload overhead comparison between each configuration. 57

Figure 16 : Plots of emulation speed versus time and queue usage versus time. 60

Figure 17 : MrKIP Architecture ... 72

Figure 18 : Constructed model for Srizbi. .. 82

Figure 19 : Cumulative Ranking. ... 84

ix

List of Algorithms

Algorithm 1 : System Emulation with Dereference Analysis... 17

Algorithm 2 : Search for Leading Nodes.. 24

Algorithm 3 : Elimination of Non-Dedicated Code Blocks ... 25

Algorithm 4 : Calculation of the physical address generated by EBP-based accessing. 43

Algorithm 5 : Behavior to HMM state. .. 78

Algorithm 6 : Calculation of Matching Degree .. 80

- 1 -

I. Introduction

Chapter 1

Introduction

Virtual machine introspection, or VMI, has received much attention in digital forensics

and malware analysis. Executing unknown programs inside a dynamically created, isolated

virtual machine, VMI systems allow analysts to observe the behaviors exposed by the subject

program. Unlike conventional monitors and profilers, which co-exist with the subject program

in the same execution environment, VMI is generally implemented at the level of the virtual

machine manager, or the so-called hypervisor, that is, a VMI-based monitor (VMM) executes

even beneath the operating system, allowing analysts to observe without causing interference.

There are various types of VMI applications. A specific type of VMI usage, that is, probing,

is particularly useful for program behavior analysis. Probing refers to the process to suspend

the guest virtual machine at specific moments, in which the state of the guest system can be

collected and analyzed. Probing is used to monitor system events as well as program behaviors.

In order to correctly capture every single event without manual operation, a trapping mechanism

is generally needed to transfer execution to the hypervisor every time sensitive library functions

are entered.

Although different virtualization methodologies (e.g. emulation, binary translation,

hardware-assisted virtualization, etc.) have completely different trapping mechanisms, all of

them need the same piece of information to be activated: the location of the trap. The trap

location is generally specified with a memory address. Once the address is specified, the

trapping mechanism is responsible of hijacking the execution every time the program counter

- 2 -

of the guest system matches the specified address. The implementation of traps on different

virtualization platforms had been widely discussed in Sandbox-based analysis tools [1][2],

since they often adopt probing to profile malware behaviors. This dissertation focuses on

another issue: finding suitable location for placing the trap (probe).

Inserting probes in high-level functions like Win32 API or system calls can easily lead to

incomplete profile results. First, the powerful functionality of modern operating systems allows

a task to be done through different API or system calls. Exhaustively placing probes in all high-

level functions is time consuming and error-prone due to the large number of these functions.

Secondly, rootkits often invade the OS kernel to conceal their existence and disguise their

malicious activities. Trojans Srizbi [55] and Stuxnet exemplify rootkits implemented in the

kernel space. Merely probing high-level functions can be easily circumvented.

Instead, kernel functions are excellent candidates for placing probes due to their

inevitability in all execution paths. Yet, kernel-level probing is a much more difficult task. The

Figure 1 : A probe example.

(a) A revealed internal kernel data structure (dereference) from stack parameter to target data.

(b) A probe placed in PspCreateThread() to retrieve command line parameters through walking

this dereference.

 a

 b

 -

u32 ebp = guest.EBP;

u32 L1 = guest.mem[ebp-0x94];

u32 L2 = guest.mem[L1 + 0x1B0];

u32 L3 = guest.mem[L2 + 0x10];

u32 L4 = guest.mem[L3 + 0x48];

Read buffer at guest.mem[L4]

Completing process
creation

Completing process
creation

- 3 -

following two challenges are often encountered.

Data Structure Inference – A useful probe extracts data of interests when it is triggered

For instance, a probe logging process creation activities is often demanded to capture the

program image path and the command line parameters. However, this usually demands

traversing through undocumented kernel data structures. As shown in Figure 1(b), given a probe

placed on the thread creation routine PspCreateThread() in the Windows kernel, it takes the

traversing steps shown in Figure 1(a) to reach the buffer storing the command line parameter

string. For conciseness, these traversing steps are referred as dereferences. Reverse-engineering

the undocumented kernel function PspCreateThread() leads to the fact that the pointer to the

data structure EPROCESS is the fifth function parameter, which locates at [EBP-0x94] by

the standard calling convention. The rest of the steps are acquired through reverse-engineering

undocumented data structures. In addition, the revealed dereferences vary between kernel

versions since they are only for internal use. A simple update could easily invalidate all the

effort.

Execution Flow Inference –Generally speaking, each probe is dedicated to profiling a

single class of behaviors. Therefore, a probe must be placed on and only on the execution path

of that specific behavior. For instance, MmCreateProcessAddressSpace() is a good candidate

for profiling Windows process creation. It is used to create the page table of a process being

created, that is, it is only invoked during process creation. This function is referred to as

dedicated to process creation. Unfortunately, these kernel functions are often insufficiently

documented. Facing a close-source operating system like Windows, one must reverse-engineer

the OS kernel to reveal its execution flow to determine whether a code chunk is dedicated to a

subject behavior.

- 4 -

In this dissertation, a novel system, ProbeBuilder, is proposed. ProbeBuilder is the first

system capable of automatically generating practical probes that extracts information through

dereferences to opaque kernel data structures. It can minimize the effort of kernel-level probing

through resolving the two aforementioned challenges. ProbeBuilder is able to automatically

infer the kernel execution flow and data structures that are traversed in occurrence of an event

or behavior. Initially, to identify the data of interest in memory, ProbeBuilder requests an

operator to specify the identification method. Currently, ProbeBuilder supports the following

three methods: fixed pattern, regular expression, and taint tracking. Based on the QEMU

emulator, ProbeBuilder exercises the guest operating system and mines for valid dereferences

to the data of interest.

We give an example herein to demonstrate the usability of ProbeBuilder. Supposed that an

analyst is requested to implement a kernel-level probe to monitor file-writing operations in a

file system. The probe is expected to capture three attributes, namely the path to the accessed

file, the data written, and the ID of the process that issues the request. Table 1 illustrates a

sequence of steps taken to create this probe with ProbeBuilder. The first column indicates where

each step is taken. As shown, only eight steps are needed, where the human operator

Table 1 : An exemplified procedure to create probe w/ ProbeBuilder

Target Sequence of steps

Guest Run notepad.exe.

Guest Acquire the PID of the notepad.exe process.

Guest Enter a unique string str1 in the notepad.

Guest Open the “Save As” dialog, and name it with a unique string, str2.

ProbeBuilder Specify search pattern 1: Fixed-Pattern, PID

ProbeBuilder Specify search pattern 2: Regular-Expression, str1

ProbeBuilder Specify search pattern 3: Regular-Expression, str2

Guest Click the “save” button.

- 5 -

involvement is minimal. The entire procedure only takes a few hours to complete. The results

in Table 2 illustrate the output of ProbeBuilder. Each generated probe consists of a code location,

dereferences to the three attributes, and the string captured in the process. With these pieces of

information, the code generator of ProbeBuilder can generate corresponding code snippets. The

demonstrated procedure shows that ProbeBuilder effectively convert the difficult task of

inspecting the OS kernel to a trivial user-space routine.

The most flexible way to specify data of interest is through the third method provided by

ProbeBuilder: taint tracking. Taint tracking, also known as dynamic information flow tracking,

DIFT, has been a widely-adopted analysis technique for software testing, malware analysis, and

intrusion detection [3][4][5][6]. Using emulation [7] or binary instrumentation [8][9], executed

instructions and accesses on memory or peripherals can therefore be monitored and analyzed.

An application of this technique is taint analysis where CPU registers, memory cells, and sectors

of hard-disks are augmented with a “dirty bit” to indicate whether a memory byte is tainted or

not. The states of these bits are updated according to information flow caused by data movement

or calculation.

Although the effectiveness of DIFT and taint analysis has been demonstrated in much past

research [10][11][12][13], it comes at the cost of high performance overhead. Although various

research works toward software-based DIFT speeding-up were proposed in the last few years,

Table 2 : The probes generated by ProbeBuilder

EIP Dereference Data

0x804e7461

IopUpdateWrite

TransferCount

esp +16 +12 +0 +60 0xAC,0x0E (3756)

esp +0 +84 +36 +60 __ProbeContent__\0a\00

esp +12 +36 +52 \0P\0r\0o\0b\0e\0T\0e\0s\0t\0.\0t\0x\0t\0

0xf9926d22

<Unknown>

esp +4 +120 +0 +32 0xAC,0x0E (3756)

esp +4 +192 +36 +12 __ProbeContent__\0a\00

esp +20 +0 +40 +16 \0P\0r\0o\0b\0e\0T\0e\0s\0t\0.\0t\0x\0t\0

- 6 -

they are limiting their scopes in one or several individual user-level process

[14][15][16][17][18][19][20]. Since ProbeBuilder focuses on the data structure and execution

flow inside the kernel of the operating system, none of the existing approaches can be applied.

An ideal approach is to decouple the analysis task from the system emulation so that the

two tasks can be performed in parallel. However, in reality the analysis task has heavy data and

control-flow dependency on the outcome of the emulation process. Due to register-indirect

addressing and virtual address translation, memory addresses are unpredictable and can only be

acquired after being generated by emulator’s MMU. Consequently, causal relation and data

dependency are introduced. Furthermore, to track information flows correctly, analysis must

follow the execution path of the emulator, and therefore control-flow dependency is introduced.

Delivering physical address to the analysis thread after each instruction execution is an intuitive

but apparently inefficient approach since the massive data exchange between the two threads

could sabotage the benefit of decoupling. Things become even worse when control-flow

dependency enters the picture. Since most IA-32 instructions could lead to exceptions such as

page faults and privilege violation, control-flow transfer could happen for each instruction. If

analysis thread wishes to follow execution path of the emulator, it must be informed of whether

an instruction has been successfully executed, which introduces dependency on a per-

instruction basis.

To accelerate the taint tracking process of ProbeBuilder, an efficient system-wide

information flow tracking platform, SWIFT, is also proposed in this dissertation. Two novel

approaches were proposed to aggressively eliminate both data and control-flow dependency

between emulator and analysis thread. For data (accessed physical address) dependency,

SWIFT alleviates it with the fact that many memory accesses are EBP-based addressing and

the value of EBP itself is changed less frequently. This observation is leveraged to make the

physical addresses of such memory accesses can be calculated by the analysis helper itself. On

the other hand, to reduce control-flow dependency, a communication mechanism is proposed

by informing the analysis helper of the execution path transfer on a per-block basis.

Consequently, fewer message transfers are required. The proposed approach maintains

- 7 -

correctness even if exceptions are introduced. Our evaluations indicate that SWIFT operates

2.74~7.48 times faster than conventional interleaved design while being benchmarked by

PassMark Performance Test 6.0. Although the performance penalty on CPU-bound tasks is still

high (12.74X~35.55X) in comparison with native execution, the overhead is mainly attributed

to the inherent emulation nature.

1.1 Contribution

The drastic evolution of malware and frequent change of operating systems can easily

make VMI systems out of date. To keep up, analysts need to continuously update their VMI

systems in an extremely fast pace, and lots of manual effort are invested in reverse-engineering.

The methods proposed in my dissertation make the following major novel contributions,

benefiting analysts in their development process.

 ProbeBuilder automatically discovers the recursive dereference structures in the

kernel. This novel feature helps automatically generate practical probes. The only

portion requiring human assistance is the specification of the method to identify the

data of interest.

 ProbeBuilder also generates accurate locations to probe after exercising the system.

Control-flow analysis is applied to guarantee that generated probes will locate on

location is dedicated to the subject behavior.

 The generated probes can profile kernel-level activities that conventional approaches

cannot deal with.

 All malware profiler (ThreatExpert, Anubis) development can benefit from the result

of ProbeBuilder since it eliminates the demand for reverse-engineering and greatly

reduces the effort of implementing probes for a new OS and transplanting them

between OS versions.

 A decoupled design, SWIFT, is proposed to accelerate system-wide, taint tracking by

executing analysis task and system emulation in parallel.

 Approaches are proposed to aggressively eliminate the needs for the taint tracking

- 8 -

thread to communicate with the emulator. The performance is hence accelerated due

to less L2-cache confliction.

 Information flows incurred by IA-32 instructions are studied in detail. The result is

used to propose a concise encoding format to preserve complete IA-32 instruction

information flows. Meanwhile, the conciseness enables efficient processing.

1.2 Synopsis

In this subsection the organization of this dissertation is described. Since virtual machine

introspection and dynamic information flow tracking are very active research fields, in Section

2 research work related to VMI applications, DIFT, and DIFT acceleration are introduced to

help readers understand the state of the art in VMI development and taint tracking.

 Section 3 surrounds the central topic of this dissertation: ProbeBuilder. The description

of Section 3 is organized in a top-down paradigm. An overall architecture of ProbeBuilder is

firstly given. The architecture illustrates the input and the output of ProbeBuilder. Like any

other large systems, ProbeBuilder consists of sub-modules, each of which is further elaborated

in the sub-sections.

An important functionality of ProbeBuilder is allowing users to label data of interest

through taint tracking. To provide practical taint tracking speed, a decoupled design of DIFT,

namely SWIFT, is proposed. Note that the design of SWIFT does not rely on ProbeBuilder. It

provides standalone use for any taint-based analysis. Therefore, the design of SWIFT is

separately introduced in Section 4. And each proposed acceleration technique is described in

the subsection.

To evaluate the proposed methods, experiments are conducted on both ProbeBuilder and

SWIFT. The effectiveness of ProbeBuilder is tested through checking if user-level and kernel-

level activities can be logged by the generated probes, and the results are compared with the

log generated by commercial tools. The performance of SWIFT is benchmarked with both

commercial test suite and common workload, and the result is compared with the famous taint-

- 9 -

tracking system TEMU. These experiments are included in Section 5.

Section 6 introduces a practical application of ProbeBuilder and SWIFT: recognizing

rootkit with kernel function invocation patterns. This system firstly utilizes the probes generated

by ProbeBuilder to automatically generate a kernel-level activity monitor. Then, the monitor is

executed on top of SWIFT again to profile the tainted argument of kernel functions. The

sequence of the occurrence of tainted kernel functions can be used to recognize rootkits.

Section 7 discusses the limitation of ProbeBuilder and SWIFT. Possible solutions are also

discussed. Section 8 concludes this dissertation.

- 10 -

II. Related Work

Chapter 2

Related Work

The conventional approach to implementing a probe is through hooking. A hook is a chunk

of code injected into a program to intercept execution flow. Advanced rootkits and anti-virus

software often compete with each other on the depth they implant hooks, seeking the priority

of execution [21]. SIM [22], Lares [23], PsycoTrace [24], Process Implanting [25] realize

probing with this technique. With the assistance of virtualization and emulation, probes can

now be implemented in the hypervisor, providing better stealthiness. Sandbox-based analysis

tools [1][2][26] generally adopt this approach to intercept malware behaviors. VMwatcher [27],

VMDriver [28], VSyscall [29] also use similar techniques to intercept critical system events for

inspection. However, the “out-of-box” implementation paradigm does not re-solve the issue of

depth competition. For instance, a VM-based probe placed on EnumProcess(), which is a user-

level Win32 API, will be always misguided by the root-kits manipulating the kernel function

NtQuerySystemInformation(), even if the probe itself is implemented in the hypervisor.

Consequently, the emergence of hypervisor-level implementation does not relax the need for

deeper probes. All work above focus on application of probes, instead of their construction.

To ease the pain of semantic reconstruction in VMI, Virtuoso [30] executes the user-level

profiling tools in the guest operating system and collects the code trace generated by QEMU

for repetitive use. LiveWire [31], VMST [32], and VIX [33][34] automate VMI through

executing the profiling process in a separated shadow VM and redirecting its memory access to

the target VM. HookMap [35] and HookSafe [36] are dedicated to dis-covering indirect-branch-

- 11 -

based hooks to hijack execution flows. TZB [37] analyzes memory access patterns to acquire

code locations that construct strings matching the specified, fixed pattern. However, neither

does it reveal recursive pointer dereference structures nor the execution flow. ProbeBuilder

simultaneously resolves these two issues, making it powerful for VMI probe construction.

Dynamic information flow tracking has been widely studied. It is demonstrated as a

powerful tool for malware behavior analysis [10][11][12][13][38] and software testing [8][9].

By executing the target executable in an emulated environment, these systems are allowed to

watch each CPU instruction execution at runtime and to track information flows dynamically.

Paranoma [10] is a generic, extensible whole-system DIFT analysis platform on top of which

multiple analysis plug-ins such as Panorama have been developed. Although Paranoma is

equipped with complete functionalities for malware analysis, its performance downgrade is

severe. Due to interleaved system emulation and analysis routines, it runs about 20 times slower

than native execution [10] when tainting is enabled. The same condition applies to all other

work as well.

PinOS [39] is another binary instrumentation framework proposed for whole-system

dynamic analysis. With Intel hardware virtualization support (VT-x) and dynamic binary

translation, PinOS is capable of instrumenting CPU execution at instruction granularity.

However, the usage of virtualization cannot prevent its execution from being encumbered by

interleaved analysis. 7 out of 9 performance benchmarks in [39] shows a 48X~121X slowdown

even when PinOS runs with no instrumentation.

Aftersight [40] records non-deterministic events of a virtualized environment so that

events can be replayed later. Since event recording produces much lighter overhead than the

analysis does, the system can provide online services. However, Aftersight has a different

intention from SWIFT because Aftersight tries to postpone the heavy-weight task rather than to

accelerate the process of dynamic analysis.

Due to the performance issue, optimization on DIFT received extensive attention within

past few years. Designs sped up with additional customized hardware are discussed widely.

Hardware architectures with native taint propagation support are proposed in [41][42]. In these

- 12 -

architectures, a taint tag is augmented for every value in memory, cache, and the processor.

While executing instructions, the modified processor automatically propagates these tags and

hence dirty data flows are tracked. However, the hardware extension requires corresponding

modification on operating systems. The modification can be huge or even impossible on certain

closed-source operating systems, such as Windows. Besides, since only architectures of

processors and memory are extended, taint analysis cannot track information flow in peripherals.

Another effective approach is to decouple the analysis process from the program execution

itself. There are two ways to realize the idea. One is to extend processors so that instructions

executed on one core are recorded and en-queued in a hardware message queue, and processes

running on other cores could “peek” logged instructions with a special de-queuing instruction.

Processors with this capability are called Log-Based Architecture, LBA [14][15][16][17]. The

most significant advantage of LBA-based CPUs is that the overhead of instruction tracing is

eliminated by hardware. However, the mechanism mentioned above makes them suitable for

process-level testing and monitoring, but not for system-wide information flow tracking. The

other decoupling methodology is to dynamically instrument instructions to execute so that

instructions can be logged or monitored [18][19][20]. Since the binary instrumentation

framework all limit their scope within one process, they cannot be applied in system-wide

information flow tracking, either.

Using aggressive dynamic binary instrumentation and optimization, LIFT [19] performs

DIFT-based security checks on applications. LIFT analyzes the loaded process before execution

and tries to locate code regions which can only interact with safe data. Since unsafe input can

usually enter the system through certain data paths, fewer blocks need to be instrumented.

However, performing security checks and malware behavior analysis differ in two ways, which

make their methodologies unsuitable in our applications. To perform malware analysis, massive

amount of data will be considered as unsafe inputs, such as the whole body of the malware.

Therefore, eliminating safe code regions becomes much less likely. Minemu [43] is an efficient

process-level taint tracker. However, tracking information flows inside one process cannot

benefit observing effects exerted by the malware in the operating system. Although most

- 13 -

infections of the kernel are caused by a user space program, there are pure kernel-level

malicious programs. In fact, Srizbi, which is a Trojan program responsible for 40% of all the

spam on the Internet in 2008, hides its file and sends out spams without any user-space

components [55]. This kind of malware can only be analyzed at the system level.

