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Abstract

In this thesis, we try to push our theoretical description of magnetotransport in a quantum
wire to the high magnetic field regime. Two different approaches, namely, the mode
matching approach and the partial Fourier transformation of the Lippmann-Schwinger
equation approach, have been employed to cross check our results. We have plotted the
transmission, the wavefunction, and the current density patterns and have interpreted
them in light of the edge states. A simple criteria for the formation of edge states is
reached, which is arisen from the comparison of the cyclotron radius and the effective
width of the wire. For the case of a’single repulsive barrier, a transmission dip is found at
the threshold of a subband. For the case of a:single attractive barrier, two transmission
dips are found for incident energy that lies below a subband threshold. These are discussed

in terms of the edge states and the evanescent modes.
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Chapter 1

Introduction and background

The discovery of the quantized conductance steps in two-dimensional electron gas(2DEG),
micro-constrictions based on GaAs/AlzGajlz As heterostructures [1,2], the quantized con-
ductance steps followed an increase of intérest.in the study of quantum ballistic transport
through narrow channels in 2DEGY3]. In particular,“the influence of impurities on the con-
ductance attracted a great deal-of attentiofiSifice impurities inside or near the conducting
channel may destroy the conductanee quantization [4-21], The effect of the impurities is
especially strong near the step, i.e. the thresholds where propagating modes are opened.
And it is also known from experiments as well as from theory that near the steps even a
single impurity may strongly affect the conductance.

The influence of a single impurity on the conductance of a 2DEG channel was studied
theoretically in Refs. [12-14], [19] and [20]. The theoretical treatment of this program
was based on two model potentials, of the channel and of the impurity. The simplest
channel confining potential, which is an infinite uniform 2D wire with hard walls, was
considered in papers [12-14]. Actually, for a wire, realistic narrow channels in split-gate
devices cannot be taken as uniform wires, but rather as a parabolic constructions in the
propagating direction. As to the impurity potential, the short-range d-type potential was
used in almost all papers. There are only a few exceptions: a infinite-long 2D wire with

parabolic confinement in the propagating direction and a d-type barrier cross the wire. [14]
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It is shown that a single impurity produces fine-structure effects in the dependence of
the conductance G on the Fermi energy E near the thresholds. For instance, an attractive
impurity in an infinite uniform wire generates dips below the conductance. steps [12-14]
These dips appear as a result of resonance reflection by quasibound states in the impurity
potential. But in the case of repulsive potential, it do not have any resonance as long
as it is only a J-type barrier. There must be two or more J-type barrier or finite-range
barrier and the resonance happened.

Suppression of backscattering by a magnetic field is the basis of the theory of the quan-
tum Hall effect developed by Marcus Biittiker (IBM, Yorktown Heights) [22]. Biittiker’s
theory uses a multi-reservoir generalization of the two-reservoir Landauer formula. The
propagating modes in the quantum Hall effect are the magnetic Landau levels interact-
ing with the edge of the sample. There is a smooth crossover from zero-field conductance
quantization to quantum Hall effect, correspondingto the smooth crossover from zero-field
wave guide modes to magnetic-edge states.

The discovery of the quantum Hall effect{23] stimulated intensive theoretical and ex-
perimental research on magnetic field influence on low dimensional nano structures(see
Refs. [24-28], and references therein). In particular, the resistances of a quantum channel
with a finite barrier inside were calculated in the limit of very strong magnetic fields. [29]
Oscillations which are periodic in the field, in the low-temperature magnetoresistance of
a point contact in the two-dimensional electron gas were observed experimentally and
explained theoretically as a tunneling between edge states across the point contact. [30]
Conductivity of the many-terminal junctions of quantum wires was theoretically inves-
tigated, [31-33] and a rich structure of the Hall resistance deviating considerably from
the wide-wire result was shown. Computational study of several different kinds of four-
terminal junctions showed that the Hall and bend resistances are extremely sensitive to the
geometry of the junction and that the classical and quantum mechanical results are qual-
itatively similar but quantitatively very different. [34] Spectroscopy of the energy levels

and associated currents of infinitely deep [35-37] and finite [38] quantum wells in crossed
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magnetic and electric fields was calculated, and a crucial role of the energy spectrum
anticrossings in the jumps of the equilibrium Hall currents was described. Theoretical
analysis revealed that the magnetic field applied to the straight quantum wire with sym-
metrically embedded quantum dots leads to the Fano resonances [39] on the conductance
Fermi energy dependence. [40-43,70] It was predicted that asymmetric Fano resonances
occur also in the electronic conductance across a shallow quantum well in a high tilted
magnetic field. [45]

The edge state is often used to describe that what is the quantum Hall effect, and it
is a classical feature of the the electrons in a system applied magnetic filed move along
the edge of the system. In the Ref. [46], the author discuss about the two regime of high
and low magnetic field. The explanation is based on the differences in lateral extension
of the magnetic quantum states at*the Fermievel in a narrow channel (of width W).
One has to distinguish between a high-filed and a low-field regime, determined by the
relative magnitude of W and the cyelotron orbit diameter 2ip (with Ip = (hkp/eB)Y?,
kr being the Fermi wavevector, and»B the“strength of magnetic field). In the high-
field regime 2l < W, right- and left-moving electrons with Fermi energy are spatially
separated in edge states [47-49] at the opposite boundaries. These current-carrying edge
states can coexist with quantized cyclotron orbits in the bulk of the sample (Landau
states)—when the Fermi level, as determined by the carrier concentration, coincides with a
Landau level. Edge states correspond classically to electrons skipping along the boundary
(Fig/1.1). The high-field regime has been discussed by Halperin [50] and MacDonald and
co-workers, [35,51] who have shown how a Hall voltage arises because of differences in
the population of right- and left-moving edge states. In the low-field regime 2l > W
relevant to the experiments of Roukes et al., [52] Landau states which are unperturbed
by the boundaries no longer exist at the Fermi level. Concurrently, some edge states
begin to interact with the opposite boundary. Prange [53] has calculated the magnetic
quantum states in thin-plate geometry. The differences in lateral extension of the states

which follow from his calculation may be understood from the classical correspondence
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(Fig/1.1). In addition to skipping orbits (corresponding to edge states) we now also have
trajectories which traverse the channel. The corresponding “transversing states” (also
know as hybrid magnetoelectric subbands) interact with both boundaries. Because of the
presence of these traversing states the arguments of Refs.10 and 11 no longer apply, and

anomalies in the Hall voltage can be expected to occur in the low-field regime.
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Figure 1.1: Top: Skipping orbits, corresponding to edge states. Center: Traversing tra-
jectory, corresponding to a traversing state(hybird magnetroelectric subband). Bottom:
Four-terminal conductor for Hall-resistance measurement. (C. W. J. Beenakker and H.
van Houten, Phys. Rev. Lett. 60, 2406 (1988))

In this thesis, we want to discuss how the edge states happen as applying the magnetic
field. The wavefunction and the direction of the current of the edge states should be match

the classical feature. We use a simple system which is a narrow wire with a parabolic

4
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confinement and a embedded d-type barrier to understand how the edge states happen
when the barrier is repulsive, and what is the differences between the resonance states
come from the edge states and the quasi-bound states below each subband bottom.

To elaborate on this phenomenon and show its implication, the thesis is organized
as follows. In the chapter 2, we introduce the background formalism, Landauer-Biittiker
formalism, which is used in the calculating the transport problems. And we also describe
the details of our system and the physical model in this chapter. In the next chapter 3,
we solve this physical model in mode-matching (MM) approach, based on the Landauer-
Biittiker formalism. And then we also solve this model in an approach of partial Fourier
transformation of Lippmann-Schwinger (PFTLS) equation in chapter 4. In chapter 5, we
compare the results of these two methods in chapter 3land 4. Next, in chapter 7 and 6, we
discuss the two cases of the attractive and repulsive d-type potential barrier respectively
and investigating the wavefunctions and the current density patterns that illustrate the
electronic motion. And we will also disetiss the two phenomena of resonance according
to the edge states and the quasi-bound states. .We draw the brief summaries and some
discussions in chapter 8. And in the chapter'9, we have show some results of double and
multiple barriers here. These results are still very interesting and we will analyze in the

future.



Chapter 2

Introduction to Landauer-Buttiker

formula and our physical model

In this chapter, we first introduce the Landauer- Buttiker formalism in Sec.2.1, and then we
draw out our system of interest in‘this work in Sec.2.2. We also simplify the Hamiltonian

to the dimensionless one and list the unifs we used in this work.

2.1 Landauer-Buttiker formalism

We adapt the Landauer-Biittiker approach to calculate the conductance across the source
and drain.

In 1957, Landauer [54] proposed a novel point of view that transport should be viewed
as a consequence of incident flux. Later in 1970 [55], he further proposed that the conduc-
tance of a one-dimensional(1-D) conductor sandwiched between two phase-randomizing

resorvoirs is given by
2e2T
G=——
h R
where T and R are the transmission and reflection coefficients of the conductor treated

as a single complex scattering center, and only one spin direction is included.

The formula was rediscovered in 1980 by Anderson et al [56] by employing it in a



CHAPTER 2. INTRODUCTION TO LANDAUER-BUTTIKER FORMULA AND
OUR PHYSICAL MODEL

rigorous formulation of the scaling theory of localization. Since then Landauer formula
caught the attention of wilder community [57]. Nevertheless, another version of conduc-
tance G = %T was obtained by Economou and Soukoulis later in 1981 [58]. The answer
was that they pertain to different physical quantities [59]

This started a long controversy on ”which of the Landauer formula is correct?”.

I
HrA—HKB

For the original Landauer formula, G = T, where s and pp are the chemical

potentials on the left and the right side of the barrier. However, the conductance formula

I

urmT' Here, G, is the conductance measured between

by Economou et. al. is G, =
the two outside reservoirs. The ambiguity of the two Landauer formulas was clarified by
Imry in 1986 [63].

Apart from the controversy which is confusing before mid-80s, Landauer formula faced
another practical difficulties as it issfestricted it single channel one-dimensional case only.

However, the Multichannel Eandauer formula were proposed by Biittiker on 1985 [60]
and later in 1986 [61], he prédicted a symmetry property in a four-probe experiment
under a magnetic flux and was_successfully observed by Benoit et. al. [62] Since the
confirmation of the formula, it has been a ‘concrete foundation for quantum transport
theory. In short, Landauer’s great insight that conduction in solids can be thought as
a scattering problem, and Bittiker brilliant extension of the multichannel formula has
become the key understanding of quantum transport in mesoscopic system. Hence, It is
also now well known as Landauer-Biittiker formula.

Next, we try to derive the multichannel Landauer-Biittiker Formula starting from
single channel case based on the framework of M. Biittiker et. al. [60].

Assume that there are two reservoir of electrochemical potential ;17 and s respectively
and the two end of 1D channel; and, there is a barrier in between the reservoirs.

If we add a small bias at the two reservoir, then the difference of electrochemical
potential between the reservoir will be py — s = Ap. The transmission probability of an
electron from reservoir 1 to reservoir 2 can be calculated by Quantum Mechanics as T.

As both side of electrons from reservoir 1 to 2 or reservoir 2 to 1 cancel out each other,
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only those transmitted electrons in between Ay contribute to the current . In 1D, J = [.

Therefore the current. I can be written as

dn hkp
[ = —2¢e— — T—
6dE (= ) m

Note that g—g (11 — po) is the number of states per unit length that are injected from

reservoir 1; the velocity is equal to hkp/m; and, the number 2 refers to spin factor.

Besides, density of state per unit length in 1D is

dn  dk 1 ~om 1
dE  2m/L (h2kp) /m  h2kp 27

Therefore, I = —% (11 — p2) T. Moreover, the,definition of conductance, G = I/V, and

{1 — fio is given by the voltage aeross Vi; so that gy — o = —eV. As a result, we have

I =2e/h{ev)T  2¢°
SN, SEEE RIS — —T
¢ V V h

For the N x N multichannel system, we have the incident channel as n, the transmission
probability to m as T,,,, and the reflection probability to m as R,,,. Therefore, the total
transmission probability, T, from the n-th channel is Zﬁ:l T,m; and the total current,

]tot = 27]:7 In, in which

and,
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2.2  Our physical model and formulation

Before our work, there are several previous papers that had considered similar systems.
The simplest channel confining potential, which is an infinite uniform 2D wire with hard
wall, was considered in papers [66,67,69]. It is easier to extend the magnetic field to
high magnetic field regime in the hard wall confinement. In the reference [67] of H.
Tamura and T. Ando in 1991, a delta-profile potential impurity is considered, and there
exist bound states with an energy larger than each landau-level energy for a repulsive
scatterer, and a quasi-bound state relate to the attractive potential is also formed below
each subband bottom. And in the other reference [66] of Gurvitz in 1995, he introduce
analytically the quasibound states of local and non-local potentials. The state relate to
the repulsive potential is not a beund one, it is rather a quasibound (resonance) state.
And such a quasibound state can generate resonant transitions of carriers between the
edges. As a result, repulsive impurities can produce direct interedge transitions inside the
propagating modes (the inner-mode transitions),*in contrast with attractive impurities,
which generate interedge transitions via‘bound states in the evanescent modes (the inter-
mode transitions).

