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KUN-YUAN CHAO∗ and JA-CHEN LIN

Department of Computer and Information Science
National Chiao Tung University

1001 Ta Hsueh Rd., Hsinchu, Taiwan, 300, R.O.C.
∗kychao@cis.nctu.edu.tw

In secret image sharing, a polynomial interpolation technique heavy experiences a com-
putation load when the secret image is retrieved later. To the contrary, fast approaches
often need larger storage space due to pixel expansion property. This paper proposes
a missing-allowable (k, n) scheme which is fast and with a reasonable pixel expansion
rate (per). The scheme generates n extremely-noisy shadow images for the given secret
color image A, and any k out of these n shadows can recover A loss-freely. In average, to
decode a color pixel of A, the retrieval uses only three exclusion-OR operations among
24-bit numbers. Hence, the new method has very fast decoding speed, and its pixel
expansion rate is always acceptable (0 < per < 2).

Keywords: Polynomial-style sharing; fast schemes; computation complexity; pixel expan-
sion rate; exclusive-OR.

1. Introduction

Secret sharing using polynomials1,9–11,13 is one of the popular approach to protect
secret images. This kind of approach can restore the secret images without any loss,
and the size of each shadow image can even be several times smaller than that of
the given secret image.9,11 Therefore, space-wasting is seldom a problem for sharing
using polynomials. However, the retrieval computation is very slow because of the
evaluation of polynomials.

On the other hand, a faster approach is to use the digitalized versions of Refs. 3,
4, 15 and 16 to share a digital image among several “size-enlarged” digital images
called shadows. Recently, to improve the efficiency and speed in sharing digital
color images, Lukac and Plataniotis smartly proposed some easily implemented
methods5–8 whose decoding use “OR-like” operations or look up basis matrices.
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263

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
26

3-
28

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



264 K.-Y. Chao & J.-C. Lin

Their new methods can recover the original image error-freely at a very fast speed;
although in Refs. 5–7 quite often the shadow images generated in their (k, n)-
schemes are still several times larger than the secret image. (Notably, (k, n)-schemes
mean that in the reconstruction of the secret, any k out of n shadows can obtain
the secret; while less than k shadows cannot.) As for Ref. 8, the size of each shadow
image is the same as the secret image size, but Ref. 8 considers k = n = 2 only.

Although people can use the digitalized version of an elegant method proposed
in Ref. 14 that has no size expansion because of the probabilistic skill; the recovered
secret image is not lossless. In general, size expansion problem is a disadvantage
for fast approaches: to store digital shadow images in the computer often requires
large storage space.

From the analysis in the above two paragraphs, we can see that these two types
of sharing approaches are quite different, and each has its own speed-versus-space
advantage and disadvantage. A question arises naturally: “Can a sharing system
have both advantages in speed and space?” In other words, can people have some
economic-size shadows which can reconstruct the given secret image in a loss-free
manner after only using a few operations to decode each pixel? The answer is
positive. Wang et al.12,17 had gracefully provided their answer, to a certain level,
in their second scheme12 which is an (n, n) scheme.

In the current paper, we will improve Wang et al.’s (n, n) scheme in order to
have the “missing-allowable” (k, n)-threshold ability, i.e. in the reconstruction of
the secret, any k out of n shadows will work. The proposed scheme generates the
n desired shadows for a given color image A, so that each shadow’s size is less
than two times the size of A. Furthermore, the lossless decoding process only uses
a few exclusive-OR (XOR) operations (symbolized as “⊕”), so there is no complex
computation.

The remaining portion of the paper is organized as follows. Section 2 briefly
reviews some polynomial-style and fast schemes for image sharing. Section 3
presents the proposed method. Section 4 gives some analyses about the proposed
scheme. Experimental results are included in Sec. 5. Finally, conclusions are pro-
vided in Sec. 6.

2. A Simple Review of Image-Sharing Methods

This section first review two kinds of well-known techniques for sharing secret
images: polynomial-style approaches1,9–11,13 as described in Sec. 2.1, and fast as
approaches5–8 as in Sec. 2.2. In addition, Sec. 2.3 briefly describes Wang et al.’s
second scheme in Ref. 12 based on Boolean operations.

2.1. Polynomial-style schemes

All schemes in Refs. 1, 9–11 and 13 apply the polynomial interpolation to divide
a secret data A into n distinct data sets D1, D2, . . . , Dn called shares or shadows;
and the secret data A cannot be revealed until k of n shadows become available. To
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Secret Image Sharing 265

share an image, the data A becomes the values of pixels. To split A into n shadows,
people can pick a prime number p and a polynomial

q(x) = (a0 + a1x + · · · + ak−1x
k−1) mod p

of degree k − 1 in which a0 is the data A, and all other coefficients a1, a2, . . . , ak−1

are randomly chosen from an integer in 0 to (p − 1). Then evaluate

D1 = q(1), . . . , Di = q(i), . . . , Dn = q(n).

Using any k pairs of n produced pairs {(i, Di)}n
i=1, people can get all coefficients

a1, a2, . . . , ak−1 in q(x) by the Largrange’s interpolation, and hence the secret data
A = a0 is also revealed. To reveal the secret data A, the computation complexity
is O(k log2 k) for polynomial interpolation.

2.2. Lukac and Plataniotis’s fast schemes

For fast decoding, digitalized versions based on Refs. 3, 4, 15 and 16 can be used.
However, to share digital color images more effectively, Lukac and Plataniotis ele-
gantly restructure the original digital color image files using the “OR-like” function
or looking up basis matrices in their sharing methods.5–8

Their new schemes to share and recover digital images are easy to implement,
and the retrieval speeds are very fast; although in Refs. 5–7, the shadow images
generated in their (k, n)-schemes are still several times larger than the secret image.
The problem might get worse as the values of k and n become very large. (As for
Ref. 8, as stated earlier, the size of each shadow image is the same as the secret
image size, but Ref. 8 considers k = n = 2 only.) As a result, to store the created
digital shadows often need larger storage space in a computer.

