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Abstract

Kinect for Xbox 360 made by Microsoft Company in 2010 is a milestone for
Human-Machine Interaction (HMI). Without any sensor wearing on body, players can send
commands to Xbox 360 directly by simple limb motion. Kinect has a depth camera for
producing depth maps as object descriptor. Its depth map has a rather low resolution and for
many other applications, we need high quality depth maps. Hence, how to improve the
resolution of depth maps has become a major research topic.

In our experiments, we use a Time-of-Flight (ToF) camera (SR4000) to get the depth
information. However, the resolution of SR4000 is only 176x144 pixels. We thus use a high
resolution color camera to collocate with SR4000, and we wish to improve the depth map
resolution based on the high resolution color images. Flea3 is used in our experiments which
is produced by Point Grey Company in 2012. Its maximum resolution is 4096x2160.

We propose a depth refinement algorithm to enhance the low resolution depth maps

using high resolution color images. Align depth maps and color images at the same view point,



the depth refinement algorithm can transform the small and blurred depth map into high
resolution one. Based on the color images, our depth refinement algorithm can extract the
exact object edges and revise the depth maps correctly. Because this algorithm is suitable for
small, local regions, the depth maps and color images are divided into several patches and are
processed individually. Finally, we compare the interpolated depth maps with the proposed

high resolution depth maps. Experimental results show that our depth refinement algorithm

can produce a good qualit olution depth m
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Chapter 1. Introduction

1.1 Background

The Human-Machine Interaction (HMI) techniques advance quickly in the past two
decades. One step beyond touch control, Kinect for Xbox 360 by Microsoft Company in 2010
[3] is pioneering in motion control in consumer market. However, the depth maps produced
by Kinect suffer serious occlusion problem and are too rough to detect tiny movement of
human body such as fingers. Thus, research on filling up occlusion regions and broken holes
on Kinect depth maps becomes popular [4] [5].

Kinect for Xbox 360.in 2010 used a structured light camera. The structured light
camera has the advantage of large scanning area and low-cost hardware, but its depth maps
are sketchy and suffer from severe occlusion problem. Thus, the other type of depth sensor,
the Time-of-Flight (ToF) camera, becomes popular [6]. Although the hardware of ToF camera
costs more, the depth maps captured by ToF camera are more accurate and contain less
occlusion regions. The new Kinect for Xbox One released by Microsoft Company. in 2014
also uses the ToF camera.

Occlusion problem can be resolved by changing hardware, but the problem about low
resolution is not. The resolution of new Kinect for Xbox One is 640x480. Although the
resolution is twice that of Kinect for Xbox 360, it is not enough to some applications. Thanks
to mature technology of digital camera, the high resolution and low cost color images can
offer a feasible solution. Using the high resolution color images to compensate for the low
resolution depth maps is an economical method. Nowadays, research on combining color

images and depth maps is fast growing [9] [11] [12].



1.2 Motivations and Contributions

The low resolution of depth maps is a troublesome problem and has no low-hardware
solution in the present day. Many applications need high-quality depth maps, such as virtual
view synthesis, object recognition, and depth image based rendering (DIBR). However, the
development of these applications is restricted because of the low resolution of depth maps. If
we can improve the quality of depth maps efficiently, it is helpful to the 3D products, such as
Free Viewpoint Television (FTV), Kinect or other Human—Machine Interaction (HMI)
devices.

In this thesis, we propose a depth refinement algorithm to increase the resolution and
quality of depth maps. Experimental results show that the proposed scheme indeed produces
high resolution depth maps. There-is no large occlusion region like Kinect for Xbox 360 or

many artifacts are significantly reduced.

1.3 Organization of Thesis

We first describe the characteristics of depth maps using different depth cameras. We
also introduce some previous research works on enhancing depth map in chapter 2. The
experiment environment, device setup and image calibration between depth maps and color
images are discussed in chapter 3. Then, chapter 4 describes our proposed depth map
refinement algorithm; this is main theme of this thesis. Finally, we conclude this thesis with

some future work in chapter 5.



Chapter 2. Depth Map

The depth map is a very important component in 3D image applications. Many 3D
image processing techniques rely on depth maps, such as virtual view synthesis, object
recognition, and depth image based rendering (DIBR). The quality of depth maps has
significant impact on the result of 3D image processing We take image rendering as an
example. Figure 1(a) and (b) are the dataset captured by the Microsoft Kinect sensor in [1].
The raw depth map of the Kinect sensor in Figure 1(b) is broken and lacks details. In [1], the
raw depth map is enhanced with alpha channel estimation and the enhanced result is shown in
Figure 1(c). Obviously, the enhanced depth map in Figure 1(c) is better in quality than the raw
depth map in Figure 1(b). The rendering results of the raw and the enhanced depth map are
shown in Figure 2. Because the edge of objects in raw depth map is too broken, the rendering
result is factitious and contains artificial holes, as in Figure 2(a). In contrast, the rendering
result of the enhanced depth map shown in Figure 2(b) has better visual quality. Therefore, the
quality of depth maps is an important subject of 3D research and the depth map refinement
algorithm is our focus in this thesis.

There are many 3D video test sequences provided by researchers. Figure 3(a) and (b)
are the 3DV dataset named Newspaper and produced by Gwangju Institute of Science and
Technology (GIST) [2]. However, the depth map in Figure 3(b) is not captured by a depth
camera. Because depth cameras nowadays cannot pravide depth maps with a resolution as
high as the color images, we have to spend a lot of time manually produce depth maps using
software. The produced high resolution depth map is not all precise. Figure 3(c) is an alpha
blending of Figure 3(a) and (b). In Figure 3(c), the edge of the color image and the depth map

do not match well. The quality of depth maps from the test sequences need to be improved.