Actually, for a wire, realistic narrow channel in split-gate devices can not be taken as
uniform wires, but rather as a parabolic constructions in the propagating direction. The
parabolic confining potential is used in the references [40,68,70,71] with magnetic field.
In the references [40, 70], the applied magnetic field is not very large and the resonance
states above the subband relate to the repulsive is not generated. In the reference [68]
of E.V. Sukhorukov et. al. in 1994, they consider a central short-range impurity in the
wire with a higher magnetic field with approximate. They found that if the magnetic
field is sufficiently strong bound states exist not only for attractive impurities but also for
the repulsive ones. Bound states are found not only below any mode threshold in series,
but also above. They showed that a series of N bound states exist above the N-th mode
threshold.



CHAPTER 2. INTRODUCTION TO LANDAUER-BUTTIKER FORMULA AND
OUR PHYSICAL MODEL

We try to push our theoretical description of magnetoconduction in a narrow parabolic
confining potential which is more realistic to the high magnetic field regime. We will
investigate the transmission dip found at the threshold of subband for repulsive potential
and the two transmission dips found for the incident energy lies below a subband threshold.
And our approach can consider a general condition raging form low magnetic field to high

magnetic field.
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Figure 2.1: The figure of our system.

Our system of interest in this work is basically a quantum wire formed out of a 2DEG.
The propagation direction o the wire is z whereas the confinement potential that define
of quantum wire is given by V.(y). Of particular interest is the effect of a magnetic field,
pointing along z, on the transport characteristic in the presence of a transverse potential

barrier.
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CHAPTER 2. INTRODUCTION TO LANDAUER-BUTTIKER FORMULA AND
OUR PHYSICAL MODEL

The confinement potential V.(y) is chosen to be parabolic namely
1 * 2,2
Ve(y) = =m W,y (2.1)

where m”* is the effective mass of an electron in media and w, is a potential parameter.

The unperturbed Hamiltonian Hj of the electron in the constriction is given by

2

2 1
Hy {(—iv + iA) + —m*wiyz} (2.2)

- 2m* ch 2

where —e is the charge of the electron.
And in this work we focus on the scattering effect due to an impurity, which the
potential of impurity is Vy(z,y).

The total Hamiltonian:

2

H = T B AV () + Vil ) (2.3)

A(r) is the vector potential

A(r) = —Byi — B(r) = V x A = Bk (2.4)
V.(y) is the confinement potential in the y-direction V,(y) = %mwgyz
h? eB . 1
He Y o B 2 L 2.2 9.

And then we choose some units to obtain the dimensionless expression of Hamiltonian

1 h2k?
a* = 6* — F
kF 2m*
hk? hk? * A
and hence wt=—% = £ — 28—, B* = —Ck:%
m* m* h e

Here w. = eB/m*c is the cyclotron frequency, and w. = eB/m*c = (e/m*c) (hck?/e) B =

11



CHAPTER 2. INTRODUCTION TO LANDAUER-BUTTIKER FORMULA AND
OUR PHYSICAL MODEL

(hk%/m*)B = w*B, and I = (hc/eB)/? is the magnetic length.
In our numerical examples, the nano-channel(NC) is taken to be that in a high

2 and

mobility GaAs/Al,Ga,_,As with a typical electron density n ~ 2.5 x 10! cm~
m* = 0.067meV. Correspondingly, our choice of energy unit E* = h?k%/(2m*) =
5,933 meV, length unit a* = 1/kr = 9.7937 x 10™7m = 97.937A, angular frequency unit
wih = wyh = Q*h = 2E* = 11.866meV, and the magnetic field unit B* = 6.863 Tesla.
We also take w, = 0.5 of which w,wyh = 5.933meV, such that the effective NC width
is of the order of 102A. In the following, in presenting the dependence of transmission
on ji, it is more convenient to plot transmission(T) as a function of X instead, where
X = p/2w, + % The integral value of X is the number of propagating channels. The
conservation of current condition is betterstepresented by the function C'SV (n) defined

as CSV(n) =log|l =, (|twn |23 |remf)igswhere.n is the incident channel and n' is the

outgoing channel. We thus obtain the dimensionless Schrodinger equation
2 2,2 : d
={-V '+ Q% + ZZwCy% + Valx,y) o(x,y) = Ey(z,y) (2.6)

where Q% = w? + w; = w. + B

In this work, we consider now electron scattering from an barrier potential of the form
Vi(z,y) = VoVi(y)d(z — o), (2.7)

where V;(y) is an arbitrary function of the coordinate y, but we use it to be a uniform
function of the transversal coordinate y and equal to 1 for simplify. z is the longitudinal
position of the barrier, and the magnitude of 1} sets the magnitude of the barrier potential,
which may be repulsive (V; > 0) or attractive (V5 < 0).

In Chl3, we keep the scattering potential Vy(z,y) = VoVi(y)d(z — zo) and Vi(y) is still
an arbitrary function of the coordinate y in the analytical calculation, and set Vi(y) = 1

in the numerical process for a simpler system.

12



CHAPTER 2. INTRODUCTION TO LANDAUER-BUTTIKER FORMULA AND
OUR PHYSICAL MODEL

Finally we can have the dimensionless Schrodinger equation of our physical model

{—V2 + Q2y2 + QiWCy% + %5(1’ - iUo)}w(ﬂUa y) = EW% y) (28)

13



Chapter 3

Mode-matching (MM) method

In this chapter, we use the mode-matching approach to solve our physical model. After
the formalism, we find that the eigen-function of-the wire with magnetic field is not a or-
thogonal and complete basis set.."The propagating mode with real wave vector has a center
shift on y-direction and the evanesgent“mode-become a highly oscillating complex func-
tion. We choose another orthogonalbasis set ¢%(#) to expend the eigen-function ¢ (y, k)
which is the better one in our three choices. We also find out a special normalization con-
stant for the evanescent modes which are complex functions. The normalization constant
of propagating modes and evanescent modes are different and the normalization constant

of evanescent modes depend on the center shift a,.

3.1 Formalism

We first solve the unperturbed Hamiltonian in this section and obtain the eigen-function
of the confinement potential.

In the previous Ch/2, we have obtained the dimensionless Schrédinger equation, Eq. (2.8)

(-9 4+ 0% 4 2iay o+ Vil ) V(e ) = B () (3.1)

14



CHAPTER 3. MODE-MATCHING (MM) METHOD

Firstable, let’s solve the wavefunction of unperturbed Hamiltonian:

{-V?+Q%* + 2zwcy }\If(x y) = EY(z,y) (3.2)

Because the asymptotic form of wavefunction at + — 00 can be expanded as plane wave,

we can assume the eigenfunction of this form

U(z,y) ~ e o™ (y) (3.3)

where k is a wavevector.

Substituting Eq. (3.3) the above wavefunction into Eq. (3.2), we obtain

0? Wk 2k2
ok
let a = WQ—Q, ut =y T,
which the superscript + of u denotes the right (left) going wave,
2/{32 2
and K* = =05 — K’ + E = F — ngﬂ
0 2, +2 2 +
= auiZ - QT+ K ¢ (y) -
let v = VQut,
= 9t T ¢~ (y) = (3.5)

Based on the definition of Hermite function, we can obtain the discrete energy identity:

21.2 2

wik
(2n+1)Q:W—k2+E:E ngZ (3.6)

!/

and ¢, (y) o e_“%/2/2Hn(uf )= ~gun” H,(VQu) (3.7)

15



CHAPTER 3. MODE-MATCHING (MM) METHOD

In Eq. (3.6), the energy is quantized, and then we change our variables to have the

quantized physical quantities labeled by the subband index n:

wek
k—>/{}n,Oé—>Oén: - ui_>u =Y+ Qap,

0z
64 (y) = GE(Y. kn) = N x ™8 2 H, (V)

We can write down the total wavefunction:

Un(w,y) = N, e XWFa 2 (VQ(y F ay,)) (3.8)

en = B ykZ_(2n+1)Q,

£22 H
n wek,
Uy = YTF Oy O o
k, = —\/E (2n +14)2, Q2—w + w?.

and ¢ (y, k,,) is the eigenfunction of this equation

82 2 wckn 2 2 + o
{8_y2_Q (y+ 02 )+ K }¢n(y7kn)_0 (3.9)

which is a shifted harmonic oscillator of frequency €2, The center of the transverse eigen-
function ¢F(y,k,) is at y = Fw.k,/Q?. Hence the larger the momentum =+hk, along
z-direction, the more the center of wave function is shifted, and ¢=(y, k,) is not longer a
complete set. The center shift of wavefunction may be real or pure imaginary because it

depends on the momentum £, along x-direction.

16



CHAPTER 3. MODE-MATCHING (MM) METHOD

3.2 Normalization constant and evanescent mode

The eigen-function ¢ (y, k,) have a shift constant a,, = w.k,/Q? which have presented in
the previous chapter. The shift constant and the wave vector become a pure imaginary
number for the evanescent modes, and the eigen-function become a complex function. We
have to redefine the normalization constant for both propagating modes and evanescent
modes, the normalization constant of propagation constant is similar to the case without
magnetic field; the normalization constant of evanescent modes is different and be a more
smaller number to confine the evanescent modes. And we also compare the normalization
constant of propagating modes and evanescent modes and find out the relation between
them.

In this section, we will determiiie the normalization constant for both the wave vector
k, are real and pure imaginary of the eigen-function ¢=(y, k,). We use N? for the real
k,, and N, for the pure imaginary one.

We first write down the normalization identity,

/ G (1, k)0 (4, ) dy = 1. (3.10)

and then we discuss the two case of real and pure imaginary wave vector k,

1) If k, is real: (¢=* = ¢F)

/ O (4, k)6 (g, ko )dy = 1,
N2 / e 0wF L VQ(y F an)]dy = 1,

let \/_(y:Fan) = a7,

\/_ ) dat =

and /6_”3 H*(z)dxr = 2"n!\/7,
—\ 172
N:=(2"nly/= :
= = ()

17



CHAPTER 3. MODE-MATCHING (MM) METHOD

2) If k,, is pure imaginary: substituting Eq. (3.8)) into the normalization identity, Eq. (3.10),

we have
N? / e 2T B IVQ(y F of)]e” 2 F) Hy[VQ(y F a)]dy = 1
let z = \/ﬁy, Qn = VQan,
&° 1 * dx
NZ/ €_§(I$qn)2—%(x:FQn)2Hn T :F * Hn T :F n| = —= — 1
) [z F ¢u]Hulz F ¢ ]\/ﬁ
+q* — (£q, Q
where a, = £q; + (£q,), b, = I 2( 0) = \/2_(:1:042 — (£an))
_b2 o0
e 2
= Nn’zz e ¥ H,lv.— b, Hy|x + b, |dx 3.11
v IR AN (311

Using the Eq. (A.78), we have:

[e.e]

/ ¢ Hp(z + a)H,(z + b)da
Min[m,n] | '\/—
— 2m+nfk mflcbnfk NN/ T 12
£ ¢ Kl (m — &)\(n — k)! (3:12)
Min[m,n] n n
— 2m+n—k m—kbn—k k!
; ¢ k) ) VT

using Eq. (3.12) and Eq. (3.11)), it is easy to obtain the normalization constant of the

18



CHAPTER 3. MODE-MATCHING (MM) METHOD

following form

N72 — z —b? 22n7k _12\n—k n n |
=gt ;0 (=00 () ()%

2

T _p2 i — ne n!
— Vo b"kZQQ (=00 kk!(n—k)!Z
=0

"L (2QIm(a,)?)k
— NS—ZGQIHI(OCTL)Q ( mk(‘Oé ) ) (Z) (313)
k=0 )
+q" — (£ Q
and b, = o 2( n) = \/2_(104;; — (*ay)) = FivQIm(ay,),
b = —QIm(ay,)?
100 (@,)?)t n\ ]
N, = N? o~ $im(an)? [ Tﬂ (k)] (3.14)
k=0 ;
Define the normalization constant-factor A, for the evanescent modes
—1/2
" (200Im(ay,))k (n
A, = [Z%(kﬂ . (3.15)
k=0 )

In the propagating modes and k, is real, e*%Im(a”)QAn =1and N, = N. In the
evanescent modes, e_%lm(an)zAn is smaller than 1 and N,, is smaller than N,

In the case of zero magnetic field, ¢ (y) reduce to ¢2(y) = Nge_WTnyHn(\/w_yy), where
Ny = (2l [2) V2

Correspondingly, we get

@ (y) = Nie 7V H, (V) (3.16)
#(y) = Noe 2V H,(/Dyy) (3.17)
SE(y k) = NEAue~ Sl o=8u’ g (\/Qu) (3.18)

19



CHAPTER 3. MODE-MATCHING (MM) METHOD

3.3 Mode-matching approach

In this section, we use the mode-matching approach to solve the problem with a J-type
impurity barrier. We write down the formalism in a general way for three kinds of basis
set to expand the eigen-function ¢ (y, k).

We consider an impurity or an external potential in a quantum wire, the system under

investigation can be described by H = Hy + Vy(z,y), where

)
Hy=—-V?+ Q%2+ Ziwey 7 - (3.19)

is the unperturbed Hamiltonian, Vy(z,y) = Vod(x)Vs(y) which is the scattering potential.