2.3. Wang et al.’s fast (n, n) scheme

Wang et al. also proposed in Refs. 12 and 17 some fast schemes with the intention
of small pixel expansion rate (per). Their (k, n) scheme in Ref. 17 and their first
scheme (a (2, n) scheme) in Ref. 12 are both probabilistic (and hence might cause
loss in image retrieval). Their second scheme in Ref. 12 is a deterministic (n, n)
scheme for grayscale images (extension to color images is also possible); and hence
causes lossless retrieval. Notably, in their (n, n) scheme,12 it splits a secret image A

among n shadows C1, C2, . . . , Cn, whose pixel expansion rate is one. After receiving
all n shadows, it uses only n− 1 XOR operations to reconstruct a pixel of A. Their
(n, n)-scheme algorithm is as follows:

Coding:

Step 1. Input a secret image A.
Step 2. Generate n-1 random images B1, B2, . . . , Bn−1, each has a size A.
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266 K.-Y. Chao & J.-C. Lin

Step 3. Compute the shadows as follows:

C1 = B1,

C2 = B1 ⊕ B2,
...

Cn−1 = Bn−2 ⊕ Bn−1,

Cn = Bn−1 ⊕ A.

Step 4. Output the n shadows C1, C2, . . . , Cn.

Decoding:

Reveal A using the formula A = C1 ⊕ C2 ⊕ · · · ⊕ Cn.
In this paper, in order to extend Wang et al.’s (n, n) no-threshold scheme to

(k, n) threshold scheme; we introduce a (k, n, m) shadows-assignment matrix H ,
and a {B1, B2} partition-and-recombination process. The scheme still holds the two
advantages of Ref. 12: fast computation speed and small pixel expansion rate. In
fact, we only need three XOR operations in average to reconstruct a pixel; and
the ratio of each shadow’s size over the secret image’s size is between 0 and 2, i.e.
0 < per < 2 (and per = 2/n in k = n case). The statement is true in all (k, n)
cases.

3. The Proposed Method

To generate the desired shadows, the encoding algorithm in Sec. 3.1 will need the
two new techniques described in Secs. 3.2 and 3.3. To help readers understand the
encoding, a numerical example is also given in Sec. 3.4.

Then, Sec. 3.5 introduces the decoding algorithm that retrieves the secret. For
easier understanding of the decoding algorithm; a numerical example for decoding
is also given in Sec. 3.6.

3.1. The encoding algorithm

First, we illustrate here our encoding algorithm which creates n final shadows that
meet the (k, n) threshold goal. This encoding algorithm will use two other new
tools: the (k, n, m) shadows-assignment matrix in Sec. 3.2, and the {B1, B2}
partition-and-recombination process in Sec. 3.3.

The encoding algorithm:

Step 1. Input a color secret image A.
Step 2. Generate a random image B1 so that B1 and A have the same size.
Step 3. Generate another image B2 using B2 = B1⊕A, where ⊕ denotes bit-by-bit

XOR.
Step 4. Let m = Cn

k−1. Generate the (k, n, m) shadows-assignment matrix H

described in Sec. 3.2. Notably, the matrix H is public.
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Secret Image Sharing 267

Step 5. Use the two images B1 and B2 to generate m temporary shadows
C1, C2, . . . , Cm by using the {B1, B2} partition-and-recombination process
(see Sec. 3.3 and Fig. 1).

Step 6. Assign the duplicated copies of the m temporary shadows C1, C2, . . . , Cm

to the n persons according to the shadows-assignment matrix H mentioned
in Step 4 (see Sec. 3.2 for more details of the assignment). For each person
i, the final shadow Di that he has is exactly the union of those copies
assigned to him.

To understand the above encoding algorithm, see the example in Sec. 3.4.

Remark. Each participant gets several temporary shadows which are all random
matrixes. Thus, it is better to have a discussion about how to distinguish the
temporary shadows so that the related temporary shadows inside each final shadow
can be distinguished easily later to recover the image.

Option 1. Assume that, according to the shadows-assignment matrix H , there is
a person who owns three temporary shadows {C2, C3, C6}. Let us use this person
as an example. If the size of each temporary shadow is w×h, then, before inserting
the separator, the size of this person’s final shadow was 3w × h. (The first w rows
were C2, next w rows were C3, final w rows were C6.) So the number of rows of
the final shadow was three times larger than that of each temporary shadow, but
the columns (h) were the same. Now, after the first w rows, since we have already
completed C2, and C3 is to be attached behind C2, we insert a separator-row of
(h/2) + (h/2) = h elements, i.e. 222222222222222222222333333333333333333333,
so that people can understand C2 is above this separator-row and C3 is below

Fig. 1. A flowchart showing the process that transforms {B1, B2} to {C1, C2, . . . , C6}. In this
example, (k, n) = (3, 4); so m = Cn

k−1 = 6 accordingly.
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268 K.-Y. Chao & J.-C. Lin

this separator-row. Then we store the C3 using next w rows. Then, insert another
separator-row of h/2 + h/2 = h elements, i.e.

3333333333333333333336666666666666666666666, before attaching C6. In sum-
mary, if separators are used, the final-shadow has (3w + 2) rows rather than 3w

rows, and the (3w + 2) rows owned by this {C2, C3, C6} person will be

[C2] (which has w rows, each row has h pixels )
222222222222222222222333333333333333333333
[C3] (which has w rows, each row has h pixels )

3333333333333333333336666666666666666666666
[C6] (which has w rows, each row has h pixels )

Notably, in Step 4 of the encoding algorithm, we have already stated that the
shadows-assignment matrix H is public, so the decoder can always read from H

to know the number of temporary shadows owned per participant. For example,
in H in Eq. (3), each participant gets 1 + 1 + 1 = 3 temporary shadows. So, in
Option 1, the decoder will know that the number of rows in this final shadow is
3w + (3 − 1) = (3w + 2). Therefore, the decoder can always figure out how many
rows are in the final shadow, and hence, know how many pixels are in each row.