(a) Color image (b) Raw depth map

Color image

Closed form matting
with depth

(c) Various enhanced depth maps

Figure 1. Dataset captured by the Kinect sensor [1]

(a) Raw depth map (b) Enhanced depth map

Figure 2. Rendered 3-D scene results based on two depth maps [1]



(a) The color image (b) The depth map

(c) Alpha blending of (a) and (b)

Figure 3. 3DV data: Newspaper [2]

In chapter 2, we introduce depth maps captured by two types of commonly used depth
cameras, structured light camera and time-of-flight (ToF) camera. A popular model the
structured light camera is Kinect for Xbox 360 announced by Microsoft Company in 2010, as
shown in Figure 4. The second type ToF camera is used in our experiment, which is SR4000
produced by MESA Imaging Company in 2008 and shown in Figure 15.

After introducing the depth maps captured from depth cameras, we will describe some
high resolution depth map algorithms proposed by the previous researchers and compare their

experimental results with ours.



2.1 Depth Map from Structured Light Camera

The structured light camera is a widely used depth camera because of its large scanning
area, short scanning time and low-cost hardware. One of the well-known structured light
cameras is Kinect for Xbox 360 developed by Microsoft Company in 2010, as shown in
Figure 4. The technique Kinect uses to get depth information is “Light Coding” developed by
PrimeSense Company. Light Coding uses an infrared emitter to encode the whole measured
space, and a receiver decodes the reflected infrared to produce a depth map. The principle of
Light Coding is “Laser Speckle”. When the laser light illuminates the surface of objects, the
reflected light forms many kinds of speckles. The speckle pattern is semi-random and changes
with distance. Any two patterns. in the measure space are different, so it acts like the entire
space is marked. The Light Coding technique can decode these laser speckles to compute the

depth information and transform it into depth maps.

Figure 4. Kinect™ for Xbox 360° [3]

The image resolution of Kinect is very low compared with the digital cameras
nowadays. The resolution of its own color camera is 640x480 and the depth camera is
320x240. Due to its high noise, the produced depth map cannot show tiny objects. In Figure
5(f), the fingers cannot differentiate clearly. In addition to low resolution and high noise,
Kinect suffers from severe occlusion problem. Because the emitter and receiver of the depth
camera are not in the same position, the background objects which can be illuminated by the
emitter may be occluded by the foreground objects and cannot be seen from the viewpoint of

the receiver. The reflected light of background objects cannot be captured by the receiver, so



their depth maps have no depth information in this region. The region without depth
information is shown as pure black or white, and it is the so-called occlusion region. In Figure
5(d), there is a pure white and overlapped shadow of fingers. In Figure 6(d), there is a pure
black and duplicated hole of palms. Both of them are occlusion region.

Researchers on how to fill up occlusion region is popular. In [4] and [5], they proposed
a spatial and temporal method respectively to deal with occlusion problem. Figure 5(g), (h)
and (i) are enhanced depth maps of [4]. Although the occlusion region is filled, the edge of
depth maps cannot match color images completely. Because the resolution of color images is
only twice the resolution of depth maps, the color images cannot provide detailed information
of objects to increase the accuracy of depth maps dramatically. Figure 5(j), (k) and (I) use
alpha blending of color images-and enhanced depth maps to show the quality improvement of
depth maps. There are still visible artifacts. Similarly, Figure 6(g), (h) and (i) are enhanced

depth maps of [5]. It cannot sharpen the edge of depth maps either.



(@) (b) (c) Color images

(d) (e) (f) Raw depth maps of Kinect

(9) (h) (i) Enhanced depth maps

() (k) () Alpha blending of color images and enhanced depth maps

Figure 5. The experimental results of [4]
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(@) (b) (c) Color images of a sequence
(d) (e) (f) Raw depth maps of Kinect
(9) (h) (i) Enhanced depth maps

Figure 6. The experimental results of [5]



2.2 Depth Map from Time-of-Flight (ToF) Camera

Time-of-flight (ToF) camera is another popular type of depth camera with short
scanning time and simple algorithm. The resolution of ToF camera is influenced by ambient
light. Compared with structured light camera, ToF camera has more accurate depth maps but
higher-cost hardware. Kinect for Xbox One by Microsoft Company in 2014 shown in Figure 7,
PMD[vision] CamCube 3.0 by pmdtechnologies Company in 2009 shown in Figure 8 and
SR4000 by MESA Imaging in 2008 shown in Figure 15 are a few ToF cameras in the market.
The depth camera we used in our experiments is SR4000. The principle and specification of
SR4000 will be introduced in section 3.1.1. The depth maps in this section are captured from
PMDJvision]* CamCube 3.0 with a resolution of 200x200 pixels. Unlike the conventional
depth maps, PMD[vision]® CamCube 3.0 displays depth values using color spectrum, as

shown in Figure 10(a).

Figure 7. Kinect " for Xbox One® [6] Figure 8. PMDJvision]® CamCube 3.0 [7]

The depth maps produced by ToF cameras are more accurate than that of the structured
light camera. The ToF camera almost has no occlusion problem and edges of depth maps are
more correct. Whether the edges of depth maps are sharp or not would influence the quality of
depth maps. If we know the position of depth edges exactly, we can enhance the depth maps
substantially. In [8], they use the edge of intensity maps to find out the correct edge of depth
maps. Starting with the intensity edges, they remove texture and shadow edges to reserve

proper depth edges [8]. Figure 9(a) is their experiment setup, and Figure 9(b) is a color image
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of objects taken from the other camera. PMD][vision]® CamCube 3.0 provides not only depth
maps but also intensity maps from the same viewpoint with depth maps, as shown in Figure
9(c). The original edges of intensity and depth maps are shown in Figure 9(d) and (e)
respectively. Figure 9(f) is the final depth edges.

