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深度資訊失真對 3D合成視訊的影響及品質評估 

 

研究生 : 劉欣哲                           指導教授 : 杭學鳴 教授 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

    在虛擬視角的 3D視訊編碼系統中，彩色影像和深度圖都會被壓縮並且傳送

到接收端，深度圖在壓縮的過程中會被破壞，進而導致合成視訊上也出現明顯的

失真，我們想要研究壓縮後的深度圖對合成視訊的影響，並開發出有效的品質測

定模型去估計合成視訊的品質。 

    我們使用 ITU/ISO 國際視訊標準 HEVC 測試模型(HTM)來壓縮深度圖，錯

誤的深度值會在物體的邊緣造成鬼影並且使物體產生不自然移動，因此，我們提

出一種新的 3D 品質估計模型，去估計因為深度圖的錯誤而對 3D 合成視訊的影

響。在我們的品質估計模型中，我們使用 SSIM 來計算圖像的基本分數，再利用

影像上的特徵(邊緣、速度及深度資訊)去計算整張影像上每一個區域的比重，進

而提升該區域的敏感度，最後在使用雙眼估計模型結合左右視訊的分數，並且選

擇適當百分比的區塊去計算最後的分數。 

    為了評估我們的品質測定模型的效能，我們做主觀測試實驗，總共有 30 組

測試影像，這些影像的壓縮及合成使用HEVC-3D的標準軟體及視角合成演算法。

總計 26 未受測者對這些測試影片進行評分，從我們的實驗結果中可以看出我們

提出的模型相較於起其他現有的模型，能更有效地估計合成視訊的主觀分數。 
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Abstract 

    In the virtual-view 3D video coding system, both the RGB image data and the 

depth maps are compressed and transmitted to the receivers. After compression, the 

depth maps are distorted and may cause visible artifacts on the synthesized video. We 

study the visual effect of compressed depth maps on the synthesized video and 

develop a quality assessment model that predicts the subjective quality.  

    We use the ITU/ISO international video standard HEVC Test Model (HTM) to 

compress the depth maps. The distorted depth values may lead to ghost artifacts 

around object edges and unnatural object motions on the synthesized video. Thus, we 

propose a new 3D quality metric to evaluate the quality of stereo video that may 

contain artifacts introduced by the rendering process due to depth map errors. In our 

proposed quality assessment (QA) model, we use SSIM to compute the basic score of 

stereo image pair; we extract the edge, motion, and depth features of stereo pairs and 

combine them to form local weights to increase the sensitivity of the noticeable 

regions. We use the binocular perception model to merge the scores of stereo pairs. 

We also select proper percentage of image blocks in the final pooling stage. 
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    To evaluate the performance of our QA model, we conduct our own subject 

evaluation experiments. In total, over 30 video sequences were constructed using the 

HEVC-3D standard software including its view synthesis tool. About 26 viewers gave 

subjective scores on the test sequences. Our experimental data show that our model 

has a better match to the subjective scores when it is compared with the other existing 

QA metrics.  
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Chapter 1 Introduction 

1.1   Introduction 

As the 3D display is becoming popular recently, the technology of 3D video 

compression plays an important role in multimedia applications. The ISO/IEC 

Moving Picture Expert Group (MPEG) is in the process of defining the 3D video 

coding (3DVC) standard that specifies the multi-view plus depth (MVD) format. 

Many new factors and artifacts are introduced in the new 3D video coding format. 

Although video quality metrics have been studied for decades, a new metrics may be 

need to predict the quality of the stereo images and videos.  

In last decade, the development of 2D quality assessment metrics is became 

mature. Many well-known metrics, such as Peak Signal to Noise Ratio (PSNR), 

Structural Similarity (SSIM), Visual Information Fidelity (VIF) are widely used in the 

multimedia applications. Because the stereo images and videos are more complex 

than 2D, these metrics can not meet the demands of 3D context. The 3D quality 

assessment (QA) metrics are necessary and have room for further study.  

 

1.2   Motivation and contribution 

In a virtual-view 3D video coding system, both the RGB image data and the 

depth maps are compressed and transmitted to the receivers. The depth maps are 

distorted by the compression and the error of depth map cause the object shift (ghost 

artifact) and unnatural motion in the specific regions on the synthesized video after 

Depth Image Based Rendering (DIBR). These artifacts are different from the 2D 

distortions. Hence, the 2D quality assessment metrics are not sufficient to evaluate the 
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quality of synthesized video. We observe the causes of these artifacts, and propose a 

new quality assessment metric to predict the quality of the distorted video synthesized 

using the compressed depth maps. In this metric, we design the local weight of the 

specific regions where the artifacts are visible and include the depth information and 

the effect of binocular vision. We also conduct subjective viewing experiments to 

generate the data for our purpose. Finally, the experimental results show the our 

method has the higher correlation than the conventional metrics. 

 

1.3   Organization of Thesis 

We first introduce the general concepts and exiting quality assessment methods 

in chapter 2. We analyze the effect of the depth errors and the sources of compress 

depth map distortion in chapter 3. We describe our subject experiments and the 

experimental results in chapter 4. The proposed computational metric and its 

performance are shown in chapter 5. Chapter 6 is the conclusion and future work.  
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Chapter 2 Quality Assessment 

Quality Assessment falls into two classes: subjective and objective quality 

assessment. Subjective quality assessment means that human observers watch the test 

video sequences and give the scores of the test sequences. Although this method is  

closest to the Human Visual System (HVS) but it costs man power and time to 

measure. The goal of objective quality assessment is to simulate HVS and judge the 

quality of sequence using computing algorithms. It has the advantage of lower cost for 

subjective quality assessment and it can be incorporated into an automatic image 

process system. 

2.1   Subjective QA Methods 

The recommendation document ITU-R BT.500 [1] describes several methods for 

the assessment of the picture quality. There are double-stimulus impairment scale 

(DSIS) method, double-stimulus continuous quality-scale (DSCQS) method, 

single-stimulus (SS) methods, single stimulus continuous quality evaluation (SSCQE) 

etc. We only describe the details of the method we use in this paper. 