Option 2. (An option using the convention of ascending-order indices). In fact,
from the viewpoint stated in the final paragraph of Option 1 above, the separator
rows can also be omitted, as explained below. Assume each participant owns cer-
tain shadows. Let the shadow indices be all arranged in the ascending order. For
example, if the matrix H is as shown in Eq. (3), then the person P1 owns (copies
of the) temporary shadows C4, C5, C6, the person P2 owns temporary shadows
C2, C3, C6, the person P3 owns C1, C3, C5, and the person P4 owns C1, C2, C4.
Notice the indices are all in ascending order (i.e. 4 < 5 < 6; 2 < 3 < 6; 1 < 3 < 5;
1 < 2 < 4). So, even if we do not use separators, the decoder can still read the
“public” matrix H to know that each participant owns three temporary shadows;
and hence, divide each person’s final shadow into three parts of equal size; and then
use matrix H to identify easily which temporary shadow is the first one-third of
that person’s final shadow, which temporary shadow is the middle one-third, and
which temporary shadow is the final one-third.

3.2. The (k, n, m) shadows-assignment matrix H (which has n

rows and m = Cn
k−1 columns)

To design a threshold (k, n) scheme, we may first directly utilize Wang et al.’s
nonthreshold (m, m) scheme for some carefully chosen parameter

m = Cn
k−1.
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(The reason why m is chosen as m = Cn
k−1 will be explained later.) So, Wang et al.’s

(m, m) method gives us m = Cn
k−1 shadows (these are not our final shadows, just

consider them as our temporary shadows). Then, we duplicate each temporary
shadow several times. Then, for n people participating in the sharing game, let
each person get one or no copy from each of m temporary shadows. Each person
can have copies from more than one temporary shadow. However, no person can
get copies from all m shadows; otherwise, that person alone can unveil the secret.

After this distribution assignment of the copies of m produced temporary shad-
ows, we wish that when any k or more people gather together in an image-recovery
meeting, the chairman of the meeting can collect all m temporary shadows from
the attendants of this meeting; and hence, can restore the secret image according
to Wang et al.’s (m, m) image-recovery scheme. We also require that a meeting
of less than k people together is insufficient to collect all m temporary shadows;
and hence, cannot reveal the secret image. We will call the two requirements stated
above in this paragraph as the “(k, n, m) shadows-assignment requirements”.

From the idea above, we may create a matrix H of n rows and m columns. Its n

rows represent n persons; and its m columns represent the m (distinct) temporary-
shadows produced by Wang et al.’s deterministic (m, m) scheme. The element of
H is either 0 or 1. The ith person (row) has a copy of jth shadow image (column)
if and only if Hij = 1. In order to make the matrix meet the expected (k, n, m)
shadows-assignment requirements described above, we let each column of H have
exactly k − 1 zeros and n − k + 1 ones. More specifically, let H have m = Cn

k−1

columns, and each column of H be a permutation of the n-dimensional basic column
vector (000. . . 0011111. . . 111) which has k − 1 leading zeros followed by n − k + 1
ones.

This obviously guarantees that: (i) each temporary shadow Cj will appear at
least once when k out of n persons attend the image-recovery meeting; (ii) at least
one temporary shadow Cj will disappear when k − 1 or fewer persons attend the
recovery meeting. The proof is as follows:

Proof. Consider the equation




P1

P2

...
Pn




T

×




H11 H12 · · · H1m

H21 H22 · · · H2m

...
...

...
...

Hn1 Hn2 · · · Hnm


 =




X1

X2

...
Xm




T

, (1)

where Pi and Hij ∈ {0, 1} (i = 1, 2, . . . , n; j = 1, 2, . . . , m). In this equation, Pi

represents the attendance status of ith person (0 is absence and 1 is attendance);
and H is the created (k, n, m) shadows-assignment matrix. Therefore,

Xj = P1 × H1j + P2 × H2j + · · · + Pn × Hnj (2)
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counts the number of times (copies) that the temporary shadow Cj appears in the
image-recovery meeting. Two observations are:

(i) When k persons attend the recovery meeting, then k of n elements in
(P1, . . . , Pn) are one, and the remaining n − k elements are zero. Therefore,
each Xj must be at least one, for there is exactly k − 1 zeros in every column
j of H . This implies that each temporary shadow Cj will appear at least once
in the recovery meeting.

(ii) When only k−1 or fewer persons attend the recovery meeting, then at most k−1
of the n elements in (P1, . . . , Pn) are one; or equivalently, at least n−k+1 of n

elements in (P1, . . . , Pn) are zero. Let Colj = (H1j , H2j , . . . , Hnj) be a column
of H whose n− k + 1 ones happen to appear at the positions where the vector
(P1, . . . , Pn) obtained these (at least) n− k +1 zeros. (If (P1, . . . , Pn) has more
than n − k + 1 zeros, then just randomly choose n − k + 1 positions from the
zero entries of (P1, . . . , Pn).) The inner product of the vector (P1, . . . , Pn) and
this special Colj will be zero. In other words, Xj = 0. So the temporary shadow
Cj disappears in the recovery meeting.

In the above construction of the matrix H , recall that we let all m = C1
k−1

permutations of the n-dim vector (000. . . 001111. . . 11), which has exactly k − 1
leading zeros and n − k + 1 ones, be used as the m columns; and thus obtain the
expected n-by-m matrix H . Hereinafter, the matrix H will be called the “(k, n, m)
shadows-assignment matrix”.

Below is an example showing the (k, n, m) shadows-assignment matrix H .
Assume (k, n) = (3, 4), so m = 6 = C4

3−1. Note that each column is just a permuta-
tion of the first column, and the first column is an n = 4-dimensional vector which
has exactly k − 1 = 3 − 1 = 2 zeros.