The incident wavefunction from left (Ls) lead is given by

¢in($> Y, kl) o eikﬂ?qﬁ'(y’ kl) (320)
The corresponding scattering’savefunction is-of the form

V(x < xo,y, kn) = el (y, ki) + Z/ e TG (y, k)

(@ > xo,y, kn) = Zt+ e TG (y, k)

, (3.21)

where

G (y, kn) = Noye 2070 H, [\/ﬁ(y ¥ an)} : (3.22)

In addition, we can expand the wavefunction ¢ (y, k,) into several sets of basis like
O (Y, kn) = N, e XWFV 2H[VO(y F )], ¢5(y) = Nie_%fﬂn(\/ﬁy) and ¢;(y) =
Nee= 3% H, (Vw,y). And the wavefunction ¢f(y, kn) = 3, ¢ (y ) o (y k) =
5 W, or 6y ka) = X2, 95(y) Ol where O = 65, ) = fdy SRR
and C’jz)i = [dy ¢(y) ¢y (y, kn) correspondingly. In mathematically, no matter what kind
of complete set we used, the result should be the same. But according to the center shift

of the propagating and evanescent modes, the results are different and we will discuss in

20
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CHAPTER 3. MODE-MATCHING (MM) METHOD

the Sec. 3.5.

In order to simplify the formalism, we use X% i )(y) to replace the functions ¢ (y, k),

¢:(y), and ¢%(y) correspondingly.

Oy, k) = AT y) Ol (3.23)

J

o Gr(y. k) =Y x;(W)CH, (3.24)
J
And then we can rewrite Eq. (3.21) of the below form

o <mak) = S E0GH S G 529

'QZ)(.T > X0, Y, kn) — Zelk ' jn’t+’l (326)

The Schrodinger equation in the presence of Vy(x,y) is given by

o* 0P

9
Tom g Ay T PP Vod (e — o) Va(y) | ¢(2,y) = ¥(2,y) (3.27)

The scattering should satisfy two boundary conditions, one requirement is that ¢(z, y) has
to be continuous at x = x; and the other one stems from integration of the Schrodinger
equation across xr = x;.

The wavefunction is continuous at z = 0 :

Ylo+ = Ylo- (3.28)

=D x)C +ZXJ ot Zx] Ot (3.29)
J
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By integrating the Schrodinger equation through x = 0, we get
Z an/X](y>Cjn’tn Z Z-leJ +Z ik /XJ jn Tt Z XJ jn n =0
n'.j J

(3.30)
Multiply these two boundary conditions Eq. (3.29) and Eq. (3.30) by x;/(y) and then

integrate over y, we obtain

Ch+ > Corn = Z Chutin, (3.31)

Zlk’ C]n n'l Zlef/l‘i‘Z'lk C]n n'l %fo]j jn’/ n

nl

(3.32)

where we use the below conditionssFor x,, ()

Y= 0 (y) or Xo(y) = ¢7(y), we have

/ dy X ()X (y) =0, / dy X\ (y)Va()x 7 (y) = 12 (3.33)

X5tj -
o0

and for x,(y) = ¢ (y, kn), we have

/ dy X" ()X () = / dy 65 (g, k)85 (g, k) (3.34)
/ dy xP V)P ) = 1. (3.35)

and we redefine the coefficient

C5* = [y (ko ko). (3.36)
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CHAPTER 3. MODE-MATCHING (MM) METHOD

In order to extend Eq. (3.31) and Eq. (3.32) to matrix form, we define that:

[t th o ]
it = | 5, = = (3.37)
A
B e ré |
[ronlixi = | 75, rt r (3.38)
| CREETCE o G
[Conlixi = | C2, o= o | (3.39)
i o]
[ Feoo Froon feor |
[fxmnlixt = | fumo = frmn Frmi (3.40)
| fxao o fx‘,jn f;;,jz 1.
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CHAPTER 3. MODE-MATCHING (MM) METHOD

And then we can write down Eq. (3.31) and Eq. (3.32) in matrix form

[Cﬂtn]j/Xl + [Cnim]j/xn/ [r:"m]n/Xl = [C;m]jlxn/ [t:rrm]n/Xl (341)
[Ontn]j’xn’ [km(smn]n/xn/ [t:rrln]n’xl - [C;m]j’xl [kmémn]lxl

+[C;m]j/><n/ [km(smn]nlxn/ [rrtm]n'Xl + Z"/O[fX»mn]j'Xj[Cntn]an' [tjnn]n'Xl =0 (342>

Let j/ = j =n’ =1 = N, all the matrices become square matrixes, where NV, is the
total number of subband we used in the numerical calculation

[Conn] + [Cornl[rmn] = [Conl ] (3.43)

mn

([Conn) iG] [En] = [Conn kOl e I ] iG] (1] + Vol Fremn] [Con ) [En] = 0

(3.44)
And then, it is trivial to get theicoéfficient of £ and rE by the inverse.
[t7mn]
(3.45)

(7]
L 2N, x Ne
_ -1
L 2N:%X2N, 2NeXx Ne

oF = Nne_%ﬂ(ija")QHn [\/ﬁ(y F an)} have a good physical meaning because it is the
eigenfunction in the wire in parabolic confinement with magnetic field, but not a complete
set in this space, and cause some mathematic problems. ¢ (y) = N,je’%Qan [\/ﬁy} is
the ordinary unshifted harmonic oscillator with confinement frequency 2. We use this
basis to be the projecting basis x,(y), this is a complete set rather than ¢, and has the
same oscillation frequency €2. It has good character in calculation and better behavior
in small magnetic, but still diverge in some cases we want to see. And then we use the

eigenfunction ¢¢ (y) = Nge*%“’yyan [\/Jyy} which is the eigenfunction in parabolical wire
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CHAPTER 3. MODE-MATCHING (MM) METHOD

without magnetic field. It is also a complete set, but stronger calculation the other basis,
®3 (y) and ¢ (y). This is the best basis in these three eigenfunctions, some problem had
be solved and good conservation in most case with not very strong magnetic field.

In this section we choose ¢2(y) to be our projecting basis, but we still list all of the

others calculation in appendix.

N L LA )

R e TS
n
a [i\/zwyﬂan} _ [ \/mdyan}
m n m—p 7 Hn_q
x> -
2P 24
p=0 ¢=0
( Min[p,q]—1
2
S fil2s +1) fis(BEEE) £5(22=1) |, m,narebothodd.
(Min[p,q])/2
8 S fa(28) fra(B52) fig(52) , m,narebotheven.(3'46)
0 , m + nisodd.
— o Hn(x) wckn
where H,(z) = 0 1= Wy +Q, a, = 02 (3.47)

and  fu(n) = (L, (3.43)

30y = Ly (3.49)

3 — wy

fra(n) = (

Fraln) = ( )"l (3.50)
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mn = T (y)Va(y) o5 (y)dy
- vm!n! Mmzmn wyﬂ*")m N<wyﬁ+ﬂ)”_”ﬂ [a] (3.51)
2mon wy + (n — KZ)' m4n—k
By
h = 3.52
where a oyt ﬁyo ( )

3.4 Current density and conservation condition

The current density in a system with magnetic field is different from the case without
magnetic field. In this section, we use the Hamiltonian of our system and the continuous
equation to get the form of current density.in a tnagnetic field. And we also know that
the net current is contributed from the propagating-modes and wave vector k, is real; the
current density in the evanescent moeders-mot: zero but does not contribute to the total
net current.

We first write down our Hamiltonian and the continuous equation

0 0? 0? 0
_ _\72 ; -~
H = -V °+ Qchyﬁx 92 " 9 + 22wcy8 (3.53)
. 2 & 0
a * * * .
Sp = (U H = " Hip) = =V - (3.55)
82 2
(mg¥ v +v'5 w
8 8

= 5.5 1/1)+ w 1/1+—(¢ w>——ww
- aax{w DLy "
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0 0
(—QMCy%WW - 77Z)* (Qchy%W
0
0
= g(—%wcywlﬁ)

9 L 10, ,,0 .,
= 5P = zaxw w——w P — 2zwcyww}——.—{w—w—a—yw-w}

= Za${¢( TS S W ¢—CC} (3.56)

and then we can define the current density along x- and y-direction
= —{w ¢ " —¢ - = 2iweyyti} (3.57)

= —{1/1 ¢ - —¢ 2 (3.58)

The third term of Eq. (3.57); =2iw.y1*1, igcaused from the applied magnetic field

and the current density on x-direction is y-dependent in the coordinates.

3.4.1 Current conservation on the longitudinal direction

In this subsection, we investigate the conservation condition on the longitudinal direction,
the applied magnetic field introduce a factor depend on the magnetic field to the con-
servation condition. But the form of conservation condition is same as the one without
magnetic field.

The total wavefunctions on the left and right side of the scattering potential are given

by
YL = M (y) + D e TG (y) VR =2 eM TG (y)tw
| n’ ‘ and n' ' (359)
Ui = RO () + e, ()i Ui = e oL W)t
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where [ is the incident state and k; is a real number.

Substitute Egs.(3.59) in to Eq. (3.57) and obtain

ko Z/m" WG () ()

+ 3 ket tRm G ()t ()i, — Zk,/e“’f G () i (W)
+hao " ()0 () + D ke ”’*’”)%7 ()b (Y)ran

=D bR GL () o (y Z K€ B G () ()i
—2wey{6f " (1) +Zk e BTG ()6 ()

+Zei(kn/+kl x¢;l l i+ Z PICHES N x¢—*( )¢— ()7 (3.60)

n/ n//

in the left side of impurity barrier, and

S B R g (b Z e R o G (8 (4

—2wey Y e TE TG ()b ()t (3.61)

in the right side.
And then integrate these two equations, Eq. (3.60) and Eq. (3.61), over x from —oo
to 0o, and we find that some terms with imaginary k,, is vanish in this integration.

The left side should equal to the right side, and we have

kg Zk o )|7“n/l|2—wcy{¢l +Z¢ |7“n/l|2}
Zk 6 (y) >|t | _%yzw () ()t (3.62)

where the summation sum over all propagation modes.
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And then integrating over y, we also have the following two equation

/ o (y, kn) ¢ (y, kn)dy = 1, which is the normalization condition.

[ 5 65 )y = Rela] = 222 (3.6

where k, is real and ¢ (y, k,) a is real function and a orthogonal set.

Finally we have the conservation equation in the x-direction:

= 1—— {an/|t ’l| +Zk'n/|7’n/l’ —k:l}—() (364)

where summation sum over the propagating modes and the wave vector must be real.

3.5 Numerical results

In the Fig. 3.1, we plot the results of:the transmission as a function of applied magnetic
field to compare the numerical results of the three basis sets. There are three curves
in both figures, which are the results using the different basis in order, ¢ (y, k,.), ¢2(y)
and ¢?(y). Except changing the basis, we fix N, = 17, incident energy is at 7w, E*, and
Vo = 1.0E* in (a) and Vj = —1.0E* in (b). The block dashed line is the transmission
without any scattering potential in the wire.

The three curves in the both figures are the results by using the different basis in order.
It is easily to see that the results (curves) of ¢ (y, k,) and ¢2(y) exceed the permitted
range (The transmission must below the black dashed line in the figures). And the third
curve of projecting to the basis ¢ (y) is more reasonable, this curve all below the black
dashed line.

Although the three curves look quite different, but all of them lie together on the
same line in the range of low magnetic filed (below B = 0.2). This result show that the
calculation in this chapter works in the low magnetic regime no matter what basis we

used, and the selection of basis effect a lots in the high magnetic regime.
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(b) | ' ‘ |

Figure 3.1: Compare the numerical results of three basis sets. The red line is the result
projected to ¢ (y, k,,); the green one is projected to ¢¢ (y); and the blue one is projected

to ¢2,(y). The strength of the impurity barrier is repulsive with 1.0E* in (a) and attractive
with —1.OE* in (b).

Base on this comparison, we finally choose the basis set ¢2(y) to be our projecting

basis in this work.

In the Fig. 3.2, we fix the incident energy at 7w,E* and plot the transmission as a
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Figure 3.2: Changing the number of subband N, to-check the saturation and the accuracy
break down of the numerical caleulation:r™Werfix the incident energy at £ = Tw,E*, the
strength of the impurity barrier is 1.0£*.

function of B for various N, to check the saturation and accuracy break down of numerical
calculation. The strength of the attractive barrier in the wire is Vj = —1.0E*. Except the
regime of high magnetic field, the more numbers of subbands we used in the calculation,
the curves saturate form low magnetic field to more high magnetic field. But as long as
we use too many of numbers of subbands, like 22 and 25 in the Fig. 3.2, the curves diverge
when the magnetic field larger than 3.3B8* and 3.0B*, the more numbers of subbands we
used in the calculation, the lower amplitude of magnetic field the curves diverge. This
divergence is due to the accuracy in the computation is not enough. When the magnetic
field is high, the structure of the matrix used to calculate the transmission and reflection
will be difficult to find out its the inverse. It is easily diverged and need more accuracy
to have the correct solution with less error. And the more elements of the matrix, the
accuracy error will be enlarged. In the programs, we have already use the higher precision,

quad-precision, than double precision to calculate the inverse of the matrixes, but in the
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case of high magnetic field, it is not enough and still diverged, just like the curves in
Fig. 3.2. This problem about the accuracy is the main problem if we want to have the
saturate result in higher magnetic field, and we will discuss with this later.

In the Fig. 3.3, we plot the transmission as a function of incident energy for various
numbers of subband form 26 to 30 to check the saturation the curves. The applied
magnetic field is 1.0B* and the strength of impurity barrier is repulsive with 1.0E* in
(a) and attractive with —1.0E* in (b). As the increasing of the numbers of subbands,
the curves saturate form the lower incident energy to higher energy but slowly. In the
Fig. 3.3, B = 1.0B*, we find that the curves saturate below X = 4 when we use 30
subbands. In the range of X > 4, the curves is not really saturate as we magnify the
figures. Consider 30 subbands as themoststotal number of subband we can used in the
calculation remaining accuracy for the caseof 5 '=.1.0B*. When the numbers of subbands
is more than 30, in the case of B = 1.0B*, the curve will diverge. And in the case of
B > 1.0B*, the curve diverge before saturate-even if X < 3.0; on the contrary, the curves
saturate and using fewer numbers of subbands than 30 if the amplitude of magnetic field

is smaller than B = 1.0B*.

