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Quality Assessment of Synthesized 3D

Video with Distorted Depth Maps
Student: Du-Hsiu Li Advisor: Prof. Hsueh-Ming Hang
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Institute of Electronics

National Chiao Tung University

Abstract

In the virtual-view 3D video coding system, both the RGB image data and the
depth maps are compressed-and- transmitted to the receivers. After compression, the
depth 'maps are distorted and may cause visible artifacts on the synthesized video. We
study the visual effect of compressed depth maps on the synthesized video and
develop a quality assessment model that predicts the subjective quality.

We use the ITU/ISO international video standard HEVC Test Model (HTM) to
compress the depth maps. The distorted depth values may lead to ghost artifacts
around object edges and unnatural object motions on the synthesized video. Thus, we
propose a new 3D quality metric to evaluate the quality of stereo video that may
contain artifacts introduced by the rendering process due to depth map errors. In our
proposed quality assessment (QA) model, we use SSIM to compute the basic score of
stereo image pair; we extract the edge, motion, and depth features of stereo pairs and
combine them to form local weights to increase the sensitivity of the noticeable
regions. We use the binocular perception model to merge the scores of stereo pairs.
We also select proper percentage of image blocks in the final pooling stage.



To evaluate the performance of our QA model, we conduct our own subject
evaluation experiments. In total, over 30 video sequences were constructed using the
HEVC-3D standard software including its view synthesis tool. About 26 viewers gave
subjective scores on the test sequences. Our experimental data show that our model

has a better match to the subjective scores when it is compared with the other existing

QA metrics.
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Chapter 1 Introduction

1.1 Introduction

As the 3D display is becoming popular recently, the technology of 3D video
compression plays an important role in multimedia applications. The ISO/IEC
Moving Picture Expert Group (MPEG) is in the process of defining the 3D video
coding (3DVC) standard that specifies the multi-view plus depth (MVD) format.
Many new factors and artifacts are introduced in the new 3D video coding format.
Although video quality metrics have been studied for decades, a new metrics may be
need to predict the quality of the stereo images and videos.

In last decade, the development of 2D quality assessment metrics is became
mature. Many well-known metrics, such as Peak Signal to Noise Ratio (PSNR),
Structural Similarity (SSIM), Visual Information Fidelity (VIF) are widely used in the
multimedia applications. Because the stereo images and videos are more complex
than 2D, these metrics can not meet the demands of 3D context. The 3D quality

assessment (QA) metrics are necessary and have room for further study.

1.2 Motivation and contribution

In a virtual-view 3D video coding system, both the RGB image data and the
depth maps are compressed and transmitted to the receivers. The depth maps are
distorted by the compression and the error of depth map cause the object shift (ghost
artifact) and unnatural motion in the specific regions on the synthesized video after
Depth Image Based Rendering (DIBR). These artifacts are different from the 2D

distortions. Hence, the 2D quality assessment metrics are not sufficient to evaluate the



quality of synthesized video. We observe the causes of these artifacts, and propose a
new quality assessment metric to predict the quality of the distorted video synthesized
using the compressed depth maps. In this metric, we design the local weight of the
specific regions where the artifacts are visible and include the depth information and
the effect of binocular vision. We also conduct subjective viewing experiments to
generate the data for our purpose. Finally, the experimental results show the our

method has the higher correlation than the conventional metrics.

1.3 Organization of Thesis

We first introduce the general concepts and exiting quality assessment methods
in chapter 2. We analyze the effect of the depth errors and the sources of compress
depth map distortion in chapter 3. We describe our subject experiments and the
experimental results in chapter 4. The proposed computational metric and its

performance are shown in chapter 5.-Chapter 6 is the conclusion and future work.



Chapter 2 Quality Assessment

Quality Assessment falls into two classes: subjective and objective quality
assessment. Subjective quality assessment means that human observers watch the test
video sequences and give the scores of the test sequences. Although this method is
closest to the Human Visual System (HVS) but it costs man power and time to
measure. The goal of objective quality assessment is to simulate HVS and judge the
quality of sequence using computing algorithms. It has the advantage of lower cost for
subjective quality assessment and it can be incorporated into an automatic image

process system.
2.1 _Subjective QA Methods

The recommendation document ITU-R BT.500 [1] describes several methods for
the assessment of the picture quality. There are double-stimulus impairment scale
(DSIS). . method, double-stimulus continuous quality-scale (DSCQS). . method,
single-stimulus (SS) methods, single stimulus continuous quality evaluation (SSCQE)
etc. We only describe the details of the method we use in this paper.

We use DSIS to be our experiment method, shown in Fig 1. First, the trail
number is displayed for 3 seconds in the front of a sequence. Them, an image of black
background with letter ‘A’ stays 2 seconds. It indicates that the coming video is the
reference (stimulus A). The time of each video is about 5 seconds. Then, a leading
image with letter ‘B’ is shown for the test video, which also stays 2 seconds. Then,
the test video is shown for 5 seconds as stimulus B. Then, there is a 6 seconds break
for the observers to vote (mark the score). In total, it takes about 37 seconds to rate
one test video. In this method, we assume the reference video is perfect, and viewer

gives the scores to the test video by comparing it with the reference video.
3



Reference frame Processed frame

3s 2s S5s 2sS 5s 2s 58 2s 58 68

Fig 1 The structure of the Double Stimulus Continuous impairment Scale

After the subjective experiment, we collect the score of test sequence which is called

Opinion Score, and the average of score is called Mean Opinion Score (MOS) (1).