H =

C1 C2 C3 C4 C5 C6

P1

P2

P3

P4




0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0


 . (3)

As a result, H has four rows (since n = 4) and six columns (since m = 6 = C4
3−1).

In this example, the person P1 owns (copies of the) temporary shadows C4, C5, C6,
the person P2 owns temporary shadows C2, C3, C6, the person P3 owns temporary
shadows C1, C3, C5, and the person P4 owns temporary shadows C1, C2, C4. In
this shadows-assignment process, any k = 3 people gathered together can guarantee
the appearance of all six temporary shadows C1, C2, C3, C4, C5 and C6; but less
than three persons cannot. In other words, three or more people can recover the
secret image according to Wang et al.’s deterministic (6, 6) scheme using these
six temporary shadows. Less than three people cannot recover because some Cj

disappears.
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3.3. Partition-and-recombination process of {B1, B2}
In Sec. 3.2, after assigning m temporary shadows to n people according to the
matrix H , each person gets some temporary shadows. Each person i can combine
the temporary shadows that he holds into a single shadow Di specially designed
for him. Then these n final shadows D1, D2, . . . , Dn owned respectively by these n

persons are the final output of a very simple (k, n)-threshold scheme.
This simplest design is easy (it only needs the idea of using H as mentioned

in Sec. 3.2 above, and matrix H itself is easy to construct). However, according to
Wang et al.’s deterministic (m, m) scheme, all m temporary shadows have the same
size as that of secret image A. This often causes space-and-speed inefficiency prob-
lem. More specifically, as becomes larger, this very simple (k, n)-threshold scheme
will have two drawbacks: (1) big-size problem for each Di of the final shadows
{D1, D2, . . . , Dn}; and (2) many XOR operations in decoding. In order to avoid
these two drawbacks, we do not use Wang et al.’s output as the m temporary shad-
ows. Instead, we create our own m temporary shadows. This can be done by the
two-shadows partition-and-recombination preprocess proposed below.

First, create a random image B1 whose size is identical to that of the secret
image A. Then, generate another same-size image B2 = B1 ⊕ A using XOR in a
bit-by-bit manner. Notably, according to the inverse property of XOR operation,
secret image A can be recovered by the equation A = B1 ⊕ B2. Then, create m

temporary shadows C1, C2, . . . , Cm by partitioning and recombining B1 and B2, as
follows [see Fig. 1 for an example using (k = 3, n = 4)]:

Step 1. Randomly generate an image B1 whose size is identical to A’s. Then parti-
tion B1 into m = Cn

k−1 nonoverlapping blocks C11, C21, . . . , Cm1. The upper
half of each temporary shadow Ci (1� i � m) is the block Ci1 contained
in B1.

Step 2. Create the security mask C∗, which is also a block, by the XOR equation

C∗ = C11 ⊕ C21 ⊕ · · · ⊕ Cm1.

Step 3. Create an image B2 = B1 ⊕ A using XOR in a bit-by-bit manner. (A,
B1 and B2 have the same size.) Then partition B2 into m nonoverlapping
blocks C12, C22, . . . , Cm2.

Step 4. For security reason, shift each Ci2 to Ci3 by the formula Ci3 = Ci2 ⊕ C∗.
Step 5. After physically attaching each Ci3 to Ci1, we obtain m temporary shadows

C1, C2, . . . , Cm. (Notably, the upper half of each Ci is Ci1, and the lower
half of each Ci is Ci3.)

As a remark, if B1 and B2 cannot be divided equally into m blocks of the same size,
some redundant pixels can be filled in B1 and B2. In the (k, n) = (3, 4) example, if
the size of A is 512× 512, then B1 and B2 need two redundant pixels respectively,
because 512 × 512 is not a full multiple of m = Cn

k−1 = 6.
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272 K.-Y. Chao & J.-C. Lin

In the inverse process to obtain B1 and B2 from C1, C2, . . . , Cm, the algorithm
is as follows (see Fig. 2 where we still use (k = 3, n = 4) as an example):

Step 1. Extract m nonoverlapping blocks C11, C21, . . . , Cm1 which are the upper
half of C1, C2, . . . , Cm, respectively.

Step 2. Recover the security mask C∗ by the equation C∗ = C11 ⊕C21 ⊕· · ·⊕Cm1.
Step 3. Recover the random image B1 by physically attaching C11, C21, . . . , Cm1 to

each other.
Step 4. Extract the m nonoverlapping blocks C13, C23, . . . , Cm3 which are the lower

half of C1, C2, . . . , Cm, respectively.
Step 5. Recover the m blocks C12, C22, . . . , Cm2 using the shift-back equation Ci2 =

Ci3 ⊕ C∗ (where 1 � i � m).
Step 6. Recover the image B2 by physically attaching C12, C22, . . . , Cm2 to each

other.
Step 7. Recover the secret image A by the equation A = B1 ⊕ B2.

3.4. Numerical example of encoding example

In the following encoding example, we do it step by step. Without the loss of
generality, assume (k = 3, n = 4), so m = Cn

k−1 = 6. Also, for easier description,
we just use gray-values rather than color-values in the example.

Step 1. Assume the given secret image is a 2 × 3 image A =
[
55 76 186
67 133 202

]
, which

has six pixel values.
Step 2. Randomly generate an image B1 whose size is identical to A’s. For example,

randomly let B1 =
[
149 225 41
93 210 32

]
.

Fig. 2. A flowchart of the inverse process to recover B1 and B2 from C1, C2, . . . , Cm. In this
example, (k, n) = (3, 4); so m = Cn

k−1 = 6 accordingly.
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Step 3. Generate another image B2 by applying bit-by-bit XOR to B1 and A, i.e.