3.6 Summary and discussions

In this chapter, we use the mode-matching approach to solve the magnetoconduction
in the wire. The transverse eigen-function in the wire with magnetic field is written as
= (y, k), and the center of the eigen-function ¢ (y, k) is at y = Fw.k,/Q%. As the wave
vector k,, is real, the center shift along the y-direction, the larger of w.k,, the more the
center shift. As the wave vector k, is pure imaginary, the center of ¢ (y, k,,) back to the
center of the y-direction and become a complex function. There are two reason why we
can not expand the eigen-function ¢ (y, k,) well. One is according to the center shift of
the eigen-function ¢=(y, k,), it is quite different to expand the eigen-function which has

two kind of shift. And another is that the eigen-function ¢=(y, k,) is not an orthogonal
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Figure 3.3: The saturation of transmission versus V. from 26 to 30 for B = 1.0 and the
strength of impurity barrier is repulsive with 1.0E* in (a) and attractive with —1.0E* in

(b).
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basis and incomplete set, we have to expand the eigen-function to another basis which is
orthonormal. And that is why the transmission and conservation are not reasonable as we
project the eigen-function to itself. There are two choices to expand the eigen-function,
one is @7 (y) and the other is ¢%(y).

®3 (y) is the eigen-function of a harmonic oscillation which the confinement is Q2y? on
the y-direction. This kind of confinement, Q%y2, depend on the strength of the magnetic
field and more confined in the large magnetic field regime than the original confinement,
wiy?. This eigen-function ¢;(y) is more confined to the center more localized in the y-
direction. And it may not cover the edge of the wire in a higher magnetic field where
the edge state had generated. And then, the basis ¢2(y), which is the eigen-function in
the wire without magnetic field. The,covered range of this eigen-function ¢ (y) is more
extensive in the y-direction then'the eigen=funiction ¢:(y), and match to the original wire
which have the real edge state:

And then we back to discuss théreateigen-function ¢=(y, k,) in the wire. The char-
acter of this eigen-function is very different as the wave vector is real or pure imaginary.
The center of the eigen-function shift and concentrate to the edge as the wave vector
is real and the large kinetic energy and the magnetic field, the more shift. According
to this phenomenon, it is better to choose the eigen-function ¢?(y) to be the projecting
basis. But in the case of the wave vector is pure imaginary, the eigen-function become
evanescent mode does not have the center shift and back to the center of the y-direction.
Because the wavefunction is back to the center, it is better to use the eigen-function ¢2 (y)
to expand the evanescent modes in the center of y-direction, the eigen-function ¢ (y) is
also more confined to the center.

The most problem is what character is more important in the higher strength of
magnetic field, the difference is not very much in the low magnetic field. And find out
the balance of the expansion between wave vector is real and pure imaginary(propagating
modes and evanescent modes). And then we find that the eigen-function ¢2(y) is more

balanced to expand both propagating modes and evanescent modes, and we use this basis
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¢ (y) to expand the eigen-function ¢*(y, k).

In the classical-like picture, the wavefunction shift and concentrate on the edge of
the incident energy level when we apply a large magnetic field, and become the edge-
state. This phenomenon of edge states is more important than the evanescent modes
in the center of y-direction and need to be describe well. And that is the reason why
eigen-function ¢2(y) is better than ¢ (y).

And we also care about the divergence of the inverse of the matrixes, and we spend
lots of time to improve the accuracy of the calculation in program. And Finally we change
most of codes of the programs and the subroutine which solve the inverse of a matrix to
quad-precision, but already touch the limit of the numerical calculation. According to
this situation, we develop another methodsto solve this system, the approach of partial
Fourier transformation of Lippmann-Schwinger equation, and we will illustrate in next

chapter.
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Chapter 4

An approach of partial Fourier

transformation of the
Lippmann-Schwinger. (PFTLS)

equation

In CH[3, the numerical results can not saturate in the high magnetic field regime and
diverge with the numerical accuracy when we use more numbers of subband in calculation.
We think that is because the eigen-function ¢ (y, k,) is not an orthogonal basis set and
the shift properties of the propagating modes and the evanescent modes are different, it is
hard to find a basis set which can describe the propagating modes and evanescent modes
well at the same time. In the reference [66], the author use a Fourier transformation on -
direction of the Schrodinger equation, and the problem can be technically simplified when
turn to the mixed, momentum-coordinate representation of the wavefunction. We will use
a similar technic to solve our problem. Due to this technic, partial Fourier transformation,
the evanescent modes are not a complex function and the basis set of ¢ (y, k) (where k is
the integrating variable of Fourier transformation) become a orthogonal set. This method

can avoid the complex evanescent modes we worried about in the previous chapter, and
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this calculation can be extended to the high magnetic regime.

4.1 Formalism

In the beginning, we also consider the Schrédinger equation Eq. (2.8) and the electronic

transport in a laterally confined system can be described (xy = 0)

P 0
—@—?ﬂLQ +2zwcya + Voo (2)Vi(y) ¢ Y(z,y) = EVY(x,y) (4.1)

Let U(z,y) = >, %eik””wmkgbn(k, y) which we partially write the total wavefunction in

n

coordinate space x to the momentum space k, it is easy to obtain

dk o ika & fdk .,
Eni {/ K204 (R ) 5 5 ¢ Uik, y)
+92y2/ zkxqpn kﬁbn(k y -+ chy /_ _ ka¢n k¢n(k y)

+VoVi(y)d(x) /;Zk M oKy } EZ/dk e nn(kyy)  (4.2)

and we transform this above equation to momentum space

otk
/ dx e~ / — k2™ 1 n (K, Y) = P ngd(q,y) (4.3)
dk
/d:c em/ k)e i, kOn(k,y) = —qn (¢, y) (4.4)
dk dk
/dxe_z“””Vs(yﬁ(w)/z "y 1 (K, y) = Vi(y) o Ynidn(k, y) (4.5)

82
Z {Qan,qun(qa y) - a_yzwn,q¢n(% y) + QQwan,q¢n<Qa y)

n

—20eYq¥n,Pn(q,y) + VoVs / ——Unxdn(k,y } =EY tngnl(q,y) (4.6)
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And the eigen-function of the confinement on y-direction have these conditions

2

——5§5¢n(q,y)-+5?2y2¢n(q,y)—-2a¢yq¢n(q,y):=€%(q)¢n(q,y) (4.7)
2.2 2.2

€ (q) = en — “53 = 2n+1)Q— “”Q—Z (4.8)

Onla ) = Noe 30 1, (VO — <o) (49)

Since ¢ is the Fourier transform variable and must be real, ¢,,(g,y) is an orthogonal basis
set and the normalization constant N, of ¢, (g, y) should be equal to N2 = (2"n!\/7/Q)~1/2.

In order to simplify our model, we choose the potential V(y) equal to 1 which is
uniform on transverse direction. In the case of without magnetic field, the wavefunction
and the impurity barrier are symmetry andthe particles will not transit between different
subbands. The effect of subband mixing must be caused by applying magnetic field in
the case of a symmetry systent on the transverse direction. And then multiply ¢% (q,y)

to the above Eq. (4.6) and integrate over'y

dk
q2¢m,q + E;nwm,q + Z /%Um,n(qa k)wn,k - Ewm,q (410)

where vy, (g, k) = Vo /dy &% (q,9)Vs(y)on (K, y)
e = PP = P ik
(m

—p)! (n —p)! p!

Ve (4.11)

p=0

= q2wm,q + (Em -

2.2 dk
Z )wm,q + Z /Z_Um,n(% k>¢n,k = E¢m,q (412)

dk
(E €Em qu )<¢mq mq Z/ Umn Q7 77an =0 (413)

where ¢ is the zero order perturbation of ), . (4.14)
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2
or [Q—Q(E—em)—f](wmq WOy — Z/dkg%mnq, Wur =0 (4.15)

Wy

2

Q
let K2, = —(E — €n)
wy

And then, we obtain
02 dk
2 2 . 0 —
2= i00ma =02 = 5 2 [ omale s =0 (119

where Eq. (4.16) is a 1-D equation in momentum space.
In usually, Lippmann-Schwinger equation method or iteration is used to solve this
kind of problem in momentum space, but we use the inverse Fourier transformation to

transform the 1, , in Eq. (4.16) back to the €oordinate space. We define

~ d(q k) i(qak)x —k
Um,nd L = Um,n
s — n(g—k) (4.17)
V@) EYEeta,
or
Umnl(q, k) = Jdx e (a—k)z g, mon (T
( = J () (4.18)
Ymy = [dx e *zh, ()
Eq. (4.16) become
. 02 dk
(Kfn _ q2 + Z(S)(,@Z}m,q - ?ﬂ,(g,)q) - E Z /%Um,n(% k)wn,k =0 (419)
Y n

<K; - q2 T i6)( / dr e, () — / dr w0 (2))

/ /dx e~aRrg (x) /da; ek (z) =0 (4.20)
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(K2 — ¢* +1id) ( / dre™ "%, (r) — / dze%q)(0) (x))
—3—; zn: / dz ey, o (2) 0 (z) = 0 (4.21)

2

S KL+ i) mle) — v O(a)) - Q—i S tnala)iulr) =0 (422

2
or (K, +— +Z vmn () =0 (4.23)
where
d(qg—k) .
ﬁm,n(x) = /%el(qk)xvm,n(q _ k) (424)
VOV nm 242 Ml%ﬂfn] i mn! " () b (4.25)
—=1 e man— YT .
NG = p(m —p)l(n —p)! "
372
with v =
wC

And finally we obtain the Eq. (4.23) which is a 1-D equation in coordinate space with
a finite-range potential barrier. According to the Fourier transformation, the physical
model we considered in Sec. 2.2, which is a 2-D wire with a d-type embedded impurity
barrier in the longitudinal direction with magnetic field can be reduced to a 1-D system
with a finite range potential barrier. Our original model have be simplified and we can
use the scattering matrix method which we will introduce in next section to solve the
finite range potential problem.

To utilize the scattering matrix approach, we divide the scattering potential ¥, (x)

into a series with distance d L in between, each of them is described by a J-type potential

Dy (2) = Z (4.26)

o () = Umn(xi)é(x —x;)0L (4.27)

mn
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The potential ,,,(s) can thus be described if we divide the potential into sufficiently large
number of pieces, Np,.

And then we can use the scattering matrix approach to obtain the wavefunction v, (x)
and the transmission and reflection coefficients.

In the programs, we write the equation 0, ,(z) as

~ ( ) V(]’Y n—m_—~2z2 Mm[zmn} QP*WTHL m!n! q ( )
Omn(r) = —=i""Te R
VT g pl(m —p)l(n —p)l "

Min|m,n m— n—
B minfm min! o Z[: Fop gm—p  gn-p Hopin—op(y) (4.28)
= ﬁ 2m2n 0 2m+n—2p .

= pl (m—p)! (n—p)!

and we define that fi(n) = 2"/n!, fo(n) =.1/n!/2" and Hy(n) = H,(yx)/2".

The explicit derivation of vj,i(¢, k) and @, (z).are given as follows

O (0,K) = Vi /dy (0, Y)Y D (K, ) (4.29)
- ‘/()NmNn dy {6_%(y_%fq)2Hm[\/§(y - ‘;;2‘])]
_ Q. wck\2 wck
« e T W% Hn[\/ﬁ(y_ﬁﬂ} (4.30)
let t = VQy, v = Q%% /w..
dt 1 _ay2_1._ky2 q k
— VoN,N, [ ——e 203 203" 14 — IV 16— 2 4.31
0 7 [( 7)] [( 7)] (4.31)
= Yol g -nr /dk;e_[t_;"f(q_k)PHm(t—g)Hn(t—E) (4.32)
VQ v v
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1
and let wu=t——(q+k)

2y
q k
= 2 4
u + 2y + 2
k —k
4,4, v, 47F
ol 2y 2y 2y
f_k_ 1k a—Fk
Y 2y 2y 2y
and W = ﬂ
2y
VoNu N,y 2 / 2
= Umnlq, k) = ———e due”™ H,(u—W)H,(u+ W 4.33
(¢, k) /0 ( JH,u( ) (4.33)
~ U@ k) (4.34)
d(q — k)=,
tnale) = [M MRty (4.35)
T
L%
let W = 175
2y
. N,,N, ) 2
=7 / vy ez YolVm N / du e Hy(u—W)H,(u+ W) (4.36)
T VO

m;n\/l/m!n!\/Q/ﬂ

and using Eq. (A.78).

where N,,,N,, = 2~

Min[m,n
_ m [Z ] 2m;—n —p V m'n' _1)m_p
T pl(m —p)l(m —p)!
x /‘dv[/'eiZ:):'yWW2 Wm+n2p} (437)
Using this relation:
[e's) s
/ xn67ﬁ2x2emmdlﬁ =" (2\;%)1164@[—[”(@/25) (438)

— o0
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Mln[mn]
m!n!
~ . b __1\ym—p
@) = Vo 30 2 e Y
‘m—4n— \/E —~2g2
X1 + QPWG v Hm+n—2p(7$) (439)
Min[m,n] _min

2P~ 72 /mln!
p!(m —p)!(n —p)!

= %z e Z Hyn—op(y) (4.40)

p=0
where v = Q%?/w,.