Demand emulation [44] performs DIFT with emulation still. It accelerates by removing

tainted pages from the page table and switching to virtualization once none of CPU registers

contains tainted information and multiple untainted memory pages are consequently accessed.

When accessing a tainted page, it will fall back to emulation to track information flows.

Demand emulation is intended for system-level DIFT. However, it does not truly solve the

problem that emulation with analysis enabled is catastrophically slow. As indicated in their

original paper, frequent switches between virtualization and emulation even lead to worse

performance overhead than pure emulation due to unpredictably frequent memory accesses. In

addition, demand emulation requires modification on guest system so that tainted and untainted

data would be placed on different pages, since it relies on page fault to leave virtualization.

In the technical report PTT, Ermolinskiy et al [45][45] proposed another novel system-

level DIFT tool. It implements the technique of demand emulation and proposes a concept of

separating the analysis and the emulation. Their work partially covered the decoupling idea, but

there are clear differences distinguishing our contribution from PTT. First of all, formal taint

propagation rules are provided in SWIFT, but PTT lacks of these information. In addition to the

decoupled design, two more optimization techniques are proposed in SWIFT. One is the per-

block-basis delivering and the other one is the elimination of EBP (or ESP) base memory

address delivering. Meanwhile, our work consists of not only the decoupled design but also the

methods to apply such a design to practical malware analysis. Unlike SWIFT, PTT only

demonstrates the possibility of decoupling whole-system taint tracking.

- 14 -

III. System Design of ProbeBuilder

Chapter 3

System Design of ProbeBuilder

In this section, the architecture of ProbeBuilder is introduced. An overview of the

ProbeBuilder workflow is depicted in Figure 2, The workflow is traversed using the same

example illustrated in Section 1. However, for conciseness, it is assumed that only the second

search pattern exists, namely the regular expression specifying the keyed-in string. These search

patterns are referred to as a predicate P: Addr  {TRUE, FALSE}. They are used to instruct

ProbeBuilder how to determine whether the data stored on a given memory address are of

interest or not.

The process starts with the data dereference analysis module, which is built upon the

QEMU emulator installed with Windows XP. The system is exercised either manually or

programmatically to force the kernel to execute the behavior that the operator wish to create

probes for. Along the execution, the data dereference analysis is invoked at the entry of each

code block. The intermediate output will be a set of pairs consisting of a deferencing point and

the corresponding deferencing steps. The deferencing point is simply an instruction address,

and the deferencing steps preserve the dereferences to the string matching the predicate. Let’s

assume that the data dereference analysis gives the following output.

< 0x804f54af, (ESP, +4, +192, +36, +12)>

< 0x804f13ba, (ESP, +4, +120, +4, +32)>

Note that the module of data dereference analysis guarantees that if the CPU is “freezed”

every time it executes through the instruction at 0x804f54af (and, of course, under the same

- 15 -

process context) and take the dereference *((((ESP+4)+192)+36)+12), ProbeBuilder

will (almost) always find the string matching the given regular expression.

However, not every one of these results can be used as probes. For instance, 0x804f13ba

could be the location of function RtlCopyMemory(), which is invoked widely as long as a buffer-

copy is needed. Placing a probe here can lead to false positive output. The control flow graph,

CFG, builder and the dominance analysis are designed to eliminate these non-dedicated code

locations. The CFG builder constructs the graph from memory dump of the kernel, not the

image file on the hard disk, so that certain control flows bound at runtime can be also captured.

Indirect branches (e.g. jmp EAX) are filled with the indirect branch traces recorded during the

execution of the emulator. The control flow analysis utilizes the generated control flow graph

to eliminate dereferencing points not dedicated to the subject behavior. With the discovered

dereference structures, the code generator is hence able to produce code snippets, which can be

directly inserted into the hypervisor.

Sections 3.1 to 3.4 will introduce the details of the three core modules illustrated in Figure

2: data deference analysis, control flow graph builder, control flow graph analysis, and code

generator respectively.

3.1 Data Dereference Analysis

This section illustrates the method that the data dereference analysis module uses to

identify valid dereference sequence to data of interest. As aforementioned, a useful probe must

extract numerous attributes accompanied with the probed behavior or event. Therefore, this

Figure 2 : An overview of ProbeBuilder workflow.

 ata ereference

Analysis

 MU emulator
 ecide
method to
 dentify data
of interest

 xercise
 programmatically or
manually

OS ernel
 mage

Control low

 raph Builder

Possible
dereferencing
points steps

 ndirect
branch trace

 ernel
C

 ominance

Analysis

Probe
candidates

 ernel
memory dump

Code

 enerator

 M

 en

 MU

- 16 -

component plays the most essential role in ProbeBuilder.

The example listed in Figure 1(a) shows an intuitive, general principle of discovering a

valid dereference sequence to data. The sequence in general starts with some register, say r,

because the processor has to load the address into the register before it can access that memory

location. The register often can be the stack (or frame) register if the pointer to the outermost

data structure is a passed argument or a local variable on the stack. In this case, an non-zero

offset σ1 is often added to the value of stack (or frame) register to address that object, as the

first +0x18 offset shown in Figure 1(a). However, the pointer to the outermost data structure is

not necessarily stored on the stack. It can be directly loaded into other registers. In this case,

the offset σ1 added to the register is simply zero.

If the data of our interest reside in the outermost data structure, the dereference sequence

ends up with r and σ1. Otherwise, the sequence can continue with more offsets σ2, σ3, ..., σn,

which are used to traverse through the subsequent data structures.

The data dereference analysis is described below. For formal presentation, the definitions

and notations will be introduced first. Let’s assume that the machine provides a set of general

purpose registers Reg, and a virtual memory address space Addr. A machine S = (pc, R, M, P)

is a 4-tuple, where pc is the value of the program counter, R: Reg  Value gives the value of

CPU registers. M: Addr  Value returns the memory content at the specified address in a special

way. Instead of returning a single byte, M returns the whole word at the address. Note that the

word size is architecture-dependent, and this abstraction makes the analysis applicable on

different architectures. P: Addr  {TRUE, FALSE} is a predicate indicating whether the data

(byte) at that address is of interest. More discussion on this predicate is given in section 3.1.1.

Note that pc, R, M, and P change along with the system execution because the execution

modifies the system state. Fortunately, the analysis only utilizes the state at the present instant.

Therefore, pc, R, M, and P always reflect the present state of the machine. The state transition

is based on the architecture of the emulated machine, which is out of the scope of this

dissertation.

In addition to pc, R, M, and P, another special predicate Valid: Addr  {TRUE, FALSE},

- 17 -

indicates whether the virtual memory address is an accessible address, meaning whether the

address is actually mapped within the current page table. Since the page directory structure is

also stored in the memory, Valid can be implemented solely with queries to M. Therefore, Valid

is not considered as an extra input.

The analysis aims at collecting possible dereference sequences to data of interest. As

aforementioned, a dereference sequence p begins with a register r and a series of offsets σ1,

σ2, ..., σn, denoted as p.r and p.σ[.], respectively. Note that p.σ[.] is a list structure, and the

notation || denotes concatenation with another list <.>.

The analysis procedure is shown in Algorithm 1. Lines 1 and 20 in AnalysisLoop() show

that the analysis procedure between lines 2 and 19 is invoked before each dynamic code block

is executed. The idea is to sweep through the memory region that is currently pointed by some

register. In the region, the analysis searches for any data (words) that can be viewed as a pointer

to a valid memory address. If any pointers are found, the procedure recursively traverses

through them and repeats the similar sweeping operation until the maximal search depth

SRCH_DEPTH is reached.

Algorithm 1 : System Emulation with Dereference Analysis

 , , ,
 is a table mapping addresses to a set of dereference sequences.

S CH PTH defines the maximal depth to search for a valid dereference sequence.
S CH A is an array giving the search range at each level
 is the size of a pointer on the target architecture.

AnalysisLoop

 T U

 L

 ←

 ← -S CH TH S CH TH

 Search , , ,

 .

 ← .

 ← length -

 .

 ←

 ←

 ←

 emulate from until branch or ump is encountered.

Search , , ,
 S CH PTH

 ← S CH TH d

 Search , , ,

 ← allocate an empty dereference sequence

 ← , ← , ←

 ← ∪ {

- 18 -

Line 2 checks whether the current code block has been analyzed before or not by looking

up the table D with the value of the program counter. If not, the search process will be activated.

Lines 4 through 5 enumerate all combinations of CPU register and possible offsets, and use

them as starting points for the search. As indicated in the algorithm, the scanned offset ranges

from 0 to SRCH_WIDTH[d]. The range contains negative offsets so that both local variables

and passed arguments on the stack can be covered. The parameter K controls the increase to the

variable offset in each iteration. Since the analysis searches for pointers, K is assigned with the

pointer size of the target architecture in this dissertation. Line 6 checks if R(r) + offset points to

a valid memory address. If so, the recursive routine Search() is started on line 7.

The routine Search() begins on line 21 by checking if it has reached the maximal search

depth. If not, on line 23 it scans offset ranges from m to m+SRCH_WIDTH[d], where m is the

base address of the search range and d indicates the current depth of the recursion. Line 24

queries the predicate Valid to determine whether pointer m+offset refers to a valid memory

address or not, just like line 6 does. This prevents the recursion from walking on an invalid data

path. On line 25, the predicate P is queried to determine if any target data locate on m + offset.

If not, it recursively invokes Search(), passing the current path σ||offset as the base address for

the search range at the next level. Note that in Search() the enumeration is confined in the scope

from 0 to MAX_WIDTH because it is assumed that in consequent dereferencing steps, the

passed-in argument m is the base address of some data structure. The offset should be always

positive since it is supposed to point to its member variables.

Unfortunately, the collected dereferences may not be always valid because S only reflects

a transient state. The pointer in each dereferencing step can be changed and becomes invalid.

To eliminate unstable dereferences, lines 9-19 are executed. When pc has been included in D,

the procedure enumerate through every paths collected in the previous search. Each

dereferencing path is walked through again so that its validity on each step is verified. Each

time a dereference passes through this test its counter p.f is increased. To find truly stable

dereferences, the exercise should be repeated multiple times. These dereferences survived every

elimination test with p.f greater than some threshold will be selected for later processing.

- 19 -

Figure 3 shows an example of the search process, which is given with the SRCH_DEPTH

and the SRCH_WIDTH array depicted in the figure. The search starts with the register EAX,

which contains value 0x80ff4000. At the first level, the range [0x80ff4000-0x10,

0x80ff4000+0x10] is searched, as described in algorithm 1. At deeper levels, only [m,

m+SRCH_WIDTH[d] is searched. Note that the search width becomes smaller at deeper levels.

This is an optimization based on the fact that the size of a child object is usually smaller than

that of its parent. Otherwise, the search tree will quickly exhaust the memory. However, the

search range at the last level should be enlarged again so that those data prefixed other strings.

In our implementation, SRCH_DEPTH is set to 5 and SRCH_WIDTH is set to [512, 256, 128,

64, 512]

Also note that the search is only performed after a branch or jump instruction. The analysis

collects only the dereference sequences that can be traversed at the beginning of a dynamic

code block. The per-block basis is employed mainly due to the performance issue. Invoking the

procedure at every instruction will lead to unacceptable overhead. In addition, checking every

instruction is often overkill because between two adjacent instructions the machine state S does

not vary significantly enough to expose different dereference sequences.

Figure 3 : A simplified example of the search process.

 x

 xfc

 x c

 A

 x ff

 x ff - x

 x ff x

 x f

 x

 x xc

 xfc

 x c

 x c xc

 xfc xc

 x f

 x f x

- 20 -

3.1.1 Implementation of the Predicate P

ProbeBuilder queries the predicate P to check whether it reaches any data of operators’

interests. The predicate is simply a C function returning a Boolean value, and ProbeBuilder sets

no limit on its implementation. Operators can always create new predicates to fit their needs.

Nevertheless, ProbeBuilder provides three basic predicates: fixed pattern matching, regular

expression, and taint checking, each of which has its pros and cons. Here their characteristics,

usage, and application are discussed.

A. Fixed Pattern Matching

An operator can specify a fixed sequence of characters as the predicate. For efficiency,

under this mode ProbeBuilder will execute the predicate, which is originally executed on line

25 in Algorithm 1, before the for-loop on line 23. Namely, the pattern matching is shifted out

of the loop and is executed only once in every invocation of Search(). This mode works in high

performance and gives no false positives, yet it also demands operators to know exactly the

pattern of the data of their interests. A suitable application scenario is matching against the data

buffer of a transmitted TCP/UDP packet. The buffer content will always stay unchanged since

it is fed into the user-level API send(). If the immutability of the data can be predicted, fixed

pattern matching should be used for higher performance.

B. Regular Expression

Likewise, under this mode ProbeBuilder also move up the execution of the predicate

before the for-loop, and only the memory region M[0..SRCH_WIDTH[d]] is matched against

the expression. A regular expression provides more flexibility than a fixed pattern does,

however it may also incur false positives and extra overhead, depending on the expression

specified. This mode should be chosen when the mutation rules of the data are predictable. For

instance, Windows kernel often performs conversion between Unicode and multi-byte strings.

These variants can be captured with regular expression.

C. Taint Checking

In certain cases the mutation rules of the target data may not be easily predictable. For

- 21 -

instance, the DNS look-up module has to convert the domain name to match the format of

question portion of S query message e.g. a query “google.com” will be converted to

“\6google\3com\0” . ProbeBuilder provides a fine-grained dynamic taint tracker, SWIFT,

which is introduced later in this dissertation, for operators to perform a fussier matching. The

utilization of taint analysis is straight-forward. P: Addr  {TRUE, FALSE} simply returns the

status of the taint tag on that address. This mode searches comprehensively since all data flows

are tracked, but it also inevitably incur high overhead and large amount of false

positives/negatives.

Before taint tracking starts, operators have to manually specify contaminant sources. Here

possible contaminant sources and their application scenarios are discussed.

User-Level API Parameters

Using API parameters as contaminant sources is extremely effective to reveal valid

dereferences in kernel space. For example, in CreateProcess(), tainting the argument specifying

the program path to execute can quickly identify the kernel functions dedicated to process

creation. Since user-level APIs are exported and well documented, tainting these arguments is

a trivial task.

Figure 4 shows a typical approach to tainting arguments of a user-level API. In this case,

Figure 4 : A typical approach to label arguments of a user-level API as taint source.

char buf[16];
buf[0] = ‘T’; buf[1] = ‘_’;
buf[2] = ‘A’; buf[3] = ‘_’;
buf[4] = ‘R’; buf[5] = ‘_’;
buf[6] = ‘G’; buf[7] = ‘_’;
buf[8] = ‘E’; buf[9] = ‘_’;
buf[10] = ‘T’; buf[11] = ‘.’;
buf[12] = ‘E’; buf[13] = ‘X’;
buf[14] = ‘E’; buf[15] = ‘\0’;

system(“pause”);

CreateProcess(NULL, buf,
 NULL,NULL,TRUE,0,NULL,NULL,
 &stInfo,&procInfo);

 . Search for all occur
rences of the pattern

in the guest memory.

 . Taint all discovered
occurrences

 . Continue the suspend
ed process.

 uest MM

- 22 -

the program path of CreateProcess() is targeted. Initially two programs are prepared. One is a

dummy program with a unique file name. In this example, it is named as

“T_A_R_G_E_T.EXE” and it will exits immediately after being executed. The other program

is built to execute the operations listed in the left column of Figure 4. As illustrated, it constructs

in the buffer the file name of the dummy program, suspends until operators press any key, and

then finally invoke CreateProcess() to execute the command string constructed in the buffer.

Hard Disk Sectors and NIC RX buffer

ProbeBuilder also supports the functions of specifying any hard disk sectors and the RX

buffer of the network adaptor as taint sources. This feature allows operators to quickly locate

kernel functions used for disk-reading or packet-receiving.

We refer to a predicate as byte-wide if it returns TRUE only when the byte at the specified

address is tainted. A byte-wide predicate provides the highest precision. However, under certain

circumstances a byte-wide predicate may miss the data of interest. For example, the converted

DNS query string “\6google\3com\0” can fail the predicate because the first byte ‘\6’ is

the result through control-flow-based calculation, which is difficult to deal with taint analysis.

To cope with this issue, ProbeBuilder allows operators to specify the checking range of the

predicate, that is, the predicate checks all the taint tags in the byte sequence locating in [Addr,

Addr+n), where n is the length specified by operators. In our implementation, n is set to 8 to

cover the whole 64-bit machine word of the IA-32 architecture.

3.2 Control Flow Graph Builder

This section discusses the reason why control flow analysis is needed and how the control

flow graph is constructed for the later analysis components.

Consider the program structure shown in Figure 5. Both functions NtWriteFile() and

CmSetValueKey() for modifying Windows registry entries utilize RtlCopyMemory() to perform

data movement. At first sight, placing a probe on RtlCopyMemory() seems to be a good choice

for capturing file writing operation. However, it will also capture the data from

CmSetValueKey(), causing the mixture of produced profile with unwanted information. In

- 23 -

addition, RtlCopyMemory() is extremely frequently used by other parts of the system. Placing

a probe in this function will produce massive unwanted data.

The probe candidate refinement procedure begins by converting the kernel image to a

graph with code blocks as nodes, and branches as edges. In the graph, there should be a sub-

graph containing all nodes used to implement the subject behavior (e.g. registry modification).

This sub-graph is referred to as behavior sub-graph. Through reachability analysis, probe

candidates reachable without walking through this sub-graph should be identified and

eliminated. Details are described below.

The control flow graph builder construct the control flow graph, CFG, for the kernel image

from two sources. One is the static CFG, acquired through statically disassembling the runtime

memory dump of the kernel. The other source is the trace of indirect branches occurred during

the execution of data dereference analysis. The collected indirect branches are transformed to

edges and added to the static CFG.

The collection of indirect branches is realized through monitoring the exit of a dynamic

code block emulated by QEMU. If the last instruction emulated is one of the following classes:

1) indirect jump, 2) conditional branch, or 3) procedure call, and the target address is not

immediately encoded in the instruction, it is collected. All other cases are not counted as indirect

branches. Control flow transfers caused by interrupts (emulated) or exceptions will not be

Figure 5 : Examples of undesired probe candidates.

CmSetValueKey(ValueName, Buffer, Size){
 ...
 pdata = HvGetCell(Hive, NewCell);
 RtlCopyMemory(pdata,Buffer,Size);
 ...
}

NtWriteFile(Buffer, Length){
 ...
 RtlCopyMemory(
 irp->AssociatedIrp.SystemBuffer,
 Buffer, Length);
}

RtlCopyMemory(
 Dst, Src, Length
){ … }

- 24 -

included in the final CFG. Procedure-return instructions are not included, either.

3.3 Control Flow Graph Analysis

Recall that the analysis requires behavior sub-graph to be distinguished from the rest of

kernel CFG. Unfortunately, it is a difficult problem because the subject behavior itself is often

ambiguously or informally defined. or instance, the term “process creation” is a quite loose

term referring to the process of loading executable image into memory, parsing the executable

header, creating memory address space for the process, and transferring execution to its entry

point. To determine the scope of these tasks inevitably requires human knowledge of the code

structure.

To resolve this issue, a heuristic method to approximate the sub-graph is required. Note

that the kernel CFG built upon the granularity of code blocks. The CFG can be simplified by

merging the nodes belonging to the same function, thereby constructing a function-level CFG.