B2 = B1 ⊕ A =
[
162 173 147
30 87 234

]

where 162 = 55 ⊕ 149, 173 = 76 ⊕ 225, etc.
Step 4. According to the skill in Sec. 3.2, generate a (k = 3, n = 4) threshold

shadows-assignment matrix

H =



0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0




which has n = 4 rows and m = Cn
k−1 = 6 columns. Note that each column

is a permutation of the first column vector 0011.
Step 5. Firstly, use bit-by-bit XOR on the elements of B1 to obtain the security

block C∗ = [242] by the formula [149] ⊕ [225] ⊕ [41] ⊕ [93] ⊕ [210] ⊕ [32] =
[242].

Then, according to Sec. 3.3, generate six temporary shadows

C1 =
[
149
80

]
, C2 =

[
225
95

]
, C3 =

[
41
97

]
, C4 =

[
93

236

]
,

C5 =
[
210
165

]
, C6 =

[
32
24

]

where the six lower halves are the result of transforming the six lower
halves of B2, by doing bit-by-bit XOR with C∗ = [242]. For example,
80 = 162 ⊕ 242, and 95 = 173 ⊕ 242.

Step 6. According to the assignment matrix H , assign the copies of the m = 6
temporary shadows {C1, C2, . . . , C6} to the n = 4 persons. So, our n = 4
final shadows, hold by n = 4 persons respectively, are

D1 =
[

93 210 32
236 165 24

]
, D2 =

[
225 41 32
95 97 24

]
,

D3 =
[
149 41 210
80 97 165

]
, D4 =

[
149 225 93
80 95 236

]

where D1 and D2 both have a copy of the temporary shadow C6 =
[
32
24

]
.

3.5. The decoding algorithm

Given any k final shadows, for example {D1, D2, . . . , Dk}, out of n final shadows
produced in Step 6 of Sec. 3.1, the secret image A can be restored as follows:

The decoding algorithm:

Step 1. After referring to (k, n) shadows-assignment matrix H generated in
Step 4 of the encoding algorithm, we know which temporary shadows in
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274 K.-Y. Chao & J.-C. Lin

{C1, C2, . . . , Cm} are included in each final shadow Di. Therefore, all m

temporary shadows C1, C2, . . . , Cm can be extracted from these k final
shadows. (For the reason, the reader can refer to (k, n, m) shadows-
assignment requirements in Sec. 3.2, and the proof near Eq. (2).

Step 2. Use all m temporary shadows C1, C2, . . . , Cm to generate B1 and B2 by
implementing the inverse process of {B1, B2}-partition-and-recombination
process (see Sec. 3.3 and Fig. 2).

Step 3. Reveal the secret image A using A = B1 ⊕ B2.

Remark. Step 1 above stated that we are able to know which temporary shadows
in {C1, C2, . . . , Cm} are included in each final shadow Di. As for how to distinguish
the temporary shadows in each final shadow Di (so that the related temporary
shadows inside each final shadow Di can be distinguished easily to recover the
image), see the Remark at the end of Sec. 3.1.

3.6. Numerical example for decoding

In the following decoding example, still assume (k = 3, n = 4). So, decoding requires
any three of the four final shadows. Without the loss of generality, assume D1, D2,
D3 are the three available shadows.

Step 1. With the help of matrix H in Step 4 of encoding process, we extract all
m = Cn

k−1 = 6 temporary shadows C1, C2, . . . , C6, which are the same as
those created in Step 5 of encoding process of Sec. 3.4.

Step 2. Recover B1 and B2, which are the same as those in Steps 2 and
3 of the encoding process, by implementing the inverse process of
{B1, B2} partition-and-recombination process to all six temporary shad-
ows C1, C2, . . . , C6 (see Fig. 2).

Step 3. Reveal the secret image A by A = B1 ⊕ B2 =
[
55 76 186
67 133 202

]
.

4. Analysis

4.1. Recoverability and security

In general, each (k, n) threshold secret sharing scheme must satisfy both require-
ments: the recoverability (any k or more shadows can reveal all information of A)
and the security (any k − 1 or fewer shadows cannot reveal secret image A).

In our scheme, when any k out of n final shadows are gathered (for example,
D1, D2, . . . , Dk), secret image A is revealed by Steps 1–3 of the decoding algorithm.
These steps also explain why our scheme satisfies the recoverability requirement.
Firstly, if k or more final shadows are gathered, then we can extract all m tempo-
rary shadows C1, C2, . . . , Cm from k available final shadows according to (k, n, m)
shadows-assignment requirements of matrix H . Secondly, after physically dividing
each Ci into upper half Ci1 and lower half Ci3, we can get C∗ which is defined
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by C∗ = C11 ⊕ C21 ⊕ · · · ⊕ Cm1. Then, we can restore C12, C22, . . . , Cm2 using
Ci2 = Ci3 ⊕ C∗ for each i = 1, . . . , m. Then recover B1 = {C11, C21, . . . , Cm1} and
B2 = {C12, C22, . . . , Cm2}. Therefore, the secret image A can be revealed using
A = B1 ⊕ B2.

Our scheme also satisfies the security requirement. Assume that only k − 1
or fewer final shadows are available. Then, according to (k, n, m) shadows-
assignment requirements of matrix H , people cannot obtain all m temporary shad-
ows C1, C2, . . . , Cm from these final shadows (see the proof (ii) below Eq. (2) in
Sec. 3.2). Assume Cq is missing. As a result, people cannot obtain C∗ defined
by C∗ = C11 ⊕ C21 ⊕ · · · ⊕ Cm1, due to the lack of Cq1 which is the upper
half of Cq. Then, without C∗, people cannot restore C12, C22, . . . , Cm2 defined by
Ci2 = Ci3 ⊕ C∗ (1 � i � m). So, people cannot generate B2. As a result, secret
image A = B1 ⊕ B2 cannot be revealed due to the absence of B2.