MOS; = =%_, score;, (1)
where _score; ; is the score of the ith test sequence given by the kth observer; N is

the total number of observer. MOS; is the final score of the ith test sequence.

2.2  Objective QA Methods

Objective QA can be divided into three types according to the availability of

original images and videos [2]. There are shown in Fig 2.

(1). Full-reference (FR):
Most of the QA models belong to this category. And they assume undistorted
reference sequence is available. Compare the undistorted and distorted sequences to

estimate the quality.



(2). Reduced-reference (RR):
Compare to the Full-reference, this approach does not need to get the full
undistorted reference sequence. They only have some feature extracting from the

undistorted sequence and predict the quality of distorted sequence.

(3). No-reference (NR):
For certain applications, we can not get the undistorted reference sequence.

We only can use the distorted sequences to predict the score of videos.

Distortion video ——
—3 Quality score
Reference video “X%
(@)
Distorti id
Reference Video sy —
(b)

Distortion video s - = Quality score

(©)

Fig 2 (a) Full-reference (b) Reduced-reference (c) No-reference

The Full and Reduced reference approaches also can further classify into three
categories: Traditional point-based metrics, Natural Visual Characteristics and

Perceptual (HVS). We explain the details blow.



(1) Traditional point-based metrics
Mean squared error (MSE) and Peak signal-to-noise ratio (PSNR) belong to
this category. Compare to other metric, they have lower computational complexity
and acceptable performance. They are usually used as a part of the other metrics.
(2) Natural Visual Characteristics
We first find some features or phenomena, which human pay attention to, and
then predict the quality of sequence based on these feature values. It can be further
classified into Natural Visual Statistics and Natural Visual Features based methods.
(A). Natural Visual Statistics
Use mean, variance, covariance, and distributions as features to predict
the quality. Some famous examples are the Structural Similarity (SSIM) index
[3] and the Visual Information Fidelity (VIF) [4].
(B). Natural Visual Features
Extract the obvious visual features and artifacts, like edge and blocking,
and quantify their effects to predict the quality. A famous example is the Video

Quality Metric (VQM) [5].

(3) Perceptual (HVS)
In this category, we develop the metrics bases on Human Visual System (HVS)
characteristics. By imitating the image formative process of human to obtain the
similar information transferring to brain and finally judge the quality. These metric

can be classify into frequency and pixel domains.



(A) Frequency domains
It has been observed that the sensitivity of human visual system at
different frequency is also different. To use this property, video sequence is
transformed to frequency domains, usually using DCT, wavelets, and Gabor
filter banks. A well-known metric using this property is MOtion-based Video

Integrity Evaluation (MOVIE) index [6].

(B) Pixel domains
A part of human visual system specially deals with image edges. Hence,
edges are important to the HVS. Some metrics are designed in the pixel domain

such as Perceptual Video Quality Metric (PVQM) [7].

2.3 Structural Similarity (SSIM) index

This metric is proposed by Wang et al in 2004 [3]. It uses the “structural distortion”
and “structural information” to predict the image quality. The SSIM index consists of
three components: luminance, contrast and structure.

The calculations of luminance, contrast and structure components are defined as
follows.

The function of luminance comparison:

2Uxpy+C
(ry) = 220 )

The function of contrast comparison:

2040y+C.
C(x' y) = Ux2+0'j,2+262 (3)
The function of structure e comparison:
_ ZO'xy+C3
s(x, y) - Ox0y+C3 (4)



where u, and u, are the means of x and y; o, and o, are the standard deviations
of x and y; oy, is the correlation coefficient between x and y, C;, C, and C; are
the positive parameters, which are corrective terms to avoid the denominators close to

zero. The definition of u, , o, and oy, isbelow.

e =~ x; (5)
0p = |ty (i — )2 (6)
Ouy = o ZmaXe = ) (Vi — 1) (7)

The Structural SIMilarity (SSIM) index is defined as below.

SSIM(x,y) = [Ix, 1%~ [e(x y)1? - [s(x, 1] (8)
Where a,  and y are positive parameters to adjust the relative importance of the three
components. To reduce the complexity of computation, SSIM has a reduced formula.

In this formula, oo = f =y =1 and C,=C5. The reduced form of the SSIM is (9)

SSIM = < 2ty +Cy )( 20xy+C, > (9)

UxP+Uy?+C1 ) \ox?+0y%+C,

2.4  Evaluation of Objective Quality Assessment Models

After develop a new QA metric, we need to evaluate its performance. Pearson
correlation coefficient (PCC), Spearman rank order correlation coefficient (SROCC),
Outlier Ratio (OR) and Root Mean Square Error (RMSE) are more commonly used.
Generally, the relationship between the subjective MOS and the objective predictive
scores is nonlinear.