According to our study, recursion is seldom used by the kernel, and this function-level CFG is

nearly acyclic. Based on this observation, the behavior sub-graph is approximated with all

nodes reachable from the probe candidates which are not descendants of any other candidates

in the graph. Note that this approximation is neither sound nor complete since these leading

candidate nodes are not guaranteed to be in the precise behavior sub-graph.

Algorithm 2 : Search for Leading Nodes.

 A set of memory addresses P of hook candidates.
 A kernel C with code-block granularity.

 A set of leading nodes, which are not descendants of any other nodes

in respective to .

ComputeLeading odes

 ←

 ← True

 is reachable from respect to

 ← alse

 ← ∪

- 25 -

The algorithm of selecting leading nodes is listed in Algorithm 2. The loop on line 2

iterates through each candidate. Lines 3-7 check if it can be reached by any other candidates. If

not, it will be collected as a leading node into T. If the reachability predicate used on line 5 is

simply realized with a depth-first or a breadth-first search on G, the complexity of Algorithm 2

will be in O(|C|2|G|). However, the size of G, namely the block-level kernel CFG, contains

millions of nodes (i.e., code blocks). It is time-consuming to conduct the reachability analysis

directly on G. Fortunately, the process can be accelerated in light of the fact that programs are

organized into functions. Code blocks can be grouped into larger units (functions), and each

unit has a single entrance. The reachability can be computed in two steps: first on an inter-

procedural CFG and then on an intra-procedural CFG.

The elimination of non-dedicated nodes is performed as described in Algorithm 3. The

algorithm takes as input the same kernel CFG G, the set C of probe candidates, and the set T of

leading nodes given by algorithm 2. In the beginning, another two graphs are created from G.

On line 2, GR is created by revering every edge in G. On line 3, ’ is built through removing

all nodes of T and the edges attached to them from G. The algorithm guarantees that each node

f in the output set D can never be reached (from any other node in G) without passing at least

Algorithm 3 : Elimination of Non-Dedicated Code Blocks

 , A kernel C with code-block granularity.

 A set of hook candidates. ⊆

 A set of leading nodes. ⊆

 A subset of , excluding non-dedicated nodes.

 liminate on edicated

 ←

 ← everse every edge in

 ’ ←({ ∉ }, {(,)|(,) ∉ ∉ })

 ← { is a reachable node from in .

 ← True

 is reachable from respect to ’

 ← alse

 ← ∪

- 26 -

one of the nodes of T. The reason is as follows. If f is included in D, the constraint on line 8

must have not been fulfilled in all iterations of line 7. Since line 7 loops through all ascendants

of f (computed on line 5), and the predicate on line 8 checks if f can be reached from them in

 ’, which contains no node in T, the property holds.

The output of Algorithm 3, D, is a subset of G.V. Computing the reachability between all

pairs of vertices in D with respect to the original G gives a simplified control flow graph.

Namely, a new graph F can be generated by defining:

F.V := D and

(u, v) F.E iff (u, v) G.E, where u F.V and v F.V

Figure 6 gives an example of the output of Algorithm 3. The exit nodes are simply those

vertices without any descendants. To minimize the effort of probe insertion, it is essential to

find the minimal set of vertices in F that separates the leading nodes and exits nodes. This is a

classical vertex separator problem, which is proved to be NP-Hard [46]. Fortunately, in practice

F only consists of hundreds of vertices, and the size of the separating vertices is usually less

than 3. In this dissertation brute-force is used to test if the elimination of a node will cause the

separation of leading nodes and exits nodes.

With non-dedicated nodes removed, ProbeBuilder passes the output of Algorithm 3 and

their dereference paths generated in Algorithm 1 to code generator to generate code snippets

Figure 6 : An example of the output of Algorithm 3

- 27 -

that can be inserted into the hypervisor.

3.4 Code Generator

Figure 7 gives an instance of the code snippets generated by ProbeBuilder for KVM. The

corresponding probe information <0x804e7461, ESP +12 +36 +52>, which is shown in

Table 2. The generated snippet follows the dereference path of the final output of Algorithm 3

and copies data of interests to the specified buffer. Users can directly invoke the function

gen_probe_804e7461() in the hypervisor. As shown, line 4 initializes the pointer with the value

of the ESP register of guest. The deference path is stored in the array created in lines 6 and 7.

Lines 12-16 iteratively dereferences the memory with the discovered offsets. In addition, a

validity check is performed in each round to avoid invalid memory access. A non-zero return

value of the function kvm_read_guest() (provided by KVM kernel module) indicates a failure.

Finally lines 17-18 copy the data of interest from the memory of guest to the specified buffer.

The generated code of probes shows that ProbeBuilder can be practically applied to the

hypervisor for the VMI usage. Yet, the mechanism to trap the VM back to the hypervisor is

hypervisor-dependent, and this issue is considered out of the scope of this dissertation.

Figure 7 : Example of the generated probe for KVM.

1 int gen_probe_804e7461(unsigned char* buf, size_t len)

2 {

3 int ret = 0;

4 unsigned long ptr = kvm_register_read(vcpu, VCPU_REGS_RSP);

5

6 unsigned int offset[]= {12, 36, 52};

7 unsigned int offsets = 3;

8

9 int i;

10 gpa_t pb_gpa;

11

12 for(i = 0; i < offsets-1; ++i) {

13 pb_gpa = kvm_mmu_gva_to_gpa_system(vcpu, ptr+offset[i], NULL);

14 if((ret=kvm_read_guest(vcpu->kvm, pb_gpa, &ptr, sizeof(ptr))) != 0)

15 return ret;

16 }

17 pb_gpa = kvm_mmu_gva_to_gpa_system(vcpu, ptr+offset[i], NULL);

18 if((ret = kvm_read_guest(vcpu->kvm, pb_gpa, buf, len)) != 0)

19 return ret;

20

21 return 0;

22 }

- 28 -

IV. System Design of SWIFT

Chapter 4

System Design of SWIFT

As aforementioned, ProbeBuilder provides a flexible method to mark data of interest

through the taint tracking functionality. Unfortunately, existing system-wide taint trackers

commonly suffer from the performance issue, and research on its improvement either rely on

support from customized hardware or only deal with information flow tracking inside one

process. To realize practical taint tracking, a system-wide, fast dynamic information flow

tracking technique is indispensable for ProbeBuilder. SWIFT, a decoupled design for system

emulation and DIFT, is therefore proposed to resolve this issue.

Before proceeding to the rest of this section, certain preliminary knowledge and

terminology about dynamic binary translation and QEMU are introduced to lay down the basis

of our system. QEMU is system-wide emulator, which is capable of emulating the whole

operation of certain architecture on other machines. To be specific and concise, the emulated

architecture will be referred to as the guest and the machine running the emulation as the host

in the rest of the dissertation. Any hardware devices and mechanisms existing in the architecture

of guest machine such as registers, MMU, or peripherals are realized by software. The two

architectures need not to be different. In our application, both the emulated guest and the hosting

machine are of IA-32 architecture. Note that such coincidence does not make binary programs

inside the guest machine directly runnable. Having the instruction “add EAX, 1” executed

inside the emulated guest machine, it is expected that the emulated EAX register, not the real

one of the host machine, will be increased. Therefore, all instructions must be translated before

- 29 -

execution so they can reflect expected behaviors. QEMU adopts dynamic binary translation to

perform the translation. n addition, the translation is done “on the fly.” amely, the binary

translator would be invoked when the emulator encounters a code region which had not been

translated. The translation is done on a per-block basis. Namely, the process of translating

instructions continues until a branch or jump instruction is discovered. All guest instruction

sequences (the branch or jump included) translated in the process above forms a basic block,

and the binary code generated for actual execution on the host will be the corresponding code

block. Code blocks are stored in a hash table for next time use, since the translation is

computationally expensive.

The original architecture of QEMU is included in the left part of Figure 8. On core 1, the

system emulation is executed. As any hardware processor operating in a fetch-decode-execute

loop, the software emulator also behaves similarly. The dispatcher always tries to search the

code block pool with its instruction pointer to locate next block to execute. If the corresponding

code block is found, it will be invoked. The emulation starts and then returns to the dispatcher

after the code block finishes its task. Recall that all code blocks end with emulation of any jump

or branch instructions. The dispatcher selects next code block to execute according to current

target CPU status, and the process above repeats itself. However, if nothing is found in the

search, the binary translator will be invoked to translate the basic block.

Previous DIFT acceleration research inject desired binary routines directly into code

Figure 8 : An overview on the basic system architecture of SWIFT.

- 30 -

blocks to perform specific task after examining each instruction during the translation phase.

For system-wide taint analysis, these routines propagate taint status of registers and physical

memory addresses which the instruction accesses. This approach, which adopted in prior works,

has been demonstrated to be effective yet inefficient because the injected code usually involve

with complicated computation. This encumbers system emulation in both explicit and implicit

ways. The injected analysis routines could perform tasks as complicated as the emulation itself.

In addition, the alternation between system emulation and analysis makes software optimization

much more difficult or even disables coherent hardware acceleration such as cache mechanism.

Instead of being injected directly into basic blocks, analysis routines in SWIFT are

executed by another helper thread. Additional code is injected only for delivering information

flows and physical memory addresses for the helper thread to accomplish its analysis task.

Decoupling the analysis from the system-wide emulation enables SWIFT to shift the analysis

workload such as updating the taint map or security check onto a different core.

Figure 8 also gives the basic system architecture of SWIFT. While generating code blocks

for emulation, the binary translator of SWIFT in the meantime extracts information flow

semantics of instructions. With the proposed DIFT model, extracted semantics are converted to

the so-called IF-codes, such as MEM_EBP_DW_BW_OVRWRT or EBP_ESP_DW_BW_OVRWRT,

for delivery. The binary translator also injects code for delivering IF-codes to the helper thread.

Note that the delivery is always done immediately after the instruction which generate the

information flow is emulated. Through inter-thread communication the helper thread running

on core 2 can therefore perform corresponding taint analysis or security checks.

In the following subsections, the encoding technique used to encode information flows of

instructions of IA-32 is introduced. Then, two important optimization techniques are proposed

to aggressively eliminate message exchange between system emulation and taint analysis.

4.1 Encoding Information Flows of Instructions

Since taint analysis is decoupled and executed on another thread, the information that

should be passed to the thread to accomplish the task must be identified. Passing raw

- 31 -

instructions executed by the emulator, like LBA-based architecture does, could be an option.

This preserves most complete information for analysis, but the helper thread will be required to

decode these raw instructions by itself to perform corresponding analysis tasks. Another option

is passing only data necessary for information flow tracking. This approach loses part of the

information due to discarded instructions. However, it preserves the performance because the

tedious decoding process can be removed from the helper thread. In SWIFT, the latter approach

is chosen to meet the performance requirement.

4.1.1 IA-32 Instruction Data-Flow Modeling

As aforementioned, an IA-32 instruction frequently uses an operand as both input and

output. In these cases, a single information flow will be sufficient to describe it. Since the goal

is to track system-wide dynamic information flow at byte-granularity, source and destination

will always refer to a single byte of registers, memory, hard disks and network interface buffers.

In addition to the source and destination, another essential factor should be included in

modeling information flows. Consider a data transfer instruction such as “mov”. The two

operands obviously serve as the source and the destination in the information flow, and the

original information in the destination operand is overwritten. For a binary arithmetic operation

such as addition or bitwise exclusive-or, however, one of the operands will be used as both the

input and the outcome variables. For example, the EBX register in the instruction “xor EBX,

EAX“ is used as input in the exclusive-or operation and also storage for the output value. Instead

of being overwritten, data of EBX is combined with the information flowing out of EAX.

Therefore, the two flowing effects, which are referred to as overwriting and appending, should

be encoded also.

An information flow always originates from a certain source, denoted by A, and flows into

a destination, denoted by B. For the CPU instructions accessing registers and the memory, A

and B can only be register names or memory addresses. For concise expression, the overwriting

information flows and appending ones from B to A are denoted as and ,

respectively.

- 32 -

However, complicated information flows could be generated by a single instruction. If the

encoding format encodes only the information flow of a single byte, the complication could

lead to lengthy expressions. A few more observations can be leveraged to avoid this. Although

our system tracks information flows at byte-granularity, IA-32 instructions always perform

operations on specific widths such as byte, word (2 bytes), double-word (4 bytes), or quad-word

(8 bytes). Specifying the width of operands directly in the encoding of information flows can

therefore bring us a much more succinct processing.

In Table 3 are listed typical information flows from B to A when the operand width and

information flow effect of an instruction are considered simultaneously. In the formula, A and

B are both variables of n-byte, and the lowest significant byte of A is denoted as A[0]. For each

category, a notation is also defined for succinct expression in later context. The information

flows falling into one of these categories are referred to as multi-byte information flows.

In Figure 9, each category is demonstrated with a representative instruction. An edge in

Table 3 : Typical Aggregated IA-32 Information Flow.

 Category Information Flow Notation

Byte-wise

overwriting

𝐴[0] ← 𝐵[0],
𝐴[1] ← 𝐵[1],
… ,
𝐴[𝑛] ← 𝐵[𝑛]

𝐴 ⇐𝑛 𝐵

Byte-wise

appending

𝐴[0]
+
←𝐵[0],

𝐴[1]
+
←𝐵[1],

… ,

𝐴[𝑛]
+
←𝐵[𝑛]

𝐴
+
⇐𝑛 𝐵

Incrementally

mixed

𝐴[0]

+
←𝐵[0],

𝐴[1]
+
←𝐴[0], 𝐴[1]

+
←𝐵[1],

𝐴[2]
+
←𝐴[1], 𝐴[2]

+
←𝐵[2],

… ,

𝐴[𝑛]
+
←𝐴[𝑛 − 1], 𝐴[𝑛]

+
←𝐵[𝑛]

𝐴
∆
⇐𝑛 𝐵

All mixed-up

𝑇 ← 𝐴[0], 𝑇

+
← 𝐴[1], … , 𝑇

+
← 𝐴[𝑛],

𝑇
+
←𝐵[0], 𝑇

+
←𝐵[1], … , 𝑇

+
←𝐵[𝑛],

𝐴[0] ← 𝑇, 𝐴[1] ← 𝑇, … , 𝐴[𝑛] ← 𝑇

𝐵[0] ← 𝑇, 𝐵[1] ← 𝑇, … , 𝐵[𝑛] ← 𝑇

𝐴
∗
⇐𝑛 𝐵

- 33 -

the figure represents the information flow from the sourcing byte to the destined byte in the

calculation. One way to tell whether a variable A influences the other variable B is checking

existence of a directed path from A to B. In Figure 9(a), the byte-wise overwriting flow caused

by a mov instruction is shown. This flow copies data byte-wisely from the source to the

destination and overwrite destination operands. In Fig. 2(b) is given an example of a byte-wise

appending information flow, which can be caused by the xor instruction. It performs exclusive-

or on the EAX and EBX yet uses EAX as the output operand. The incrementally-mixed flow is

used to depict the situation that all bytes are influenced by those with lower or equal significance.

A good example would be arithmetic addition or subtraction, in which higher bytes are

influenced by all lower bytes due to the carry. The detailed flows are shown in Fig. 2(c).

Figure 9 : Representative instructions of aggregated information flow.

(a) byte-wise overwriting, (b) byte-wise appending, (c) incrementally mixed, and (d) all

mixed-up. Note that some edges are neglected in (d) for clearer depiction because they

do not affect the net-effect inferred.

- 34 -

The complicated information flows caused by multiplication are shown in Fig. 2(d). Note

that the entire output would be 8 bytes due to the multiplication on the two double-words. As it

Table 4 : Information Flow of Common IA-32 Instructions

Instructions Information Flow

mov,cmovXX,push,pop,pushad,popad,movsXX,

lodsXX,stosXX,inXX,outXX,lds,les,lfs,lgs,

lss,fld,fst,fstp,fcmovXX
𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶

and,or,xor 𝐷𝑆𝑇
+
⇐𝑛 𝑆𝑅𝐶

add,adc,sub,sbb 𝐷𝑆𝑇
∆
⇐𝑛 𝑆𝑅𝐶

inc,dec,neg,movzx,movsx 𝐷𝑆𝑇
∆
⇐𝑛 𝐷𝑆𝑇

mul,imul
𝐸𝐴𝑋

∆
⇐𝑛 𝑀𝑈𝐿𝑇𝐼𝑃𝐿𝐼𝐸𝑅

𝐸𝐷𝑋
∗
⇐𝑛 𝐸𝐴𝑋

div,idiv

𝐸𝐷𝑋
∗
⇐𝑛 𝐷𝐼𝑉𝐼𝑆𝑂𝑅

𝐸𝐷𝑋
∗
⇐𝑛 𝐸𝐴𝑋

𝐸𝐴𝑋 ⇐𝑛 𝐸𝐷𝑋

xchg,cmpxchg,cmpxchg8b

T⇐n 𝐷𝑆𝑇

𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶

𝑆𝑅𝐶 ⇐𝑛 𝑇

xadd
T ⇐n 𝐷𝑆𝑇, 𝑇

∆
⇐𝑛 𝑆𝑅𝐶,

𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶, 𝑆𝑅𝐶 ⇐𝑛 𝑇

jXX 𝐸𝐼𝑃 ⇐𝑛 𝑆𝑅𝐶

call
𝑀𝐸𝑀⇐𝑛 𝐸𝐼𝑃

𝐸𝐼𝑃 ⇐𝑛 𝑆𝑅𝐶

ret 𝐸𝐼𝑃 ⇐𝑛 𝑀𝐸𝑀

enter
𝑀𝐸𝑀⇐𝑛 𝐸𝐵𝑃

𝐸𝐵𝑃 ⇐𝑛 𝐸𝑆𝑃

leave 𝐸𝐵𝑃 ⇐𝑛 𝑀𝐸𝑀

lea
𝐷𝑆𝑇 ⇐𝑛 𝑆𝑅𝐶1

𝐷𝑆𝑇
∆
⇐𝑛 𝑆𝑅𝐶2

(all other FPU insn.) 𝐷𝑆𝑇
∗
⇐𝑛 𝑆𝑅𝐶

- 35 -

turns out, category (c) would suffice to describe the net information flowing effect on the four

lower bytes (stored back in EAX). Note that all four higher bytes (stored in EDX) are influenced

by all bytes of the two input operands. These flows are referred to as all-mixed-up ones. It turns

out that information flow of most IA-32 instructions can be totally described with these four

categories and operand widths.

Table 4 lists IA-32 instructions and their information flow encoded in the notation

invented. Instruction mnemonics are listed in the first column. The second column shows their

operand formats. Note that herein the Intel syntax is adopted for the explanation. Namely, the

destination operand is always encoded in op1. Rows 1-6 show the encoded information flows

of all the data movement and arithmetic operations. In rows 7-8 the case for data exchanging

instructions are given. To correctly model their flows, an extra variable T is introduced, which

does not exist in the architecture, to store the transient status. Rows 9-12 give the data flows

incurred by procedure-related instructions. The lea instruction deserves a little more attention.

In modern operating systems which adopt the flat memory model, this instruction simply

assigns op1 with the value of op2 + op3. Since most operating systems such as Windows and

Linux adopt this model, our interpretation for this instruction holds.

With all discussion above, we are now ready to encode any information flow caused by

IA-32 instructions with its destination, source, width, and effect. Figure 10 shows the two

encoding formats of information flows. In Figure 10(a), the format used to describe multi-byte

ones is depicted. Fields D and S specify types of source and destination. WTH and EFF are used

to specify the operand width n and the category in effect mentioned in Table 3. For the

information flows that cannot be properly described by multi-byte rules, the format depicted in

Figure 10(b) should be used, which lacks WTH but provides two fields D_OFF and S_OFF to

specify offsets of referred bytes.