We use DSIS to be our experiment method, shown in Fig 1. First, the trail 

number is displayed for 3 seconds in the front of a sequence. Them, an image of black 

background with letter ‘A’ stays 2 seconds. It indicates that the coming video is the 

reference (stimulus A). The time of each video is about 5 seconds. Then, a leading 

image with letter ‘B’ is shown for the test video, which also stays 2 seconds. Then, 

the test video is shown for 5 seconds as stimulus B. Then, there is a 6 seconds break 

for the observers to vote (mark the score). In total, it takes about 37 seconds to rate 

one test video. In this method, we assume the reference video is perfect, and viewer 

gives the scores to the test video by comparing it with the reference video. 
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After the subjective experiment, we collect the score of test sequence which is called 

Opinion Score, and the average of score is called Mean Opinion Score (MOS) (1). 

     
 

 
∑         
 
                             (1) 

where          is the score of the ith test sequence given by the kth observer; N is 

the total number of observer.      is the final score of the ith test sequence. 

 

2.2   Objective QA Methods 

Objective QA can be divided into three types according to the availability of 

original images and videos [2]. There are shown in Fig 2. 

 

(1). Full-reference (FR): 

Most of the QA models belong to this category. And they assume undistorted 

reference sequence is available. Compare the undistorted and distorted sequences to 

estimate the quality. 

 

Fig 1 The structure of the Double Stimulus Continuous impairment Scale 
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(2). Reduced-reference (RR): 

Compare to the Full-reference, this approach does not need to get the full 

undistorted reference sequence. They only have some feature extracting from the 

undistorted sequence and predict the quality of distorted sequence.  

 

(3). No-reference (NR): 

For certain applications, we can not get the undistorted reference sequence. 

We only can use the distorted sequences to predict the score of videos. 

 

The Full and Reduced reference approaches also can further classify into three 

categories: Traditional point-based metrics, Natural Visual Characteristics and 

Perceptual (HVS). We explain the details blow.  

 

 

(a) 

 

(b) 

 

(c) 

Fig 2 (a) Full-reference (b) Reduced-reference (c) No-reference 

(a) 
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(1) Traditional point-based metrics 

Mean squared error (MSE) and Peak signal-to-noise ratio (PSNR) belong to 

this category. Compare to other metric, they have lower computational complexity 

and acceptable performance. They are usually used as a part of the other metrics. 

(2) Natural Visual Characteristics 

We first find some features or phenomena, which human pay attention to, and 

then predict the quality of sequence based on these feature values. It can be further 

classified into Natural Visual Statistics and Natural Visual Features based methods. 

(A). Natural Visual Statistics 

Use mean, variance, covariance, and distributions as features to predict 

the quality. Some famous examples are the Structural Similarity (SSIM) index 

[3] and the Visual Information Fidelity (VIF) [4]. 

(B). Natural Visual Features 

Extract the obvious visual features and artifacts, like edge and blocking, 

and quantify their effects to predict the quality. A famous example is the Video 

Quality Metric (VQM) [5]. 

 

(3) Perceptual (HVS) 

In this category, we develop the metrics bases on Human Visual System (HVS) 

characteristics. By imitating the image formative process of human to obtain the 

similar information transferring to brain and finally judge the quality. These metric 

can be classify into frequency and pixel domains. 
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(A) Frequency domains 

It has been observed that the sensitivity of human visual system at 

different frequency is also different. To use this property, video sequence is 

transformed to frequency domains, usually using DCT, wavelets, and Gabor 

filter banks. A well-known metric using this property is MOtion-based Video 

Integrity Evaluation (MOVIE) index [6]. 

 

(B) Pixel domains 

A part of human visual system specially deals with image edges. Hence, 

edges are important to the HVS. Some metrics are designed in the pixel domain 

such as Perceptual Video Quality Metric (PVQM) [7]. 

2.3   Structural Similarity (SSIM) index 

This metric is proposed by Wang et al in 2004 [3]. It uses the “structural distortion” 

and “structural information” to predict the image quality. The SSIM index consists of 

three components: luminance, contrast and structure. 

The calculations of luminance, contrast and structure components are defined as 

follows. 

The function of luminance comparison: 

𝑙(𝑥 𝑦)  
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
                        (2) 

The function of contrast comparison:    

 (𝑥 𝑦)  
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
                        (3) 

The function of structure e comparison:   

 (𝑥 𝑦)  
2𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
                        (4) 
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where    and    are the means of x and y;    and    are the standard deviations 

of x and y;     is the correlation coefficient between x and y,   ,  2 and    are 

the positive parameters, which are corrective terms to avoid the denominators close to 

zero. The definition of    ,    and     is below. 

   
 

𝑁
∑ 𝑥 
𝑁
                                         (5) 

   √
 

𝑁− 
∑ (𝑥 −   )

2𝑁
                               (6) 

    
 

𝑁
∑ (𝑥 −   )(𝑦 −   )
𝑁
                            (7) 

The Structural SIMilarity (SSIM) index is defined as below. 

SSIM(x y)  [l(x y)]α ∙ [c(x y)]β ∙ [s(x y)]γ          (8) 

Where α, β and γ are positive parameters to adjust the relative importance of the three 

components. To reduce the complexity of computation, SSIM has a reduced formula. 

In this formula, α = β = γ =1 and  2=  . The reduced form of the SSIM is (9) 

  𝐼  (
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
) (

2𝜎𝑥𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
)                     (9) 

 

2.4   Evaluation of Objective Quality Assessment Models 

After develop a new QA metric, we need to evaluate its performance. Pearson 

correlation coefficient (PCC), Spearman rank order correlation coefficient (SROCC), 

Outlier Ratio (OR) and Root Mean Square Error (RMSE) are more commonly used. 

Generally, the relationship between the subjective MOS and the objective predictive 

scores is nonlinear.  