4.2 Scattering matrix method

In the previous section, we have wrote dowtrthe scattering potential in pieces in Eq. (4.206)
and Eq. (4.27), and in this section we infroduce the scattering matrix method in a general
way.

To utilize the scattering matrix approach; we divide the scattering potential into a

series with distance 0L in between; each of them is described by a d-type potential
Vie(wi,y) = 0L Vo (i) Vi(y)d(z — ;) (4.41)

The potential V; can thus be described by Vy(z,y) = I Vi, if we divide the potential
into sufficiently large number of pieces.
For a right-going incident wave v (z,y) from the nth mode of the left reservoir, the

corresponding scattering wavefunction can be expressed in the form

Qﬂﬁf)(x < 20, kn) _ zknm¢+ + Z —ik,, /m¢ y’ ) Znn, (442)

V(@ >z k) = > e® el (y k )tjm (4.43)

n/

where ¢X(y, k,) is the unperturbed eigen-function in the wire.

Following similar procedure we can also obtain the reflection and transmission coeffi-
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cients, r; ., and t;, for the left-going incident wave.
Refer to the paper, PRB. 44 1792 (1991), H. Tamura and T. Ando, we can have a
detailed description of scattering matrix method. Due to the transmission and reflection

t:t

» Ymyn

coefficient amplitudes and rf,in. The scattering matrix, or the S matrix, is defines

as
rtot

S = (4.44)
tt r

The current conservation law requires the unitarity of the S matrix as

STS=85T=1 (4.45)

where S consists of N, x N, transmission matrices ¢+ and the reflection matrices r*, which
contain the scattering amplitudes from V. incoming conducting channels to N, outgoing
conducting channels.

The overall S matrix for the disordered region containing a certain number of impurities
with J-type potential can be obtained by decomposing it into single-impurity parts and
free-propagating parts using a composition law. ref If we consider the two S matrices

defined by

it ry ty
S = b and Sy = 2 (4.46)

+ - + -
i ly Ty

then the composed S matrix Sis = 57 ® Sy for S and S, in series can be calculated as

B ry ty A D Ty ty C
= and = (4.47)
C tF o D E t5ory F
B= rfA+t;D D= rfC+t;F
= and (4.48)
C= t{A+r D E= t3C+ryF
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=D

B

C

= (C

E
B
E

= ry(tF A+r D)+t F =ritf A+riri D+ t, F

= (I—rfr)) rftf A+ (1 —rfr)) 5 F (4.49)
and

= rfA+t D

= [rf+t 0 —rfr)) rdtH Aty (1 —rgry) My F (4.50)

= tfA+r D=tfA+riryC+rit; F

= (1- rl_r;)_lth +(1- rl_r;)_lrl_tQ_F (4.51)
and

= t3C +ry

= t5 (1 i) M A By =t (1 —ryrd) I 5| F (4.52)

rf At (=) it ty(L—ryry) 'ty A
ty (1 —riry) 't ry +ty (1 —riry) ety

ity A

12 U2 (4.53)
th o F

thy = ty(L—riry) '],
th= ti(1—riry) s,
— 12 1 ( 2'1 ) 2 (454)
riy = i+t (1 —rird) 7',
Ty = Ty + t;Tf(l — r;'rl_)*ltz_.

Note that the composition law satisfies the associative law (S ®S2) ® S5 = S1 ® (S2 ®S3),

but does not satisfy the commutative law in general, i.e., Sy ® S; # S; ® S5. The overall
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S matrix can be expressed as
S=5r®5™ eSS @Sy e She, (4.55)

where Nj is the total number of impurities. It must be noted that this decomposition
method of the disordered region into parts by Eq. (4.55) cannot be applied to the system

containing impurities with the long-range potential.

4.3 Wavefunction and current density

We will write down the equations of wavefunction and the current density in the wire
with magnetic field in this section,
In the beginning, we have khown that the total wavefunction could be written as the

below equation

dk.
\Ij(ma y) = Z /%€ka¢n7k¢n(]€, y); (456)

where k is also the variable of the Fourier transformation here and must be a real number
Gulky) = Nje 05887 7, [V — o) (4.57)
and then

dk
Vi(ey) = [or @ vnsonliy)

e
_ /dx’wn(x’) /% M=) (ks 1) (4.58)
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dk

where o eik(z_x/)ﬁbn(kay)
[ dk wg ¢ ] ik(e—a’ k
= [ N T aE [\/ﬁ(y - w—k)] GHED et u = VQy — =
2 02 Y
N:ooof e (V) ()
= 27r(—7) du e” 2 H,[ule (4.59)
N rooe o
= 5 N AAL LG / du e™7 HyJule 7=
= N ey 3 ()] (4.60)
Nz
Ny Ly? L fiy(a—a)+v/ ) /
= iy W ezl VW [y (o — o)) (4.61)
V2T

; 1’2 y2 .
where we use the Eq.7.376 in the mathematic table [64], [dz eYe™ s H,(z) = v2me 2 H,(y)i".

2

~ N3 1 /
v, (z, = /d:]:" () Ry e Syt e a@ =2’ [ 1v(2 —
(z,9) Un(2) Wor [ ( )]

N 92 ~ i/ Ty — 122 )2 ,

= et do! ), (e VW e T g (y (2 — x)) (4.62)
v 2T /
NS 2 ~ 2

= Tt [l G A ) (469

T

where 9, (z) is exactly the solution of Eq. (4.23).

And we write this Eq. (4.63) in programs as:

NS
V(o) = it /dw Jal(a) APV T (o (0 )
— n+1 3 6772’/ '77/
2 \/_
XZ d(;)(A2) [ W, (< (2 — ) (4.64)

J

where Az is the interval distance of ;4 and z;.
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In the Sec. 3.4, we have the relation of the current density:

, * . 0
= —{w —¢ - —w ) = 2wy Y} =9 (@ —wey)h + c.c. (4.65)
= —{w w - —¢ -t =7 —¢ + c.c. (4.66)
Pzt T v e
. /dx/ 2Zn(317')671’7‘/5‘1’:”,67%72(90/73”)211111(’7(33 —2'))
1| Ly, a8 0@ — ) (2! — o)
! =2 (@ S, ' — 2)] — Hupa [y (2 - 2)]
_ \]/VQTL_N”WG 7 /d:z: {%(:10')6_2'“’\@“””'(3‘%72(”C"”)2
Ly H, Yol — )] + i3 — 2)H,[y(2' — ©
| o P o)+ b ) o
—ivHp[y(2" — )]
0 N, ;02
Ly, = it
idy " \/ﬂZ e

X /dx’ Un(2 )V (2 — 2 )e VW e 2@ H(y (2 — 2')) (4.68)

where v = Q032 /w...
And then we can substitute Eq. (4.67) and Eq. (4.68) into Eq. (4.65) and Eq. (4.66)

and obtain the current density.

4.4 Numerical results

In the Fig. 4.1, we discuss the saturation versus NNV, and plot the transmission as a function

of B for various number of subband for the case of the barrier strength is repulsive with
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Figure 4.1: The saturation versus the numbers of subband N, for a repulsive barrier
with 1.0E* in (a) and an attractive barrier with —1.0E* in (b). The incident energy is at
Twy ™.
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1.0E* in (a) and attractive —1.0E* in (b) We change the numbers of subbands used in
the calculation for various of 10, 20, 30, 40, and 50. We can find that the curves had
saturate for the larger numbers of subbands in both repulsive and attractive potential,
and it is also conform to the conservation condition. Although it is saturate for the more
subbands, but it saturate slowly and need much more subbands than the mode-matching
approach.

4

@Nz=20 — '
N.=40

Ng=60 ——
Ne=80 ——

Figure 4.2: The saturation versus the number of subband for repulsive barrier with 1.0E£™*
in (a) and —1.0E* in (b). And the;amplitude of the magnetic field is 1.0B*.

Figure 4.3: The saturation versus the number of subband for repulsive barrier with 1.0E™*
in (a) and —1.0£* in (b). And the amplitude of the magnetic field is 2.0B*.

In Fig. 4.2l and Fig. 4.3, we find that the curves of transmission versus incident energy
saturate and used fewer numbers of subbands in the higher strength of magnetic field. In

the Fig. 4.2, the curves saturate with 80 subbands when B = 1.0, and in the Fig. 4.2, the
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curves saturate with 20 subbands when B = 2.0 Because the subband level spacing will be
wider as we increase the strength of the magnetic field, the overlap of each subbands and
the transition of each subbands is smaller. And it need fewer subbands and can describe
the interaction between subbands well.
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Figure 4.4: The probability dedsity ofi i, (x)]? as’a function of coordinate variable z for
various N, from 10 to 22, incident-energy is<1.4Q E* and the amplitude of magnetic field
is 1.0. The barrier is repulsivedn (a), and-attractive in (b).

In the Fig. 4.4, we plot the magnitude square of wave function @En(x) which is the
solution of Eq. (4.23) near x = 0 for various of numbers of subbands, 10, 18, 20, and 22.
The incident energy is X = 1.4, the amplitude of the magnetic field is fixed to 1.0, and
the barrier is (a) repulsive, Vy = 1.0E*, and (b) attractive, Vy = —1.0E™.

In the Fig. 4.4, we can find that the curves of wavefunctions does not really saturate
yet even when we used 22 subbands in the case of B = 1.0, and the curves start to diverge
when we increase the numbers of subbands to 23. And it not strange that the curves is
not saturate because the transmission in the same parameter is not saturate either in
Fig. 4.2 the strange thing is why the wavefunction diverge in this few subbands, we can
have reasonable results in calculating the transmission with much more subbands. In the
process of calculating the wavefunction @En(x), we use the scattering matrix method to
obtain the wavefunction of each position on z-direction. We have to inverse the scattering
matrix to obtain the coefficients here, and there is a problem about the accuracy of

calculation. Of course we have to improve the precision and algorithm, but it is still a
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limit of the numerical calculation.

We know that the wavefunction is more sensitive than the transmission and more hard
to be saturate. In the Fig. 4.4, the curves are not saturate in quantity, but we believe
that the character and profile will be almost saturate in qualitatively. According to this
result, we use 20 subbands in our calculation and plot several figures of wavefunction
in the case of small magnetic field which smaller than B = 1.0B*. And investigate the

physical insights about what happened in this system when we apply the magnetic field.
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0.02 |
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0:015 -
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Figure 4.5: The saturation of the wavefunction of PF'TLS approach. We plot the wave-
function of —10 < x < 10 and x = 0 for various numbers of subbands, 10, 18, 20, and 22,
and the incident energy X = 1.6, the amplitude of magnetic field is 1.0, and the strength
of the barrier is repulsive, 1.0 in (a), and attractive, —1.0 in (b).

In the Fig. 4.5, we plot the wavefunction of —10 < x < 10 and y = 0 by using the
approach of PFTLS for various numbers of subbands, 10, 18, 20, and 22 in the case of
incident energy X = 1.6, the amplitude of magnetic field is 1.0, and the strength of barrier
is repulsive, 1.0 in (a) and attractive, —1.0 in (b). We can find that the wavefunction
saturate down as we increase the numbers of subbands to 20 and 22, and in the others

plotting of wavefunction by using the approach of PFTLS, we all use 20 subbands.

4.5 Summary

In Ch.3, we have discuss about the center shift of the eigen-function ¢ (y, k,,), the center

of the eigen-function shift to the edge in the wire as the wave vector is real, and the
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center is back to the center of the wire as the wave vector is pure imaginary. In other
words, the eigen-function ¢X(y, k,) is a propagating mode and a real function if the wave
vector is real, and be an evanescent mode and a complex function if the wave vector is
pure imaginary. Because the eigen-function ¢ (y, k,) is not a orthonormal basis and a
complete set as the wave vector k, is a pure imaginary variable, we have to expand the
eigen-function ¢ (y, k,) to a orthonormal basis ¢°(y) which we have done in Ch/3.

In this chapter, we use the approach of partial Fourier transformation to transform
the x coordinate to momentum space and keep the wave vector real and be the Fourier
transformation variable. According to this method, the eigen-function ¢ (y, k,) will be
a orthonormal and complete basis. It is a good news to avert the expansion of eigen-
function ¢F(y, k,) to another, but whatswe have to pay is the more heavily numerical
calculation and the d-type barrier will become a finite range potential.

After we transform the original Hamiltonian te partial momentum space and then
transform back to the coordinate spacejithe-original two-dimensional problem which is
a wire and embedded a §-type batrier will become a quasi-one-dimensional problem. In
some sense, it is earlier to be solved then a two-dimensional problem here and we use the
scattering matrix method.

In the next chapter, we will discuss what is the same and what is different between
these two approaches, MM and PFTLS, and which one is better in our case. And we have
also compare the numerical results of these two approach, and make sure our calculation

is correct and believable.
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Chapter 5

Comparing the numerical results
from the MM and PFTLS

approaches

We compare the numerical results'from the MM and PFTLS approaches in this chapter.
We compare the curves of transmission ,the wavefunction and current density patterns,

and find that the results of these two approaches are almost the same.