- 36 -

For registers, DST_REG and SRC_REG store their identities. The two fields cover

general-purpose registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI), segment registers

(CS, DS, ES, SS, FS, and GS), program counter (EIP), floating-point registers (ST0~ST7),

control registers (CR0~CR4), debug register (DR0~DR7), GDTR, IDTR, TR and LDTR.

MMX registers, XMM registers, MTRRs, MSRs, and any other registers are viewed as a null

source and sink for information flow, that is, information flowing out of them is always labeled

as clean, and information flowing into them is not tracked. In addition, instructions of MMX,

SSE, SSE2, and SSE3 extension are ignored. The simplification is simply an implementation

issue. Tracking information flow for the enormous instructions and registers introduced by these

extensions requires huge implementation efforts but brings less effectiveness since they are

seldom used. Note that 8 bits are leaved for the DST_REG and SRC_REG fields so that DIFT

for these instructions and registers can always be implemented incrementally without

modifying the current IF-code design. Note that these encoded information flows are simply

32-bit integers, and they could be generated when translating an instruction. These codes are

referred to as IF-codes.

Although field DST_REG and SRC_REG seemed useless for memory operands, they keep

Figure 10 : Formats of IF-codes.

(a) Format for describing multi-byte information flows. (b) Format for describing

information flow from a single byte to another.

- 37 -

important information for the next special case.

4.1.2 IA-32 Indirect Memory Access

Information can be propagated in multiple ways. Information flows that have been

discussed so far can be all attributed to the direct relation between input and output variables in

a calculation. Namely, these inputs are directly used in the calculation to generate the output.

However, for those registers used as a base or an index in an instruction using indirect

addressing mode, their values indeed influence the result yet they do not take part in the

calculation directly.

Indirect memory access occurs due to dereferencing pointers or accessing arrays. Tracking

information flows caused by indirect memory access can generate massive unwanted false

alarms. To avoid this problem, previous studies simply ignore them or limit the tracking depth

on indirection. However, this could totally invalidate a DIFT system because Windows

operating systems use table look-up extremely frequently in string conversion routines such as

RtlMultiByteToUnicodeN(), and RtlUnicodeToMultiByteN().

After investigating these conversion functions, two facts can be observed. First, these

conversions are done mostly by table look-up, which is actually an indirect memory-read

operation with a register used as the index in address calculation. Secondly, these functions are

used mainly for Unicode/Multibyte character set conversion. Since UTF-8 and UTF-16 are the

most common implementations for Unicode characters, tables that these instructions look up

are composed of 8-bit or 16-bit characters. Therefore, the indexing register is encoded in

DST_REG or SRC_REG to propagate their taint status for IF-codes with BYTE or WORD as

the width and as the effect.

The approach above is based on the assumption of the non-existence of UTF-32 encoding,

which holds only for Windows. However, the condition is no longer valid for Linux. In Linux,

UTF-32 is utilized in certain parts of the system, and the character conversion is done with a

DWORD indirect memory access. Therefore, these indirect information flows cannot be easily

distinguished as those in Windows. Further investigation is needed to determine how to hook

- 38 -

these conversion functions of glibc. These flows are left for the future enhancement and

implementation.

4.2 Delivering IF-codes and Memory Addresses

In SWIFT, binary code to assist the helper thread, instead of analysis itself, is injected. The

major task of injected binary is delivering IF-codes of each emulated instruction to the helper

thread, so the helper could analyze information flows of the original program and hence the

overall performance could be improved since the analysis could be processed in parallel by

another core.

However, since the delivering will be done for each information flow incurred by all

emulated instructions, the mechanism must be efficient enough or it could impose a new

overhead on the emulation. To be light-weight, the one-way communication is achieved through

a circular queue residing on a shared memory region as depicted in Figure 11. To utilize the

queue more efficiently, entries in the circular queue are actually pointers to chunks of

continuous space. In code blocks, en-queuing routines are injected so that IF-codes are

delivered after each instruction is emulated. Next chunk will be asked for once the current chunk

is full. By selecting 4 KB as the chunk size and aligning all chunks on 4 KB boundary, the en-

queuing could be accomplished with following code snippet injected.

Figure 11 : Circular queue for IF-code delivering.

- 39 -

mov EAX, dword ptr [LOC_enqptr]

mov dword ptr [EAX], CONST IFCODE

add EAX, 0x4

and EAX, 0xfff

jne L1

call nextblock

L1:

mov dword ptr [LOC_enqptr], EAX

Note that CONST_IFCODE will be decided in the trans-lation phase.

So far we have introduced how an information flow is extracted and encoded. Nevertheless,

the system-wide information flow tracking cannot be done unless addresses of memory

variables are also tracked. Recall that a memory access can be indirect. In an indirect memory

access, the memory address depends on the value in a certain register, and it is hence impossible

to predict these addresses in advance. Therefore, watching addresses of memory operands is

postponed until runtime.

Prior DIFT works based on binary instrumentation framework such as PIN or StarDBT

watch virtual addresses of memory operands. This approach seems intuitive and may even be

the only feasible method since the binary instrumentation tool can only monitor a user-level

process. Instead, SWIFT watches physical addresses of memory operands. Since QEMU

provides software MMU for system-wide emulation, watching physical addresses of accessed

memory is nothing harder than watching virtual addresses. QEMU is modified so that any

physical memory addresses generated by the software MMU emulation will be recorded in

last_phyaddr_written and last_phyaddr_read, depending on whether operation is writing or not.

To deliver a memory address just read, the following codes are injected.

mov EAX, dword ptr [LOC_enqptr]

mov EDX, dword ptr [last_phyaddr_read]

mov dword ptr [EAX], EDX

add EAX, 0x4

and EAX, 0xfff

jne L2

call nextblock

L2:

- 40 -

mov dword ptr [LOC_enqptr], EAX

4.3 Optimization

Although approaches proposed so far successfully decouple the execution of system

emulation and analysis task, the en-queuing operations still incur performance downgrade in

three ways. First, extra instructions injected for en-queuing inherently introduce latency in the

emulation process and the helper thread. Secondly, the massive memory accesses to the queue

can consume hardware cache or causes cache misses generated by the producer-consumer

communication. Thirdly, the more data en-queued, the faster the circular queue will be saturated.

Therefore, reducing en-queuing operations can accelerate the emulation operation in multiple

ways. Two optimizations were proposed to aggressively remove them.

4.3.1 OPT1 : Delayed-Delivering on a Per-Block Basis

Avoiding en-queuing IF-codes frequently can bring us substantial performance

improvement because they form the major part of messages delivered to the helper thread. One

possible optimization toward this is to deliver IF-codes on a per-block basic. While translating

a basic block, the translator could group all IF-codes generated into a special entity, called the

IF-code block. In the IF-code block, IF-codes are stored in the order as corresponding

instructions are arranged. Instead of delivering IF-codes between every emulated instruction,

code are only injected in the beginning of the code block to inform the helper thread which code

block is being emulated so the correct IF-code block can be traced. In doing so only one en-

queuing operation is needed to deliver all IF-codes for a whole code block.

However, above optimization does not reflect correct information flows always. Consider

the third emulated instruction of the exampling basic block listed in Figure 8. Since the “mov

EAX, [EBP+8]” instruction accesses a memory address indirectly, it can potentially lead to

a page fault exception as long as EBP register contains an inappropriate value. To emulate such

behaviors correctly, a code block must exit itself when things go wrong. Therefore, only first

two IF-codes would be effective in such a case because rest instructions had not been emulated.

Since an exception is unpredictable, the amount of effective IF-codes may vary between each

- 41 -

execution of the code block.

To amend the problem, a counter should be added to accumulate instructions emulated for

each code block. Between each emulated instruction, code are injected to increase the counter

so it reflects the amount of emulated instruction. The accumulation will continue until the code

block exits. The value of the counter will be delivered to the helper thread in the very beginning

of next code block. An example of this amendment is shown in Figure 12. In the beginning of

every code block, the counter is delivered as the IF-code accumulation of the previous code

block. Meanwhile, the sequence number of the current code block is also delivered. IF-codes

are no longer delivered in execution of code blocks. Instead, they are only delivered once by

the binary translator on a per-block basis. After that, only the counter is delivered so that the

IF-code interpreter could decide how many IF-codes should be tracked for each execution of a

code block. It is easy to see that communications between the two threads are reduced. In

addition, the counter addition could be realized with the following instruction, which is far more

concise than previous IF-code en-queuing routine.

inc dword ptr [LOC_counter]

OPT1 eliminates en-queuing operations effectively with the observation that once a basic

Figure 12 : An improved system design with OPT1.

Communications between the two threads are reduced since IF-codes are no longer

delivered in execution of code blocks.

- 42 -

block is generated, its IF-codes would be fixed also. However, OPT1 cannot entirely eliminate

the slow, per-code delivering mechanism. Even without exceptions, the total number of

executed instructions of a code block can be still unpredictable if it contains conditional

execution. The CMOV of the IA-32 ISA is such an instruction. When the emulator translates

these instructions, it will fall back to the slow delivering mode. Fortunately, they are seldom

used in ordinary programs, and hence their presences do not impede the acceleration of OPT1.

On the other hand, large amount of en-queuing operation are still needed to pass physical

memory addresses. As stated earlier, these physical memory addresses can only be watched

when the code block is being executed. To reduce the overhead incurred by memory address

delivery, another optimization is proposed below.

4.3.2 OPT2 : Stack-based Indirect Accessing

The foundation of the second optimization relies on several phenomena observed on the

frame pointer register and stack pointer register, namely EBP and ESP of the IA-32 architecture.

Due to the conventional design of common compilers, this register stores the beginning address

of an activation record and top of the stack in EBP and ESP respectively. In addition, their

values usually change only when a new activation record is created. Referencing memory

indirectly with these two registers is a common way to access local variables and function

arguments. The third emulated instruction “mov EAX, [EBP+8]” listed in Figure 12 is a

representative instance. More, in more than 90 percent of EBP or ESP-based memory accesses,

their offsets distribute over the range from -1024 to +512 bytes. The clustering phenomenon is

understandable since local variables and arguments usually locate near the beginning of the

frame and occupy little space.

- 43 -

In Figure 13 are depicted the three scenarios could occur when adding offsets within the

range above to EBP. It is easy to see that two pages at most could be cross by the ranging offset.

Note that although the two pages are continuous in virtual address space, their physical

locations may be not due to the virtual memory mapping. For the two physical pages, the page

pointed by EBP is referred to as the base page and the other one as the siding page. The physical

address generated by EBP-based addressing with such offsets could be acquired using

Algorithm 4. Note that the discussion above also applies on ESP-based indirect addressing.

Using the algorithm the helper thread could calculate the physical address generated by

EBP (or ESP) -based addressing instructions as long as the instruction has a proper offset.

Let’s consider the four inputs needed for the algorithm. Since the offset is encoded in the

instruction, it could be determined in translation phase and stored as part of the IF-code. This

Figure 13 : Scenarios of EBP-based memory address with offset within range -1024~+512.

Algorithm 4 : Calculation of the physical address generated by EBP-based accessing.

 offset encoded in BP-based accessing instruction.

 current value of the register.

 physical address of base page.

Physical address accessed by this instruction.

 liminate on edicated

 PA MAS x

 PA MAS PA MAS
 PA MAS

 PA MAS

- 44 -

observation saves us from en-queuing memory address for each EBP (or ESP) -based memory

access. However, the benefit comes with the trade-off that the helper must possess correct

paddr_base and paddr_siding for calculation. This is done by having the emulator perform

virtual address translation and deliver translated addresses to the helper every time that EBP or

ESP is modified. However, sometimes their values can change so frequently that the cost to

perform address translation may attenuate the benefit.

To resolve the limitation, the following technique is used. Note that in most cases, both

EBP and ESP point at locations inside the stack segment (if the program has one). Therefore,

an out-of-box hook is implemented on the part in charge of segment allocation to acquire the

physical pages mapped to pages of the stack segment. These physical pages are specially

labeled so that we can identify whether EBP or ESP points at a labeled page when their values

are modified. All the addresses of these physical pages are delivered to the helper thread only

at the infrequent context switch or user/kernel mode switch. As a result, the helper can be

informed of paddr_base and paddr_siding without demanding the emulator to perform address

translation every time when EBP or ESP is modified. If EBP or ESP point at an unlabeled page,

the delivering operation automatically falls back to the slower translate-then-deliver mode upon

each EBP or ESP modification.

4.4 Peripherals

Tracking information flows across peripherals is a primary goal of SWIFT. For the time

being SWIFT tracks information flows in hard disks and network interfaces

For hard disks, any DMA operation and port I/O between the hard disk buffer and memory

are watched, and taint tags are propagated along the data movement. Their taint maps are stored

hierarchically just as page directory mechanism in conventional MMU to avoid excessive

memory consumption. In this way, no taint tags would be allocated to those sectors which had

never been tainted.

The watching on network interfaces follows a similar pattern. Since packet exchange

between the NIC and memory is usually done with DMA, only DMA operations are watched

- 45 -

in SWIFT implementation.

- 46 -

V. Evaluation

Chapter 5

Evaluation

Algorithm 1 is implemented on the QEMU emulator. The algorithm generally requires

8~12 Gigabytes of memory space to store the acquired dereference paths. Ubuntu 12.04 64-bit

is chosen as the host environment and have 16 Gigabytes RAM installed so that the QEMU

process can utilize as much memory as it demands. To implement Algorithm 2 and Algorithm

3, IDA Pro and IDAPython are used to parse the memory dump and construct the basic graph.

Then, the graph is converted to a NetworkX graph object with edges of indirect branches added.

The code generator is implemented within 127 lines of ruby scripts.

The effectiveness of ProbeBuilder is evaluated through executing the following six subject

behaviors: process creation, file creation, registry creation, process termination, file deletion,

and registry deletion. All these behaviors are performed with upper layer Win32 API with

tainted arguments. Windows XP SP3 32-bit is installed as the guest operating system.

ProbeBuilder generates probe locations for these behaviors and the corresponding data

dereferences. To verify the correctness and quality of the automatically generated probes, for

each behavior three probes are selected at random and implemented in another QEMU instance

dedicated to behavior monitoring. In the QEMU instance, Process Monitor produced by

Sysinternals and Wireshark are installed. The log trace generated by our probes is then

compared with the ones generated by the above two tools. To demonstrate the strength of

ProbeBuilder, a kernel-level VMI profiler is implemented using the generated probe locations

and dereferences.

- 47 -

5.1 Probe Generation

As aforementioned, Algorithm 1 will be executed repetitively to eliminate unstable probe

locations. After that, graph analysis (Algorithm 2 and Algorithm 3) is used to eliminate non-

dedicated code locations. To better illustrate effectiveness of the process, an entry in Table 5

shows the total number of remaining probe candidates for a specific behavior after runs of

Algorithm 1. Since only identical probe locations and data dereferences are kept after each

round, the total number decreases as the process continues. Note that each test is repeated 50

times to ensure the stability of sieved probe candidates. However, in all these tests the total

number of probe candidates soon stabilized in less than 10 rounds. As an example, the test item

for process termination takes only 3 rounds to converge. The experiment indicates two

important facts. First, a large portion of candidates found in the first round are eliminated in

later rounds. This shows the benefit of multi-run elimination. Secondly, the fact that all these

numbers converge to stable points guarantees the existence of stable probe locations and data

dereferences.

In Table 6, the analysis results of Algorithm 2 and Algorithm 3 are listed. The set of the

Table 5 : Remainder candidates after each run of Algorithm 1.

Behavior
1 2 3 4 5 6 7 8 9 10 11

 Process

Creation
474 311 308 303 300 295 294 281 277 276 -

File

Creation
220 183 181 178 177 177 173 168 168 167 -

Registry

Creation
83 70 64 62 58 - - - - - -

Process

Termination
42 38 35 - - - - - - - -

File

Deletion
104 100 99 99 98 - - - - - -

Registry

Deletion
86 67 67 66 62 60 55 51 - - -

- 48 -

probe candidates discovered by Algorithm 1 is used as an input variable C to Algorithm 2 and

Algorithm 3, that is, the numbers listed in the first row of Table 6 are identical to the final stable

numbers in Table 5. The second row in Table 6 gives the total number of leading nodes

generated by Algorithm 2. The third row gives the total number of dedicated nodes as the final

output of ProbeBuilder. As shown, a large portion of candidates are again eliminated by

Algorithm 3. The test on registry creation filtered 44 non-dedicated probe candidates, leaving

14 candidates as the final answer.

To understand the effectiveness of the refinement phase, the eliminated probe candidates

are inspected. However, the massive amount of code and its assembly form make manual

examination extremely difficult. To simplify the task, the non-dedicated probe candidates (code

blocks) are mapped back to the owner functions with IDA Pro. Functions with human-readable

names recognized by IDA Pro and WinDbg are then collected. The functionality of these

“named” functions are manually checked on MSDN, looking for those dedicated to the subject

behavior. Subroutines called by these non-dedicated functions are also considered as non-

dedicated.

The results of examination are shown in Table 7. For each subject behavior, a certain

amount of functions are manually discovered to be non-dedicated. Their names are listed in the

first column. Among the non-dedicated functions recognized by Algorithm 2 and Algorithm 3,

the proportion of these manually verified functions p is listed in the second column. For instance,

the test on file creation shows that 80% of discovered non-dedicated probe candidates are

manually verified. Tests on behaviors like registry deletion and registry creation give low

proportion of the successfully verified functions. However, the test merely investigates the

Table 6 : Remainder candidates after Algorithm 2 and Algorithm 3.

Process

Creation

File

Creation

Registry

Creation

Process

Term.

File

Deletion

Registry

Deletion

Input 276 167 58 35 98 51

Top Nodes 32 20 6 4 27 12

Dedicated

(Output)
176 88 14 22 58 25

Non-dedicated 100 79 44 13 40 26

- 49 -

documented functions, which can be recognized by IDA Pro and WinDbg, and hence the

number may be underestimated. Considering this fact, it is reasonable to deduce that this test

has successfully verified the effectiveness of Algorithm 2 and Algorithm 3.

In Table 8, a few concrete examples of generated probes and their data dereferences are

shown. During the execution of Algorithm 1, the first 512 bytes of the data captured by the

taint-based predicate P are captured. However, for conciseness only the part before the

terminating null character is listed. The first and the second columns give the probe locations

and the corresponding dereference data paths, respectively. As expected, the large offsets in

Table 7 : Eliminated non-dedicated functions.

Names p%

Process

Creation

ExAcquireSharedWaitForExclusive, RtlRandom,

RtlCopyUnicodeString, SePrivilegeCheck,

FsRtlDoesNameContainWildCards,

RtlEqualUnicodeString, ObfDereferenceObject,

SeReleaseSecurityDescriptor, ObGetObjectSecurity, SeDelet

eAccessState, ObOpenObjectByName,

RtlLengthRequiredSid, RtlUpcaseUnicodeChar

32%

File

Creation

CcUnpinData, RtlSplay, CcPinRead, CcRemapBcb,

SeDeassignSecurity, CcPinMappedData

RtlLookupElementGenericTableFullAvl,

CcMapData, RtlCopyUnicodeString,

ObOpenObjectByName, RtlAreBitsClear,

RtlInsertElementGenericTableFullAvl

80%

Registry

Creation

ExDisableResourceBoostLite, SeDeassignSecurity,

CcPinMappedData, IoSetThreadHardErrorMode,

SeAssignSecurity, RtlUpcaseUnicodeChar

27%

Process

Termination
MmMapViewOfSection 77%

File

Deletion

IoSetShareAccess, ObOpenObjectByName,

IoIsOperationSynchronous, RtlCopyUnicodeString
63%

Registry

Deletion

RtlCreateSecurityDescriptor,

ExDisableResourceBoostLite, CcPinMappedData,

SeQuerySecurityDescriptorInfo

13%

- 50 -

dereference paths show the existence of huge data structures in Windows kernel. The given

SRCH_WIDTH: [512, 256, 128, 64, 512] may not be enough to cover all possible dereferences.