To demonstrate the advantage of knowing right depth edges, they use “adaptive total
variation (TV) denoising” to denoise the raw depth map in Figure 10(a). Adaptive TV requires
depth edges information to denoise. With depth edges in Figure 9(f), the denoised depth map
is shown in Figure 10(c). Obviously, the noise in the raw depth map is smoothed and
preserves sharp depth edges simultaneously. Figure 10(b) and (d) are the close-up versions of

Figure 10(a) and (c), respectively.
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(c) Intensity map (d) Intensity map with edges

(e) Depth map with edges (f) Final edges in the depth map of [8]

Figure 9. Edge detection result of [8]
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(a) Raw depth map (b) The close-up of (a)

(c) Adaptive TV with edges from [8] (d) The close-up of (c)

Figure 10. Denoised depth maps in [8]

13



2.3 High Resolution Depth Map

Although ToF camera has no severe occlusion problem like structured light camera, it is
a pity that the resolution of ToF camera is lower than that of structured light camera. In this
section, we would discuss some researches on increasing the resolution of depth maps
captured by ToF camera SR4000.

Kinect for Xbox 360 has higher resolution than SR4000, but it suffer from occlusion
problem. In [9], they use the advantage of SR4000 to compensate for the drawback of Kinect
and finally produce the depth map with the same resolution with Kinect and without occlusion
regions on it. The device setup of [9] is illustrated in Figure 11. SR4000 is equipped right
above IR camera of Kinect to ensure they have similar viewpoint in horizontal direction.
Figure 12(a) and (b) are the color-image and the depth map captured by Kinect, and Figure
12(c) is the depth map captured by SR4000. The color image by Kinect is used as an
additional cue to preserve sharp edges and further reduce noise of the depth map. The final

fused depth map is shown in Figure 12(d).

Mesa SwissRanger
SR4000

el ToF camera ‘

IR camera for stereo
measurements

IR projector for stereo |
measurements

=%
*; E |

Figure 11. Setup containing Kinect for Xbox 360 and SR4000 [10]
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(a) Color image by Kinect (b) bepth map by Kinect

P 1Y

(c) Depth map by SR4000 (d) Fused depth map

Figure 12. The experimental result of [9]

The color image resolution of Kinect is only 640x480. For high resolution images
nowadays, it is not enough. In [11], they use a color camera with resolution 1280x960 to
upsample and improve the quality of depth maps. For better results, users need to manually
scribble some area with complex edges. Figure 13(a) is their experiment setup. The color
camera is adjacent to SR4000 to decrease the mismatch of viewpoint between the color
camera and SR4000 as much as possible. Figure 13(b) and (c) are the color image and the
original depth map respectively. There are 2x, 4x, 8x, and 16x four different magnification
factors provided in [11]. Figure 13(e) is a close-up of Figure 13(b), and it is the area with

complicated edges cannot be refined well automatically. Figure 13(f) is the automatically
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refined result, and the yellow boundary is scribbled manually for further enhancement. Figure
13(qg) is the refined result after given scribble area. Finally, Figure 13(d) is the final result of

upsampling depth map.

Depth camera = Color camera

(a) Setup

(c) Depth map by SR4000 (d) Result of [11]

“TEE i
:S"’ .* ‘

(e) Color image (f) The user scribble area  (g) Refined depth map

Figure 13. The experiment setup and result of [11]
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The disparity map of stereo matching by two color cameras side by side is an
economical method to get high resolution depth information. However, the disparity map
would fail on weakly textured scenes. By contrast, the ToF camera provides rough depth maps
regardless of texture. In [12], they combine a ToF camera SR4000 with stereo color cameras
with resolution 1224x1624 to produce high resolution depth maps. Figure 14(a) is the
ToF-stereo setup. Figure 14(b) is the high resolution color image, and the low resolution depth
map is shown in the upper-left corner. The enhanced depth map is mapped into one of the
viewpoint of the color cameras and has similar resolution with color image. The final result is
illustrated in Figure 14(c). Because the distance between SR4000 and the color cameras is too

far, the occlusion region on the depth map is unpreventable and obvious.

(b) A ToF image (upper-left corner) and a (c) The delivered high-resolution depth
color image map of [12]

Figure 14. The experiment setup and result of [12]
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Chapter 3. Experiment Environment and Image Calibration

3.1 Experiment Devices and Setup
3.1.1 The Depth Camera

The depth camera we use is SR4000 which is show in Figure 15. SR4000 is a ToF
depth camera produced by MESA Imaging Company in 2008. The depth information of
SR4000 is obtained using the Time-of-Flight (ToF) principle. As the words imply, the ToF
system computes the time it takes for the light traveling from the emitter, reflected by objects,
and then returning to the sensor. Knowing the traveling time of light, we can compute the

distance between the object and the sensor.

Q -

Figure 15. MESA Imaging SR4000 - ToF Depth Camera [13]

SR4000 provides two output images for each frame. One is the depth map shown in
Figure 16(c), and the other is the intensity map shown in Figure 16(b). The depth map records
the depth information, and the intensity map records the infrared image. Both the depth and
intensity maps are taken at the same viewpoint, so we can get the depth and texture
information of every pixel simultaneously. This is very helpful for camera distortion
calibration of the depth map in section 3.2.1.

The depth map format of SR4000 is QCIF (Quarter Common Intermediate Format)
with resolution 176x144 [14]. The resolution of the depth map is too low to use in practical
applications. Such a low resolution depth map cannot provide correct depth information for
fine objects. In Figure 16, we take human palms as an example. Obviously, compared with the

color image in Figure 16(d), the depth map in Figure 16(e) is too blurred to show fingers

18



clearly.