To remove the effect of nonlinear relationship on computing the correlation

coefficient, the Video Quality Experts Group (VQEG) Full Reference Television



(FRTV) Phase Il report [8] recommends a nonlinear mapping before calculating the
aforementioned criterions. It uses the following formula to match the subjective MOS

and the objective predictive score.

by
14e(—b2(score=b3))

MOS, = (10)

where score is the score predicted by the objective QA metric and MOS,, is the final
predictive score. Parameters b, b, and b5 are adjusted so that MOS,, fits MOS
best. Then, use the MOS,, and MOS to compute the PCC, SROCC, OR, RMSE.
(1) Pearson correlation coefficient (PCC)
The Pearson correlation coefficient (PCC) is the linear correlation coefficient
between the scores (MOS) human made and the metrics predicted. A value is closer
to 1 means a better match; that is the prediction of the tested metric is more

accurate. The definition is (11).

Y1=1(MOS;=MOS)(MOSp;—MOS))

PCC = (11)

Jz’i“;l(Mosi—MOS)ZJZ?zl(Mospi—Mosp)Z
where MOS; is the subjective MOS of .the ith test sequence, MOS,; is the

predictive score of the ith test sequence, n is total number of test sequence, and X;
y; are the averages of x; and y;, respectively.
(2) Spearman rank order correlation coefficient (SROCC)
Although the formula of SROCC is similar to that of PCC, the data pairs is

different. In SROCC, the data MOS;, MOS,; need to be converted to

corresponding ranks X; and Y;. The formula of SROCC is (12).

n .__- __.
SROCC — Zi:l(Xl XL)(Y Yl) (12)
Jz’i’;l(xi—)?i)z Jz;;l(yi—?i)z

where X; and Y; isthe average of X; and Y;.



(3) Outlier Ratio (OR)
The definition of outlier ratio (OR) is the percentage of the number of
difference between the subjective results and the objective score larger than 2 times
the standard deviations. An OR value closer to 0 means the higher consistency of

the tested metric. The definition of OR is (13).

number of outlier (13)

OR =

number of data

(4) Root Mean Square Error (RMSE)

RMSE measures the accuracy of the tested metric. The definition of OR is (14).

RMSE = \/% S (MOS; — MOS,;)? (14)

2.5 3D Quality Assessment Database

In recent years, several research-groups studied the 3D quality assessment topic
and some of them provide their database to the public on the website. These databases
contain the reference videos and the test videos with their corresponding subjective
scores. These databases help the other researchers on this field to conduct the
subjective experiments. For different purposes of the 3D QA research, these databases

can be classified into a few categories, as shown in Fig 3.

10



3D Database

LIRIS/EPFL 3D
Model database

A 4

\ 4

Computer Nature
raphics image
&rap Ig MMSPG database
A 4 \
Display Capture
LIVE database
IRCCyN/IVC database 4 ! ,IRCCyN/IVC database
. Synthesis
Color image Depth map Algorithms
Fig 33D database

(1) Computer graphics [9]

This database is provided by Lavoue et al at EPFL [9]. It contains 88 models

between 40K and 50K vertices generated from 4 reference objects. Two types of

distortions (noise addition and smoothing) were applied with different strengths

and at four locations. Subjective evaluations were made at normal viewing

distance, using a SSIS (Single Stimulus Impairment Scale) method with 12

observers. An example is shown in Fig 4
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(b) High noise on (c) High noise
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(d) High smoothing
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Fig 4 An example used in the database of computer graphics [9]
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(2) Captured 3D Images [10]

This database is provided by Goldmann et al at EPFL [10]. The proposed
database contains the stereoscopic videos with a resolution of 1920x1080 pixels
and a frame rate of 25 fps. There are 6 scenes containing various indoor and
outdoor scenes with a large variety of colors, textures, moving objects and depth
structures. Each of the scenes has been captured with a static camera and different
camera distances in the range 10-50 cm. It uses the single stimulus (SS) method to

collect the date with 20 subjects. As example is'shown in Fig 5.

Fig 5 Six scenes used in the database [10]

(3) 3D Image with Color Distortion [11][12][13]

The first database is provided by Benoit et al in IRCCyN/IVC [11]. Six
different stereoscopic images are included in this database and 15 distorted
versions of each sources were generated from three different processes (JPEG,
JPEG2000, blurring) symmetrically to the stereo-pair images. The second
database is provided by Urvoy et al in IRCCyN/IVC [12]. Ten different
stereoscopic videos are included in this database and their distorted versions are

generated by H.264 and JPEG2000 coding and down-sampling and image
12



sharpening processes. The last database is provided by Moorthy et al in LIVE
[13]. The database consists of 20 reference images and 365 distorted images (80
image were generated by JP2K, JPEG, white Gaussian noise and Fast-fading; 45
for were produced by Blur).
(4) Synthesis Algorithms [14]
This database is provided by Bosc et al in IRCCyN/IVC [14].It contains video
generated by 7 depth-image based rendering algorithms on frames extracted from 3

video sequences. A example of synthesized images are shown in Fig 6.