Below we discuss the probability of obtaining the right secret image A through
guessing. Without the loss of generality, assume that a betrayal party of k − 1
persons has already gathered m − 1 temporary shadows C1, C2, . . . , Cm−1 without
Cm. Notably, A = {Ai|1 � i � m}, i.e. image A can be divided to m blocks, and
the recovery of A can be done block by block; in other words, since A = B1 ⊕ B2,
we have

Ai = Ci1 ⊕ Ci2 = Ci1 ⊕ (Ci3 ⊕ C∗) = Ci1 ⊕ Ci3 ⊕ (C11 ⊕ C21 ⊕ · · · ⊕ Cm1),

1 � i � m.

Because of the lack of Cm = [Cm1|Cm3]T , the betrayal party will have to guess a
value for a pixel in Cm1, then they can use this guessing value to obtain a set of
m − 1 pixels’ values (one value per block in A1, A2, . . . , Am−1). Then they need to
guess the value of a pixel at the corresponding position of Cm3 (or Am) so that the
pixel value at that position of Am can also be shown. The above is just to recover
a pixel (for example, the top-leftmost pixel) of each block Ai, 1 � i � m. This
value-guessing of two pixels will be repeated bksize times. Here, bksize is the size
of each block Ai (1 � i � m); hence bksize is m times smaller than the image size
of A.

From the description above, we can evaluate the probability of obtaining the
right color image A with size w×h as follows. (For illustration, still assume (k, n) =
(3, 4); so m = Cn

k−1 = 6 accordingly.)

Probability = sbksize1 × sbksize3 =
(

1
pixelscale

)w×h
m

(
1

pixelscale

)w×h
m

=
(

1
224

)w×h
m ×2

which is (
1

224

)512×512/3

=
(

1
224

)87381

= 10−631304
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if the image size is w × h = 512 × 512. Here, s = 1/224 is the probability to guess
successfully a pixel’s value; bksize1 is the number of pixels in Cm1; and bksize3
is the number of pixels in Cm3. To improve the security further, people can use a
prime number as a key (a seed) of a random number generator to rearrange the
pixel positions in secret image A (as we did in Ref. 9) before encoding.

4.2. Time complexity and storage space needed

In terms of computation complexity, Thien and Lin’s polynomial sharing scheme9

needs O(log2 k) mathematical operations to reveal a pixel. Although Wang and
Su11 reduced 40% in size of Thien and Lin’s shadow images, their scheme still need
O(log2 k) mathematical operations to reveal a pixel. As for the digitalized versions
derived from Refs. 3, 4, 15 and 16, they need O(k × per) OR operations to reveal a
pixel. Here, the value k means that the secret-recovery requires k gathered shadows,
and the value of per represents pixel expansion rate (per � 2 in Refs. 3, 4, 15 and
16). Lukac and Plataniotis’s elegant methods5–7 also requires O(k×per) “OR-like”
operations to restore an original input pixel in (k, n)-threshold schemes. Lukac and
Plataniotis’s special method8 requires only 1 B-bit “OR-like” operation to restore
a pixel of B-bit color secret image, but Ref. 8 only deals with the k = 2 = n

scheme.
Fang and Lin2 proposed two other SS (sharing schemes), i.e. an (n, n) XOR-SS

and a (k, n) OR-SS, to reduce the size of shadows in Lukac and Plataniotis’s.7 But
the (k, n) OR-SS scheme in Ref. 2 still needs many OR operations in decoding,
and the complexity is similar as that of Wang et al.’s (k, n) colored probabilistic
scheme.17 In Wang et al.’s (n, n) scheme,12 only n−1 XOR operations are required
to reconstruct each pixel, which is the same as Fang and Lin’s (n, n) XOR-SS
scheme.2 Obviously, the decoding time of most inventions above increases as the
value of k or n increases.

For this concern, our new scheme tries to make more stable the speed of
Wang et al.’s12 for any n. In any (k, n) threshold cases, no matter how large the
value of n is, we only need at most three bit-by-bit XOR operations to restore
a pixel. Notably, each XOR is between a pair of 24-bit values if the image is
color.

To observe this, assume that the size of secret image A is w × h, then the
number of XOR operations needed to evaluate C∗ = C11 ⊕ C21 ⊕ · · · ⊕ Cm1 is
(m− 1)× [(w×h)/m] < w× h because each Ci1 has size [(w× h)/m]. Then, to get
C12, C22, . . . , Cm2, m×[(w×h)/m] = w×h XOR operations are required to evaluate
Ci2 = Ci3 ⊕ C∗, here 1 � i � m. Finally, to reveal A, w × h XOR operations are
needed to evaluate A = B1 ⊕B2. Together, [(3×m−1)/m]× (w×h) < 3× (w×h)
XOR operations are required to reveal A from any k final shadows. On average,
since image A has w×h pixels, at most three XOR operations are required to restore
each pixel. Table 1 below shows a comparison with reported schemes. Obviously,
the proposed scheme has the smallest decryption load on average. Notably, the

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
26

3-
28

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Secret Image Sharing 277

Table 1. Time complexity for decoding. (The time to reconstruct a pixel of image A.)

Schemes (k, n) Threshold (n, n) Threshold

Thien and Lin’s polynomial
scheme Ref. 9

O(log2 k) (Math operations(1)) O(log2 n) (Math operations)

Wang and Sue’s polynomial
scheme Ref. 11

O(log2 k) (Math operations) O(log2 n) (Math operations)

Digitalized version of
Refs. 3, 4, 15 and 16

O(k × per(2)) (OR operations) O(n × per) (OR operations)

Lukac and Plataniotis’s
schemes Refs. 5–8

O(k × per) (OR-like operations)
for Refs. 5–7. Reference 8 is
for (2, 2) case only; there is

no (k, n) case in Ref. 8.

O(n × per) (OR-like
operations) for Refs. 5–7.
Reference 8 is for (2, 2)

case only, and it needs
only 2 − 1 = 1 OR-like
operation.