(b) The intensity map (176x144)  (c) The Depth meip (176x144)

(d) The local reduction (e) The local enlargement
of the color image (440x330) of the depth map (44x33)

Figure 16. Images captured by the color and depth camera.
Comments in parentheses are the image resolution.
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3.1.2 The Color Camera

The color image sensor we use is Flea3 USB 3.0, which is show in Figure 17. Flea3 is a
color camera produced by Point Grey Company in 2012. Flea3 can capture very high
resolution sequences, and the maximum resolution it supports is 4096 x 2160 [15]. We
propose a method to take the advantage of the high resolution color image in Figure 16(a) to

compensate for the drawback of the low resolution depth map in Figure 16(c).

Figure 17. Point Grey Flea3 USB 3.0 - Figure 18. Theia Technologies MY 110M -
Color Camera [15] Ultra Wide Lens [16]

The lens mounted on Flea3 color camera is MY 110M Ultra Wide Lens which is
produced by Theia Technologies Company. The lens uses the Theia's patented Linear Optical
Technology® , which allows an ultra-wide field of view without barrel distortion. The
ultra-wide lens makes the field of view of color images to be comparable with the depth map.
The Linear Optical Technology® . reduces the barrel distortion, so we do not need to do

camera distortion calibration on its color images in section 3.2.1.
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3.1.3 Experiment Setup

The experiment setup is shown in Figure 19 (a). We use a tripod head to hold the depth
and color cameras. Then, we put both of them in parallel to simplify the problem of alignment
between two images taken from different viewpoints. Also, we set the depth and color
cameras as close as possible for two reasons. First, the number of depth pixels is much fewer
than the number of color pixels. Therefore, compared with the color pixels, the depth pixels
are rare and precious. We put the depth and color cameras close to each other so that the view
of the color camera can include the view of the depth camera. After increasing the resolution
of the depth map, we would crop the area of the color image to match with the depth map, and
thus, every depth pixel is in.use. Second, to preserve the quality of the depth map after
alignment, we like to reduce the occlusion regions as much as possible. Reducing the distance

between the depth and color camera can reduce the occlusion regions.

(a) The experiment devices (b) Left is the color camera. Right is the depth camera.

Figure 19. The experiment setup

We also place two levels perpendicular to each other as shown in Figure 19 (b) to
ensure the tripod head is parallel to the ground. This experiment setup can reduce most of the

manual errors.
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3.2 Depth and Color Images Calibration
3.2.1 Camera Distortion Calibration

Most of the lens have non-linear image distortion. The two main lens distortions are the
radial distortion and the tangent distortion. The radial distortion is caused by the shape of lens.
If the light goes through the lens far from the lens center, it will suffer radial distortion
severely. The tangent distortion is caused by the improper fabrication of the camera.

Figure 20 (a) and (c) are the raw depth and intensity maps captured by the depth camera
SR4000 without the camera distortion calibration. Obviously, the ceiling of the intensity map
appears to be bended, and so the wall and the desk. Every object far from the lens center
suffers from severe radial distortion. Moreover, these distortions in the intensity map also
appear in the depth map. This would cause lots of depth value errors in the later process.

Therefore, we use the Camera Calibration Toolbox for Matlab® [17] to do the camera
distortion calibration. To detect the lens distortion, the Camera Calibration Toolbox needs
various checkerboard images with the checkerboard in different positions. These images are
listed in Figure 21. The images in Figure 21 are the intensity maps captured by the depth
camera SR4000. As we mentioned in section 3.1.1, because the intensity map is at the same
viewpoint of the depth map, we can use the calibration parameters computed for the intensity
map to calibrate the camera distortion of the depth map.

Figure 20 (b) and (d) show the results of the camera distortion calibration. We can see
that the ceiling, the wall and other objects have been adjusted to align with the objects in the
color images. As said in section 3.1.2, the color camera equipped with the MY110M Ultra
Wide Lens has no visible barrel distortion. Thus, we do not need to do the camera distortion

calibration on the color images.
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(@) The depth ma[; before calibration (b) The depth map after calibration

(c) The intensity map before calibration (d) The intensity map after calibration

(e) The color image on the scene

Figure 20. Depth and intensity maps before and after camera distortion calibration
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Figure 21. Checkerboard images for Camera Calibration Toolbox
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3.2.2 Alignment of Depth and Color Images

Even though we put the depth and color cameras next to each other, the depth map and
the color image are still captured at the slightly different viewpoints. In Figure 22, we use
alpha blending to show the alignment result of the depth and color images. As shown in
Figure 22(a), the foreground and background objects in the depth and the color images do not
match at the same position. Because the depth and the color images have different size, the
depth map needs to be enlarged about 7.4 times to fit the color image. However, in the depth
map refinement algorithm we proposed, the size of the depth map can only be enlarged with
the multiple of integer. Therefore, we enlarge 7 times the depth map by nearest-neighbor
interpolation and shrink 0.95 times the color image by bilinear interpolation to reach the same
goal, enlarging 7.4 times the depth - map to fit the color image. After shrinking, the resolution
of the color image decreases from 1760x1440 to 1672x1368.

To align the depth and the color images, we need to transform the viewpoint of the

depth map to the viewpoint of the color image. The transformation formula is

Pixel Shifted o

o« Depth Value, (1)

Distance
where the pixel shifted is the number of pixels needs to be moved in the horizontal direction,
the distance is the distance from the depth camera to the object, and the depth value between 0

to 255 is the intensity value of a depth pixel.
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(a) The depth map before alignment

(b) The depth map after alignment

Figure 22. Alpha blending of the resized depth and color images



From eq. (1), the number of pixels shifted equals to zero only if the distance is infinite.
However, the distance the depth camera can detect is limited. For our depth camera SR4000,
the calibrated range is 0.8 to 8.0 meters, it is impossible to detect objects at infinity. So we
have to revise eq.(1) slightly. From eqg. (1), because the pixel shifted is proportional to the
depth value, we can plot a straight line crossing the origin, if we put the pixel shifted in y-axle
and put the depth value in x-axle, as shown in Figure 23(a). Considering the limit of the depth
camera, we set the average of background depth values as the intercept in x-axle. Figure 23(b)
illustrates the revised transformation formula. Based on the fixed background object, we can
shift the depth pixel of foreground objects correctly. The alpha blending of alignment result is

shown in Figure 22(b).