Nevertheless, it is not necessary to identify all of them in this application.

Note that our dummy program invokes the ANSI-string-based API. Yet, the corresponding

Table 8 : Examples of probes, data dereferences, and data collected by Algorithm 1.

 EIP Dereference Path Captured Data

Process Creation

0x804d9050 ESP, +20, +0 T_A_R_G_E_T.exe\0

0x804e447f EAX, +184, +16, +0

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e\0x\0e\0\

0\0

0x804efe53 ESP, +12, +160, +124, +6

C\0:\0\\0T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e

\0x\0e\0\0\0

File Creation

0x804e875a ESI, +100, +52, +0

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0t\0x\0t\0\

0\0

0x80577af2
ESP, +24, +20, +108, +60,

+0

T_A_R_G_E_T.txt\0

Registry Creation

0x804e8a61 ESP, +0, +0, +96, +60, +0

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e\0x\0e\0\

0\0

0x804edb22 ESP, +24, +32, +28, +60, +0

H\0K\0E\0Y\0_\0L\0O\0C\0A\0L\0_\0M\0A\0C\0H\0I

\0N\0E\0\\0S\0O\0F\0T\0W\0A\0R\0E\0\\0M\0i\0c\

0r\0o\0s\0o\0f\0t\0\\0W\0i\0n\0d\0o\0w\0s\0\\0

C\0u\0r\0r\0e\0n\0t\0V\0e\0r\0s\0i\0o\0n\0\\0R

\0u\0n\0\0\0

Process Termination

0x804e917d ESP, +20, +12, +0 T_A_R_G_E_T.exe\0

File Deletion

0x804e875a ESP, +4, +100, +52, +0

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0t\0x\0t\0\

0\0

0x804e883c EDI, +28, +148, +60, +6

C\0:\0\\0T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0t

\0x\0t\0\0\0

Registry Deletion

0x80563db2 ESP, +8, +200, +0

T\0_\0A\0_\0R\0_\0G\0_\0E\0_\0T\0.\0e\0x\0e\0\

0\0

- 51 -

Unicode strings encoded by the operating system are also identified. In addition, prefixed

Unicode strings are captured as well in process creation and file deletion. The results

demonstrate the use of the taint-based predicate.

5.2 Effectiveness of Generated Probes

To verify effectiveness of the generated probes and dereferences, two experiments are

performed.

5.2.1 Monitoring User-Space Activities

Since all the probes generated by ProbeBuilder locate in the OS kernel, they should

produce profiles at least as complete as any user-level monitors. To verify this, for each behavior

3, probes are randomly selected out of the output of ProbeBuilder, and are manually

implemented in another QEMU instance (without the functionality of ProbeBuilder). In that

guest machine, the same OS image is installed. Meanwhile, Sysinternal Process Monitor v3.04

and API Monitor v2.0 from Rohitab are also installed. The system is then manually exercised

for 30 minutes, producing more than one million activities recorded by the two commercial

applications. The API trace logged by the probes of ProbeBuilder was compared with theirs.

The comparison shows that all the occurrences of these six behaviors reported by Process

Monitor and API Monitor are also logged by the probes of ProbeBuilder. The API arguments

are also correctly captured by the generated data dereferences. We discover that the probes of

ProbeBuilder recorded more activities than the two user-space profiling tools, especially for the

file creation behavior. A large portion of these extra records are confirmed as expected to be

kernel activities since the probes reside in the kernel space. However, there still exist 0.21% of

the total recorded activities with meaningless binary data which are considered as false positives.

5.2.2 Monitoring Kernel-Space Activities

The kernel-level probe shows its effectiveness against kernel activities. For evaluation, a

kernel module is implemented to simulate a pure kernel-level Trojan. The following tasks are

- 52 -

performed in sequence: 1) Establish a TCP connection with a HTTP server controlled by us. 2)

Create a dummy file ProbeBuilderTest.txt at C:\ 3) Create a registry key

ProbeBuilderRegistryInjection in the start-up program entries. Note that these

tasks are executed purely in the kernel-space. This module is packed within a leading program

in which the attached module is registered as a system service. The program is then profiled

with the same QEMU instance used in the previous subsection. It is also uploaded to

ThreatExpert and Anubis for comparison.

The result shows that only our profiling tool successfully captures all the three activities.

ThreatExpert only identified the created registry key, and Anubis only logged the TCP

connection. (The user-space activities of the leading program are captured by all three platforms)

Since both ThreadExpert and Anubis captured at least one of the three kernel-level behaviors,

the success execution of the kernel module is confirmed. This experiment not only demonstrates

the effectiveness of ProbeBuilder but also the necessity of kernel-level probes.

Please note that this result does not imply that the probes generated by ProbeBuilder are

more effective than those in existing VMI-based systems. Given sufficient time, any

experienced analysts can discover probe locations and data dereferences through reverse-

engineering. The contribution of ProbeBuilder is automating these procedures in an effective

way.

5.3 Performance

ProbeBuilder utilizes emulation to monitor the system state before each code block. Under

the taint checking mode, additional taint analysis must be performed for each executed

instruction. The data dereference analysis (Algorithm 1) runs about 30 times slower than the

native machine. It takes 1~3 minutes to complete an upper-layer API invocation. The time

required by the control flow analysis (Algorithm 2 and Algorithm 3) heavily depends on the

size of the probe candidates discovered by Algorithm 1, varying from 6 minutes (for process

termination) to 167 minutes (for process creation). However, note that ProbeBuilder is designed

to reduce the effort of manually building VMI tools. Compared with the enormous effort

- 53 -

generally required by manually reverse-engineer a closed-source kernel image, the execution

time needed by ProbeBuilder is trivial. In addition, the probes and the data dereferences

generated by ProbeBuilder should be transferred to systems implemented with faster emulation,

virtualization, or even native machines, not directly on ProbeBuilder itself. Consequently, the

schemes proposed in this dissertation do not impose overhead on the final application system.

On the other hand, the performance of SWIFT should be carefully evaluated since its

contributions focus on the performance boost led by the optimizations proposed in this

dissertation. To evaluate performance improvement attributed to techniques proposed in this

study, both commercial test suites are used and common workloads to acquire benchmark scores

for following configurations.

(a) Native QEMU

(b) SWIFT (decoupled design)

(c) SWIFT w/ only OPT1 enabled

(d) SWIFT w/ both OPT1 and OPT2 enabled

(e) QEMU with inline taint propagation

(f) TEMU (Based on QEMU Ver. 0.9.1)

To set up a baseline for our evaluations, a native version of QEMU, which our system base

on, is tested in configuration (a). Note that neither KQEMU nor KVM was activated because

we want to benchmark the performance of the pure emulation. In (b), solely the decoupling

mechanism is enabled so that its performance advantage could be measured. Configuration (c)

and (d) operate with the decoupled design as well as (b), yet OPT1 and OPT2 are enabled

respectively. To understand how much performance gain could be achieved with the proposed

schemes, we also set up a configuration (e), which inlines taint propagation routines of SWIFT

directly in code blocks generated by original QEMU. The comparison also included TEMU, a

well-known system-wide taint analysis system, as configuration (f) in this benchmark

evaluation.

A little more explanation is needed to elaborate the goal of this evaluation. For

configuration (b), (c), (d), and (e) all data in guest memory or received from network are labeled

- 54 -

as tainted. Although this leads to considerable memory usage since the companied shadow

memory becomes as large as the allocated RAM size of the guest machine, it is necessary for

measuring the performance gain under the worst case. Moreover, it is difficult to fairly compare

TEMU with our scheme directly. TEMU is designed with extremely high flexibility, and it thus

contains large taint record for each byte and many callbacks for additional plug-ins. These

features inherently incur severe overhead on performance of TEMU. However, it is also

difficult to port its code into SWIFT for direct comparison because TEMU is based on an older

version of QEMU. Due to reasons above, only the taint propagation of TEMU is activated and

remove any other plug-ins in configuration (f). In addition, no taint data is introduced in

configuration (f) among all experiments.

All the evaluations are performed on an IBM System x3650, with one unit of Intel Xeon

E5430 2.66 GHz Quad-Core Processor, 8GB DDR2 RAM, and a 150GB SATA-II hard disk

installed. In each configuration one identical virtual machine snapshot is loaded into the

emulator to ascertain fairness. The virtual machine is allocated with 512 MB RAM and a 10GB

hard disk. Windows XP with service pack 3 is installed and booted in the snapshot. In addition,

512 MB are allocated for the IF-code delivering circular queue.

To perform information flow tracking SWIFT consumes more memory than the original

emulator does. First of all, an extra 512 MB space was allocated to construct the circular queue

for IF-code delivering. In addition, each byte in the guest memory is augmented with an extra

shadow byte to preserve its taint status. Since in our evaluation every byte in memory is labeled

as tainted, the shadow memory occupies the same size as the physical memory size of the guest.

To enable OPT1, a shared 128MB memory region is pre-allocated to store IF-code blocks

generated in the translation phase. We also force the emulator to flush all the code blocks when

this region is full. Therefore, all these extra memory usage can be statically calculated to be

512+512+128=1152MB.

The first result of performance evaluation is acquired with PassMark Performance Test 6.0,

which is an off-the-shelf commercial test suites adopted extensively in CPU and system

benchmarking. Benchmark items could be categorized into CPU-intense jobs and memory-

- 55 -

intense ones. To present overhead imposed by each configuration more clearly, benchmark

scores of configuration (b), (c), (d), (e), and (f) are divided by the score of baseline configuration

(a). As indicated in Figure 14, although the design with decoupled DIFT still imposes high

overhead (1.43X ~ 5.00X) among all test items, it already outperforms configuration (e)

significantly. When OPT1 and OPT2 are enabled, the overall performance downgrade can be

reduced to 1.28X~3.16X, which are 2.74X~7.48X times faster than the interleaved design (f).

The result demonstrates effectiveness of optimizations proposed in this dissertation. In addition,

close scores between (e) and (f) give us faith on the representativeness of configuration (f).

There is an interesting fact presented in Figure 14. First of all, memory-intense benchmark

items benefit a lot from OPT2, but no significant improvement is shown on CPU-intense ones.

After analyzing instruction traces of those experiments, it is discovered that EBP-based memory

accesses in the benchmark program occur less frequently than expected. In such cases, the

overhead of delivering memory addresses cannot be effectively removed by the optimization.

Next, same configurations with common workload such as file transferring or source code

compiling are benchmarked to further investigate the analysis overhead in real applications.

Details of these workloads are explained below. All measurements are repeated certain times

and average values are calculated. The number of repetition of each item is listed after the name

Figure 14 : Overhead imposed by different configurations.

To present overhead imposed by each configuration more clearly, benchmark scores of

configuration (b), (c), (d), and (e) are divided by the score of baseline configuration (a).

- 56 -

of the workload.

System Booting (50)

The time needed for booting Windows XP is measured. More precisely, the time elapsed

from powering on the emulator until Windows loads Graphical Identification and

Authentication, GINA, which brings up the Windows Security dialog for users to log on, is

measured. It is chosen as the termination of the measurement because its loading represents that

the booting-up sequence has come to an end.

Web Browsing (50)

Since web-browsing is an extremely frequent user behavior and a common way to get

attacked by malware, this item is included in benchmark to investigate how our implementation

can affect the browsing speed. The experiment is carried out by measuring the time needed for

sequentially browsing top 50 websites, which are ranked by Alexa Internet, an authoritative

Internet information provider. The sequential browsing mechanism is implemented with a

Firefox plugin, which automatically visits next website once it receives an event of page loading

complete.

Communication over SCP (20)

In this benchmark a large file is downloaded into the emulator through Secure Copy, a file

transfer mechanism based on SSH protocol to provide confidentiality and authentication. The

file consists of 120 MB random binary sequence and resides on a host locating in the same

100BASE-TX local area network. The benchmark is performed with Putty SCP, which is a

Win32 implementation of the protocol. The time needed to accomplish the following command

is measured.

pscp -l dummy_user -pw dummy_password \

192.168.0.254:dummy.dat ./

Kernel Compiling (5)

Compiling the kernel of an operating system is a common workload used to benchmark

the overall performance of a computer. To be consistent with previous benchmark items, which

all target on Windows environment, this experiment is carried out by building the Windows

- 57 -

Research Kernel in the emulated machine.

Table 9 shows the time needed by each configuration to accomplish common workload.

In addition, except for configuration (a) the overhead is calculated by dividing the time needed

by the configuration by the time needed by configuration (a). To illustrate the overhead more

clearly a comparison chart is given in Figure 15. As shown, configurations with analysis

decoupled showed enormous performance advantage over those with inline analysis routines.

In addition, effectiveness of the two optimizations are also demonstrated in configuration (c)

and (d). The result shows that our system remains 50%~85% performance of a native emulator

when both optimizations are enabled. Moreover, compared with configuration (e), a greater

than 2X performance advantage is given by configuration (e) in nearly all commercial

benchmark items and workload tests. The observation justifies that the investment of utilizing

an addition CPU core is paid off.

To show the overhead imposed on the native machine by the system-wide emulation and

the decoupled design, we also benchmarked the native performance. In Table 10, the

comparison of native machine and SWIFT+OPT1+OPT2 is listed. The values shown in the

Figure 15 : The common workload overhead comparison between each configuration.

Table 9 : Time needed to accomplish common workloads for each configuration.
 a b (b/a) c (c/a) d (d/a) e (e/a) f (f/a)

System Booting (50) 27.7 62.1 (2.24X) 58.4 (2.11X) 53.4 (1.93X) 97.2 (3.51X) 195.0 (7.38X)

Web Browsing (50) 536.1 945.1 (1.76X) 730.6 (1.36X) 632.7 (1.18X) 1554.2 (2.90X) 1754.3 (3.34X)

SCP Communication(20) 164.6 386.5 (2.35X) 227.5 (1.38X) 214.6 (1.30X) 688.0 (4.18X) 722.8 (4.08X)

Kernel Compiling (5) 1364.7 3605.9 (2.64X) 2837.7 (2.08X) 2757.1 (2.02X) 5751.2 (4.21X) 14653.2 (12.83X)

Unit: sec

- 58 -

group of CPU-intensive and memory-intensive tasks are the scores given by the PassMark

benchmark suite. A higher value indicates a better performance. In the common workload group,

the time needed to accomplish that task is listed. As indicated in the table, even if both

optimizations were used, the system still suffers from huge performance penalty. The PassMark

benchmark shows that the overhead can range from 12.74X up to 35.55X. However, in common

workload the system generates lower overhead than it does in Passmark benchmark. The

overhead ranges from 2.73X to 8.03X. The phenomenon is understandable because these

common workloads do not demand CPU and memory as much as Passmark does. Instead, more

time is spent on waiting for the I/O operations involved in network behaviors or file system

accesses.

Obviously, the performance penalty is non-negligible even if the proposed decoupling and

optimization techniques are used. The performance degradation can be attributed to the inherent

emulation characteristics. However, by comparing configurations (a) and (d) we understand

that there is still overhead imposed by DIFT on pure emulation. One direct cause of the

overhead is the routines injected in code blocks. Although OPT1 and OPT2 aggressively

eliminate code injections, there are still plenty of them. We also suspect that the overhead is

Table 10 : Comparison between SWIFT and Native Execution.

 Benchmark Unit Native (d)

CPU-intensive

Integer Math MOps./s 523.4 24.1(21.72X)

Compression KBytes/s 3128.2 103.0(30.37X)

Encryption Mbytes/s 13.5 0.4(33.75X)

Img Rotation Images/s 123.5 9.7(12.73X)

String Sorting 1000 strings/s 1701.4 64.3(26.46X)

Memory-intensive

Mem Alloc Mbytes/s 2118.4 75.8(27.94X)

MemRead Cached Mbytes/s 1371.2 66.5(20.62X)

MemRead Uncached Mbytes/s 1340.2 62.2(21.55X)

MemWrite Mbytes/s 1477.1 87.2(16.94X)

Common Workload

System Booting Sec. 10.3 53.4(5.18X)

Web Browsing Sec. 231.7 632.7(2.73X)

SCP Comm. Sec. 76.2 214.6(2.82X)

Kernel Compiling Sec. 343.1 2757.1(8.03X)

- 59 -

also contributed by a saturated IF-code delivering queue. In current implementation, the

analysis thread has not been optimized. Therefore, the speed of the analysis thread, which

consumes IF-codes, cannot keep up with the emulator. Once the queue is saturated, the emulator

must wait for the analysis thread. To investigate whether it is the code injection or the saturation

degrades the performance, we implemented a dummy analysis thread, which performs nothing

but solely consumes received IF-codes. With the dummy analysis thread, the queue is never

saturated, and we can measure the overhead incurred solely by the code injected in the emulator.

The result is shown in Table 11. As shown in the table, the fully-operational taint tracking thread

causes substantially larger overhead than the dummy helper thread does. The observation

indicates that, in current implementation, the overhead imposed by DIFT on pure emulation is

mainly contributed by a slow taint tracker.

To verify our conjecture, we set up an experiment with two additional profilers in SWIFT.

One is installed in the emulation thread to measure how many code blocks are emulated per

second. The other is installed in the DIFT thread to measure the distance between the en-

queuing pointer and the de-queuing pointer periodically. The distance indicates the usage of the

message-delivering queue. By plotting the two kinds of measurements versus the system clock

time on the same graph, we can study the correlation between the emulation speed and the

queue usage. It is worth noting that in our experiment we allocated a 512 MB queue. This

Table 11 : Performance of QEMU, Dummy Analysis, and SWIFT.

 Benchmark Unit (a) Dummy (d)

CPU-intensive

Integer Math MOps./s 37.3 31.2 24.1

Compression KBytes/s 213.2 168.2 103.0

Encryption Mbytes/s 1.2 0.7 0.4

Img Rotation Images/s 12.4 11.6 9.7

String Sorting 1000 strings/s 189.0 127.8 64.3

Memory-intensive

Mem Alloc Mbytes/s 140.3 113.4 75.8

MemRead

Cached
Mbytes/s 155.0 124.2 66.5

MemRead

Uncached
Mbytes/s 150.5 108.6 62.2

MemWrite Mbytes/s 171.7 130.9 87.2

- 60 -

assures that the saturation (if any) can be observed even if an impractically large queue is given.

The result is shown in Figure 16. Figure 16 contains two plots, which are acquired in the

process of running Passmask CPU integer operation and encryption benchmark, respectively.

In each plot, the emulation speed versus time graph and queue usage versus time graph are

plotted. The patterns circled by dashed boxes indicate that the emulation performance drop

when the queue becomes saturated. Namely, the emulation thread will still be cumbered by the

(a)

(b)

Figure 16 : Plots of emulation speed versus time and queue usage versus time.

Plot (a) and (b) are acquired in the process of running Passmask CPU integer operation and

encryption benchmark respectively. The patterns circled by dashed boxes indicate that the

emulation performance drop significantly when the queue becomes saturated. Namely, the

emulation thread will still be cumbered by the taint tracking thread eventually.

- 61 -

DIFT thread eventually. Namely, the emulation thread will still be cumbered by the DIFT thread

eventually. The data indicates an interesting fact worth noting. In both plots, the drop is not

negligible. Namely, the current taint tracking implementation in SWIFT is not able to keep up

with the emulation part, and it indeed eventually incur significant overhead on long CPU-bound

tasks.