5.1 Transmission

In the Fig. 5.1, we plot the transmission versus the amplitude of magnetic field of the two
approaches, MM and PFTLS. We fix the incident energy at £ = 7w, E* which X = 3 and
the barrier strength is repulsive with 1.0E* in (a) and attractive with —1.0E* in (b). We
find that the curves in both approaches in Fig. [5.1(a) and (b) does not overlay together
but they have more overlap when we increase the numbers of subbands. In the Ch. 3
and 4, we know that the two approaches have their own regime which can saturate easier
and the unsuitable regime which can not saturate in the calculations, e.q. the approach of

MM is more easier to saturate in the lower magnetic field regime and can’t saturate in the
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Figure 5.1: The transmission versus the amplitude of magnetic field of the two approaches,
MM and PFTLS. we fix the incident energy at 7w, £* which X = 3 and the barrier strength
is repulsive with 1.0E™* in (a) and attractive with —1.0E* in (b).

higher magnetic field regime which we had discussed in the Sec. 3.6; and the approach of

PFTLS is easier to saturate in the higher magnetic field regime and hard to saturate in
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the lower magnetic field regime which we had also discussed in the Sec. 4.5. According
to the different of these two approaches, the curves in Fig. 5.1 of these two approaches
is reasonable that does not overlay together. But the the regime of lower magnetic field,
the curves should be closer as we increase the numbers of subbands which used in the
approach of PFTLS, and it does, e.q. the curves of approach of MM are roughly saturate
below the amplitude of the magnetic field is B = 1.0B*, and the curves of approach of
PFTLS are saturate above the amplitude of the magnetic field is B = 1.0B* by using
80 subbands. The curves should overlay together near the amplitude of magnetic field is
B =1.0B* in the Fig. 5.1.

Besides the comparing of quantity, in qualitatively the character is the same in both
approaches which showed in the Fig. 5:L.

In the Fig. 5.2, we compare the, curves of trahsmission versus incident energy of the
two approaches, MM and PFTLS. In this ecomparison, we fix the amplitude of magnetic
field to B = 1.0B* and the strength ‘of barriersto 1.0E* but repulsive in (a) and attractive
in (b). According to the discussion of the Fig. 3.3/ and Fig. 4.2, we use 30 subbands for
the calculation of the approach of MM and the curve is saturate below X = 4, and use 80
subbands for the calculation of the approach of PFTLS and the curve is saturate. And we
find that the curves in Fig. 5.2l overlay together in the lower incident energy, e.q. X < 3,
and within a little space between two curves above X = 4. And the two curves roughly
overlay together between 3 < X < 4.

In Fig. 5.3, we enlarge the regime of 0.95 < X < 2.5 and 1.8 < X < 2.01 in Fig. 5.2,
and check how close of the curves of the two approaches. In the Fig. 5.3(a), it is still
hard to separate the difference of curves of the two approaches, MM and PFTLS. In the
Fig. 5.3(b), we find that the curves of ‘MM, N, = 30" and ‘PFTLS, N, = 80’ does have
a little space between them and the spacing depend on the numbers of subbands used in
the calculation, the more numbers of subbands used, the less spacing between the two
approaches. According to this, we believe that the two approaches will be the same if we

can use “enough” subbands, but it is hard to do in the numerical calculation. And the
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Figure 5.2: The transmission versus the incident energy X of the two approaches, MM
and PFTLS. The magnetic field amplitude is 1.08* and the strength of the repulsive
barrier is V5 = 1.0E* in (a) and the attractive barrier is V5 = —1.0E* in (b).

physical insight must had be saturate down in both approaches.
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2.01 in (b).
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Compare the wavefunction of the two approaches, MM and PFTLS, for

—10 < x < 10 and y = 0. The incident energy X = 1.6, and the strength of the barriers
are repulsive and 1.0 in (a) and (c), attractive and —1.0 in (b) and (d), and the amplitude
of the magnetic field are 0.1 in (a) and (b), 0.2 in (c) and (d).
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5.2 Wavefunction and current pattern

In the Fig. 5.4, we plot the wavefunctions of —10 < x < 10 and y = 0 by using the
two approaches in the case of incident energy X = 1.6, we also change the amplitude
of magnetic field and strength of barrier, which the amplitude of magnetic field are 0.1
in figures (a) and (b) and 0.2 in figures (c) and (d), and the strength of barriers are
repulsive, 1.0, in figures (a) and (c) and attractive, —1.0, in figures (b) and (d). And
the used numbers of subbands are 50 in the approach of MM and 20 in the approach of
PFTLS, which the wavefunction of MM and PFTLS are both saturate.

In the Fig. 5.4, we can find that the two curves of the two approaches are very close
in each figure. In the case of B = 0.1 in figures (a) and (b), the two curves are almost
overlap together, but B = 0.2, in figures (c) and (d), the two curves look similar but not
overlap together. The spacing between the two.curves become wider as the amplitude of
magnetic field increase, because the transmission of the the approach of PFTLS is not
saturate by using this few subbands“n calculation, which we had also discussed about
the Fig. [5.3/in the section 5.1. But inthe ¢ase of B = 0.1, the amplitude of the magnetic
field is too small, and the two approaches can both describe the system with magnetic
field well.

In the Fig. 5.5, we plot the current density patterns in the wire with the implied
magnetic field, B = 0.158*, and the incident energy X = 1.9, the strength of the barrier is
20 which is very strong the the total transmission is approach to zero. And the Fig. 5.5(a)
is plotted by using the approach of MM and (b) use the approach of PFTLS. The two
current density patterns of the two approaches look very similar. The direction of the
current density patterns are almost the same but few place near x = 0. The current
density of the place that the direction is different is very small and near the place which
the current flow together, and it is very sensitive to the direction. But in the place of
larger current, the current patterns are the same. Besides the direction of the current

density patterns, the strength of the current density are also similar of these two figures
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Figure 5.5: The current density in the wire with magnetic field, B = 0.15B*, and the
1.9 which is close to the subband bottom of second subband.
And the strength of the barrier is repulsive, 20. (a) is the current density by using the
approach of MM, and (b) use the approach of PFTLS.

incident energy is X

in the Fig.
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5.3 Summary

In this chapter, we had compare about the numerical results of the two approaches, MM
and PFTLS, and find that the results are very close in quantity and should be the same
in qualitative. In the Sec. 5.1, the curves of the transmission versus incident energy
are qualitatively the same, and the difference between the two kinds of curve is smaller
as increasing the subband numbers. And in the Sec. 5.2, the wavefunction and the
current density patterns are the same, but the quantities are different between these two
approaches and it is because the transmission is not saturate in the approach of PFTLS
by using 20 subbands. In the final, we can be sure that these two approaches have the
same results in this calculation of this model, and each one has its suitable regime for

approaching.
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Chapter 6

Magnetoconduction in quantum

channel with a repulsive barrier

In this chapter, we discuss the phenomena with a repulsive barrier in the wire by tuning
the magnetic field and the barrier strength. And we investigate the wavefunction and the
current density patterns, the generation of the edge states and the edge state resonance

above each subband bottom but the first subband.

6.1 Tuning of the magnetic field

In the Fig. 6.1 and Fig. 6.2 we plot the transmission of the first subband and second
subband as a function of incident energy for various amplitudes of magnetic field from
0.0B* to 2.0B* and the strength of the repulsive had be fixed to 1.0. In these figures, we
find that the curves of transmission has valley structures above each subband bottoms but
the first one. In the Fig. 6.1, there is one valley above X = 2 for each curve, and in the
range of the energy above X = 3, the curves have two valleys in the larger magnetic field,
e.g. B> 1.2B*. And in the Fig. 6.2, in the range of the energy above X = 2, the curves
have one valley when B > 0.6B*; in the range of the energy above X = 3, each curve

has one valley at least here and has two valley as B > 1.6B8*. The valley structure are
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Figure 6.1: The transmission versus .the incident energy and incident from the first
subband for various amplitudesof the magnetie field form 0.0B8* to 2.0B8* and the strength
of the repulsive barrier is Vy = 1.0E*. The dips structure happen above X =2 and X = 3

the resonance of the edge states on the transverse direction near the barrier and we will

discuss the valleys in detail in the section 6.3/ with the wavefunction and current density

patterns.

6.2 Tuning of the barrier strength

In the Fig. 6.3, the valley structures become stronger as increasing of the strength of the
repulsive barrier, and we can see the two valleys above X = 3 become more clear when the
strength of the magnetic field is larger. It is because the strength of the valleys depend
on the amplitude of the overlap between the subbands and the impurity barrier, the more

of the barrier potential, the larger of the valley profiles.
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Figure 6.2: The transmission“versus the incident energy and incident from the second
subband for various amplitudesof the magnetie field form 0.0B8* to 2.0B8* and the strength
of the repulsive barrier is V, =+1.0£*. The walleys structures happen just above the
integral X

6.3 Analyses of numerical results and physical inter-

pretations

In the Fig. 6.4, we plot the total wavefunction and the current density patterns which
we can see the edge states clearly in the wire of the repulsive barrier is 20, which is
really strong and the transmission is almost zero, the amplitude of the magnetic field is
B = 1.0B*, and the incident energy is X = 1.7 and incident from the first subband. And
the magnetic length is 1.0a*, and the cyclotron radius is 2.8a* in this case. In the figure
of the transport particle current density, the electrons are seen to describe the edge state
current along the edge of the wire, the edge states is clearly generated in the Fig. 6.4}
we are in the quantum Hall regime. The particle current density flow into the wire on

the topside form the left side, and almost total reflect to the left on the underside of the
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Figure 6.3: The transmission versus .the incident energy and incident from the first
subband for various strength ofirepulsiverbartier from 0.0E£* to 1.4E™ and the amplitude
of the magnetic field is 2.0B*.
wire and before the barrier at x = 0. This phenomenon and the path of the edge state
is suitable to the classical picture that the charged particle move on the edge when it is
applied a large magnetic field.

In the Fig. 6.5, Fig. 6.6, and Fig. 6.7, we plot the wavefunction and the current density
patterns of the strength of repulsive barrier is V5 = 1.0E*, the amplitude of the magnetic
field is 0.58* and the magnetic length is [z = 1.41a* , the the incident wave come form
the first subband which the incident energy is X = 1.8, X = 2.2, and X = 2.8 in the
three figures in sequence. And the cyclotron radius are r. = 5.98a*, r. = 7.33a* and
r. = 8.97a* in the three figures. The small curve on the right of the top of each figure is
the transmission versus the incident energy and the wave incident from the first subband.

We want to find out the reason why there is a resonance valley near X = 2.2 in the
curve of transmission. In the Fig.[6.5, the edge state had generated and come from the left

to the right side in the upside of the wire, and the current has interference with the other
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Figure 6.4: The total wavefunction and tﬁé current density patterns in the wire with a
strong repulsive barrier Vy = 20E*, the amplitude of the magnetic field is 1.0B*, and the
incident energy is X = 1.7 from the first subband.

edge state on the underside of the wire. We don’t think the edge strongly interact with
the evanescent modes because the amplitude of the evanescent mode is two order smaller
then the propagating mode. In the Fig. 6.6, the incident energy is X = 2.2 and there is a
valley on the transmission here. We can find that the propagating mode interact with the
second propagating mode and have back scattering in both first and second propagating
modes. And in the Fig. 6.7, the incident energy is X = 2.8 which is the highest one of
these three figures. The first propagating mode had shift to the edge, and the center shift
of the second propagating mode is also larger then the shift in Fig. 6.6, The interference of
each propagating mode itself or between each other is small and have less back reflection.

We find that the resonance valley near X = 2.2 is a resonance with the propagating
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Figure 6.5: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is Vy = 1.0E*, the amplitude of magnetic field is B = 0.5B%,
and the incident energy is X = 1.8 from the first subband; Left of bottom: The wave-
function and the current density components of the first subband; Right of bottom: The
wavefunction and the current density components of the second subband.

modes themselves but not have much interference with the evanescent modes because

we can see the amplitude of the evanescent mode is not very large. In order to have
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Figure 6.6: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is Vy = 1.0E*, the amplitude of magnetic field is B = 0.5B%,
and the incident energy is X = 2.2 from the first subband; Left of bottom: The wave-
function and the current density components of the first subband; Right of bottom: The
wavefunction and the current density components of the second subband.

the resonance, the shifted wavefunction of propagating modes must have some overlap to

each other and then the resonance can have interference between each other. Due to the
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Figure 6.7: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is Vy = 1.0E*, the amplitude of magnetic field is B = 0.5B%,
and the incident energy is X = 2.8 from the first subband; Left of bottom: The wave-
function and the current density components of the first subband; Right of bottom: The
wavefunction and the current density components of the second subband.

necessary overlap of each wavefunction, the resonance easier happen at the energy which

is a little large then each subband bottom.
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This kind of resonance is very different with the resonance of the finite range potential.
The resonance of the finite range potential is that one propagating mode has interference
with itself and depend on the phase of the path difference, this kind of resonance could
be a large one; but the edge state resonance is due to the interference of the propagating
modes which are always not only one propagating mode, and the resonances are not a
large one. And another specially character of the edge state resonance could be generated
for a d-type potential which is a localized potential on the longitudinal direction. That is
never happened for a coordinate resonance without magnetic field.

And then we also plot the wavefunction and the current density patterns in Fig. 6.8
of the case of strength of repulsive barrier is Vj = 1.0E™ and the amplitude of magnetic
field is 0.5, like the parameter of thethree figures Fig. 6.5, Fig. 6.6, and Fig. [6.7. But
change the incident energy and.incidentisubband. to the second propagating mode. In
the Fig. 6.8, the incident energy is X = 2.2°and the cyclotron radius is r. = 2.99a*. The
physical insight is similar to the abeverdiscuss, but in this figure we can easily see the
particle current cycle and the diameter of the cycle is match to the magnetic length and

the cyclotron radio (but the cyclotron radius is a radius) in order.