Slope =m Slope =m

Pixel Shifted
Pixel Shifted

Depth Value /I\ Depth Value
Intercept = Background Depth Value
(a) The transformation formula of eq. (1) (b) The revised transformation formula

Figure 23. Alignment Algorithm

27



During the process of alignment, how to fill up the occlusion region is a critical
problem. General speaking, the occlusion region is parts of the background occluded by the
foreground. Hence, it is reasonable to fill in the occlusion region with the depth value of the
background in its neighborhood. In our experiment setup, the color camera is on the right side
of the depth camera. When we transform the viewpoint from the left to the right, we need to
use the depth pixels on the right side of the occlusion region to fill the hole. Nevertheless, for
the occlusion region on the external border of the depth map, there is no depth pixel on the
right side to fill the hole, as shown in Figure 24(b). In this case, we cannot but extend the

depth value of the foreground to fill the hole, as shown in Figure 24(c).

(a) Before alignment (b) After alignment (c) Fill the hole on the border

Figure 24. Alignment result of the depth map
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Chapter 4. Depth Map Refinement Algorithm

4.1 Overview of the Proposed Method

We propose a depth map refinement algorithm to increase the resolution of the depth
map. The flow diagram is shown in Figure 25. First of all, we slip the color image and its
associated depth map into several patches. Then, we use the k-means clustering algorithm to
do a simple classification on these image patches. After color image clustering, the depth map
classification follows the classification result of the color image. We classify depth map pixels
into different classes and correct the wrong depth values. Afterwards, we interpolate the depth
pixels of each class to increase the depth map resolution. The depth map refinement algorithm
repeats above four steps for-all patches of the color image and the corresponding ones on the
depth map. Finally, we combine all the processed patches of the depth map into a complete

image, and this is the final high resolution depth map.

Color Images Depth Maps Depth Pixels

Patches Clustering Clustering Interpolation

High Resolution
Depth Map

Figure 25. The flow diagram of the depth refinement algorithm

29



4.2 Patches

How to determine the size and the position of each patch plays an important role in the
proposed depth map refinement algorithm. For a better experimental result, the user needs to
decide the patch size manually. We also provide a simpler method to determine the patches
automatically. The user can set the patch number of the width and the height, and our program

would divide the image evenly as shown in Figure 26.

Figure 26. Patches of the color image
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4.3 Color Images Clustering

In color images clustering, we use the k-means clustering algorithm to classify the color
image patches. Basically, the objects with the same color would be classified to the same class.
However, the noise of the color image would change the color of the object slightly. A tiny
difference of the color affects the result of k-means clustering. Therefore, before k-means
clustering, we use the median filter to smooth the color image and reduce the difference of
similar colors.

Also, because of the light source directions in the environment, the objects with the
same color may have different luminance. The difference in luminance may have significant
influence on the k-means clustering results. An object of one color may be classified into
several fragments. This would cause severe errors in the result of the depth map refinement
algorithm. To prevent the effect of illumination, we transform the color image space from
RGB to L*a*b* color space. In the L*a*b* color space, the luminance component is isolated

in L* space, so we can control the effect of luminance by adjusting the weight of L* space.
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4.3.1 Median Filter

The median filter is a non-linear filter. The advantage of non-linear filters is that
compared with linear filters, they would not distort the edge in an image too much. This is
helpful to preserve the image from blurring. Most applications of the median filter are dealing
with the salt and pepper noise. Because of the large intensity of the salt and pepper noise, they
are dropped in the selecting median value process.

For k-means clustering, we can treat the tiny color differences of identical color in the
image as the salt and pepper noise. To produce a better smoothing result, we apply a 7x7
mask median filter to the R, G, and B color components separately. The result of the median
filter is shown in Figure 27(b). After the median filter, the object texture is blurred. It seems
that the image losses some details, but this would benefit the k-means clustering result shown

in Figure 36.

(a) Before the median filter (b) After the median filter

Figure 27. Result of the median filter
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4.3.2 L*a*b* Color Space

Luminance has a lot of influences on the display of color. We take Figure 28 as an
example. Figure 28(a) is a set of colored paint samples with different luminance [18]. The
upper part is in the shadow, and the lower part is in the sunshine. Figure 28(b) is patches
extracted from Figure 28(a). Figure 28(c) is the patches of the second column in Figure 28(b).
Now, we want to identify the object edges. When we look at the whole color paint samples in
Figure 28(a), there are four colors. However, if we look at Figure 28(b), there seem to be eight
colors. It is the illumination that changes the perceived colors. Thus, the illumination can also
confuse the k-means clustering. So, we transform the color space from RGB to the L*a*b*

color space to reduce this effect.

(a) A set of colored paint samples

(b) Patches cropped from (a) (c) Patches cropped from (b)

Figure 28. Edge Classification [18]
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In Figure 29, we compare three common color spaces RGB, HSV and CIE Lab and use
the receiver operating characteristic (ROC) curves to demonstrate that the CIE Lab color
space is the most suitable color space for edge classification.

A ROC curve shows the accuracy of the binary classifier. The true positive fraction is
the number of correctly classified reflectance edges against the total number of reflectance
edges. The true positive and false positive fractions are chosen to plot ROC curves. The area
under the ROC curve (AUC) describes the discrimination ability of a binary classifier. If the
AUC is close to 1, it means that the classification result is more accurate. However, if the
AUC is close to 0.5, it shows that the behavior of classifier is similar to the random guess.