Fang and Lin’s scheme Ref. 2 O(k × per) (OR operations) n − 1 (XOR operations)
Wang et al.’s scheme

Refs. 12 and 17
O(k × per) (OR operations) in

Ref. 17. Reference 12 gave
no (k, n) scheme(3) unless
k = 2; and its (2, n) scheme
uses only 2 − 1 = 1 XOR
operation to reconstruct a
pixel of A.

O(n × per) (OR operations)
in Ref. 17. n − 1 (XOR
operations) in Ref. 12.

Our scheme 3 (XOR operations) 3 (XOR operations)

(1) Math operations: +, −, ×, ÷.
(2) Note that per means “Pixel expansion rate”. Usually, per is a positive integer at least two in
Refs. 2–7 and 15–17.
(3) When k = 2, the (2, n) scheme in Ref. 12 is a very fast one, since only one XOR operation is
needed. But their decoding is not loss-free.

proposed scheme also needs at most three XOR operations in encoding process
to share each pixel of secret image into n final shadows D1, D2, . . . , Dn, because
the decoding process is exactly an inversion of an encoding one. Besides Table 1,
the readers can also refer to Figs. 6 and 7 to see that our decoding time does not
increase as n increases its value. Since, besides our method, Wang’s12 is one of the
fastest schemes in Table 1, we only compare our CPU time with Ref. 12 in Fig. 6.
As for Fig. 7, because Ref. 12 has no (k, n) design if 2 < k < n, no curve for Ref. 12
is drawn there. (We only use this figure to show that our CPU time is really a
constant.)

As for the space complexity, Thien and Lin’s scheme9 has a pixel expansion rate
per = 1/k for the (k, n) threshold cases. Wang and Su proposed the scheme11 to
reduce 40% of Thien and Lin’s shadow images size. On the other hand, as the value
of n increases, per is very large for digital versions of schemes.3,4,15,16 Although
the probabilistic scheme14 has per = 1, the reconstructed secret image is not error-
free. The per in Lukac and Plataniotis’s schemes5–7 are at least two. Lukac and
Plataniotis’s special method8 has no pixel expansion problem (per = 1), but it
is only for (2, 2) scheme. Although Fang and Lin’s (n, n) and (k, n) schemes2

have shadows of size smaller than Lukac and Plataniotis’s,7 their (k, n) scheme
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still has a per larger than one. The per in Wang et al.’s colored probabilistic (k,
n) scheme17 is still not less than one (per � 1). As for Wang et al.’s determinis-
tic (n, n) scheme,12 per is one; but Ref. 12 does not have (k, n) schemes unless
k = 2.

In the proposed scheme, our per is between 0 and 2; moreover, close to 0 is
possible. To see this, let the size of secret image A be w×h. Since the size of every
temporary shadow Ci (1 � i � m) is 2× (w× h)/m, the size of every final shadow
Di (1 � i � n) is[

2 × (w × h)
m

]
× Cn−1

k−1 =
[
2 × (w × h)

Cn
k−1

]
× Cn−1

k−1

=
2(w × h)(n − k + 1)

n
.

Here, we have used the fact that each final shadow Di contains Cn−1
k−1 temporary

shadows. Now, after dividing the above by the size of A, we get our pixel expansion
rate, i.e.

per = 2 × (n − k + 1)
n

< 2, true for any (k, n). (4)

Therefore, each final shadow will be at most two times larger than secret image A.
When n is very large and k is two, the rate converges to its upper bound 2. On the
other hand,

per < 1 if k >
1 + n

2
. (5)

In the special case when k = n, our per is 2/n, and hence,

per =
2
n
→ 0 if k = n → ∞. (6)

Therefore, each shadow will be very small when k = n. (See Fig. 5, for example, in
which n was only 4, so per = 2/n = 2/4 = 0.5. If we had used a very large n, then
per would have been much smaller.)

In summary, the proposed scheme does not have a serious pixel expansion prob-
lem or huge storage-space demanding for shadows (see Table 2).

4.3. Perfect reconstruction and complications in implementation

In Table 3, we provide the information about perfect reconstruction. Most
schemes mentioned here are lossless in recovery, including our scheme. Excep-
tions are digitalized versions of Refs. 3, 4, 17, and the (2, n) scheme of Ref. 12
when 2 < n.

Finally, the information about the level of easy-implementation is provided in
Table 4. In summary,1,9–11,13 evaluated polynomials and the remaining references
used OR-like or XOR or look-up tables.
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Table 2. Comparison of the pixel expansion rate (per) when shadows are created.

Schemes (k, n) Threshold (n, n) Threshold

Thien and Lin’s polynomial
scheme Ref. 9

1/k 1/n

Wang and Sue’s polynomial
scheme Ref. 11

(1/k) × 60% (1/n) × 60%

Digital versions of Refs. 3, 4,
15 and 16

per is at least 2 per is at least 2

Lukac and Plataniotis’s
schemes5–8

per is at least 2. (per = 1 in Ref. 8,
but Ref. 8 is for (2, 2) case
only.)

per is at least 2. (per = 1
in Ref. 8, but Ref. 8 is
for (2, 2) case only.)

Fang and Lin’s scheme Ref. 2 m × n/(n + 1) for some integer
m � 2.

n/(n + 1)

Wang et al.’s scheme
Refs. 12 and 17

per � 1 in Ref. 17. (Reference 12
gave no (k, n) scheme unless
k = 2; and per = 1 in its (2, n)
scheme.)

per � 1 in Ref. 17.
(per = 1 in (n, n)
scheme Ref. 12.)

Our scheme 0 < per = 2 × (n − k + 1)/n < 2 0 < per = 2/n � 1

Table 3. Comparison of the perfect reconstruction ability.