To remove the effect of nonlinear relationship on computing the correlation 

coefficient, the Video Quality Experts Group (VQEG) Full Reference Television  
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(FRTV) Phase II report [8] recommends a nonlinear mapping before calculating the 

aforementioned criterions. It uses the following formula to match the subjective MOS 

and the objective predictive score. 

   𝑝  
𝑏1

 +𝑒(−𝑏2(𝑠𝑐𝑜𝑟𝑒−𝑏3))
                            (10) 

 

where score is the score predicted by the objective QA metric and    𝑝 is the final 

predictive score. Parameters 𝑏 , 𝑏2 and 𝑏  are adjusted so that    𝑝 fits MOS  

best. Then, use the    𝑝 and MOS to compute the PCC, SROCC, OR, RMSE. 

(1) Pearson correlation coefficient (PCC) 

The Pearson correlation coefficient (PCC) is the linear correlation coefficient 

between the scores (MOS) human made and the metrics predicted. A value is closer 

to 1 means a better match; that is the prediction of the tested metric is more 

accurate. The definition is (11). 

    
∑ (𝑀𝑂𝑆𝑖−𝑀𝑂𝑆̅̅ ̅̅ ̅̅ ̅)(𝑀𝑂𝑆𝑝𝑖−𝑀𝑂𝑆𝑝̅̅ ̅̅ ̅̅ ̅̅ ) 
𝑖 1

√∑ (𝑀𝑂𝑆𝑖−𝑀𝑂𝑆̅̅ ̅̅ ̅̅ ̅)2 
𝑖 1 √∑ (𝑀𝑂𝑆𝑝𝑖−𝑀𝑂𝑆𝑝̅̅ ̅̅ ̅̅ ̅̅ )2 

𝑖 1

               (11) 

where      is the subjective MOS of the ith test sequence,     𝑝  is the 

predictive score of the ith test sequence, n is total number of test sequence, and 𝑥̅   

𝑦̅  are the averages of 𝑥  and 𝑦 , respectively. 

(2) Spearman rank order correlation coefficient (SROCC) 

Although the formula of SROCC is similar to that of PCC, the data pairs is 

different. In SROCC, the data MOS   MOS   need to be converted to 

corresponding ranks          . The formula of SROCC is (12). 

      
∑ ( 𝑖− ̅𝑖)( − ̅𝑖)
 
𝑖 1

√∑ ( 𝑖− ̅𝑖)
2 

𝑖 1 √∑ ( 𝑖− ̅𝑖)
2 

𝑖 1

                (12) 

where  ̅  and  ̅  is the average of    and   . 
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(3) Outlier Ratio (OR) 

The definition of outlier ratio (OR) is the percentage of the number of 

difference between the subjective results and the objective score larger than 2 times 

the standard deviations. An OR value closer to 0 means the higher consistency of 

the tested metric. The definition of OR is (13). 

   
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑙 𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
                      (13) 

 

(4) Root Mean Square Error (RMSE) 

RMSE measures the accuracy of the tested metric. The definition of OR is (14). 

   𝐸  √
 

𝑛
∑ (    −   𝑝 )2
𝑛
                  (14) 

 

2.5  3D Quality Assessment Database 

In recent years, several research groups studied the 3D quality assessment topic 

and some of them provide their database to the public on the website. These databases 

contain the reference videos and the test videos with their corresponding subjective 

scores. These databases help the other researchers on this field to conduct the 

subjective experiments. For different purposes of the 3D QA research, these databases 

can be classified into a few categories, as shown in Fig 3.  
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(1) Computer graphics [9] 

This database is provided by Lavoue et al at EPFL [9]. It contains 88 models 

between 40K and 50K vertices generated from 4 reference objects. Two types of 

distortions (noise addition and smoothing) were applied with different strengths 

and at four locations. Subjective evaluations were made at normal viewing 

distance, using a SSIS (Single Stimulus Impairment Scale) method with 12 

observers. An example is shown in Fig 4 

 

 

Fig 3 3D database 

 

 

Fig 4 An example used in the database of computer graphics [9] 
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(2) Captured 3D Images [10] 

This database is provided by Goldmann et al at EPFL [10]. The proposed 

database contains the stereoscopic videos with a resolution of 1920x1080 pixels 

and a frame rate of 25 fps. There are 6 scenes containing various indoor and 

outdoor scenes with a large variety of colors, textures, moving objects and depth 

structures. Each of the scenes has been captured with a static camera and different 

camera distances in the range 10-50 cm. It uses the single stimulus (SS) method to 

collect the date with 20 subjects. As example is shown in Fig 5. 

 

 

(3) 3D Image with Color Distortion [11][12][13] 

The first database is provided by Benoit et al in IRCCyN/IVC [11]. Six 

different stereoscopic images are included in this database and 15 distorted 

versions of each sources were generated from three different processes (JPEG, 

JPEG2000, blurring) symmetrically to the stereo-pair images. The second 

database is provided by Urvoy et al in IRCCyN/IVC [12]. Ten different 

stereoscopic videos are included in this database and their distorted versions are 

generated by H.264 and JPEG2000 coding and down-sampling and image 

 

Fig 5 Six scenes used in the database [10] 

 



 

13 

 

sharpening processes. The last database is provided by Moorthy et al in LIVE 

[13]. The database consists of 20 reference images and 365 distorted images (80 

image were generated by JP2K, JPEG, white Gaussian noise and Fast-fading; 45 

for were produced by Blur). 

(4)  Synthesis Algorithms [14] 

This database is provided by Bosc et al in IRCCyN/IVC [14].It contains video 

generated by 7 depth-image based rendering algorithms on frames extracted from 3 

video sequences. A example of synthesized images are shown in Fig 6. 

 

In this thesis, we are interested in the effect of distorted depth map on the 

synthesized videos. Because our target is different from the previous ones, we 

construct our own test database which consists of six scenes. We use the test videos 

provided by the ITU/MPEG standardization committee for specifying the Advanced 

Video Coding (AVC, H.264) and High Efficiency Video Coding (HEVC, H.265) 3D 

standards. The depth maps are compressed by HTM (HEVC Test Model-8.0) and use 

the original color images and compressed depth maps to synthesis the virtual view 

image/video. The synthesis software is VSRS (View Synthesis Reference software 

3.5).  