The finding above gives us a direction to the possible improvement. Due to the

implementation effort, in the current implementation of SWIFT the taint tracking thread adopts

a threaded dispatching way to interpret received IF-code blocks. Although the IF-codes are

already stored in a very concise format, certain decoding steps are still required to inter-pret.

To eliminate overhead incurred by the decoding step, it is possible to choose dynamic binary

translation over interpretation. Namely, we can enhance the IF-code block generation module

so that it produces not only IF-code blocks but also native binary codes to track taints. With the

help of OPT1, it would be trivial for the DIFT thread to verify whether a code block is emulated

without unexpected exceptions and to execute the corresponding taint tracking binary codes.

The idea above is totally feasible, but it needs further implementation and evaluation. We leave

it as future work.

5.4 Malware Analysis with SWIFT

Although SWIFT is originally designed for accelerate the taint tracking predicate P of

ProbeBuilder, it also provides practical use for malware behavior analysis. In this section, we

introduce behavior profiling functionalities and their designs.

In the emulated IA-32 environment, Professional edition of Windows XP with SP3 is

installed as the guest operating system. The emulator is powered on with a snapshot of the guest

system already running so the booting sequence of the guest OS is skipped. The analysis process

starts with having the file to examine imported into the file system in the emulated machine.

While being imported, each byte written into the emulated hard disks will be labeled as tainted.

Having all sectors occupied by the target tainted, we execute the target so that its effects on the

whole operating system can therefore be revealed. Along the emulation, IF-codes will be

- 62 -

generated by the emulator and delivered continuously to the analysis thread as previously stated.

In our implementation, we give the system only one minute for execution and then freeze it to

finish analysis.

Code Injection/Unpacking/Kernel-Level Execution

Identifying instructions residing in tainted memory regions can reveal various suspicious

behaviors such as code injection or unpacking. Whenever such an instruction is discovered, we

could check the value of CR3 to determine in which process the instruction is executed. If it

resides in processes other than the executable being analyzed, code injection is detected.

Otherwise, it may be an unpacking behavior. In addition, we can also check the CPU privilege

to detect execution in kernel space.

The most intuitive idea toward this is to check whether an instruction fetched by the

emulated processor locates at a tainted memory location. However, the idea above requires that

the emulator can always access up-to-date taint tags before fetching instructions. It is obviously

infeasible because taint tags may have not been updated due to the un-synchronized cooperative

pattern between the emulator and the analysis thread. To solve this problem without introducing

synchronization issues, the security check should be placed in the helper so that the status of

taint tags is assured to be up-to-date.

Here we state our solution toward this problem. Recall that when OPT1 is enabled the

emulator generates IF-code blocks while translating instructions. In the IF-code block, we store

not only IF-codes but also the physical address of the first instruction and the value of CR3

register in that basic block. In this way, the helper could always detect dirty code execution by

checking whether that physical address has been tainted every time it accesses an IF-code block.

And the recorded CR3 value can help us determine in which process the instruction resides.

Note that we taint data written by dirty code with a different taint color so that unpacked code

can be distinguished from the original program loaded from disks.

Outgoing Traffic

Many malware perform network activities. However, those traffics which are not induced

by the analyzed item can be annoying and distracting for analysts. These “noise traffics”, such

- 63 -

as NetBEUI messages broadcasted periodically by Windows, are usually generated

spontaneously by the operating system itself. With taint analysis, our system can filter out

traffics which are irrelevant to the target being examined and generate more concise and

accurate report. To capture tainted packets we check each DMA operation which copies data to

the TX-buffer of the emulated NIC as stated previously. To display content of the traffic, the

first 256 bytes of each packet is recorded so that header information and part of the payload can

be traced later.

Dirty Code Execution

One interesting problem in taint analysis is how to propagate taint tags when the executed

instruction locates in a tainted memory region. Such cases indicate that potentially problematic

codes are about to gain full control of the emulated environment, and therefore extra care should

be taken when we propagate taint tags because crafted programming techniques could be used

to evade information flow tracking.

In our implementation we took an aggressive propagation policy for dirty code execution

by tainting every memory cell written by instruction residing in tainted memory regions. This

approach assures that all memory modifications done directly by those dirty codes are tracked

by dirty taint tags. We set this rule with the highest priority in taint propagation to resist taint

laundering. We do not claim that this approach disables all circumventions because dirty codes

may still be able to modify memory without being tracked by taking advantage of other clean

code blocks already existing in the system such as external libraries.

The second kind of analysis is done at the end of the analysis process instead. They are

postponed due to following reasons. First, these analysis items cost so much time that activating

them on-the-fly could slow down the analysis thread dramatically. In addition, these items are

used to identify persistent behaviors such as file modification. Therefore, postponing these

analysis items until the end of the analysis cannot jeopardize effectiveness of our system. We

show such items below.

File Creation/Modification

The most representative behavior of malicious persistence is modification on the file

- 64 -

system. To sustain their survival after rebooting process, malware always need to implant

themselves into non-removable storage such as hard disks. Therefore, showing these

modifications is essential for malware analysis. However, to present the result of taint analysis

in a more readable way, tainted sectors in hard disks are reversely mapped to file objects which

possess these sectors. The mapping could be done through parsing the metadata and the file

allocation table of the file system. We realize the translation by integrating The Sleuth Kit

(TSK), which is a popular open source toolset for disk forensics, with our system. With the

functionality provided by TSK, files possessing tainted sectors can be easily inferred in the end

of analysis.

Registry Creation/Modification

Another important behavior should be carefully profiled is modification on the registry.

The registry is a database which stores configurations for Windows itself or various applications.

Resembling files and directories in a file system, these data are well-organized in a hierarchical

way. An entry stored in registry has its key, value, and path. The key and the value of an entry

in registry can be viewed as the name and the content of a file in file system, and its path can

be therefore conceived intuitively. Therefore, most malware create new items or modify

existing settings at certain paths in the registry database, such as start-up application list or file

extension associations. Monitoring modification on the registry is no less important than file

system monitoring because locations modified actually give the rich semantics about the

intention of the target.

Most registry operation profiling tools do their jobs by hooking specific functions in

Windows API or kernel since registry database are usually accessed through them. It is also

possible to follow a similar design so that taint-based checks could be performed when these

APIs or functions are invoked. However, we do not want to implement this feature with any

hooking techniques because they can be easily circumvented once the modification does not

rely on hooked functions. Besides, hooking is so system-dependent that a small update for

Windows can easily invalidate our system. These considerations lead us to the following

approach.

- 65 -

Modified or newly created keys in registry database files will be extracted in the end of

analysis. With taint tags of hard disk sectors in hands, tainted fragments in registry database

files can be therefore identified. Note that the taint analysis assures that these fragments are

actually injected due to the behavior of the target file. If there is any registry key newly created

or modified by the target, its key value will be therefore included in one of these fragments.

With the key value located, we parse the database file and traverse the registry tree reversely to

infer the name and the path of the key. Although the format of the registry database has never

been full explained by Microsoft, yet previous papers had already demonstrated its internal data

structure, which benefits implementation of our traversing algorithm.

To verify correctness and usability of system-wide DIFT and taint analysis we designed, a

malware behavior profiling system is implemented based on them. In this section we evaluate

its effectiveness by profiling real malware spreading in the Internet. The report is presented on

four dimensions: tainted file system objects, tainted processes, tainted registry keys and values,

and tainted network traffics. In the meantime, we also submit the sample to ThreatExpert, which

is a powerful online dynamic malware analysis tool, to check if our system gives matched

reports. In the following paragraphs we discuss analysis results by case study.

Case Study 1: TR/Dldr.FraudLoad

SWIFT generates the following report for TR/Dldr.FraudLoad.

Taint Analysis Report #1 : TR/Dldr.FraudLoad

=============== Files ===============

//$Bitmap

/Documents and Settings/All Users/Application

Data/boost_interprocess/20101231030705.500000/GoogleImpl

/Documents and Settings/dsns/Local Settings/Temporary Internet

Files/Content.IE5/PH91KL45/flash3[1].exe

/Documents and Settings/dsns/NTUSER.DAT

/Documents and Settings/dsns/NTUSER.DAT.LOG

/Documents and Settings/dsns/Desktop/sample1.exe

//$LogFile

//$MFT

//$Secure:$SDH

- 66 -

//$Secure:$SDS

//$Secure:$SII

/WINDOWS/system32/config/software

/WINDOWS/system32/config/software.LOG

/WINDOWS/system32/config/system

=============== Process ===============

sample1.exe, PID : 1112

=============== Registry ===============

HKLM/software/Microsoft/Windows/CurrentVersion/Run

Key: SmartIndex

Value: C:\Documents and Settings\dsns\Desktop\sample1.exe

HKLM/software/Microsoft/Cryptography/RNG

Key: Seed

Value: (binary)

HKCU/Software/Google

Key: ID3

Value: (binary)

HKCU/Software/Google

Key: AppID

Value:

DFlQqm+e4GDgQ0G+5GTaW1+CtBpxNgwhPn5mcHoouaFMzYkUfw26cM0mM4OYMuKCxg==

HKCU/Software/Google

Key: ID2

Value: (binary)

=============== Packet ===============

-> 188.229.90.5 , TCP 1035 -> 80

GET /flash3.exe HTTP/1.1 0x0d 0x0a User-Agent: Mozilla/4.0 (compatible;

MSIE 8.0; Windows NT 6.1; Trident/4.0) 0x0d 0x0a Host: 188.229.90.5 0x0d

0x0a Cache-Control: no-cache 0x0d 0x0a 0x0d 0x0a

-> 76.101.129.197 , TCP 1034 -> 80

GET /NS3/.htm HTTP/1.1 0x0d 0x0a Host: 76.101.129.197 0x0d 0x0a Content-

Length: 242 0x0d 0x0a User-Agent: Mozilla/4.0 (compatible; MSIE 8.0;

Windows NT 6.1; Trident/4.0) 0x0d 0x0a 0x0d 0x0a

-> 95.168.185.46 , TCP 1031 -> 80

GET /Gnodu8Ir.htm HTTP/1.1 0x0d 0x0a Host: 95.168.185.46 0x0d 0x0a

Content-Length: 242 0x0d 0x0a User-Agent: Mozilla/4.0 (compatible; MSIE

8.0; Windows NT 6.1; Trident/4.0) 0x0d 0x0a 0x0d 0x0a

- 67 -

According to the report generated by ThreatExpert, the Trojan program establishes

network connections to remote hosts and several registry keys are implanted. As shown in the

report, several tainted packets and registry keys are captured by our system. The tainted payload

indicates that it tries to download several files from remote servers. For the registry part, the

captured tainted value shows a start-up item is registered. Items above agree with report

reported by ThreatExpert. However, in the file system our report shows that the target program

contaminates //$Secure, which is used to store NTFS security descriptor table for files and

directories. The report generated by ThreatExpert gives no information about this.

One odd phenomenon can be observed here. According to our report, three HTTP requests

are issued to download different files, yet only flash3.exe is shown in the tainted file section.

The reason causing this is that NTFS stores files with content less than 1Kbytes in the Master

File Table (//MFT) directly to save disk space. Therefore, disk blocks occupied by the two

small HTML files are actually possessed by //MFT.

Case Study 2: Crypt.NSPM.Gen

SWIFT generates the following report for Crypt.NSPM.Gen.

Taint Analysis Report #2 : TR/Crypt.NSPM.Gen

=============== Files ===============

/

* /Documents and Settings/dsns/Local Settings/History/History.IE5/index.dat

/Documents and Settings/dsns/Local Settings/Temp/wdagnb7.dll

/Documents and Settings/dsns/NTUSER.DAT

/Documents and Settings/dsns/NTUSER.DAT.LOG

/Documents and Settings/dsns/Desktop/sample2.exe

//$LogFile

//$MFT

//ntdelect.com

/WINDOWS/system32/config/software

/WINDOWS/system32/config/software.LOG

/WINDOWS/system32/config/SysEvent.Evt

/WINDOWS/system32/config/system

/WINDOWS/system32/config/system.LOG

/WINDOWS/system32/kavo0.dll

/WINDOWS/system32/kavo.exe

- 68 -

=============== Process ===============

System, PID : 4

lsass.exe, PID : 544

svchost.exe, PID : 696

explorer.exe, PID : 1268

IEXPLORE.EXE, PID : 1108

IEXPLORE.EXE, PID : 1136

sample2.exe, PID : 1116

=============== Registry ===============

HKLM/SYSTEM/ControlSet001/Enum/Root/LEGACY_GHTRFDCXDSWEA/0000

Key: Service

Value: ghtrfdcxdswea

HKLM/SYSTEM/ControlSet001/Enum/Root/LEGACY_GHTRFDCXDSWEA/0000

Key: DeviceDesc

Value: ghtrfdcxdswea

HKCU/Software/Microsoft/Windows/CurrentVersion/Run

Key: kava

Value: C:\WINDOWS\system32\kavo.exe

HKLM/software/Microsoft/Cryptography/RNG

Key: Seed

Value: (binary)

=============== Packet ===============

168.95.1.1 , UDP 1027 -> 53

0xa7 c 0x01 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x03 www 0x0b

microsofttw 0x03 com 0x00 0x00 0x01 0x00 0x01

As shown in the second report, several processes are tainted by the target program. The

power of whole-system information flow tracking is demonstrated in this example. Based on

the condition we label processes as tainted, we can be assured that dirty code is executed in in

user-level processes and even kernel space (System, PID: 4). The tainted network packet also

shows the target program tries to look up the domain name www.microsofttw.com, but no

additional tainted packets is founded later. It turns out that the query for the domain name is

responded with NXDOMAIN, and the site is considered as malicious by Google Web Search.

 n nearly every report generated by S T we discovered that the key “Seed” in the

registry entry HKLM/software/Microsoft/Cryptography/RNG/ is tainted. As a

matter of fact, our system reports it as tainted even if profiling a simple dummy program which

- 69 -

exits immediately. It is quite intriguing because the registry is used as the seed of the pseudo-

random number generator for various Windows CryptoAPI functions, of which our dummy

program does not invoke any.

To better understand the consequence between the taint source and the registry key, the

information flow is dumped and traced backward manually with the help of IDAPro. It turns

out that the pseudo-random number generator calculates a SHA-1 hash value on outputs of

ZwQuerySystemInformation(), as it wishes to collect entropy from every aspects of the system.

Above observation is also backed by the PRNG algorithm discussed in [47]. The query routine

above fills the buffer with a SYSTEM_PERFORMANCE_INFORMATION structure. In the

structure is contained an integer field named as ReadTransferCount, which is used as a counter

to accumulate the number of bytes read by all calls to ZwReadFile(). Obviously, it will be

affected by the argument specifying the length of the output buffer in every invocation of

ZwReadFile(). The opaque information flow captured also justifies the correctness of our

implementation.

- 70 -

VI. Applications – Kernel Rootkit Recognition

Chapter 6

Applications – Kernel Rootkit Recognition

Techniques for malware pattern extraction and recognition had been discussed in previous

research [48][49][50][51][52][53][54]. Among these studies, a very common characteristic

taken into consideration is the invocation on Application Programming Interface, API, or

system calls. Since malware are designed to carry out certain malicious tasks, they inevitably

interact with the running environment through these interfaces. In addition, semantics of

program behaviors are actually embedded in invocations on those functions since one important

designing principle for API is descriptiveness.

However, existing API-trace-based behavior analysis systems lose their advantages when

facing advanced malware equipped with kernel-level rootkit. Successfully invading the OS

kernel implies the acquisition of the privilege of system administrator, which is able to

circumvent or to sabotage any other programs in the system. As aforementioned, Trojan.Srizbi,

which is responsible for 40% of all the spam on the Internet in 2008 [55], executes all its

functionalities such as hiding files and sending botnet traffic in the kernel space.

To cope with problems above, in this dissertation a novel system, MrKIP, is proposed to

recognize malware with invocation pattern of kernel functions. With the assistance of

ProbeBuilder, MrKIP implements the generated probes to monitor kernel-level activities. These

probes are implemented into SWIFT, which is capable of system-level taint tracking. As long

as any arguments of the probed function are tainted, the invocation and the associated arguments

are recorded.

- 71 -

MrKIP performs rootkit behavior recognition in two phases: pattern training and

recognition. In the training phase, MrKIP executes variants known belonging to the same rootkit

family and collects invocations of important in-kernel functions with the associated arguments.

The collected invocation sequences and the arguments together are used to construct a behavior-

based pattern for that malware family. In the recognition phase, we again execute the given

suspicious program inside our profiling emulator to collect its in-kernel function invocations as

its behavior profile, which will be matched against patterns of those known rootkit families.

6.1 MrKIP Internals

In the section, we describe the methodology and design of MrKIP. Its task is to test whether

the behavior of a suspicious program follows the pattern of a certain malware family. In Figure

17, an overview on the flow chart is given. As shown in the figure, the system operation can be

separated into the pattern training phase and recognition phase. In both phases, we rely on the

BehaviorProfiler to dynamically execute programs and collect the in-kernel function

invocation traces. In pattern training phase, traces of instances from the same malware family

are fed into the PatternGenerator to construct a pattern for later recognition. The pattern

consists of an HMM to recognize the temporal pattern hidden in the invocation sequence of in-

kernel functions and normalized string patterns for argument similarity measurement. In

recognition phase the profiler is again used to record the behaviors in kernel space led by the

testing subject. The PatternRecognizer is responsible for evaluating the deviation of the

collected trace from patterns of families.

- 72 -

To avoid being detected by malware, the monitoring functionality should be realized with

the so-called “out-of-box” hooking [2]. Namely, the code to capture in-kernel function

invocation and their arguments should be implemented in the VMM to be unobservable for

program running inside the guest operating system. In addition, to mitigate the possibility being

detected by VM-aware malware, BehaviorProfiler renames the devices and wipe out VM-

related flags in memory, both of which are widely used to detect VM environment. The pre-

analysis phase shown in Figure 17 demonstrates that MrKIP utilizes ProbeBuilder to

automatically generate probes for kernel functions to monitor.

6.1.1 Behavior Profiler

The BehaviorProfiler serves to generate the behavior trace of the subject program. It is

constructed by installing the probes that ProbeBuilder generated in the pre-analysis phase. The

profiling process begins with importing the subject program into the hard-disks of the guest

system. Then, these sectors occupied by that imported file are tainted as the source of

contamination. Then, the subject is executed and hence the tainted information will be

propagated all over the system. Once a probe is hit by the execution, its dereference is walked

through to check whether it reaches tainted information.

A probe H is defined as a 3-tuple H = (n, locH, ITH), where locH is a memory address and

ITH is an ordered sequence of 2-tuple (IH
k, T

H
k) for 1≦k≦n. Each IH

k: States {0,1}* is a

function maps a machine state S to a binary string ω. Namely, it extracts certain information

Figure 17 : MrKIP Architecture

 -

- 73 -

according to the register, memory, and taint status of state S. Each TH
k is an element in the type

collection T specifying how the output of IH
k should be interpreted in later analysis. Therefore,

when a probe H = (n, locH, ITH) is triggered, a sequence of binary strings (IH
1(S), IH

2(S), …,

IH
n(S)) will be generated respectively out of the machine state S. We define a behavior B profiled

by a probe H at state S as a 3-tuple (locB, typeB, dataB), where locB = locH, typeB = (TH
1 , T

H
2, …,

TH
n) and dataB = (IH

1(S), IH
2(S), …, IH

n(S)). For simplicity, from now on we denote the k-th

element in typeB and dataB as typeB[k] and dataB[k] respectively.