As Figure 29(b) and (c) shows, the value (V) component of HSV and the luminance (L)
component of CIE Lab are not good for edge classification. The result is reasonable. Because
the value component of HSV and luminance component of CIE Lab represent the brightness
of the object, which is a combination of environment and object reflectance. They contribute
less to the color classification. However, in Figure 29(a), the RGB color space has no single
significant channel corresponding to the brightness, so three ROC curves get close. In TABLE
1, the AUC of HSV-V and CIE Lab-L are close to 0.5, and the other channels are near 1. The
AUC of RGB does not have such a characteristic. This is the reason that we convert the color

space from RGB to L*a*b*.

1.0 1.0 1.0
RGB HSV CIE Lab
0.8 0.8 0.8

0.6 0.6 .6
0.4 0.4 0.4

0.2 G 0.2 0.2

0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(2) RGB (b) HSV () CIE Lab

Figure 29. ROC curves for each channel in each color space [18]

34



TABLE 1. Channels and their AUCs for outdoor and indoor scenes [18]

Channel AUC (outdoors) AUC (indoors)
rgh - r 0.435 0.598
rgh - g 0.477 0.573
rgh - b 0.649 0.567
XYZ - X 0.362 0.553
XYZ-Y 0.397 0.547
XYZ-7Z 0.590 0.521
LMS - L 0.384 0.554
LMS - M 0.412 0.545
LMS - S 0.590 0.521
Yxy-Y 0.397 0.547
Yxy - x 0.795 0.902
Yxy -y 0.798 0.881
Luv - L 0.397 0.547
Luv-u 0.588 0.643
Luv - v 0.647 0.612
HSV - H 0.798 0.847
HSV - S 0.707 0.760
| HSV - V 0.372 0.549 |
| CIELAB-L 0394 0.569 |
CIELAB - a 0.826 (.848
CIELAB - b 0.762 0.778
Lo - L 0.422 0.532
Lap - o 0.798 0.910
Laf - B 0.818 0.895
linear Laf - L 0.408 0.530
linear Latf - o 0.682 0.626
linear Laf - B 0.635 0.613
AC|C> - A 0.388 0.509
AC,C, - C 0.627 0.653
AC|Cs -G 0.679 0.601

The display of SRGB in the L*a*b* color space is shown in Figure 30(a). Dimension
L* means luminance or brightness and its ranges from 0 to 100 displays the black color and
L*=100 represents the white color. Dimensions a* and b* stand for the color-opponents and
range from -127 to 128. The asterisk (*) indicates that the L*a*b* color space is the

non-linear coordinate axis. Figure 30(b), (c) and (d) show the slices of SRGB in the L*a*b*
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color space with different L*. Obviously, with a larger L* value, the color would become

brighter.
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(c) SRGB (L*=50) (d) SRGB (L*=99)

Figure 30. SRGB in L*a*b* color space [19]
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To reduce the influence of illumination, the most intuitional method is to remove the L*
axis as shown in Figure 31. However, luminance is not only on behalf of brightness of color,
but stand for black and white. As mentioned earlier, L*=0 is the black color and L*=100 is the
white color. If we remove the L* axis entirely, the k-means clustering cannot differentiate

black and white anymore.

L* o o o o O

(a) Before removing L* (b) After removing L*

Figure 31. Remove the L* axis from the L*a*b* color space

To differentiate black and white and reduce the luminance of colors simultaneously, we
revise the idea of Figure 31 and show it in Figure 32. We set 20% of max L* as the upper
bound of black and set 80% of max L* as the lower bound of white. The L* axis is separated
into three parts, which are white, color and black. Then, we unify the intensity value of L* to
the mean value in each class. The revised distribution shown in Figure 32(b) is better for

k-means clustering purpose.
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(a) Before unifyi
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4.3.3 Segmentation and K-means Clustering

For the proposed depth map refinement algorithm, the color image segmentation result
is critical. We first try a popular image matting method “Learning Based Digital Matting” [20]
to separate the foreground from the background. The image matting result is shown in Figure
33. The user needs to plot a trimap manually as shown in Figure 33(b) to roughly indicate the
boundary between the foreground and the background. Then, the Learning Based Digital
Matting method uses the trimap to produce a matting result as shown in Figure 33(c). Another

image matting result with different dataset is shown in Figure 34

N

(a) The color image (b) The trimap

(c) The matting result (d) The enlargement of (a) and (c)

Figure 33. The image matting result using [20]
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(a) The color image (b) The trimap

(c) The matting result (d) The enlargement of (a) and (c)

Figure 34. The image matting result using [20]

As Figure 33(d) and Figure 34(d) show, the finger part extraction has noticeable
distortion. For a better matting result, the user needs to plot the trimap with care. The process
of plotting an explicit trimap is time-consuming and inefficient, and the results are not up to
our expectation. Hence, we adopt a simpler algorithm “k-means clustering” to do color image
clustering.

The k-means clustering algorithm is a critical step in color image classification. The
purpose of color image classification is for later region alignment and interpolation. However,

a sophisticated image segmentation algorithm costs a lot of computation time and does not
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serve for our purpose. So, we choose a simple clustering method, k-means clustering, to do
image segmentation. The dataset for k-means clustering is pixels of the color image with three
dimensions, L*, a* and b* color components. The process of k-means clustering is as follows.
Stepl. Decide the number of clusters and the locations of initial means.

Step2. Compute the distance from every piece of data to the mean.

Step3. Classify the data to the cluster with shortest distance.

Step4. Compute the new mean of each cluster, and go to Step2.

The k-mean clustering algorithm iterates these steps several times, and the user can
decide the number of iteration. If the number of iteration is set too few, the k-means algorithm
does not have significant time to converge to the steady state. On the other hand, if the
number of iteration is set too high, the k-means clustering may go to over-fit.

Although k-means clustering is very simple, there are two key factors that dominate the
performance. One is the number of the clusters and the other is the locations of initial centers.
A reasonable number of the cluster should be decided individually for every single patch. To
simplify the process, we set the number of the cluster to four. The initial centers (mean
locations) play an important role in the result of k-means clustering. The suitable locations of
initial means can increase the accuracy of k-means clustering. In our program, with no prior
information, the initial means are uniformly selected.