Fig 6 Picture produced by different DIBR-based synthesizing algorithms [14]

In this thesis, we are interested in the effect of distorted depth map on the
synthesized videos. Because our target is different from the previous ones, we
construct our own test database which consists of six scenes. We use the test videos
provided by the ITU/MPEG standardization committee for specifying the Advanced
Video Coding (AVC, H.264) and High Efficiency Video Coding (HEVC, H.265) 3D
standards. The depth maps are compressed by HTM (HEVC Test Model-8.0) and use
the original color images and compressed depth maps to synthesis the virtual view
image/video. The synthesis software is VSRS (View Synthesis Reference software

3.5).
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Chapter 3 Depth coding and artifact

3.1 3D coding system codec

The 3D perception is often made by viewing two different views in two eyes, and
then they are combined by the Human Visual System (HVS). The ISO/IEC Moving
Picture Expert Group (MPEG) is in the process of specifying the 3D video coding
(3DVC) standards based on the multiple-view plus depth (MVD) format. It assumes
the input is a 2-view (or more views) video, and each view has its corresponding
depth map, which can be captured by depth sensors or generated by a depth
estimation algorithm. These color and depth images are then compressed by a 3D
video coder. At the receiver, the virtual view images are generated by a view synthesis
algorithm. Either the transmitted views or the synthesized views and their mixtures
can be displayed on a 3D monitor. The framework of 3DVC system is showed in Fig

7.

\J

Leftgamera
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Right camera mﬁll:‘l
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™
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Depth map
apEpEN

sus]r Yirtual view

Fig 7 Framework of 3DVC system
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3.2 Depth Coding

In the HTM depth coding process, there are four kinds of prediction modes
(intra-prediction, motion parameter inheritance, simplified inter-mode depth coding
and depth quadtree prediction) [15]. The depth maps are quantified and divided into
coding blocks with different sizes. Each block chooses the prediction mode that has
the least Rate Distortions cost (RD cost). After the quantization process, the coding
blocks are divided into smaller blocks until the RD cost of the original block size is
less than the sum of RD costs using the smaller blocks. Because the coding process
needs to try all modes, it costs more time than the decoding process. In this section,
we elaborate the details of these three coding modes. The Intra-prediction uses the
Simplified Depth Coding (SDC) approach as an alternative intra coding mode. Two
major-intra prediction modes for SDC-coded blocks are Planar Mode (1 segments)

and DMM Mode 1 (2 segments).

(1) Intra-prediction
(A)Planar mode

The Planar Maode is often used in the smooth image area, where a number

of pixels with similar depth values are grouped into one coding block. We

send only the four depth values at each corner in the Planar Mode. Then the

corner pixels (depth values) are used to interpolate the other depth values of

each pixel in the block. Fig 8 shows an 8x8 example of the Planar Mode. The

four corners are located at (0,0), (0,7), (7,0) and (7,7), and the other values in

the block are then interpolated using these four values.
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Fig 8 Planar Mode

(B) DMM Mode 1 — Explicit Wedgele

The Mode often appears at object boundaries. A coding block containing
both object and background is partitioned into two segments. The Wedgelet
Mode transmits four corner values and the start and end points of the
segmentation line (boundary). Then, the segment mean value is used to
represent all pixels in one segment. Using the mean value to represent all
pixels in a segment is imprecise. Therefore, the residual values between the
original depth and the mean is compensated using a Depth Lookup Table
(DLT). Fig 9 shows the four corners (0,0), (0,7), (7,0), (7,7), and the start and
end point of the segment line (1,7) and (7,3) in the Wedgelet Mode. The
mean value of segment 1 (dark color) is the mean value of (0,0), (0,7) and
(7,0). And the mean value of segment 2 (light color) is the depth value of
(7,7).
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Fig 9 DMM Mode 1 — Explicit Wedgele

(2) Motion parameter inheritance
The motion characteristics of the color video and its associated depth map
should be similar, because they are the projections of the same scenery from the
same viewpoint at the same time. To enable efficient encoding of the depth map
this mode recommends motion parameters from the texture counterpart. Use the
texture motion vectors to find the corresponding blocks in the depth map of

previous frame, which is coded.

(3) Simplified inter-mode depth coding
The simplified inter-mode depth coding (SIDC) extends the idea of SDC to
inter mode depth coding. It provides an alternative residual coding method. It only
encodes one DC residual value for a coding block and uses the DC residual value
as residual for all value in the coding block. The DC residual of a coding block is
calculated as the average of the differences between the original value and the

prediction value of all pixels with the coding block.

17



(4) Depth quadtree prediction
The depth quadtree prediction mode performs a prediction of the depth
quadtree from the color image quadtree. The partitioning of the depth map is

limited to the same level texture partition. Hence, a given coding block of the

depth map can not be split further than its collocated coding block in the texture.

Fig 10 Texture partitions and their corresponding possible depth partitions [15]
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3.3 View Synthesis

In View Synthesis system [16], the 3D image warping technique is usedto render
the synthetic image with two or more contexts and depth maps of two or more
different viewpoints. Use the information of camera, such as camera parameter and
position, to projects the original view image object into the 3D space. Then, these
image object in the 3D space are projected to the image plane of the virtual view. Fig

11 shows this projection.