 

Fig 6 Picture produced by different DIBR-based synthesizing algorithms [14] 
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Chapter 3 Depth coding and artifact  

3.1   3D coding system codec 

The 3D perception is often made by viewing two different views in two eyes, and 

then they are combined by the Human Visual System (HVS). The ISO/IEC Moving 

Picture Expert Group (MPEG) is in the process of specifying the 3D video coding 

(3DVC) standards based on the multiple-view plus depth (MVD) format. It assumes 

the input is a 2-view (or more views) video, and each view has its corresponding 

depth map, which can be captured by depth sensors or generated by a depth 

estimation algorithm. These color and depth images are then compressed by a 3D 

video coder. At the receiver, the virtual view images are generated by a view synthesis 

algorithm. Either the transmitted views or the synthesized views and their mixtures 

can be displayed on a 3D monitor. The framework of 3DVC system is showed in Fig 

7.

 

 

 

Fig 7 Framework of 3DVC system 
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3.2   Depth Coding 

In the HTM depth coding process, there are four kinds of prediction modes 

(intra-prediction, motion parameter inheritance, simplified inter-mode depth coding 

and depth quadtree prediction) [15]. The depth maps are quantified and divided into 

coding blocks with different sizes. Each block chooses the prediction mode that has 

the least Rate Distortions cost (RD cost). After the quantization process, the coding 

blocks are divided into smaller blocks until the RD cost of the original block size is 

less than the sum of RD costs using the smaller blocks. Because the coding process 

needs to try all modes, it costs more time than the decoding process. In this section, 

we elaborate the details of these three coding modes. The Intra-prediction uses the 

Simplified Depth Coding (SDC) approach as an alternative intra coding mode. Two 

major intra prediction modes for SDC-coded blocks are Planar Mode (1 segments) 

and DMM Mode 1 (2 segments). 

 

(1) Intra-prediction 

(A) Planar mode 

The Planar Mode is often used in the smooth image area, where a number 

of pixels with similar depth values are grouped into one coding block. We 

send only the four depth values at each corner in the Planar Mode. Then the 

corner pixels (depth values) are used to interpolate the other depth values of 

each pixel in the block. Fig 8 shows an 8x8 example of the Planar Mode. The 

four corners are located at (0,0), (0,7), (7,0) and (7,7), and the other values in 

the block are then interpolated using these four values. 
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(B) DMM Mode 1 – Explicit Wedgele 

The Mode often appears at object boundaries. A coding block containing 

both object and background is partitioned into two segments. The Wedgelet 

Mode transmits four corner values and the start and end points of the 

segmentation line (boundary). Then, the segment mean value is used to 

represent all pixels in one segment. Using the mean value to represent all 

pixels in a segment is imprecise. Therefore, the residual values between the 

original depth and the mean is compensated using a Depth Lookup Table 

(DLT). Fig 9 shows the four corners (0,0), (0,7), (7,0), (7,7), and the start and 

end point of the segment line (1,7) and (7,3) in the Wedgelet Mode.  The 

mean value of segment 1 (dark color) is the mean value of (0,0), (0,7) and 

(7,0). And the mean value of segment 2 (light color) is the depth value of 

(7,7). 

 

Fig 8 Planar Mode 
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(2) Motion parameter inheritance 

The motion characteristics of the color video and its associated depth map 

should be similar, because they are the projections of the same scenery from the 

same viewpoint at the same time. To enable efficient encoding of the depth map 

this mode recommends motion parameters from the texture counterpart. Use the 

texture motion vectors to find the corresponding blocks in the depth map of 

previous frame, which is coded. 

 

(3) Simplified inter-mode depth coding 

The simplified inter-mode depth coding (SIDC) extends the idea of SDC to 

inter mode depth coding. It provides an alternative residual coding method. It only 

encodes one DC residual value for a coding block and uses the DC residual value 

as residual for all value in the coding block. The DC residual of a coding block is 

calculated as the average of the differences between the original value and the 

prediction value of all pixels with the coding block. 

 

 

Fig 9 DMM Mode 1 – Explicit Wedgele 
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(4) Depth quadtree prediction 

The depth quadtree prediction mode performs a prediction of the depth 

quadtree from the color image quadtree. The partitioning of the depth map is 

limited to the same level texture partition. Hence, a given coding block of the 

depth map can not be split further than its collocated coding block in the texture. 

The possible depth partitions with their corresponding texture partition is sown in 

Fig 10. 

 

 

 

Fig 10 Texture partitions and their corresponding possible depth partitions [15] 
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3.3   View Synthesis 

In View Synthesis system [16], the 3D image warping technique is usedto render 

the synthetic image with two or more contexts and depth maps of two or more 

different viewpoints. Use the information of camera, such as camera parameter and 

position, to projects the original view image object into the 3D space. Then, these 

image object in the 3D space are projected to the image plane of the virtual view. Fig 

11 shows this projection. 

 

   is the position of image points in the original image plane.  2  is the 

corresponding position of image points in the virtual image plane.    and  2 are 

projected to the same position in the 3D space. 

𝜆    𝐾   [
 
 
𝑍
] − 𝐾                                   (15) 

𝜆2 2  𝐾2 2 [
 
 
𝑍
] − 𝐾2 2 2                              (16) 

where 𝜆 , 𝜆2 are the homogeneous scaling factors, 𝐾 , 𝐾2 are the 3x3 intrinsic 

 

Fig 11 Illustration of 3D image warping 
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parameter matrix of the corresponding camera,   ,  2 are the rotation matrixes.   , 

 2 are the coordinates of the camera center, and [  𝑍]𝑇 is the corresponding 

position in 3D space, which represents   . 

[
 
 
𝑍
]  (𝐾   )

− (𝜆   + 𝐾     )            (17) 

Merging (16) and (17), we find the relation between    and  2. 