The type collection T is a finite set defined heuristically. To achieve generality, elements

of T should be platform-independent while preserving maximal semantics since it provides

clues for later data-processing. In our design we defined T as

{bitmap,u8,u16,u32,text,path,raw,random}

The bitmap type indicates that the data should be viewed as a vector of individual bits,

which are generally used in simultaneously expressing states of multiple Boolean variables.

The type u8, u16, and u32 stand for unsigned integers of 8-bit, 16-bit, and 32-bit data size

respectively. A text is a sequence of readable characters with length less than 128. To capture

Table 12 : Excerpts from the profiled behaviors of ad.zenosearch.

 loc data type
1 0x0a00020f u32

0xa85f0101 u32

0x0402 u16

0x0035 u16

“… 0x010x000x000x000x000x000x000x03 www 0x09

think-adz 0x03 com 0x000x000x01 …”

raw

2 “C:\WINDOWS\system32\dbglogfolder\n_inst_05_01_11

.log”

path

3 “REGISTRY/USER/S-1-…1003/SOFTWARE/MICROSOFT/WINDO

WS/CURRENTVERSION/INTERNET SETTINGS”

path

“EnableAutodial” text

“0x060xae0xc8” raw

1 0x0a00020f u32

0x48378cb8 u32

0x0403 u16

0x0050 u16

“GET /instreport8_2.asp?uid=0 HTTP/1.1Ox0dOx0aUse

r-Agent: [ELT001]52-54-00-12-34-56:99-9E-E4-4C-:

0:...”

raw

- 74 -

all those data used to express a path in tree-like structures such as file paths or Windows

registry are classified into the type path. Entries which cannot be classified into any categories

listed above are treated as raw data.

The type random is a special attribute attached to those data are generated or mixed with

random numbers. For example, the source port of a TCP or UDP connection is usually picked

randomly by the system. Due to their randomness, they have negative impact on the learned

behavior model. Therefore, it is necessary for us to filter out these meaningless data. To achieve

this, MrKIP locates the pseudo random number generator in the system, and taints its output

with this special tag. The taint propagation ensures that data calculated out of random numbers

can be distinguished from ordinary ones.

Table 12 shows an excerpt from the profiled behaviors of the adware zenosearch. Each

behavior B is presented in three columns: locB, dataB and typeB. Note that the loc is substituted

with merely a unique ID since the address is not meaningful. However, it is quite easy for us to

“guess” which kind of information is processed by the codes near locB by observing dataB only.

The adware performs DNS lookup for the name “www.think-adz.com”, tries to access a

file named as “n_inst_05_01_11.log”, writes data into registry, and then issues an HTTP

query. Note that all these information are acquired in kernel space while zenosearch is executed

as a user-level application.

6.1.2 Pattern Generator

Given a set of malware known in the same family, PatternGenerator tries to build a

model for that family. The control flow transition and the data characteristics are both powerful

metrics for recognizing program behavior, and hence they should be both captured. In addition,

the model should be able to associate a probability to a subject program so that the model

predicts the probability with which a subject belongs to that family. In our design,

PatternGenerator attempts to group behaviors with similar arguments together. By viewing

each cluster as a state, the original sequence of profiled behaviors can be transformed to a

sequence of transition between states, and a Markov chain can be hence learned.

- 75 -

To capture the execution context, we use a Markov chain to model the transferring

probability between the hooks. An intuitive idea is to associate each locH with a state of the

Markov chain. In this way, a sequence of behaviors can be viewed as a path in the chain by

consequently walking through those states specified by locB, and the transition probability

matrix states can be therefore trained. However, the approach stated above neglects the fact that

even a single function may provide different functionalities when different arguments are given.

Therefore, associating a locH with only a single state may lead to a rough model.

To provide better recognition rate, we further partition those behaviors with the same locB

into smaller groups based on their argument similarity. The partitioning is done with the

agglomerative, complete linkage clustering algorithm, which progressively groups elements in

a bottom-up way. We will describe the algorithm briefly but skip its details since it is a well-

known technique for data clustering. Before applying the algorithm the distance function d to

measuring the similarity between any two objects in the group, a threshold δ specifying the

stopping criterion must be determined. The clustering begins with forming a singleton for each

element. The distance between any two clusters X and Y are given by max(d(x, y)) where x X

and y Y. The process continuously joins two clusters if the distance between them is less

than δ. The value of δ determines how similar the elements in the same cluster will be, and it

hence affects the quality of the learned model. We evaluate the effectiveness with different δ

value in our experiments.

It is clear that the characteristic of distance function has a direct influence on the quality

of partition. We use the following formula to measure the distance between the two behaviors

B1 and B2.

where wk are weighting constants defined heuristically in the range (0, 1), and satisfy w1 + w2

+ … + wk = 1. Note that we do not discuss the distance between different types because our

goal is to partition those behaviors with the same locB into smaller groups. Since given a locB

its typeB = (TH
1 , TH

2, …, TH
n) is uniquely determined, the distance will be measured only

- 76 -

between two elements with the same type. As previously stated, there are seven possible

attributes for dataB: bitmap, u8, u16, u32, text, path, and raw. For each of them, we define the

distance function d(type), which measures the distance between behaviors B1 and B2. Note that

we do not discuss the distance between different typeB because our goal is to partition those

behaviors with the same locB into smaller groups.

bitmap: Data labeled with this attribute are used as flags or attributes such as file opening

modes. The purpose and meaning are assigned to each bit in the sequence. In addition, the bit

sequence usually has fixed length. Therefore, the hamming distance function is a good metric

for measuring the number of bits varying in the two binary strings. To normalize it, the hamming

distance is divided by the length of the bit sequence.

u8, u16, and u32: Numeric values in which an ordering relation is maintained are

attributed with these types. Since they can be viewed as points residing on the line of real

numbers, the most natural way to define their distance would be:

Although numeric values may not be used as real numbers, in most cases they still

preserves certain ordering relations and justify the meaning of above formula. For example, the

distance between the IP address 64.233.171.18 (Google web server) and 64.233.179.19

(another Google web server) is intuitively smaller than the distance between 64.233.171.18

and 220.181.6.6 (a web server of Baidu search engine in China) due to the geographical

difference between the machines holding on to these addresses. Another important kind of data,

which possess good characteristic of real numbers, is time-related values. To ensure the

consistency among profiling, we always adjust the system time of the emulator to a fixed instant

every time before profiling a subject. Note that those data originating (even partially) from

random number generator had been filtered out by the profiler as stated previously.

text and path: To compare the difference between two human-readable strings the

- 77 -

Levenshtein distance, which is usually referred as the edit distance, is widely adopted. The

distance is defined as the minimum number of edit operations needed to transform the original

string to another. However, it is obvious that two strings of length 10 differing in 1 bit show

more difference than two strings of length 1000 differing in only 3 bits. Therefore, it is

necessary to normalize the edit distance by taking the string length into account. To this end we

adopted the normalized edit distance proposed by Marzal et al [56]. In their work, the

normalized edit distance is acquired by minimalizing the average cost spent by each step in the

edit path. Also, their algorithm works in O(m·n2), where m and n stand of the length of strings,

and n≦m. Since only those data of lengths less than 128 should be attributed to the type Text,

the computation is still acceptable. However, data labeled as Path such a pathname or a registry

entry could be too long to compute the distance efficiently. To accelerate the distance

computation, we substitute the substring of each level in the path with a 32-bit CRC value

computed out of them. For example, the string “/Program Files/Microsoft Office”

will be transformed to “/\x10\x97\xE8\x4A/\xC2\xDC\xC7\x7E” before being fed

into the normalized edit distance calculator.

raw: Due to performance issue we do not consider content-aware method to compute the

distance between data larger than 128 bytes. In our approach, these data are compared with a

conventional but effective metric, which is the Jensen–Shannon divergence [57]. With the

occurrence frequency of each of the 256 possible byte patterns computed, the Jensen–Shannon

divergence measures similarity between two probabilistic distributions. Due to its many

desirable characteristics such as symmetry, non-negativity, and boundedness, the metric had

been widely adopted in bioinformatics, genomic comparison, and various data mining

techniques.

The algorithm converting behaviors to state transitions is listed in Algorithm 5. A set of

sequences of behaviors, which are acquired by profiling executions of malware known to be

the same family, is fed into the Behavior-To-State procedure as input. Line 4-6 groups all

behaviors with the same locb together so that the clustering is done on behaviors profiled by the

same hook. With the distance functions defined in previous paragraphs, the complete-linkage

- 78 -

clustering algorithm invoked in line 7-8 further cluster behaviors according to their argument

similarity. In line 9-14, the algorithm assigns an integer n to each group acquired by clustering

as its state number. In addition, behaviors belonging to the same group are labeled with that

number. The mapping is recorded in the key-value map C. Lines 15 and 16 convert each

sequence of behaviors s BS to a sequence of states by replacing each bk s with C[bk].

With sequences of states SS in hands, it is trivial to learn the Markov transition probability

matrix from them. However, only the Markov chain itself is not enough. Let’s consider what

tasks the PatternRecognizer should perform. In recognition phase, a behavior profile, which

is simply a sequence of behaviors, say bp, will be matched against a Markov chain learned by

PatternGenerator. Therefore, the matching can only be performed after each behavior in bp

Algorithm 5 : Behavior to HMM state.

 A set of sequences of behaviors.

 The number of states.
 A set of sequences of states
 , , …, n is a list of representative behaviors.

Behavior To State

 ← A key-value map mapping an address to a set of behaviors

 ← A key-value map mapping a behavior to an integer

 ← , ← <>, ←

 sequence

 behavior

 ← ∪ rouping behaviors by

 value

 ← Complete Link Cluster contains sets of behaviors

 ←

 ← pick out of and minimizes

 ←

 ←

 sequence , ,…,

 ← ∪ , , …,

 , ,

- 79 -

has been mapped to states in the chain. To this end, we generate a centroid for each group

acquired in the clustering by picking the element which minimizes its distance summation to

all other elements in that group. Behaviors in bp are compared with these centroids, and

appropriate states can be therefore found. Line 12 and 13 are responsible for the task above,

and the resulted centroids are preserved in R.

6.1.3 Pattern Recognizer

The task of PatternRecognizer is to generate the profile of behaviors of a subject program,

and to evaluate its deviation from patterns of known malware families. The profiling

mechanism is totally the same as the BehaviorProfiler, which had been introduced previously.

In this subsection we discuss how the behavior profile, which is a sequence of behaviors actually,

can be matched against the pattern generated by PatternGenerator.

- 80 -

With the state sequences SS acquired in the last subsection, a Markov chain M can be

immediately learned from them. Together with the centroids R, the 3-tuple (n, M, R) can give a

matching score to a given sequence of behaviors. The procedure is listed in Algorithm 6. The

probability calculation basically follows the procedure of evaluating the probability of a state

sequence. For each behavior, we calculate the distance between it and every centroid in R to

figure out which state gives birth to that behavior in line 3-8 of the algorithm. In line 9 the

transition probability is cumulated. In the end, the geometric mean of the cumulated product is

returned as the output.

Note that the distance between the behavior and its closest centroid could be still larger

than the threshold δ. Since no appropriate state can be found for such behaviors in the matched

Algorithm 6 : Calculation of Matching Degree

 A sequence of behaviors.

 A -tuple , , , where

 is the number of states,

 is the Markov transition matrix, where , preserves initial

 probability of state k.

 , , …, r is the list of centroids.

 A value in , indicating the matching degree between and .

Calculate Matching egree ,

 ← , ← , ←

 ← , ←

 ← to

 ← ,

 ← , ←

 ← ,

 ←

 ←

- 81 -

pattern, they should be considered as total deviation from that model. In such a case, the index

k remains as its initial value 0, which is assigned at line 3. Therefore, before the algorithm starts

we search for the smallest value in the matrix M and replace all elements Mk,0 with it for all 1

≦k≦n. Behaviors whose arguments present huge deviation from that model will attenuate the

value of the final output.

6.2 Experiments

In order to evaluate performance and precision of MrKIP, we conduct three sets of

experiments. In the first experiment, the trojan Srizbi is used to demonstrate MrKIP’s profiling

mechanism against pure kernel-level rootkits. The second experiment measures the

performance of MrKIP, showing its capability to recognize rootkits in a reasonable time. In the

last experiments, we cluster 536 kernel-level rootkit instances with VirusTotal, and divide them

into training set and testing set randomly. Then, we evaluate the effectiveness of recognition.

All our experiments are conducted on an Intel i7 machine with Windows 7 OS. Samples used

in experiments are collected from offensive computing, a public sample sharing forum. Please

note that MrKIP can be also applied on the recognition of ordinary user-level malware, since

their behaviors are eventually executed through kernel-level functions. However, our

experiments focus on the evaluation of the effectiveness of MrKIP against advanced, kernel-

level trojans.

6.2.1 Case Study : Srizbi

Srizbi is one of world’s largest botnet. With the capability to hide itself from both user and

system level, it is difficult to remove and detect. Since Srizbi is executing totally in kernel mode,

it can make its files and network traffic invisible to bypass detection. With these advanced

rootkit technique, Srizbi is considered one of sophisticate rootkits. In order to demonstrate

correctness of BehaviorProfiler, we use this famous rootkit family as a case study. We use two

variants, Trojan.Win32.Srizbi.ah and Trojan.Win32.Srizbi.x, labeled by Kaspersky, to evaluate

correctness of the extracted behavior profiles.

Our tool records behaviors in both sample’s profiles. We can observe that both Srizbi

- 82 -

samples first delete some system files and then do some file manipulation to driver files. It also

registers itself as a system service. We also uploaded the Srizbi trojan instances onto two famous

online malware analysis systems, Threat Expert and Anubis, for comparison. It turns out that

Anubis does not generate information at all about it. Threat Expert captured certain registry

modification behaviors, which form merely a subset of our profiling result. This comparison

shows that our kernel-level behavior profiling is more effective than conventional approaches.

The whole HMM model generated by PatternGenerator for Srizbi contains more than a

hundred states, which are difficult to present in the article. To illustrate the idea, we show in

Figure 18 a portion of the generated pattern. Each node is a clustered state, and the string inside

the node is the data selected as the centroid for that cluster. On each edge the transition

probability is also listed. In the model we can observe the three major types of captured

behaviors: registry modification, packet transfer, and process creation. As shown, the transition

probabilities between the sequential registry modifications are 1. This matches the convention

that registering a program as a system service requires setting up multiple registry entries.

Figure 18 : Constructed model for Srizbi.

- 83 -

6.2.2 Effectiveness of Recognition

To evaluate the effectiveness of PatternRecognizer of MrKIP, the next experiment

compares the clustering result of MrKIP with the clustering done by commercial an-ti-virus

software. The comparison is performed as follows. For each collected rootkit instance, we

upload it onto VirusTotal, which is a website providing simultaneously the analysis results of

dozens of anti-virus software. Two instances which reported by any different anti-virus software

as the same family will be grouped together. This is used as the ground truth, and our recognition

result will be compared with it. The 536 rootkit in-stances are then separated into the training

set and the testing set. We divide one family into two partitions with equal sizes, intending to

keep the total size of the training set equal to that of the testing set. Yet, certain family contains

so few variants that we have to maintain an enough amount of instances for training, leading to

a slightly imbalanced partition. In the end, we have 351 rootkit samples in the training set and

185 samples in the testing set.

For each instance in the testing set, our PatternRecognizer compares it with each

constructed model and generates a matching score. Thereby, through sorting we can observe in

which place the correct group (the right answer) gets among all other families. We refer to the

index of the correct group in the sequence of families (sorted with the similarity score, from

high to low) as the rank of that instance. For instance, if the similarity score of family

Trojan.Win32.Delf takes the fourth place among other families when we recognize

Trojan.Win32.Delf.cit, which is confirmed a variant of Trojan.Win32.Delf, the rank of

Trojan.Win32. Delf.cit is 4, which means Trojan.Win32.Delf is fourth similar to

Trojan.Win32.Delf.cit.

 The cumulative distribution of classification ranking is shown in Figure 19. The X-axis

represents the rank and the Y-axis indicates the cumulative percentage of instances. A

coordinate (x,y) in the figure indicates that y% instances of the whole testing have rank numbers

less than x, which indicate the correct family of y% instance can be found in top x similar

families. A steeper curve indicates more instances have lower rank numbers, which implies that

- 84 -

the correct family gets a higher score from our PatternRecognizer.

Meanwhile, since there is a parameter δ in our algorithms, we repeat this experiment

multiple times with different threshold values. When δ is set to 0, each behavior will form its

own behavior group, even if their arguments are similar. As shown, without grouping similar

behaviors, the classification result is poor. After raising the threshold value to 0.2, 60% of the

instances in the testing set have rank number 1, indicating MrKIP finds correct answer. Note

that the cumulative curve also indicates that 80% instances have rank less than 4. Namely,

MrKIP can successfully sort the correct answer in the top three places for 80% test instances.

The cumulative percentage even increases to 90% when rank reaches to 5. If we further raise

the threshold value, unrelated behavior may be group together. Therefore the classification rate

will decrease. As our experiments shows, the appropriate threshold is around 0.2.

Figure 19 : Cumulative Ranking.

- 85 -

VII. Limitation and Discussion

Chapter 7

Limitation and Discussion

Although the effectiveness of ProbeBuilder has been demonstrated in the experiments, it

is neither complete nor sound in the perspective of code coverage. However, in this application,

completeness is not required since ProbeBuilder only attempts to discover probable locations

for VMI implementations. Finding all of them is not mandatory. ProbeBuilder tries to approach

soundness by repetitively exercising the subject behavior. However, the validity of generated

data dereferences is still not guaranteed either. The experiment in section 5.3 showed that the

collected probes captured a small amount of irrelevant data, namely 0.21% of the total data.

This ratio is competitively low as a human-implemented probe can get, considering the

tremendous effort saved by ProbeBuilder.

The scope of dereference analysis in current implementation only covers data originating

from dedicated data sources. The API arguments demonstrated in the experiment fit in this

category. However, it is sometimes desirable in a probe implementation to record data

spontaneously generated by the operating system. For instance, a probe on process creation is

often used to capture process ID or page directory base address of the created process. Since

these data do not originate from a finite set of dedicated data sources, the predicate P

implemented with taint analysis becomes less effective. To cope with the limitation, there exists

a possible solution. Through virtual machine recording and replaying, the evolution of the

system state can be faithfully reconstructed at bit-precision [52][58]. Since these methods are

able to completely remove non-determinism of the machine state, the targeted data (e.g. process

- 86 -

ID, page directory base address, etc.) will possess the same values in the replaying phase.

Therefore, implementing the predicate P with fixed pattern matching may solve the problem.

However, combining ProbeBuilder with the replaying framework requires further

implementation and is out of the scope of this study. We leave it as a future work.

Another potential problem in current implementation is that the location (the EIP column

in Table 5) of discovered probes may not be applicable directly to the target system since it may

vary due to non-deterministic memory layout. This issue can be resolved by implementing the

probe trigger with code-pattern matching instead of EIP-matching. It can be also optimized

back to EIP-matching through scanning for the code patterns beforehand.

The collected probes provide locations suitable for placing triggers to activate the

corresponding VMI monitor. Theoretically, the generated probe candidates are applicable not

only to this emulator, but also to all systems with the identical OS kernel installed, as they are

supposed to share the same control flows. The inferred data dereferencing steps should be also

applicable as long as the target system uses the same kernel. In addition, their applicability is

not interfered by the type of virtualization (emulated, virtualized, etc), either. In practice,

however, even with the identical OS kernel, two machines with different hardware

configurations can still lead to partially inconsistent control flows due to the divergence of their

device drivers. Currently, ProbeBuilder does not differentiate between the probe candidates

located in driver modules and those in the main kernel body. It simply attempts to discover as

many probe candidates as possible.