Virtualimage plane

Original image plane\;'\

Fig 11 Illustration of 3D image warping

P, is the position of Iimage points in the original image plane. P, is the
corresponding position of image points in the virtual image plane. P; and P, are

projected to the same position in the 3D space.

APy = KRy — KiR,C; (15)

P, = K,R, |Y | — KoR,C, (16)

S== &==

where 1, A, are the homogeneous scaling factors, K;, K, are the 3x3 intrinsic
19



parameter matrix of the corresponding camera, R;, R, are the rotation matrixes. C;,
C, are the coordinates of the camera center, and [X Y Z]T is the corresponding
position in 3D space, which represents P;.

X

Y
Z

= (K1Ry) " (4P + K1R,Cy) (17)

Merging (16) and (17), we find the relation between P; and P,.
/12P2 = (KZRZ)(KlRl)_l(Alpl + K1R1C1) - KZRZCZ (18)
In this thesis, we use the Fast 1-D View Synthesis, which is a part of the

HEVC-based 3DV software.

3.4 Artifacts caused by erroneous depth map
(1) Shift on image

Because the image pixels may be warped to wrong positions in view synthesis
due to incorrect depth valued, the pixels shifting phenomenon appears in viewing.
As shown in Fig 12(a), P1 and P2 represent the projection paths of the same object
into camera 1 and camera 2. P is the projection path to the virtual camera. They all
have the same depth values assuming all the cameras are in parallel. If the depth
values of P; and P, are smaller than their original values due to coding errors,
then Fig 12(b) shows that object is closer to the virtual camera. That is, on the
image plane, the object location x is changed to location x . The difference between
x and x’ results in the shift artifact, as illustrated by Fig 12(c). An example of this

artifact on the synthesized image is showed in Fig 13.

20



Correct depth value Error depth value . Shift = x' - x

P1 P2 .
Image P Image Pl P2 Image
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Fig 13 (a) Reference image (b) Reference depth (c) Distorted depth, and (d) Synthesized image.

(2) Unnatural movement on video

The shift artifact could result in the unnatural movement in a video. If the depth
value of the object in the previous frame is different from that in the current frame,
the object positions on the image plane are then shifted. In subjective viewing, the
object seems to move forward or backward, as shown in Fig 14. This effect is most
noticeable on the moving objects, because the foreground objects moving into or out
the coding blocks may cause large changes in depth values. Because coding errors are
not consistent in sign and magnitudes between nearby temporal frames, the same

object may have different depth values between two frames.
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Chapter 4 Subjective Evaluation Experiments
4.1 Test Sequences

In our experiments, we focus on the effect of distorted depth maps. We only
compress the depth maps and use the original color images to synthesis the virtual
images. To reduce the effect of imperfect synthesis algorithms, the reference videos
are produced also by the same synthesis algorithm using the original depth maps. In
our subjective quality evaluation experiments, we use six multi-view sequences (with
depth maps) provided by JCT-3V Committee for the 3DVC contests. Fig 15 shows all
the sequences we used and.the Table 1 shows the view we use for each sequence. Four
sequences have the 1024 X 768 resolution: Balloons, Kendo, Lovebird, Newspaper,

and two sequences have the 1920x1088 resolution: Undo and Street.

G (b

A -_— | o NS L — AT T % -

Table 1 the view number used in the experiment

View 3,4 3,4 6,7 4,5 5,7 35,4
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The distortion is produced 3D-HEVC test model (HTM) 8.0. We tried 5 different

quantization parameters: QP=16, 27, 36, 43, 48 (Table 2).

Table 2 QP and the corresponding QP step used in the experiment

Qstep 4 14 40 88 160

First, we choose the best and worst gquantization parameters, and then select the 3
middle values between the best and the worst. The standard specifies the relationship

between QP and true quantization stepsize by the following formula.

Qstep (QP) SNOSE NOPVLEISR 0" @LE) (19)

Table3-the-quantization stepsize of the QP 0~5

Quantization | 0.625 0.6875 0.8125 0.875 1 1.125
Stepsize

The QP _is the integer in the range 0~51 and increase of 6 means an increase of
quantization step size by exactly a factor of 2.Table 3 is the first 6 values of QP with
their corresponding quantization stepsizes. In this thesis, we focus on the
symmetric-stereo, so the left view and the right view depth maps are compressed
using the same QP and both videos are synthesized using the same view synthesis

process. The depth maps compressed with 5 value are shown in Fig 16.
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L VY.