𝜆2 2  (𝐾2 2)(𝐾   )
− (𝜆   + 𝐾     ) − 𝐾2 2 2   (18) 

In this thesis, we use the Fast 1-D View Synthesis, which is a part of the 

HEVC-based 3DV software.  

 

3.4   Artifacts caused by erroneous depth map 

(1)  Shift on image  

Because the image pixels may be warped to wrong positions in view synthesis 

due to incorrect depth valued, the pixels shifting phenomenon appears in viewing. 

As shown in Fig 12(a), P1 and P2 represent the projection paths of the same object 

into camera 1 and camera 2. P is the projection path to the virtual camera. They all 

have the same depth values assuming all the cameras are in parallel. If the depth 

values of    and  2 are smaller than their original values due to coding errors, 

then Fig 12(b) shows that object is closer to the virtual camera. That is, on the 

image plane, the object location x is changed to location x’. The difference between 

x and x’ results in the shift artifact, as illustrated by Fig 12(c). An example of this 

artifact on the synthesized image is showed in Fig 13. 
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(2) Unnatural movement on video 

The shift artifact could result in the unnatural movement in a video. If the depth 

value of the object in the previous frame is different from that in the current frame, 

the object positions on the image plane are then shifted. In subjective viewing, the 

object seems to move forward or backward, as shown in Fig 14. This effect is most   

noticeable on the moving objects, because the foreground objects moving into or out 

the coding blocks may cause large changes in depth values. Because coding errors are 

not consistent in sign and magnitudes between nearby temporal frames, the same 

object may have different depth values between two frames.  

 

 

 

           (a)                     (b)                      (c) 

Fig 12 (a) Correct depth  (b) Erroneous depth  (c) Combine (a) and (b). 

 

      (a)                 (b)                 (c)                (d) 

Fig 13 (a) Reference image (b) Reference depth (c) Distorted depth, and (d) Synthesized image. 

 



 

22 

 

   

(a)                        (b)                       (c) 

Fig 14 (a) previous frame  (b) present frame  (c) Combine (a) and (b). 
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Chapter 4 Subjective Evaluation Experiments  

4.1  Test Sequences 

In our experiments, we focus on the effect of distorted depth maps. We only 

compress the depth maps and use the original color images to synthesis the virtual 

images. To reduce the effect of imperfect synthesis algorithms, the reference videos 

are produced also by the same synthesis algorithm using the original depth maps. In 

our subjective quality evaluation experiments, we use six multi-view sequences (with 

depth maps) provided by JCT-3V Committee for the 3DVC contests. Fig 15 shows all 

the sequences we used and the Table 1 shows the view we use for each sequence. Four 

sequences have the 1024 x 768 resolution: Balloons, Kendo, Lovebird, Newspaper, 

and two sequences have the 1920x1088 resolution: Undo and Street. 

 

Table 1 the view number used in the experiment 

Sequence Balloons Kendo Lovebird Newspaper undo stress 

View 3, 4 3, 4 6, 7 4, 5 5, 7 3.5, 4 

 

 
Fig 15 (a) Balloons (b) Kendo (c) Lovebird (d) Newspaper 

(e) Undo (f) Stress 
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The distortion is produced 3D-HEVC test model (HTM) 8.0. We tried 5 different 

quantization parameters: QP=16, 27, 36, 43, 48 (Table 2).  

Table 2 QP and the corresponding QP step used in the experiment 

QP 16 27 36 43 48 

Qste  4 14 40 88 160 

First, we choose the best and worst quantization parameters, and then select the 3 

middle values between the best and the worst. The standard specifies the relationship 

between QP and true quantization stepsize by the following formula. 

𝑄𝑠𝑡𝑒𝑝(𝑄 )  𝑄𝑠𝑡𝑒𝑝(𝑄 %6) × 2
𝑓𝑙𝑜𝑜𝑟(𝑄𝑃/6)           (19) 

Table 3 the quantization stepsize of the QP 0~5 

QP 0 1 2 3 4 5 

Quantization 

Stepsize 

0.625 0.6875 0.8125 0.875 1 1.125 

  

The QP is the integer in the range 0~51 and increase of 6 means an increase of 

quantization step size by exactly a factor of 2.Table 3 is the first 6 values of QP with 

their corresponding quantization stepsizes. In this thesis, we focus on the 

symmetric-stereo, so the left view and the right view depth maps are compressed 

using the same QP and both videos are synthesized using the same view synthesis 

process. The depth maps compressed with 5 value are shown in Fig 16. 
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To product the test video, we compress the original stereo videos containing the 

color videos and depth videos. Because we want to examine the effect of the incorrect 

depth values on the synthesis video, we use the compressed depth maps and the 

original color videos to synthesize the test video. To reduce the effect of VSRS, the 

reference video is produced by VSRS with the original color video and the original 

depth map. The flow chart to produce the test video and the reference video is showed 

in Fig 17 and Fig 18. 

 

Fig 16 The order from upper left to  lower left is reference, QP 16,  

QP 27, QP 36, QP 43, QP 48 
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Table 4 SSIM of the original video and synthesized reference 

Sequence Balloons Kendo Lovebird Newspaper undo stress 

SSIM 0.954188 0.962661 0.921938 0.893475 0.976188 0.927036 

The adopted virtual view synthesis algorithm is the “VSRS-1D-Fast” 

implemented in HTM version 3.5, which is an HEVC based reference software 

developed by the ITU/MPEG 3DV group. 

 

Fig 17 The flow chart to produce the test video 

 

 

Fig 18 The flow chart to produce the reference video 
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4.2  Subjective Test Setup 

In our stereo video experiments, we use Toshiba 47TL515U 47-inch 3D 

television. This monitor projects two images to the screen through different 

polarization filters and the polarizing glasses are needed to see 3D images. The 

viewing distance is about six times of the image height.  The experimental setup is 

shown in Fig 19. 