On the other hand, taint analysis has its own limitation. Although information flow

tracking is a powerful technique for malware analysis, it suffers from certain well-known

problems [59], namely the under-tainting and overtainting issues. To prevent SWIFT from

being laundered by the circumvention, we taint all memory-writing operations performed by a

code block existing in a tainted memory region as stated in the “Dirty Code Execution”

paragraph in section 6. The over-tainting effects caused by the approach above was

compensated by the conservative index-register tainting proposed in subsection 4.1.3, which

only propagate information flow for 1-byte or 2-bytes indirect memory reading from index

- 87 -

register to the destination register. However, a crafty malware may still circumvent the approach

above with return-to-libc or return-oriented programing techniques, since they do not introduce

any dirty code blocks.

Another possible way to elude information flow tracking is through control-flow. The issue

has been discussed [10]. In addition, malware can hide their intentions with time-bomb or

trigger-based behaviors. Revealing such behaviors is a well-known and very hard problem in

this field. In this study we only focus on the decoupling techniques and how malware analysis

should be performed in such a decoupled design. Solutions to these problems are out of the

scope of this dissertation.

- 88 -

VIII. Conclusion

Chapter 8

Conclusion

This dissertation introduces ProbeBuilder, a powerful framework to automate the probe

construction process in the implementation of any VMI-based systems. To our knowledge,

ProbeBuilder is the first system proposed to automatically uncover the opaque chaining

relations between undocumented kernel data structures. Through recursively walking through

the pointers in the guest memory, potential probe locations and data dereference are collected

during the emulation process. With the control flow extracted from the kernel image, the

proposed refinement algorithms eliminate non-dedicated probe candidates, producing probes

of good quality. Our experiment shows that ProbeBuilder only needs 7 minutes for simpler

behaviors, and 167 minutes for a complicated behavior like creating probe candidates for

process creation. Although ProbeBuilder is based on a heuristic multi-run refining process, the

experiment shows that the probes generated by ProbeBuilder can capture all events that

conventional monitors captured. Only a small number of false positives and irrelevant data

(0.21%) are generated. Furthermore, the generated probes can be practically applied to

behaviors profiling for both user-space and kernel-space activities. ProbeBuilder works in a

black-box paradigm, automatically generating code snippets of probes for KVM, Xen, and

QEMU. Considering the effort and time spent in the conventional reverse-engineering way,

ProbeBuilder is very effective in automatically generating probes. Developers of VM-based

analysis tools can directly benefit from the deployment of ProbeBuilder.

ProbeBuilder utilizes dynamic taint tracking to label data of interest. In order to provide

- 89 -

practical speed during analysis, a decoupled design of system-wide information flow tracking,

SWIFT, is presented to shift the heavy overhead imposed by the analysis process onto another

processor core. Unlike previous DIFT-capable system emulators injecting analysis routines

directly into generated code blocks, our design extracts information flows only at translation

phase, and therefore analysis to be performed on extracted information flows can be carried out

by different threads. To further improve the analysis performance, two optimization techniques

are proposed herein to eliminate unnecessary message exchanges between the emulator and the

helper executing analysis routines. Compared with conventional interleaved design, SWIFT

operates 1.82~3.22 times faster on common workloads. It runs 2.74~7.48 times faster than the

interleaved design does in PassMark Performance Test 6.0.

To evaluate the effectiveness, a malware behavior analysis platform is implemented based

on SWIFT. Due to the feature of system-wide tracking, it successfully detected contaminated

information flows spreading into file systems, processes, registry, and network interfaces.

Based on the decoupled design and optimizations, the system can generate comprehensive

reports on malware analysis at a much higher speed than previous research.

- 90 -

Bibliographies

[1] C. Willems, T. Holz and F. Freiling, "Toward Automated Dynamic Malware Analysis

Using CWSandbox," Security & Privacy, IEEE , vol.5, no.2, pp.32,39, March-April 2007

doi: 10.1109/MSP.2007.45

[2] U. Bayer, C. ruegel and . irda. “TTanalyze A Tool for Analyzing Malware,” In Proc.

of the 15th Annual Conference European Institute for Computer Antivirus Research,

EICAR, 2006.

[3] S.P. Shieh and . . ligor, “On a Pattern-Oriented Model for ntrusion etection,” IEEE

Transactions on Data and Knowledge Engineering, Vol. 9, No. 4, pp. 661–667, August

1997.

[4] S.P. Shieh and . . ligor, “ etecting llicit nformation Leakage in Operating Systems,”

Journal of Computer Security, pp. 123–148, April 1997.

[5] S.P. Shieh, and . . ligor, “A Pattern-Oriented Intrusion Detection Model and Its

Applications," Proceedings of the IEEE Symposium on Research in Security and Privacy,

Oakland, California, (May 7-9, 1991), pp 327-342.

[6] S.P. Shieh, and . . ligor, “Auditing the Use of Covert Storage Channels in Secure

Systems," Proceedings of the IEEE Symposium on Research in Security and Privacy,

Oakland, California, (May 1990), pp 285-295.

[7] . Bellard, “ MU, a fast and portable dynamic translator,” Proc. annual USENIX Annual

Technical Conference (ATEC '05)

[8] V. J. Reddi, A. Settle, . A. Connors, and . S. Cohn, “P a binary instrumentation tool

for computer architecture research and education,” Proc. the ACM workshop on Computer

architecture education: held in conjunction with the 31st International Symposium on

Computer Architecture (WCAE '04), article 22, 2004, doi: 10.1145/1275571.1275600.

- 91 -

[9] . ethercote and J. Seward, “ algrind a framework for heavyweight dynamic binary

instrumentation,” Proc. ACM SIGPLAN conference on Programming language design and

implementation (PLDI '07), pp. 89-100, 2007, doi: 10.1145/1250734.1250746.

[10] H. Yin, . Song, M. gele, C. ruegel, and . irda, “Panorama capturing system-wide

information flow for malware detection and analysis,” Proc. the 14th ACM conference on

Computer and communications security (CCS '07), pp. 116-127, 2007,

doi:10.1145/1315245.1315261.

[11] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham., "

Vigilante: End-to-end containment of Internet worm epidemics," ACM Trans. Computer

Systems, vol. 26, issue 4, Dec 2008, doi: 10.1145/1455258.1455259

[12] J. ewsome and . Song, “ ynamic Taint Analysis for Automatic etection, Analysis,

and Signature eneration of xploits on Commodity Software,” Proc. ISOC conference

on Network and Distributed System Security Symposium (NDSS '05).

[13] . Portokalidis, A. Slowinska, and H. BosH, “Argos an emulator for fingerprinting zero-

day attacks for advertised honeypots with automatic signature generation,” Proc. the ACM

SIGOPS/EuroSys European Conference on Computer Systems (EuroSys '06), pp. 15-27,

2006, doi: 10.1145/1217935.1217938.

[14] H. Kannan, M. Dalton, and C. Kozyrakis, "Decoupling Dynamic Information Flow

Tracking with a dedicated coprocessor," IEEE/IFIP International Conference on

Dependable Systems & Networks (DSN '09), pp.105-114, June 29 2009-July 2 2009, doi:

10.1109/DSN.2009.5270347.

[15] S. Chen, M. Kozuch, P. B. Gibbons, M. Ryan, T. Strigkos, T. C. Mowry, O. Ruwase, E.

 lachos, B. alsafi, and . amachandran, “ lexible Hardware Acceleration for

Instruction-Grain Lifeguards,” J. IEEE Micro, vol 29, issue 1, pp. 62-72, 2009, doi:

10.1109/MM.2009.6.

- 92 -

[16] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi, P. B. Gibbons, and T. C.

Mowry, “ParaLog enabling and accelerating online parallel monitoring of multithreaded

applications,” Proc. ACM the fifteenth edition of ASPLOS on Architectural support for

programming languages and operating systems (ASPLOS '10), 2010, pp. 271-284,

doi:10.1145/1736020.1736051.

[17] O. uwase, S. Chen, P. B. ibbons, and T. C. Mowry, “ ecoupled lifeguards: enabling

path optimizations for dynamic correctness checking tools,” Proc. ACM SIGPLAN

conference on Programming language design and implementation (PLDI '10), pp. 25-35,

doi:10.1145/1806596.1806600

[18] P. Saxena, . Sekar, and . Puranik, “ fficient fine-grained binary instrumentation with

applications to taint-tracking,” Proc. the 6th annual IEEE/ACM international symposium

on Code generation and optimization (CGO '08), pp. 74-83,

doi:10.1145/1356058.1356069

[19] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. u. “L T A Low-Overhead Practical

 nformation low Tracking System for etecting Security Attacks,” Proc. the 39th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO 39), pp. 135-148,

doi:10.1109/MICRO.2006.29.

[20] V. Nagarajan, H-S. im, Y. u and . upta, “ ynamic nformation low Tracking on

Multicores,” Workshop on Interaction between Compilers and Computer Architectures,

Feb. 2008.

[21] P. Bravo and . . arcía. “ ootkits Survey A concealment

story,“ http www.pablobravo.com files/survey.pdf

[22] M. . Sharif, . Lee, . Cui, and A. Lanzi. “Secure in-VM monitoring using hardware

virtualization,” n Proc. of the 16th ACM conference on Computer and communications

security (CCS '09). ACM, New York, NY, USA, 477-487.

DOI=10.1145/1653662.1653720

- 93 -

[23] B.D. Payne, M. Carbone, M. Sharif, and W. Lee, "Lares: An Architecture for Secure Active

Monitoring Using Virtualization," IEEE Symposium on Security and Privacy, S&P, 2008,

pp.233,247, 18-22 May 2008. doi: 10.1109/SP.2008.24

[24] F. Baiardi, D. Maggiari, D. Sgandurra, and F. Tamberi. "PsycoTrace: Virtual and

Transparent Monitoring of a Process Self," In Proc. of the 17th Euromicro International

Conference on Parallel, Distributed and Network-based Processing, 2009, pp.393,397,

18-20 Feb. 2009. doi: 10.1109/PDP.2009.45

[25] Z. Gu, Z. Deng, D. Xu, and X. Jiang, "Process Implanting: A New Active Introspection

Framework for Virtualization," IEEE Symposium on the 30th Reliable Distributed Systems,

SRDS, 2011, pp.147,156, 4-7 Oct. 2011 doi: 10.1109/SRDS.2011.26

[26] L Martignoni, Paleari, and Bruschi, “A ramework for Be-havior-Based Malware

Analysis in the Cloud,” n Proc. of the 5th International Conference on Information

Systems Security (ICISS '09), Springer-Verlag, Berlin, Heidelberg, 178-192.

DOI=10.1007/978-3-642-10772-6_14

[27] . Jiang, . ang, and . u. “Stealthy malware detection and monitoring through

VMM-based “out-of-the-box” semantic view reconstruction,” ACM Trans. Inf. Syst. Secur.

13, 2, Article 12 (March 2010), 28 pages. DOI=10.1145/1698750.1698752

[28] G. Xiang, H. Jin, D. Zou, X. Zhang, S. Wen, and F. Zhao, "VMDriver: A Driver-Based

Monitoring Mechanism for Virtualization," IEEE Symposium on the 29th Reliable

Distributed Systems, RDS, 2010, pp.72,81, Oct. 31 2010-Nov. 3 2010 doi:

10.1109/SRDS.2010.38

[29] B. Li, J. Li; T. Wo, C. Hu; L. Zhong, "A VMM-Based System Call Interposition

Framework for Program Monitoring," IEEE International Conference on the 16th Parallel

and Distributed Systems, ICPADS, 2010, pp.706,711, 8-10 Dec. 2010. doi:

10.1109/ICPADS.2010.53

- 94 -

[30] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, "Virtuoso: Narrowing the

Semantic Gap in Virtual Machine Introspection," IEEE Symposium on Security and

Privacy, S&P, 2011, pp.297,312, 22-25 May 2011 doi: 10.1109/SP.2011.11

[31] T. Garfinkel and M. osenblum, “A irtual Machine ntrospection Based Architecture for

 ntrusion etection,” n Proc. Network and Distributed Systems Security Symposium,

NDSS, 2003, pp 191-206. doi: 10.1.1.11.8367

[32] Y. Fu and Z. Lin, "Space Traveling across VM: Automatically Bridging the Semantic Gap

in Virtual Machine Introspection via Online Kernel Data Redirection," IEEE Symposium

on Security and Privacy, S&P, 2012, pp.586,600, 20-23 May 2012. doi:

10.1109/SP.2012.40

[33] K. Nance, M. Bishop, and B. Hay, "Virtual Machine Introspection: Observation or

Interference?," IEEE Security & Privacy, vol.6, no.5, pp.32,37, Sept.-Oct. 2008. doi:

10.1109/MSP.2008.134

[34] B. Hay and . ance, “ orensics examination of volatile system data using virtual

introspection,” SIGOPS Oper. Syst. Rev. 42, 3 (April 2008), 74-82.

DOI=10.1145/1368506.1368517

[35] Z. ang, . Jiang, . Cui, and . ang, “Countering Persistent ernel ootkits through

Systematic Hook iscovery,” n Proc. of the 11th international symposium on Recent

Advances in Intrusion Detection (RAID '08), pp 21-38. DOI=10.1007/978-3-540-87403-

4_2

[36] Z. ang, . Jiang, . Cui, and P. ing, “Countering kernel rootkits with lightweight hook

protection,” n Proc. of the 16th ACM conference on Computer and communications

security, CCS, 2009. ACM, New York, NY, USA, 545-554.

DOI=10.1145/1653662.1653728

[37] B. Dolan- avitt, T. Leek, J. Hodosh, and . Lee, “Tappan Zee orth Bridge Mining

Memory Accesses for ntrospection,” n Proc. of the 20th ACM conference on Computer

- 95 -

and communications security, CCS, 2013. ACM, New York, NY, USA, 839-850.

DOI=10.1145/2508859.2516697

[38] J. R. Crandall, S. F. Wu, and F. T. Chong, “Minos Architectural support for protecting

control data,” ACM Trans. Architecture and Code Optimization, vol. 3, issue 4, pp. 359-

389, Dec 2006, doi:10.1145/1187976.1187977.

[39] P. P. Bungale and C. K. Luk, “PinOS a programmable framework for whole-system

dynamic instrumentation,” Proc. the 3rd ACM international conference on virtual

execution environments (VEE '07), pp. 137-147, doi:10.1145/1254810.1254830.

[40] J. Chow, T. Garfinkel, and P. M. Chen, “ ecoupling dynamic program analysis from

execution in virtual environments,” USENIX Annual Technical Conference (USENIX '08),

2008

[41] M. alton, H. annan, and C. ozyrakis, “ aksha a flexible information flow architecture

for software security,” Proc. The 34th ACM annual international symposium on Computer

architecture (ISCA '07), pp. 482-493, doi:10.1145/1273440.1250722.

[42] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, "FlexiTaint: A

programmable accelerator for dynamic taint propagation," IEEE 14th International

 y A A ’08 , 2008, pp.173-184,

16-20 Feb 2008, doi:10.1109/HPCA.2008.4658637.

[43] E. Bosman, A. Slowinska, and H. Bos, “Minemu The orld’s astest Taint Tracker,”

Symposium on Recent Advances in Intrusion Detection (RAID ’11), 2011

[44] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand, “Practical Taint-Based

Protection using Demand Emulation,” Proc. the 1st ACM SIGOPS/EuroSys European

Conference on Computer Systems 2006 (EuroSys '06), pp. 29-41,

doi:10.1145/1217935.1217939

[45] A. Ermolinskiy, S. Katti, S. Shenker, L. Fowler, and M. McCauley, “Towards Practical

Taint Tracking,” Technical Report No. UCB/EECS-2010-92, 2010

- 96 -

[46] T. N. Bui and C. Jones. 1992. Finding good approximate vertex and edge partitions is NP-

hard. Inf. Process. Lett. 42, 3 (May 1992), 153-159. DOI=10.1016/0020-0190(92)90140-

Q http://dx.doi.org/10.1016/0020-0190(92)90140-Q

[47] M. Howard, D. LeBlanc, Writing Secure Code (Second Edition), Microsoft Press, pp. 262-

265, 2003.

[48] S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature eneration and etection

of Malware amilies,” in Proc. of the 13th Australasian conference on Information

Security and Privacy, pp. 336-349.

[49] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-aware

malware detection,” in Proc. of the 2005 IEEE Symposium on Security and Privacy,

Oakland, May 2005.

[50] M. Christodorescu, S. Jha, and C. ruegel, “Mining specifications of malicious behavior,”

in Proc. of the ACM SIGSOFT symposium on The foundations of software engineering

(FSE), pages 5–14, 2007.

[51] . ang, . Yu, A. Champion, . u, and . uan, “ etecting orms via Mining

 ynamic Program xecution,” in Proc. of the Third International Conference on Security

and Privacy in Communication Networks and the Workshops, SecureComm, pages412-

421, Nice, 2007.

[52] F. Maggi, M. Matteucci, and S. Zanero, “ etecting intrusions through system call

sequence and argument analysis,” in IEEE Transactions on Dependable and Secure

Computing (TDSC), October 2010.

[53] . Jacob, H. ebar, and . iliol, “Malware detection using attribute-automata to parse

abstract behavioral descriptions,” CoRR, abs/0902.0322, 2009.

[54] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang, “ ffective

and Efficient Malware Detection at the End Host,” in Proc. of the 18th conference on

USENIX security symposium, 2009.

http://dx.doi.org/10.1016/0020-0190(92)90140-Q

- 97 -

[55] Srizbi botnet. http://en.wikipedia.org/wiki/Srizbi_botnet

[56] A. Marzal and E. Vidal, “Computation of ormalized dit istance and Applications,” in

IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 15 Issue 9,

September 1993.

[57] J. Lin, “ ivergence measures based on the Shannon entropy,” in IEEE Transactions on

Information theory. Volume 37. p145-151. 1991.

[58] U. Bayer, P. M. Comparetti, C. Hlauscheck, C. Kruegel, and E. Kirda, “Scalable, Behavior-

Based Malware Clustering,” in Proc. of the 16th Symposium on Network and Distributed

System Security, 2009.

[59] A. Slowinska and H. Bos, “Pointless Tainting? Evaluating the Practicality of Pointer

Tainting,” Proc. the ACM SIGOPS/EuroSys European Conference on Computer Systems

(EuroSys '09), April 2009, Nuremberg, Germany

http://en.wikipedia.org/wiki/Srizbi_botnet

- 98 -

Autobiography

Chi-Wei Wang (王繼偉) received his B.S. in the Department of Computer

Science and Information Engineering, National Chiao Tung University,

Taiwan. In his college time, he was recommended by the CS department to

participate the exchange student program, which is held by Electrical

Engineering and Computer Science Undergraduate Honors Program, NCTU, and studied in the

CS department of University of Illinois at Urbana-Champaign for one semester. He was also

recommended to participate the visiting scholar program, which is sponsored by iCAST, greatly

contributing to the development of SWOON, a testbed for secure wireless overlay networks in

UC Berkeley. He has been very active in the malicious software analysis community, and has

received many awards. In 2007, he and his team developed a technique, combining the big data

provided by Microsoft Research Asia and browsing history, to personalize the search engine

result for an individual user. This technique earned them the 1st place in the Microsoft Cross-

Strait Innovation Contest among more than 50 teams from Taiwan and China. He also led his

team and achieved 1st place in the Wargame Contest held by Hacks in Taiwan Conference

(HITCON) in both 2010 and 2011. In 2008, 2011, and 2013, he and his team achieved the 2nd,

2nd, and 3rd places respectively in Interuniversity Information Security Technical Ability Contest,

held by Institute for Information Industry, Taiwan. His research interests include network security,

software security, and operating systems.