Fig 16 The order from upper left.to lower leftis reference; QP 16,
QP 27, QP 36, QP 43, QP 48

To product the test video, we compress the original stereo videos containing the
color videos and depth videos. Because we want to examine the effect of the incorrect
depth values on the synthesis video, we use the compressed depth maps and the
original color videos to synthesize the test video. To reduce the effect of VSRS, the
reference video is produced by VSRS with the original color video and the original
depth map. The flow chart to produce the test video and the reference video is showed

in Fig 17 and Fig 18.
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Original context Original context Right view (View 2)
Original depth map Processed depth map Left view (View 2.5)
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Fig 17 The flow chart to produce the test video

Original context Right view (View 2)
Original depth map Left view (View 2.5)
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Fig 18 The flow chart to produce the reference video

Table 4 SSIM of the original video and synthesized reference

SSIM 0.954188 | 0.962661 | 0.921938 | 0.893475 0.976188 | 0.927036

The adopted virtual view synthesis algorithm is the “VSRS-1D-Fast”
implemented in HTM version 3.5, which is an HEVC based reference software

developed by the ITU/MPEG 3DV group.
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4.2 Subjective Test Setup

In our stereo video experiments, we use Toshiba 47TL515U 47-inch 3D
television. This monitor projects two images to the screen through different
polarization filters and the polarizing glasses are needed to see 3D images. The
viewing distance is about six times of the image height. The experimental setup is

shown in Fig 19.

Our experiment contains 36 test videos, including 30 true test sequences and 6
dummy sequences. The dummy sequences are repeating the reference sequences (no
distortion). The dummy sequences are inserted to judge the data consistency of a
subject (observer). If the score of dummy sequences is very low, that subject
(observer) data are not included. Thus, some viewing data are eliminated to make the
mean opinion score (MOS) more reliable. The order of the test sequences is randomly
displayed to reduce the effect of the sequence order. The duration of the entire

experiment for one viewer must be less than 30 minutes. If the time is too long, the
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observer may get tired and loose attention on watching video. Three or fewer subjects

can do the experiment at the same.

4.3  Result of subjective experiment
Twenty-six observers (19 man/7 woman) with an average age of 22.6 participated

in our subjective video quality evaluation. The Mean Opinion Score (MOS) of each

video at various QP value is shown in Fig 20.

5
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The difference between the reference video and test video is small for the first
three QP values in most sequences. As discussed earlier, certain minor artifacts are
less visible in motion video but may be noticeable in still images. However, when the
QP values are sufficiently large, the depth quantization errors are high. Particularly,
the object shift relative to its nearby background becomes visible. Then, the 3D visual

quality drops significantly.
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At the end of the subjective quality evaluation experiment, we asked the observers
to cycle the image regions they think annoying. These data may help us to construct a
computing model of 3D quality assessment. The results are shown in Fig 21. Most of
these regions have moving objects and they are located at the boundaries of the

foreground and the background. This is what we expect.
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Chapter 5 Computational Objective QA model

5.1 Motivation

We first examine the conventional 2D QA models. How do they perform on 3D
videos? We apply SSIM to predict the quality of stereo video. We check the SSIM

map on the annoying region. The SSIM can easily detect the region of the shift

artifacts. An example can be found in.Fig 22.

.

(@) (b)

(© (d)

Fig 22 Examples of significant shift artifacts. (a)(c) reference and
(b) (d)synthesized images
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However, not all shift artifacts can be detected by human. An example can be

found in Fig 23.

Fig 23 The example of unobwous shift artlfact (a)reference (b) synthe5|zed images
(c) the SSIM map of (a) and (b)

Fig 23 (c) is the SSIM dlstrlbutlon on the test |mage Clearly, the shift artifacts are
detected by SSIM, but they are hard to be observed by human. These regions have
heavily distorted depth maps. However, these texture regions are smooth, and the shift
artifacts are less noticeable to the human. On the other hand, the SSIM is calculated
pixel-by-pixel, and they are sensitive to object shifts. Thus, we use the edge

information as one of our features.
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In addition to the above two cases, there are other cases that the artifacts are
less noticeable. For example, people pay less attention to the faraway background, as
shown in Fig 24. Therefore, many 3D quality assessment models also consider the
depth information as an important factor. Thus, our second feature is the depth

information.

4 B A

The last feature of our model is motion. Because people usually pay attention
to large moving objects and the unnatural movements easily get attention. We use
these three features to compute the weights of each local region. So our proposed QA
model is divided into two parts. The first part computes the SSIM of the stereo video,
and the second one is generating weightings based on the three extracted features of
video. The proposed method computes the score of each frame and combines all
frame scores to represent the score of the entire video. For each frame, we divide an

image into 8-by-8 blocks, and the Structural Similarity (SSIM) metric and the feature
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extraction are computed inside these 8-by-8 blocks. We then combine the scores of
right and left views into the score of a frame. The flow chart of our proposed model is

shown below.

Reference & Mathematical
Processed model
s~ = = '\\
P [ SSIM Foeeee . \
I Pielaa I u:d adl I

5.2 [Feature extraction

(1) Edge factor

Edge factor is extracting by the “Sobel” edge detector. Each edge(x,y) is
assigned with value 1, if this pixel (x,y) belongs to an edge. Otherwise, its value is 0.
The (u,v) pair is the index of blocks in each frame, and (x,y) is the index of pixels in a
block. The equation of the edge factor is below. The result of edge detector is showed

in Fig 26.