6.4 Summary

In this chapter, we find that the resonance valleys is according to the interference of
the propagating modes themselves and not only one propagating mode. In order to
have the resonance and the interference between different propagating modes, the shift
wavefunction must have some overlap to each other and the impurity potential. Because
our potential barrier is uniform of the transverse direction, the more strength of the
impurity potential, the larger of the overlap. Sometimes, the wavefunction have not only
one peak or one node, due to the overlap of the wavefunctions, they may have two or
more valleys on the transmission. Besides, Due to the necessary overlap between each

subbands, the resonance easier happen at the energy which is a little larger then each
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Figure 6.8: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is 1.0, the amplitude of magnetic field is 0.5, and the incident energy
is X = 2.2 and incident from the second subband; Left of bottom: The wavefunction and
the current density components of the first subband; Right of bottom: The wavefunction
and the current density components of the second subband.

subband bottom. In other words, they should have a wavefunction with small kinetic

energy or small cyclotron radius to be the media to mix the propagating modes together.

71



CHAPTER 6. MAGNETOCONDUCTION IN QUANTUM CHANNEL WITH A
REPULSIVE BARRIER

This kind of resonance will not happen above the first subband bottom, because there is
only one propagating mode here.

This kind of resonance is very different between the resonances due to the multiple
scattering in a final range of potential. The resonance of the multiple scattering of a final
range potential is that one propagating mode has interference with itself and depend on
the phase difference of the multiple scattering and the position difference; this kind of
resonance could be a large one. The edge state resonance is due to the interference or the
overlap of different propagating modes and the impurity potential, the amplitude of the
overlap are often small and the resonance will not be a large one.

And another specially character of the edge state resonance could be generated for
a 0-type potential which is a localized potential on the longitudinal direction. The edge
state resonance is a kind of resonanceron the transverse direction, and differ with the
resonance on the longitudinal -direction without magnetic field. The physical insight is
close to the classical picture, which theedgestates mean the charged particle move along
the edge and the potential barrierwhen it is applied a magnetic field. When the edge
state move along the potential barrier, there are two boundaries which are the edge of
the wire around the edge states, and the edge states can have the resonance between the

edge of the wire on the transverse direction.
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Chapter 7

Magnetoconduction in quantum

channel with an attractive barrier

We discuss the phenomena with an attractive barrier in the wire by tuning the magnetic
field and the barrier strength in‘this ¢hapter. And we will investigate the effective strength
of the impurity barrier with the applied magnetic field, the two quasi-bound states of the
evanescent modes in pair caused from the complex property of eigen-function, and we
also compare the magnetic length and the cyclotron radius with the classical width of the

wire.

7.1 Tuning of the magnetic field

In the Fig. 7.1, we plot the transmission as a function of X for various B and fix Vj =
—1.0E*. And in the Fig. 7.2 we change the amplitude of the applied magnetic field from
0.0B* to 5.0B* and mark the position in energy of the dip structures, and the strength
of the impurity barrier is —1.0E* in (a) and —1.4E* in (b).

In the first curve of the Fig. [7.1(a), because the impurity barrier is uniform on the
transverse direction, the system should be symmetry without magnetic field and could

be reduced to a one dimension problem which T ~ and there are not subband

1
1—2V, ik’
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The transmission versus the incident for various amplitudes of magnetic field

from 0.0 to 2.0, and the strength of the impurity barrier is 1.0.
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transition between each subbands.

As we apply the magnetic field to B = 0.2B*, there is a fano profile happened suddenly
at X = 1.79. And then we increase the amplitude of magnetic field to 0.4B*, the fano
has a blue shift to the higher energy at X = 1.85. we can find that the first dips move
to the higher energy when we increase the applied magnetic field till B = 0.8 B*(which is
figured in the Fig. 7.2)), and the fano become more and more sharp. As we increase the
amplitude of magnetic field to 0.68*, the second dip appear below the subband bottom
of the second subband. The larger of the magnetic field, the second dips have red shift to
the lower energy till B > 2.8B*.

And then we trace out the relation of the energy of the first two dips and the amplitude
of the applied magnetic field. In the Fig: 7.2, we and find that in the small magnetic field
regime, the first dips move to the higherienetgy and the second dips move the the lower
energy. As increasing the amphtude of magnetic field, the two dips mix together and the
minimum of the transmission of the dipsswillmot totich zero in the regime of the magnetic
filed near 0.7B*; the Fano structures.is gone in this regime. And in the high magnetic
field regime, the third and the fourth dips appear below the bottom of second subband.
As long as the magnetic field is large enough, the fifth and sixth dips or the 7-th and 8-th
dips will be appear.

And in the Fig. 7.2, we find that the larger of the applied magnetic field, the smaller
of the energy difference of the first two dips, and in the high magnetic field regime, the

first two dip degenerate into together.

7.2 Tuning of the barrier strength

In the Fig. 7.3l and [7.4), we fix the amplitudes of the magnetic field of these two figures to
0.2B* and 1.0B*, and plot the transmission as a function of X for various V{ from 0.0E™*
to —1.4F™.

We find that the energy of the dip structures move to the lower energy as the strength
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Figure 7.2: The position in energy X of the dip structure in the transmission curve versus
the amplitude of magnetic field; the strength of the impurity barrier is 1.0E* in (a) and
1.4E* in (b).

of the attractive barrier become larger. In the Fig. 7.3, we find that the energy spacing

between one and the next data is getting larger when we increase the strength of the
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Figure 7.3: The transmission as a function of X for various strength of impurity barrier
from 0.0 to —2.0F*. The magnetic fieldis 028",

impurity barrier, but in the Fig. 7.4, the difference of the energy spacing does not change
so obviously. The energy spacings or the position of the dips have fewer dependence in
the higher magnetic field regime.

In the regime of low magnetic field, the edge states are not generated and the wave-
function is spread in the center of the wire. The effective impurity potential should be
proportional to the impurity barrier in the wire below the Fermi energy. In the Fig. [7.5]
we define 0 F is the energy difference between the first dips and the subband bottom of
second mode, and we find that the slope of the curve approach to 0.5 as the magnetic
field approach to 0.0B*, which mean that the relation of the 0 E' and the strength of the
impurity barrier is Vi o« VOE or 6E V2 in the small magnetic field regime. In the
regime of high magnetic field, the edge states are generated and shift to the edge of the
wire. In this situation, the transport of the two dimensional problem can be reduced to a

one dimensional like problem, and the electrons moving in the wire only see the barrier in
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Figure 7.4: The transmission as a function of X for various strength of impurity barrier
from 0.0 to —2.0E*. The magnetic field is 1.0B*. Plotting Fig(a) again of energy range
at 1.7 to 2.1 in Fig(b).
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Figure 7.5: The relation of the position of the first dips with V4.

the edge regime which is a small area. And the‘effective impurity potential is no longer
the barrier in the wire and below the fermi energy, but the part of the edge regime, the
effective strength of the effective impurity potential will be proportional to the strength

of the impurity barrier more linearly.

7.3 Analyses of numerical results and physical inter-
pretations

In the Figs.7.6/ - [7.10, we plot the wavefunction and the current density patterns of the
first two dips for Vj = 1.4E* and the amplitude of the magnetic field is 0.4B8*, 0.7B8*, and
1.0B* correspondingly, which the first two dips have mixed together at B = 0.7B".

We first determine the generation of the edge states depend on the amplitude of the
magnetic field. In the Fig. [7.6 and 7.7, the applied magnetic fields are both 0.48* and

the magnetic length is {5 = 1.58a* and the cyclotron radius are 7.23 and 8.31 in the two
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Figure 7.6: The wavefunction and the current density patterns at the first dip with
B = 0.4, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

figures. The cyclotron are both larger then the classical width of the wire, which are
r. = 4.89a* and r. = 5.62a*. And we can also see the figures, the interference between the
upside and downside edge states is still viewable in the center part of the wire, and the

edge states are not clearly generated. And in the Fig. [7.8, the amplitude of the applied
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Figure 7.7: The wavefunction and the current density patterns at the second dip with
B = 0.4, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

magnetic field is 0.78* and the magnetic length is [g = 1.20a*. The cyclotron radius is
r. = 4.52a™* in this figure and the classical width of the wire is 5.34a*. The length scales
of cyclotron radius and classical width are more comparable and a little smaller then the

case of B = 0.4B*, and we can also see the figure and find that the interference is less
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Figure 7.8: The wavefunction and the current density patterns at the dip structure with
B = 0.7, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

in the center part of the wire. The edge states are roughly generated in this magnetic
field regime. In the Fig. 7.9 and [7.10, the amplitude of the magnetic field is B = 1.0B*
and the magnetic field is 1.0B* in these two figures. The cyclotron radius are 3.1a* and

3.2a* and the classical width of the wire are 5.26a* and 5.42a*, and it is allowed to have
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Figure 7.9: The wavefunction and the current density patterns at the first dip with
B = 1.0, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

the skipping orbit current in the wire. The cyclotron radius are smaller then the classical
width and we can also see the figures, the amplitude of the interference of the edge states
in the center part of the wire is very small and the edge state had been already generated.

Due to the comparison, we know that we can compare the cyclotron radius and the width

83



CHAPTER 7. MAGNETOCONDUCTION IN QUANTUM CHANNEL WITH AN
ATTRACTIVE BARRIER

S20Vm1d4X1d9177B1d00 L
5 T

O . ZO-SW
T SOIONG o k
. o 1 15 2

5

4’ 4.5

L 7 4

PSRRI R

===

Figure 7.10: The wavefunction and the current density patterns at the second dip with
B = 1.0, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

of the wire to know does the edge states are generated or not, although it is not really
correct and roughly.
In the system with magnetic field, we have two length scales about magnetic interaction

scale, magnetic length and cyclotron radius. Cyclotron radius is more classical-like then
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the magnetic length and is better to describe the circular motion due to the Lorenz force.
And we can also use the scale, cyclotron radius, to separate the edge states and the
traversing states in the Fig. 1.1l

The amplitude of the wavefunction in the Fig.[7.7/is much larger then the other figures,
the maximum value is at the center of the z- and y-direction and about 37. The next
largest one is the Fig. 7.9, the maximum value is about 27. And the dip structures are also
very sharp for these two figures, the wavefunction and the particle are highly attracted in
the evanescent mode and be a strong bounding state.

And then we look for the current density patterns. The applied magnetic field in the
system is perpendicular to the 2DEG wire and parallel to the 42 direction. The current
density is the particle current and according to the applied magnetic field, the current
flow to right on the upside of the wireiand.flow. to left on the downside as the edge
states had generated. And we can also find the current density patterns of the bound
states move vortically and anticlockwiseimmsubstance. Some small structure of the current
density pattern between two edge ‘states have opposite current density patterns, that are
the interference of the two main edge state current.

In the Fig. [7.2(b), we can find that the point curve of first dips and the second dips
have overlap near B = 7B*, and compare to the Fig. [7.2(a), the original properties and
reasons of these two dips should be different. In the five figures, Figs.7.6:7.10, the Fig. 7.6,
7.8, and [7.9 are the wavefunctions and the current density patterns of the first dips for
various magnetic fields, and the Fig. 7.7, [7.8, and [7.10 are the second dips. Fig. 7.8 is a
mixing point and we can look for the other four figures first, it is easy to compare the
wavefunction and the figures of the evanescent mode to find that the wavefunction and
the current density patterns are very different between the first dips and the second dips.
For z = 0, we can find that there are even peaks on y-direction in the figures of first dips,

and there are odd peaks for the second dips.
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In order to discuss this phenomenon, we recall the equation 4.63

1"N3vy 0 ~ iz — L2 ( )2
U, (z,y) = —=Lel e [da! i, (2 )e VW e @ g (2! — 7.1
(w0 = 2 e O -0) T
for x = 0, we can rewrite Eq. (7.1)
ZnN?ify 7 —iVQur  —L1~242
U,(0,y) = dx P, (x)e TV e 2V H (yx) (7.2)

V2
— a2 iu@)ulzn) (73)
where we define ¢, (x,y) = %e*”myme_%”2x2Hn(7x).

For the evanescent mode (n = 1), ¢i(x,y) = (WQ)_l/"W?xe_@{sin (v Qay) +
icos (yv/Qzy)}. The real part of ggl(x,y) 1s7odd on the y-direction and even on the
x-direction; the imaginary part of ggl (2, y)is even-on the y-direction and odd on the z-
direction. And then we compatre to theresults of the wavefunction patterns, the real part
of the ¢ (z,y) should be eliminated or be very small in the integration of Eq. (7.3) for
the first dips; and similar, the imaginary part of ¢ (x,y) should be eliminated or be very
small in the integration for the second. Due to this property, the function zﬂl(x) have a
phase shift or phase difference between the two dips.

Extending the above discussion, we know the wavefunction have a phase shift between
the first dips and the second dips, and these two bound states are according to the real
part and imaginary part of the wavefunction on y-direction, ¢ (k,, ).

The real part and imaginary part are both part of the function &n(x,y) and have
the same eigen-energy, and depend on the magnetic field. As we fix the magnetic field
and incident into the wire from one state, there are two kinds of overlap coupling to the
evanescent mode for the impurity barrier, one couple to the real part of the evanescent
mode and the other one couple to the imaginary mode. The effective amplitude must be
different due to the even and odd property of the evanescent mode. When we incident

from the first propagating mode and applied a magnetic field, the wavefunction shift to
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the edge on both +y-direction and symmetry for the plus or minus wave vector, it has
larger overlap with the real part of the evanescent mode which is even. That is why the
evanescent mode of the first dips is even in the figures. And the overlap depend on the
wavefunction between incident mode and other modes, the overlap with the even (real)

part will not always be the larger one and be first dip.