 

Our experiment contains 36 test videos, including 30 true test sequences and 6 

dummy sequences. The dummy sequences are repeating the reference sequences (no 

distortion). The dummy sequences are inserted to judge the data consistency of a 

subject (observer). If the score of dummy sequences is very low, that subject 

(observer) data are not included. Thus, some viewing data are eliminated to make the 

mean opinion score (MOS) more reliable. The order of the test sequences is randomly 

displayed to reduce the effect of the sequence order. The duration of the entire 

experiment for one viewer must be less than 30 minutes. If the time is too long, the 

 

Fig 19 The environment of the subjective experiment 
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observer may get tired and loose attention on watching video. Three or fewer subjects 

can do the experiment at the same.  

4.3   Result of subjective experiment 

Twenty-six observers (19 man/7 woman) with an average age of 22.6 participated 

in our subjective video quality evaluation. The Mean Opinion Score (MOS) of each 

video at various QP value is shown in Fig 20. 

 

The difference between the reference video and test video is small for the first 

three QP values in most sequences. As discussed earlier, certain minor artifacts are 

less visible in motion video but may be noticeable in still images. However, when the 

QP values are sufficiently large, the depth quantization errors are high. Particularly, 

the object shift relative to its nearby background becomes visible. Then, the 3D visual 

quality drops significantly.   

 

 

Fig 20 Results of subjective experiment 
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   At the end of the subjective quality evaluation experiment, we asked the observers 

to cycle the image regions they think annoying. These data may help us to construct a 

computing model of 3D quality assessment. The results are shown in Fig 21. Most of 

these regions have moving objects and they are located at the boundaries of the 

foreground and the background. This is what we expect.

 

  

 

Fig 21 The regions that observers feel annoying 
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Chapter 5 Computational Objective QA model 

5.1  Motivation 

We first examine the conventional 2D QA models. How do they perform on 3D 

videos? We apply SSIM to predict the quality of stereo video. We check the SSIM 

map on the annoying region. The SSIM can easily detect the region of the shift 

artifacts. An example can be found in Fig 22. 

 

 

 

(a)                       (b) 

 

(c)                        (d) 

Fig 22 Examples of significant shift artifacts. (a)(c) reference and  

(b) (d)synthesized images 
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However, not all shift artifacts can be detected by human. An example can be 

found in Fig 23. 

 

Fig 23 (c) is the SSIM distribution on the test image. Clearly, the shift artifacts are 

detected by SSIM, but they are hard to be observed by human. These regions have 

heavily distorted depth maps. However, these texture regions are smooth, and the shift 

artifacts are less noticeable to the human. On the other hand, the SSIM is calculated 

pixel-by-pixel, and they are sensitive to object shifts. Thus, we use the edge 

information as one of our features.  

 

 

Fig 23 The example of unobvious shift artifact. (a)reference (b) synthesized images 

(c) the SSIM map of (a) and (b) 
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In addition to the above two cases, there are other cases that the artifacts are 

less noticeable. For example, people pay less attention to the faraway background, as 

shown in Fig 24. Therefore, many 3D quality assessment models also consider the 

depth information as an important factor. Thus, our second feature is the depth 

information. 

 

 

The last feature of our model is motion. Because people usually pay attention 

to large moving objects and the unnatural movements easily get attention. We use 

these three features to compute the weights of each local region. So our proposed QA 

model is divided into two parts. The first part computes the SSIM of the stereo video, 

and the second one is generating weightings based on the three extracted features of 

video. The proposed method computes the score of each frame and combines all 

frame scores to represent the score of the entire video. For each frame, we divide an 

image into 8-by-8 blocks, and the Structural Similarity (SSIM) metric and the feature 

 

           (a)                             (b) 

Fig 24 The example of obvious artifact: (a)reference and         

(b) synthesized images 
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extraction are computed inside these 8-by-8 blocks. We then combine the scores of 

right and left views into the score of a frame. The flow chart of our proposed model is 

shown below. 

 

5.2  Feature extraction 

(1)  Edge factor 

Edge factor is extracting by the “Sobel” edge detector. Each edge(x,y) is 

assigned with value 1, if this pixel (x,y)  belongs to an edge. Otherwise, its value is 0. 

The (u,v) pair is the index of blocks in each frame, and (x,y) is the index of pixels in a 

block. The equation of the edge factor is below. The result of edge detector is showed 

in Fig 26. 

E(u v)  
 

8 v
∑ e ge(x y)(x y)∈block(u v)            (20) 

 

 

Fig 25 The flow chart of our model 
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(2)  Motion factor 

The motion factor is extracted by a block matching algorithm. We use 4-Level 

hierarchical block matching algorithm and each level down-samples the test image by 

2. The search method is the four-step search (4SS) [17] and the search area is 

15-by-15. In 4SS, the first step is to find the minimum RMS from a 

nine-checking-points pattern on a 5-by-5 window. The second step is moving the 

center of the nine-checking-points pattern to the position that has the minimum RMS 

in the previous step. The third step is repeating step 2. The final step is similar to the 

step 2, but it also changes the size of the nine-checking-point pattern to 3-by-3. After 

step 4, the position that has the minimum RMS is the matching position. The 

difference between step 2 and step 3 is that step 3 is skipped if the position which has 

the minimum RMS in step 2 is equal to the position in step 1.  

 

Fig 26 The result after edge detection of sequence “Street” 
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In Fig 27, the dots are checked in step 1, the squares are checked in step 2, the 

diamond-shape points are checked in step 3 and the triangles are checked in step 4. 

The block size is 8-by-8. The motion vector map stores the motion vector, 

motion(u,v) ,as shown in Fig 28 . 

 

 

 

Fig 27 Two different search paths of 4SS. 