1
E(u,v) = e X (xy)eblock(u,v) €dge(X,y) (20)
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(2) Motion factor

The motion factor is extracted by a block matching algorithm. We use 4-Level
hierarchical block matching algorithm and each level down-samples the test image by
2. The search method is the four-step search (4SS) [17] and the search area is
15-by-15. In 4SS, the first step is to find the minimum RMS from a
nine-checking-points pattern on a 5-by-5 window. The second step is moving the
center of the nine-checking-points pattern to the pesition that has the minimum RMS
in the previous step. The third step is repeating step 2. The final step is similar to the
step 2, but it also changes the size of the nine-checking-point pattern to 3-by-3. After
step 4, the position that has the minimum RMS is the matching position. The
difference between step 2 and step 3 is that step 3 is skipped if the position which has

the minimum RMS in step 2 is equal to the position in step 1.
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Fig 27 Two different search paths of 4SS.

In Fig 27, the dots are checked in step 1, the squares are checked in step 2, the
diamond-shape points are checked in step 3 and the triangles are checked in step 4.
The block size is 8-by-8. The motion vector map stores the maotion vector,

motion(u,Vv) ,as shown in Fig 28 .

Fig 28 The result of motion estimation of sequence “Street”
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We have two definitions for the motion factor and will compare their performance in
section 5.5. The first definition is given below:

0 ;if motion(u,v) < motioNeqn

M, (w,v) = ——~ ;otherwise &)
motion(u,v)

We classify the entire image into motion and non-motion regions. For each block, if
the motion(u,v) is less than the threshold, it is classified as non-motion, and the
motion factor is 0. Second, consider ghost and afterimage issues. When the objects
move, the shift artifacts around an object look like the afterimages of that object. We
can easily detect this artifact on the each frame when the video is examined frame by
frame. However, this type of artifacts in the normal-speed played back video is hard
to detect. Fig 29 the ghost artifact is easily detected if they are in the non-motion

images.

Fig 29 The example of the ghost and afterimage issues
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In [18], they consider the effect of the camera movement on visual quality. The image
may shift with a global motion and the global motion is estimated by the mean of all
motion vectors in a frame. If the objects have their own motion, their motion vectors
are different form the global motion vector. They classify the object motion by
equation (22).

1 ; [mmotion(u, v) — motioneqn| > T
I(u,v) = _ .
0 ;otherwise

(22)
T=Co, o is the standard deviation of motion vectors in one frame, C is constant
value and C is chosen 1 in their experiment. If 1(u,v) equals to 1, the block is the

moving object. Thus, the second definition of the motion factor is as follows.

0 ; Immotion(u, v) — motiongeqn| > T
M, (v, g : ; otherwise (23)
|[mmotion(uv)-motionmean|
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(5) Depth information
The depth information is generated by the depth estimation methods [19]. We
compute the disparity to estimate the perceptive depth value. Fig 30 illustrates the

relationship between disparity and perceptive depth.
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where the disparity is bigger, the object is closer. We simply use the disparity value as
a disparity factor.
D(u,v) = disparity(u,v) (25)

And the result of depth estimation is shown in Fig 31.
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Fig 31 The disparity map of sequence “Street”

5.3 Pooling

After extracting all feature factors, we combine these three factors into a set of
local weight for each frame. The weight is calculated below:

w,v) =aXxXEv)+ B xXM;uv)+yxDuv) i€{l,2} (26)

We propose two models by using different definitions of motion factor. Model 1 uses

the first definition of motion factor and Model 2 use the second one. The score of

each block is:

w(u,v)XSSIM (u,v
sccore;(u,v) = 1 (.2) (w.v) (27)
N Yveithframe WD)

where N is the number of the total blocks.
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To calculate the score of a stereo image pair, we incorporate the Binocular Perception
Model [20] into our model. For this model, the subjective 3D image quality is
determined by the mixture of the higher and lower quality images. The equation of

Binocular Perception Model is as follows:

1
Qvinocutar = {k ) Q;zligh +(1- k) ’ ertl)w}n (28)
The Quign and Q,, are the higher and lower quality of two views. We first use the

right image as the basis and find the corresponding block in the left image, and then
compare the block score of right view with the score of the corresponding block in
left view image. Because the corresponding block may not be the original block
partitioned in the first step,-the-position of corresponding block in left view may be
between two blocks. The score of the corresponding block is interpolated using the
scores of two blocks. Third, we use the binocular perception model to predict the final
score of this current block.

Typical 2D QA metrics use the average score of all the pixels or blocks of the
entire image to produce the final image quality index. However, in a synthesized
image, the object shift and the ghost artifacts appear in specific regions due to the
depth-based rendering process. Thus, we use the lowest P% of block scores instead of
using all scores to calculate the frame score. After computing the scores of all frames,
we compute the average score of all frames to form the final score of the test

sequence.