In Figure 35, different color makes the region (cluster) produced by the k-means
clustering. For pixels classified into the same cluster, they are pained by the same color. An

example of the classification result is shown in Figure 35.

41



(@) The patch of the color image (b) The k-means clustering result

Figure 35. The k-means clustering result

(a) Without the median filter (b) With the median filter

Figure 36. The k-means clustering result with the median filter
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4.4 Depth Map Clustering

The median priced depth cameras nowadays still cannot produce high resolution depth
maps. The raw depth maps often contain noise and are blurred. Enlarging the raw depth maps
directly is unable to create sharp and correct object boundaries compatible with those of color
images. Therefore, we do depth maps clustering before depth pixels interpolation to increase
the correspondence of object boundaries. Because the depth maps have no texture information
of objects and suffer from low resolution, the depth maps segmentation uses the color image
clustering results to classify depth pixels.

In our experiments, the depth map needs to be enlarged 7 times to match the size of the
color images. Instead of using the conventional interpolation method, we place the original
depth pixels on the pixel grid of the color image, and thus the depth map becomes sparse. The
sparse depth map is shown in Figure 37(b). Referring to the result of k-means clustering, the
sparse depth pixels are classified into different clusters. There are some depth pixels with
unreasonable depth value in a cluster. Hence, we collect the depth pixel statistics to find the
dominant and the rare depth value in a cluster. In general, the rare depth value in a cluster is
very different from the dominant value, and possible to be noise of the depth map. To correct
them, we replace the rare depth values with the dominant depth value. Then, we obtain a
corrected spare depth map. We will elaborate this procedure step by step in the following

sub-sections.

4.4.1 Spreading

The raw depth map needs to be enlarged 7 times to match the color image size. The
conventional interpolation method cannot correct the depth map boundary errors and would
create a blurred image. To solve these problems, we spread the original depth pixels on the
color image pixel grid instead of interpolation. The sparse depth map is shown in Figure 37(b),

and the corresponding color image is shown in Figure 37(a). There are 6 blank pixels between
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two spread depth pixels in horizontal and vertical directions. These blank pixels will be filled

up appropriately in section 4.5 Depth Pixels Interpolation.

(a) The color image with sparse depth pixels

(b) The sparse depth map

Figure 37. The sparse depth map
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4.4.2 Classification

Because of its low resolution, the original depth map is sparse on the high resolution
grid as discussed earlier. An example is shown in Figure 38(c). We would like to refer to the
edge of the color image to revise the edge of the depth map. Thus, the depth maps clusters
come from the color images clusters. Figure 38(a) illustrates the sparse depth pixels and the
corresponding color image. The blue dots are the foreground pixels of the depth map in
Figure 38(c). The yellow dots represent the background pixels. Clearly, some of the blue dots
do not match the shape of the object in the color image. The red dots in Figure 38(b) are the

depth pixels that need to be modified.

(@) The original depth pixels  (b) The correct depth pixels: (c) The depth map

Figure 38. lNlustration of sparse depth pixels overlapped with the color image

The sizes of the depth map and the color image are different. To construct the correct
object edges on the depth map, we extract the pixels from the color images clusters based on
the locations of the sparse depth pixels. This process can be regarded as a down sampling
procedure which reduces Figure 35(b) to Figure 39(a). Compared with Figure 39(b), the raw
depth map, Figure 39(a) shows sharp object edges. We thus take Figure 39(a) as the reference
to classify the depth pixels in Figure 39(b) into clusters and thus correct the blurred object

edges.
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(@) The classification result (b) The depth map

Figure 39. The down-sampling classification result of the color image

4.4.3 Statistics

After knowing the correct object edges on the depth map, we need to modify the
incorrect depth pixels. To correct these depth pixels, there are two problems we have to deal
with. One Is how to identify the depth pixel to be modified, and the other is the “correct”
depth value which is used to replace the wrong depth pixel. In our algorithm, we use a
statistical method to solve these two problems at the same time.

Referring to the down-sampling clusters of the color image, we classify the depth pixels
into appropriate clusters. The procedure was described in the previous sub-section. For each
class, we collect the distribution of depth values, that is, histogram in Figure 40(c). Generally,
there is only one object in one class, so the depth values in each class should be close to each
other. In Figure 40(c), we can see that there is a dominant depth value and some noise-like
depth values. The depth pixels with these rare depth values are judged incorrect. They may be
due to the noise in the depth map or the blurred edges. Then, the dominant depth value is the

depth value used to modify the wrong depth pixels.
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(a) The classification result  (b) The depth map

Statistics of depth pixels of class 2
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(c) The histogram of depth pixels

Figure 40. The histogram of depth pixels
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4.4.4 Correction

As described in the previous sub-section, we modify the incorrect depth values by the
dominant depth value. However, the classification result of color images is not all perfect.
Occasionally, there are two or more objects classified to the same cluster. In this case, the
dominant depth value is not unique anymore. Also, if the depth camera captures an image of
gradual depth variation, such as the side of a wall, then the depth map of the wall contains
many depth values. This is a special case we need to discuss.

To solve these two cases simultaneously, we extend the definition of the dominant
depth value. Previously, we choose the depth value with the maximum number of pixels as the
dominant depth value. Now, we extend the definition. If the depth values with the number of
pixels more than the half of the-maximum number of pixels, they become the second
dominant depth value. In this new definition, there may be several dominant depth values in
one class. Every dominant value is a candidate to replace the wrong depth value. Moreover,
the depth values greater than or within 5 intensity levels of the dominant depth value are
preserved. This would keep the slight different depth values and make the depth map look

more natural. The corrected result is shown in Figure 41 and Figure 42.