 

Fig 28 The result of motion estimation of sequence “Street” 
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We have two definitions for the motion factor and will compare their performance in 

section 5.5. The first definition is given below: 

  (𝑢 𝑣)  {
    0                 ; 𝑖𝑓 𝑚 𝑡𝑖 𝑛(𝑢 𝑣) <  𝑚 𝑡𝑖 𝑛𝑚𝑒𝑎𝑛

 

𝑚𝑜𝑡 𝑜𝑛(𝑢 𝑣)
    ;  𝑡ℎ  𝑤𝑖                                        

     (21) 

We classify the entire image into motion and non-motion regions. For each block, if 

the motion(u,v) is less than the threshold, it is classified as non-motion, and the 

motion factor is 0. Second, consider ghost and afterimage issues. When the objects 

move, the shift artifacts around an object look like the afterimages of that object. We 

can easily detect this artifact on the each frame when the video is examined frame by 

frame. However, this type of artifacts in the normal-speed played back video is hard 

to detect. Fig 29 the ghost artifact is easily detected if they are in the non-motion 

images.  

 

 

Fig 29 The example of the ghost and afterimage issues 
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In [18], they consider the effect of the camera movement on visual quality. The image 

may shift with a global motion and the global motion is estimated by the mean of all 

motion vectors in a frame. If the objects have their own motion, their motion vectors 

are different form the global motion vector. They classify the object motion by 

equation (22). 

𝐼(𝑢 𝑣)  {
   1             ; |𝑚𝑚 𝑡𝑖 𝑛(𝑢 𝑣) − 𝑚 𝑡𝑖 𝑛𝑚𝑒𝑎𝑛| > 𝑇
 0             ;  𝑡ℎ  𝑤𝑖                                                 

     (22) 

T=Cσ, σ is the standard deviation of motion vectors in one frame, C is constant 

value and C is chosen 1 in their experiment. If I(u,v) equals to 1, the block is the 

moving object. Thus, the second definition of the motion factor is as follows. 

 2(𝑢 𝑣)  {
                       0                           ; |𝑚𝑚 𝑡𝑖 𝑛(𝑢 𝑣) − 𝑚 𝑡𝑖 𝑛𝑚𝑒𝑎𝑛| > 𝑇

 

|𝑚𝑚𝑜𝑡 𝑜𝑛(𝑢 𝑣)−𝑚𝑜𝑡 𝑜𝑛𝑚𝑒𝑎 |
    ;  𝑡ℎ  𝑤𝑖                                                  

(23) 
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(5) Depth information 

The depth information is generated by the depth estimation methods [19]. We 

compute the disparity to estimate the perceptive depth value. Fig 30 illustrates the 

relationship between disparity and perceptive depth.  

𝑑 𝑝𝑡ℎ  𝑓 ×
𝑇

𝑑 𝑠𝑝𝑎𝑟 𝑡 
                      (24) 

 

where the disparity is bigger, the object is closer. We simply use the disparity value as 

a disparity factor. 

D(u v)   isp rity(u v)                    (25) 

And the result of depth estimation is shown in Fig 31. 

 

Fig 30 The relationship between disparity and depth. 
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5.3  Pooling 

After extracting all feature factors, we combine these three factors into a set of 

local weight for each frame. The weight is calculated below: 

𝑤(𝑢 𝑣)  𝛼 × 𝐸(𝑢 𝑣) + 𝛽 ×  (𝑢 𝑣) + 𝛾 × 𝐷(𝑢 𝑣)     𝑖 ∈ {1 2}     (26) 

We propose two models by using different definitions of motion factor. Model 1 uses 

the first definition of motion factor and Model 2 use the second one. The score of 

each block is: 

       (𝑢 𝑣)  
𝑤(𝑢 𝑣)×𝑆𝑆𝐼𝑀(𝑢 𝑣)

1

𝑁
∑ 𝑤(𝑢 𝑣)(𝑢 𝑣)∈𝑖𝑡ℎ𝑓𝑟𝑎𝑚𝑒

                    (27) 

where N is the number of the total blocks.  

 

 

 

 

Fig 31 The disparity map of sequence “Street” 
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To calculate the score of a stereo image pair, we incorporate the Binocular Perception 

Model [20] into our model. For this model, the subjective 3D image quality is 

determined by the mixture of the higher and lower quality images. The equation of 

Binocular Perception Model is as follows: 

𝑄𝑏 𝑛𝑜𝑐𝑢𝑙𝑎𝑟  {𝑘 ∙ 𝑄ℎ 𝑔ℎ
𝑛 + (1 − 𝑘) ∙ 𝑄𝑙𝑜𝑤

𝑛 }
1

               (28) 

The 𝑄ℎ 𝑔ℎ and 𝑄𝑙𝑜𝑤 are the higher and lower quality of two views. We first use the 

right image as the basis and find the corresponding block in the left image, and then 

compare the block score of right view with the score of the corresponding block in 

left view image. Because the corresponding block may not be the original block 

partitioned in the first step, the position of corresponding block in left view may be 

between two blocks. The score of the corresponding block is interpolated using the 

scores of two blocks. Third, we use the binocular perception model to predict the final 

score of this current block.  

Typical 2D QA metrics use the average score of all the pixels or blocks of the 

entire image to produce the final image quality index. However, in a synthesized 

image, the object shift and the ghost artifacts appear in specific regions due to the 

depth-based rendering process. Thus, we use the lowest P% of block scores instead of 

using all scores to calculate the frame score. After computing the scores of all frames, 

we compute the average score of all frames to form the final score of the test 

sequence. 
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5.4  Parameters in the computational model 

In our computational model, there are six parameters, and we only have 30 data. 