Schemes (k, n) and (n, n)

Thien and Lin’s polynomial scheme9 Lossless recovery
Wang and Sue’s polynomial scheme11 Lossless recovery
Digitalized versions of Refs. 3, 4, 15
and 16

Refs. 15 and 16 are lossless, but Refs. 3 and 4 cause
loss.

Lukac and Plataniotis’s schemes5–8 Lossless recovery

Fang and Lin’s2 Lossless recovery
Wang et al.’s scheme12,17 Recovery might be lossy in Ref. 17 if per is close to

1. The (2, n) scheme of Ref. 12 causes loss
(Reference 12 gives no (k, n) scheme unless
k = 2.) The (n, n) scheme of Ref. 12 is lossless.

Our scheme Lossless recovery

5. Experimental Results

In our experiment, the input color image A is the popular test-image shown
in Fig. 3(a). For (k, n) = (2, 4) case, n = 4 final shadows D1, D2, D3,
D4 generated in Sec. 3.1 are shown in Figs. 3(b)–3(e), and each has a size
2 × (n − k + 1)/n = 2 × (4 − 2 + 1)/4 = 3/2 times larger than size of A.
Figure 3(f) shows the error-free recovered A using any k = 2 of the four final
shadows.

Other experiments dealing with (k, n) = (3, 4) and (k, n) = (4, 4) cases are
shown in Figs. 4 and 5 respectively. And their pixel expansion rates are 2 × (n −
k + 1)/n = 2 × (4 − 3 + 1)/4 = 1 and 2 × (n − k + 1)/n = 2 × (4 − 4 + 1)/4 = 1/2,
respectively.

To show our constant decoding-time property, we also record in Figs. 6 and 7
the actual CPU time taken in decoding. The computer used is an IBM laptop with
an Intel Pentium 1.70GHz CPU, and the operating system is Microsoft Window
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Table 4. The complicatedness (core techniques used) in implementation.

Schemes Encoding Implementation Decoding Implementation

Thien and Lin’s polynomial
scheme Ref. 9

Evaluate a polynomial Use Largrange’s interpolation

Wang and Sue’s polynomial
scheme Ref. 11

Evaluate a polynomial Use Largrange’s interpolation

Digitalized versions of
Refs. 3, 4, 15 and 16

Either look up the basis
matrices, or use OR
operations.

Either look up the basis
matrices, or use OR
operations.

Lukac and Plataniotis’s
schemes Refs. 5–8

Either look up the basis
matrices, or use OR-like
operations.

Either look up the basis
matrices, or use OR-like
operations.

Fang and Lin’s scheme Ref. 2 Either look up the basis
matrices, or use OR-like
operations.

Use XOR operations

Wang et al.’s scheme
Refs. 12 and 17

Reference 17 either look up
the basis matrices, or use
OR operations.
Reference 12 uses {AND,
XOR} operations in the
first scheme; uses XOR
operations in the second
scheme.

Reference 17 either look up the
basis matrices, or use OR
operations. Reference 12
uses XOR operations in
both first and second
schemes.

Our scheme. Use XOR operations Use XOR operations

XP SP2. From Fig. 6, which deals with (n, n) system, it can be seen that our
decoding time really does not vary as the value of n varies, but this is not the case
for Wang et al’s scheme.12 Notably, for all (k, n) systems, our decoding time still
remains constant as n increases its value. An example showing this is given in Fig. 7
in which k = n/2. Note that Wang et al.’s12 does not have (k, n) systems unless k

is n or 2.

(a)

Fig. 3. An example of (k = 2, n = 4). Here, (a) is the given 24-bit-per-pixel color image A; (b–e)
are our final shadows D1, D2, D3, D4; (f) is the recovered error-free A using any two of the four
final shadows.
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(b) (c)

(d) (e)

(f)

Fig. 3. (Continued )
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(a) (b)

(c) (d)

(e)

Fig. 4. An example of (k = 3, n = 4). Here, (a–d) are our final shadows D1, D2, D3, D4; (e) is
the recovered error-free A using any three of the four final shadows.

6. Conclusion

In polynomial-based sharing approach, the shadow size is never a problem, but the
decoding speed is very slow due to the polynomial-interpolation evaluation. To the
contrary, storage space for shadows is large for almost all fast methods (the pixel
expansion rate per is usually at least 2 for (k, n)-threshold schemes, and per = 1
is limited to loss causing schemes or some (n, n) nonthreshold schemes). In this
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(a) (b)

(c) (d)

(e)

Fig. 5. An example of (k = 4, n = 4). Here, (a–d) are our final shadows D1, D2, D3, D4; (e) is
the recovered error-free A using all four final shadows.
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Fig. 6. The CPU time (milliseconds) for decoding (n, n) systems.
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Fig. 7. The CPU time (milliseconds) for decoding each (n/2, n) systems by our scheme. There
is no curve for Wang et al.’s scheme,12 for their scheme has no (n/2, n) system or other (k, n)
systems when 2 � k < n.

paper, we have designed successfully a scheme so that: (1) the generated shadows
are of reasonable size (per is between 0 and 2; and close to 0 when the k is large and
close to n [see Eqs. (4)–(6)], e.g. per = 2/n in all (n, n) schemes); (2) the scheme
only needs three 24-bit XOR operations per pixel to get a recovery of the given
color image; and (3) unlike some probabilistic approaches, our recovered images
are lossless; (4) our scheme is missing-allowable because it is a (k, n)-threshold
scheme which requires only k out of n shadows that appear in the recovery
meeting.

We have implemented the cases with (k, n) being, respectively, (2, 2), (2, 3),
(3, 3), (2, 4), (3, 4), (4, 4), etc. The results are satisfactory in terms of the above
advantages. Notably, the method also works for binary or grayscale image because
the method is based on bit-by-bit operation. In fact, the given secret image A can
be B-bit per pixel for any positive integer B (for example, use B = 1 for binary
image, B = 7 or 8 for grayscale image, B = 15 for 5-5-5 pseudo color image, B = 24
for 8-8-8 color image).
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