40



5.4 Parameters in the computational model

In our computational model, there are six parameters, and we only have 30 data.
The six parameters are listed below:
(1) Weights of each feature: a, B and y
(2) The percentage of block, used in pooling :P%

(3) The parameter in the Binocular Perception Model ; w, n

5.4.1 Weight of each feature

To avoid the data over fitting, we select the a, f and y in equation (24) to be the
reciprocal of the maximum.of. each feature. Therefore, these three parameters are
normalized to range [0 1]. However, some features can be affected by the other factors,
so we add some adjustments. The motion estimation is pixel based, so the motion
feature is affected by the resolution and the frame rate of sequence. To deal with this
effect, we multiply the ratio of h and h, and fr, and the ratio of fr, respectively ,
where his the picture height of sequence, and fr is the frame rate of sequence. In our
test sequences, The h, is set to768, and the fr, is 30. The disparity weight is also
pixel based, and needs to be adjusted by the sequence height, too. The final

definitions of , # and y are as follow,

1

a=- (29)
_ Ly n
'B - Mmax X ho X fr (30)
1 h
y= Dmax X h_o (31)
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5.4.2 Percentage of blocks used in pooling

Fig 32 is an earlier experiment did in our lab before [21]. This experiment focused
on the effect of distorted depth map on the stereo image pair. For the quantization
distortion (Blue line), P is close to 5%, for the best performance. In this thesis, thus

set P value to 5%.
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Fig 32 Different value of the poaling proportion P

5.4.3 Parameter in Binocular Perception Model

In equation (26), parameter k decides the weights of the higher and lower quality
of two views. We decide the n and k for each provided model. If k is larger than 0.5, it
means that the final score of stereo video is strongly affected by the view with the
higher score. Fig 33 shows that we get the maximum performance of Model 1 when k

is close to 0.84.
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In Fig 35, we get the maximum performance for Model 2 when k is 1. It means that

the quality of stereo video is dominated by the higher quality of two views. The n

value can be any number so we use n=1.
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5.5 Performance comparison

First we use our own database to compute the performance our computational
QA model and compare this performance of our model with the four existing metrics
(PSNR, SSM, MSSIM, VIF). And we use the PLCC, SROCC and RMSE to evaluate

the performance of all metrics (the details of these methods are introduced in section

2.4) . The result is shown in Table 5 and Fig 36.

Table 5 the performance of various metrics (our database)

PSNR 0.7095 0.8173 1.4394
SSIM 0.7977 0.7641 1.5379
MSSIM 0.7751 0.767 1.6113
VIF 0.7093 0.7575 1.6510
Proposedl 0.9279 0.8441 0.7440
Proposed2 0.8142 0.7918 1.4700

The Model 1 has the best performance in our experiments. Although Model 2 has
good performance too, its performance is close to that of SSIM. The matching is

better when PLCC and SROCC are close to 1. On the other hand, the smaller RMSE

means better matching.
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We want to test our model on the other database. IRCCynN 3D [12] video
quality database contains 10 sequences with 10 types of distortion. The resolution is
1920 x 1080 and the frame ratio is 25. The distortions are created by H.264, JPEG
2000 and typical image processing procedures. Although, their distorted types are
different from our database, we still give a try. The result of IRCCynN database is

shown in Table 6 and Fig 37.

Table 6 the performance of metric (IRCCynN database)

PSNR 0.2572 0.3499 6.0830
SSIM 0.3327 0.4630 5.9074
MSSIM 0.5680 0.5725 5.1498
VIF 0.5901 0.6242 4.6567
Proposedl 0.6175 0.6051 4.9287
Proposed2 0.6427 0.6219 4.7396

In Table 6, the proposed QA model 1 and 2 provide better results over PSNR
and SSIM and are as good as MSSIM and VIF. The artifacts caused by the distorted
depth maps only appear in some regions, especially in the boundary between the
foreground and the background. However, JEPG 2000 and H.264 distort the color
images on the entire image. In our models, the percentage of block we use to compute

the score of each frame is too small for this type of distortions.
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Chapter 6 CONCLUSIONS AND FUTURE WORK
6.1 CONCLUSIONS

In this thesis, we generate 36 test videos with distorted depth maps. These
depths are compressed using the under-developed ITU/MPEG JCT-3V HEVC 3D
extension standard. The purpose is to see the effect of distorted depth maps on the
synthesis video. We conduct subject quality evaluation experiments on these test
videos. We observe some special visual artifacts that do not occur in the conventional
3D videos that are not generated by a virtual view synthesizer. \We build our 3D video
subjective score database and collect the information about the annoying regions.

We also propose two computational quality assessment models to estimate the
quality of distorted video synthesized by a distorted depth map. Due to two different
definitions of motion factors, our model has two versions. In our proposed models, we
extract edge, motion and depth features to compute the local weighting and thus
enhance the effect of the “noticeable” regions with visible artifacts. Overall, we
propose two new 3D video quality metrics. The experimental results indicate that the
proposed methods have a higher correlation with the subjective scores (higher PLCC

and lower RMSE).

6.2 Future work

In this study, we only consider the effect of distorted depth maps. In the general
cases, the RGB images are also be compressed. If the RGB image and the depth map
are both distorted, some new artifact may be produced. We also need to increases the

test sequences to find better weights of three features. Because the time of subjective
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experiment is limited to 30 minute, we can not do many tests in one experiment. We
will need more data and then the machine learning techniques may be used to design a
QA model. Furthermore, the human attention model may be included in this QA

model.
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