The six parameters are listed below: 

(1) Weights of each feature: α, β and γ 

(2) The percentage of block, used in pooling :P% 

(3) The parameter in the Binocular Perception Model ; w, n 

 

5.4.1  Weight of each feature 

To avoid the data over fitting, we select the α, β and γ in equation (24) to be the 

reciprocal of the maximum of each feature. Therefore, these three parameters are 

normalized to range [0 1]. However, some features can be affected by the other factors, 

so we add some adjustments. The motion estimation is pixel based, so the motion 

feature is affected by the resolution and the frame rate of sequence. To deal with this 

effect, we multiply the ratio of h and ℎ0 and 𝑓 0 and the ratio of fr, respectively , 

where h is the picture height of sequence, and fr is the frame rate of sequence. In our 

test sequences, The ℎ0 is set to768, and the 𝑓 0 is 30. The disparity weight is also 

pixel based, and needs to be adjusted by the sequence height, too. The final 

definitions of α, β and γ are as follow, 

𝛼  
 

𝐸𝑚𝑎𝑥
                               (29) 

𝛽  
 

𝑀𝑚𝑎𝑥
×

ℎ

ℎ0
×
𝑓𝑟0

𝑓𝑟
                           (30) 

𝛾  
 

𝐷𝑚𝑎𝑥
×

ℎ

ℎ0
                            (31) 
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5.4.2  Percentage of blocks used in pooling 

Fig 32 is an earlier experiment did in our lab before [21]. This experiment focused 

on the effect of distorted depth map on the stereo image pair. For the quantization 

distortion (Blue line), P is close to 5%, for the best performance. In this thesis, thus 

set P value to 5%. 

 

 

5.4.3  Parameter in Binocular Perception Model 

In equation (26), parameter k decides the weights of the higher and lower quality 

of two views. We decide the n and k for each provided model. If k is larger than 0.5, it 

means that the final score of stereo video is strongly affected by the view with the 

higher score. Fig 33 shows that we get the maximum performance of Model 1 when k 

is close to 0.84.  

 

 Fig 32 Different value of the pooling proportion P 
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And the other parameter n is the power of the score. We try the 10 value (from 1 to 10) 

and the result is show in Fig 34. The PLCC achieves the maximum at n=1 for Model 

1.  

 

 

 

 

Fig 33 k against PLCC (P=5, n=1) for Model 1 

 

Fig 34 n against PLCC (P=5, w=0.84) for Model 1 
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In Fig 35, we get the maximum performance for Model 2 when k is 1. It means that 

the quality of stereo video is dominated by the higher quality of two views. The n 

value can be any number so we use n=1. 

 

 

 

 

 

 

 

 

 

 

Fig 35 k against PLCC (P=5, n=1~7) for Model 2 

n=1 

n=2 

n=3 

n=4 

n=5 

n=6 

n=7 
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5.5  Performance comparison 

First we use our own database to compute the performance our computational 

QA model and compare this performance of our model with the four existing metrics 

(PSNR, SSM, MSSIM, VIF). And we use the PLCC, SROCC and RMSE to evaluate 

the performance of all metrics (the details of these methods are introduced in section 

2.4 ) . The result is shown in Table 5 and Fig 36. 

Table 5 the performance of various metrics (our database) 

 PLCC SROCC RMSE 

PSNR 0.7095 0.8173 1.4394 

SSIM 0.7977 0.7641 1.5379 

MSSIM 0.7751 0.767 1.6113 

VIF 0.7093 0.7575 1.6510 

Proposed1 0.9279 0.8441 0.7440 

Proposed2 0.8142 0.7918 1.4700 

The Model 1 has the best performance in our experiments. Although Model 2 has 

good performance too, its performance is close to that of SSIM. The matching is 

better when PLCC and SROCC are close to 1. On the other hand, the smaller RMSE 

means better matching. 
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Fig 36 Scatter plots of the QA quality scores against the MOS using our own database 
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We want to test our model on the other database. IRCCynN 3D [12] video 

quality database contains 10 sequences with 10 types of distortion. The resolution is 

1920 x 1080 and the frame ratio is 25. The distortions are created by H.264, JPEG 

2000 and typical image processing procedures. Although, their distorted types are 

different from our database, we still give a try. The result of IRCCynN database is 

shown in Table 6 and Fig 37. 

Table 6 the performance of metric (IRCCynN database) 

 PLCC SROCC RMSE 

PSNR 0.2572 0.3499 6.0830 

SSIM 0.3327 0.4630 5.9074 

MSSIM 0.5680 0.5725 5.1498 

VIF 0.5901 0.6242 4.6567 

Proposed1 0.6175 0.6051 4.9287 

Proposed2 0.6427 0.6219 4.7396 

 

In Table 6, the proposed QA model 1 and 2 provide better results over PSNR 

and SSIM and are as good as MSSIM and VIF. The artifacts caused by the distorted 

depth maps only appear in some regions, especially in the boundary between the 

foreground and the background. However, JEPG 2000 and H.264 distort the color 

images on the entire image. In our models, the percentage of block we use to compute 

the score of each frame is too small for this type of distortions. 
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Fig 37 Scatter plots of objective quality scores against DMOS on             

the IRCCynN database 
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Chapter 6 CONCLUSIONS AND FUTURE WORK  

6.1 CONCLUSIONS 

In this thesis, we generate 36 test videos with distorted depth maps. These 

depths are compressed using the under-developed ITU/MPEG JCT-3V HEVC 3D 

extension standard. The purpose is to see the effect of distorted depth maps on the 

synthesis video. We conduct subject quality evaluation experiments on these test 

videos. We observe some special visual artifacts that do not occur in the conventional 

3D videos that are not generated by a virtual view synthesizer. We build our 3D video 

subjective score database and collect the information about the annoying regions.  

We also propose two computational quality assessment models to estimate the 

quality of distorted video synthesized by a distorted depth map. Due to two different 

definitions of motion factors, our model has two versions. In our proposed models, we 

extract edge, motion and depth features to compute the local weighting and thus 

enhance the effect of the “noticeable” regions with visible artifacts. Overall, we 

propose two new 3D video quality metrics. The experimental results indicate that the 

proposed methods have a higher correlation with the subjective scores (higher PLCC 

and lower RMSE). 

 

 

6.2  Future work 

In this study, we only consider the effect of distorted depth maps. In the general 

cases, the RGB images are also be compressed. If the RGB image and the depth map 

are both distorted, some new artifact may be produced. We also need to increases the 

test sequences to find better weights of three features. Because the time of subjective 
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experiment is limited to 30 minute, we can not do many tests in one experiment. We 

will need more data and then the machine learning techniques may be used to design a 

QA model. Furthermore, the human attention model may be included in this QA 

model.   
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