48



Statistics of depth pixels of class 2

160

140 -

120

100 -

80

number of pixel

60+

201

0 1 A .JL-'\J'\AMM'J{L\J\I“[ I

0 50 100 150 200
depth value

() The depth map (b) The histogram of depth pixels

Statistics of depth pixels of class 2(revised)

1
250

number of pixel
(=] %] [¥%] [#%]
=] o L=} [&5]
L=} = L=} L=}
T . . T

-

(23]

=
T

—

=

=
T

[35]
=
T

1 1 1
0 50 100 150 200
depth value

(c) The depth map (d) The histogram of depth pixels

Figure 41. The corrected result of the depth map
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(a) Before correcting

(b) After correcting

Figure 42. The corrected result of the sparse depth map overlapped with the color image
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4.5 Depth Pixels Interpolation

As mentioned in section 4.4.1, there are 6 blank pixels between two spread depth pixels
in the horizontal and vertical directions. After getting the corrected depth map, we begin to fill
up these blank pixels. Even though we have the corrected depth map, there are a large
difference between the resolutions of the depth map and the color image. If we interpolate the
depth map directly, we would get an enlarged blurred map. Therefore, we need to fill up the
blank pixels class by class.

According to color image clustering, we split the corrected depth map into several
classes. For each class, we fill up the blank pixels individually. Before interpolation, we dilate
the depth map to make sure the quality of interpolation. Then, after interpolation, we filter out
the blurred edge and combine all results of classes. The high resolution depth map is

completed. The complete detailed process will be described in the following sub-sections.
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4.5.1 Separation

We want to fill up the blank pixels class by class, so we need to separate the depth map
into several parts according to color image clusters. If the depth pixels correspond to the same
cluster, they are marked as the identical part. The separation result is shown in Figure 43. The
corrected depth map in Figure 43(b) is separated into three different parts as shown in Figure

43(c), (d) and (e).

(a) The classification result (b) The corrected depth map
(c) The palm (d) The background (e) The head

Figure 43. Separation of the depth map

52



4.5.2 Expansion

Before interpolation, we expand the depth pixels of each class. The purpose is to fill up
all possible foreground pixels. If we perform the ordinary interpolation, the object edges are
often blurred. This is because the depth value changes along the edge are sharp. The typical
bi-linear interpolation for example cannot produce such a sharp edge. In this ordinary
interpolation process, the depth pixels along edges are computed from the average of the
background and the foreground depth values. Expansion of the foreground depth pixels
extends the dominant depth value to the outer region. Then, we have to remove the
background part, and then the sharp edge is preserved. The expansion result is shown in

Figure 44.

Figure 44. Dilation of each class
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4.5.3 Interpolation and Reshaping

To keep gradual variation in a depth map, we use linear interpolation to fill up blank
pixels of every class. The depth value of nearby pixels can thus change gradually except on
the edges. So, linear interpolation is suitable to compute the depth value changing gradually.
As for the edges, we remove the unused part to preserve the sharp edges. The k-means
clustering result of the color image can provide clear shapes of objects. Referring to the
k-means clustering result, we can prune the expanded and interpolated depth map precisely.

The reshaping result is shown in Figure 45.

Reshape /

Figure 45. Reshape the blurred edge
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4.5.4 Combination
Finally, we combine the results of all classes (clusters) to complete one patch of the

high resolution depth map. The result is shown in Figure 46.

(@) The Ior image (b) The result of one patch

Figure 46. The result of combination
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4.6 Experimental Results

The experiment result with different dataset is shown in Figure 47, Figure 48, and
Figure 49. We provide two experimental results for each dataset. They are processed with
automatic and manual patch decision respectively. Compared with Figure 47(b), Figure 47(d)
has less broken holes on the boundary of patches. Figure 47(d) has better depth map quality
than conventional nearest interpolation method shown in Figure 47(c). The enlargement of
detail in Figure 47(c) and (d) is shown in Figure 47(e) and Figure 47(f). Obviously, in Figure
47(f), the depth map of the yellow cube looks more like the shape of it in the color image. The
palm in Figure 48(f) and the chair in Figure 49(f) also have better depth map quality than the

nearest interpolation method.
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(a) The color image (b) The automatic result

(c) The nearest interpolation result (d) The manual result

(e) The enlargement of nearest interpolation (f) The enlargement of manual result
result

Figure 47. The experimental results

57



(a) The color image

(c) The nearest interpolation result (d) The manual result

(e) The enlargement of nearest interpolation  (f) The enlargement of manual result
result

Figure 48. The experimental results
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(a) The color image (b) The automatic result

I - N .

(c) The nearest interpolation result (d) The manual result

(e) The enlargement of nearest interpolation (f) The enlargement of manual result
result

Figure 49. The experimental results
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Chapter 5. Conclusions and Future Work

5.1 Conclusions

The drawback of depth-sensor depth maps is its low resolution. We propose a depth
map refinement algorithm that uses high resolution color images to increase the resolution of
depth maps. The k-means clustering results of color images is very important to identify the
edges of objects. Proper selected edges on color images can sharpen the edges on depth maps
and prove the depth maps quality. The k-means clustering algorithm has better clustering
results in a smaller, local region, so we split the whole image into a number of patches. The
position and size of patches are critical for producing good results in k-means clustering.
Hence, the layout of patches.is.a significant step in depth map refinement algorithm. For
better results, we need to decide the position of patches for individual picture. At the end, we
demonstrate a high resolution good quality depth map based on the combination of all

processed patches.

5.2 Future Work

As mentioned earlier, the position and size of patches have great influences on the
result of depth refinement algorithm. In this thesis, to generate a good quality depth map, we
need to tune the patches for each image. Such a manual process work is not efficient to handle
video sequences. Thus, a method to decide the layout of patches automatically is essential in
the future. Or, we need a better and automatic segmentation algorithm for classification

purpose.
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