7.4 Summary

In this chapter, we have discussed the magnetoconduction in the wire with a attractive
barrier, and there are more than one dip structure as we apply the magnetic field. The dips
structure move with the amplitude of the applied magnetic field; in the small magnetic
field regime, the fist dips structures haye the blue shift,and the second one move to the
lower energy; and in the high magnetic field regime, the first two dips structures degenerate
together.

When we change the strength of the impurity barrier, the dips structures move to
the lower energy as the impurity barrier become more attractive. In the small magnetic
field regime, the energy shift of the dips structure move like a quasi-2D system and the
dE o V§; and in the high magnetic field, the edge states had generated and the current
density patterns move like a quasi-1D system and the energy shift of the dips structure
proportion to the strength of the impurity barrier more linearly.

And we have also discussed the wavefunction and current density patterns of the first
two dips structures and investigate the reason the the two dips. The profiles of the bound
states in the first and second dips is due to the real and imaginary part of the evanescent
mode and the overlap of the propagating mode and the evanescent mode. The impurity
barrier is different for the real part and the imaginary part, and the amplitude of the
overlap between wavefunction and impurity barrier correspond to the position of the two
dips. And that is why the position curves in the Fig. 7.2 has mixed together or cross over.

And we can also know that the wavefunction has a phase shift between these two dips,
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the wavefunction may be even at the energy of the first dips and changed to odd at the
second, or be contrary.

Furthermore, we have also discussed the two length scales, magnetic length and the
cyclotron radius. Cyclotron radius is more classical-like then the magnetic length and
is better to describe the circular motion due to the Lorenz force; the edge states is a
classical-like phenomenon. And we can also use the scale, cyclotron radius, to separate

the edge states and the traversing states in the Fig. [1.1.
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Chapter 8

Concluding remarks

In this thesis, we have investigated how the edge states happen and the other phenomena
in the wire as applying the magnetiec field. We solve the physical model in two approaches
and compare the results to have a believing feature about the physical phenomena. And
we also using the wavefunction and. the“current density patterns to investigate the edge
states and the other properties in‘detail. In the introduction, we know that the classical-
like picture of the edge states had be used for a long time and it is quite reasonable to
discuss most of the experiments, and we also compare our results to the classical-like
picture and have a explanation in quantum mechanic.

In the beginning of this work, we have used the mode-matching approach to solve
the physical model, but the conservation is not good enough in the high magnetic field
regime and we can not plot the wavefunction and the current density patterns which
the edge states had built up. Without the figures of wavefunction and current density
density pattern, it is hard to make sure what kinds of structures were caused by the edge.
And then we use the approach of partial Fourier transformation of Lippmann-Schwinger
equation. This approach is better in the high magnetic field regime and the plotting of
the wavefunction and the current density patterns is stable to show the patterns of edge
states. And we also compare the results of these two approaches. In the regime of low

magnetic field, the results of two approach are almost the same; this is a independent
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check of the calculation.

And then, the first thing is separating the two kinds of states in the wire as we apply
the magnetic field, the edge states and the traversing states which is showed in the Fig.[1.1.
We can compare the cyclotron radius and the classical width of the wire for a given Fermi
energy, as long as the cyclotron radius smaller then the width of wire, the electrons can
have a circular motion along one edge without touch another edge on the other side; and
the edge states had built up. The applied magnetic field in the system is perpendicular
to the 2DEG wire and parallel to the +2z-direction. The current density is the particle
current and according to the applied magnetic field, the current flow to right on the
upside of the wire and flow to left on the downside as the edge states had generated. And
we can also find the current density, patterns of the bound states move vortically and
anticlockwise in substance. Some smallistructure’of the current density pattern between
two edge states have opposite-current density patterns, that are the interference of the
two main edge state current.

When a repulsive impurity barrietis embedded, the edge state resonance will be gener-
ated. The edge state resonance is due to the interference of different subbands, especially
the propagating mode, and be easily happened in the range of small kinetic energy, like
the beginning of each subbands. And the edge state resonance can be introduced for a
0-type embedded impurity barrier, which is a local potential in the longitudinal direction.

As we embed an attractive impurity barrier, the quasi-bound states will be generated,
and there are not only one quasi-bound state but two or more as the applied magnetic
field is large. In usually, the quasi-bound states generated in pair, and one is caused from
the real part of evanescent mode and the other is caused from the imaginary part. Due
to this property of the dips, we know the wavefunction has phase shift as increase the
incident energy or the magnetic field, and it is corresponding to the position of the edge
state, the path of the edge states are different when the kinetic energy and the magnetic
field are changed, and the difference of the path may introduce the phase shift.

The position of the dips also move as we change the strength of the impurity barrier.
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In the case of attractive barrier, in the small magnetic field regime, the shift of the
quasi-bound state energy proportion to the square of the strength of the impurity barrier,
dE o< V; and in the high magnetic field regime and the edge state had generated, the
energy shift of the quasi-bound state move more linearly to the strength of impurity

barrier.
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Chapter 9

Possible future works

We have a basic model of a d-type impurity barrier in a wire with magnetic field. It is
easy to extend form this model to'a final range potential in the longitudinal direction by
using the scattering matrix method in the future.- For example, we already have some

numerical results of double barriers or-multiple barriers in the wire with magnetic field.

9.1 Double and multiple barriers

We plot few figures for the case of double barriers and multiple barriers and there are some
interesting structures. In the Fig. 9.1 and Fig. 9.2, they are the results of double d-type
barrier and we had also change the amplitude of magnetic field or the distance between
the two barrier to find out some properties in the figures. It does has some special fano
or dip structure which didn’t happen in the discussion of one impurity barrier. And we
think that the fano and dips structures may be caused from the dot-like pattern between
the two barriers.

We first focus on the repulsive barriers in the Fig. 9.1(a) and Fig. 9.2(a). In the case
of without the magnetic field, we know that the two impurity barriers can introduce the
resonance states on the longitudinal direction between them, and the propagating mode

can have interaction to the resonance states and introduce the resonance valleys, but not
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fano structures. After applying the magnetic field, the resonance valleys are still there.
The current density patterns start to have the circular motions, and in some situation
of the cyclotron radius match the size of the dot, the current density can have circular
motions resonance. This kind of circular motions resonance is a bound state and grab
electrons in the dot. That may be the most possible reason to have the Fano or dip
structures in the figures.

In the figures of attractive barriers, Fig. 9.1(b) and [9.2(b), there may be similar struc-
tures of circular motion resonance, but there are too many structures in the figures and
need more time for further discussion in the near future.

And in the Fig. 9.3, we plot the result of multiple d-type barriers, which is 25 slice in
the wire. we can find that there are mere band gaps as we increase the magnetic field. We
know that the periodic potential:barrierijecan’introduce some band gaps in transmission,
but we still don’t know why the magnetic field move the position of the band gaps and
also generate some extra band gaps.

Also, it might be interesting to discuss these structures and figure out the transport

phenomena such as the Fano and dip structures in the conductance.
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Figure 9.1: Two embedded d-type barrier in the wire which the distance between them
is 2.0a*, and we plot the transmission as a function of incident energy X for various
amplitude of magnetic field from 0.0B* to 1.0B*, and the strength of the two barrier are
both 1.0E* in (a) and —1.0E* in (b).
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Figure 9.2: The transmission versus the incident energy for double embedded impurity

barrier which the strength is 1.0E* in (a) and —1.0E* in (b), the distance between the
two barrier is changed for various distance from 2.0a* to 4.0a*.
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Figure 9.3: The transmission of the first channel versus the incident energy for 25 slices of
0-type barrier and the distance between two near slices is 3.0a*. We change the amplitude

of magnetic field from 0.0B* to 0.4B* in series of these five figures.
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Appendix A

Detail of the integrations

In this appendix we present the detailed calculation of the integrations we used.

We have three kinds of wavefungtions in y-direction, which ¢2(y) is the ordinary wave-
function in the parabolically confined wire with: no-magnetic field, ¢=(y, k,) is the wave-
function in the parabolic wire with magnetie-field,-and ¢ (y) is the wavefunction which

similar to ¢2(y) but replace the parameter w, by .

°(y) = Nge =" H, [Vw,y] (A.1)
W) = Nie i, [V (A2
H) = N0 [V a,)] (A.3)
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where

| =

—-1/2
Ne = (znn;/ )
y

€

p -1/2
N = (2"nl4/ =
Fe (nfs)
-1/2
n 2\k
_ s —%Im(ozn)2 <2le(06n) ) n
N, = N,e 0\
k=0
— Nfe ztmlanl’p,
A, = |30 @0mlen) o
R k! k

There are few integration that have to be caleulated, which are

/ S0 )0 (),
/ oW, (v)dy,

/ O ()07 (y)dy,

/ () v)dy,

/ YL $Edy = +Relay].
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Al [0 (y)or(y)dy

We first calculate the integration of Eq. (A.9).

/ 02, (y) ¢y (y)dy

— YN, / e~ b 1, (o, y)e 100 B[V F an)]dy

/4
where N2 N,, = 93" (m!n!)*l/z (wy§2) e—%lm(an)2An
0

Since the power of the exponential part can be expressed as:

1

1
_éwy?f 'R §Q(y e an)2

—1
= — (wy +Qy"F2Qa,y+ Qa?)

- [(wy + D)y F2Qany + Q]

2
letn = w, +Q
- 2Qa,, Qa, Qa, Qa?
= S Ty () - ()
2 n n n n
—n Qo g 1 Qo g 10 5
= —_— - - _Q

we get

(A.16)

(A.17)

n(2ony2_10),2 — D (yxF8en)2
/ 62, (y) 6 (y)dy = N2 N, e (55~ 39%0 / e 3WFND () Ha (VY F )y,
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The integration part:

/ e TS B (T (VO F an)dy
- /eW”f () Ha(V Sy T V) dy

2
lett:\/ﬁy,y:\/jt
2 7

lotz— ¢ 7 20 4y S
etr=tF—=,t=0+ —
i V2n V21

= \[/ a2 [\/T%xi \/w_ynga”} H, [\/?IL‘QZ@] dr (A.19)

Using this relation 2% H,,(z +4) = Y mg () Hur (V22) Hi(V2y)

\[QMZZ (m p) (niq)H Hp{ @] o F@]

p=0 ¢=0

o Yy 91‘ T
/e 2 ]Hq[2\/; ld (A.20)

and using the relation of Eqgs. (A.75), we have

/ 02, ()= (y)dy
2 m+n 1 Qan _1 2
= N°N, x \/jQ_ 3 () 5 San
n
m n 2 Q n
SR e [ [
g n—q n n

-~

(Min[p,q]—1)/2 QQS-H 3wy —0 2 3Q—wy 3
Z \/_pq[ V(2S+1]) [ (np 2]5 m; [ (nq22]51)! ,m,n areboth odd.

LQS q=2s
x <Mm§”/ Yl e

(B! (452!

,m,n are both even.

0 ,m + nisodd.

\

where N° N, = 2-"2" (m!n!)—m%e—%lmm]z]\n

T
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and simplify this equation, we obtain:

/ 6%, ()6 (y)dy

_ 2m!n! (wa)1/4@%77(5%%)2_%913@[&"]2/\“
n
2wy Qaup,
o Hoey [y LB
X
Z Z 2m=p2r(m — p)! 2n=424(n — q)!

p=0 ¢=0
( (Min[p,q]—1)/2 - -
S fr1(2s +1) fro(B5—=) fr3(5—) , m,narebothodd.

(Min[p,q])/2

x S £(28) fr2(B5E) fra(52) , m,n are both even.

0 , m+ nisodd.

= 2wy Qo |
b o e

N e O Bt 5y

n 2p 249

p=0¢=0

( (Min[p,q]—1)/2 £101) o
> fr1(2s+1) fro(®B ) ) fra(2 5 ) , m,narebothodd.
(Min[p,q])/2
% > fr(2s) er(p_QQS)frg(q_;s) , m,n are both even. (A.21)
0 , m+ nisodd.
where
[ _ Hn(x) wckn
(@) = 5o m n=wy 8 e =—e (A.22)
and
8y/wyfd,, 3wy — 2\, 30 —w, .,
fri(n) = (——=)"/n!, fra(n) = (—=——)"/n!, frs(n) = ( 2)"/nl. (A23)
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A2 [ (y)on(y)dy

Then we calculate the integration of Eq. (A.10).

/ b5 (V) 0k (y)dy

= N, [ B (Ve B [y o

Since the exponential part can be expressed as:

1 1 Vo) 0
a,
- S = SO0y Fn)” = - <\/ﬁy F ) — —az,

we get

/ o5, () on (y)dy

= N;;Nne’%o‘i /e(m”@a")rzflm (\/ﬁy) H, (\/ﬁy F \/ﬁan) dy.

VQa,

2 Y

, ) Qa,, Qu, \ d
- N;Nne—?%/e—'” H,, <p:t AL )Hn (p:F\/_a ) b

Definep = vQy, andp’ = p +

2 2

3

Min[m,n]

Using the identity [~ e ™ H,, (z +a) H, (x +b)dx = ) 2mtnhgmkpn=h_

k=0
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then we obtain

[ oy
NsN 6 SZ EL Mm[zmn] 2m+n K i\/ﬁan " :F\/ﬁan o m'n'
"V Q 2 2 kl(m — k)!(n — k)!

1 1 Q
_ 2—— —ZIm(an)? A

m vV m!n!e

—6 gf % Mmzmn 2m+n K \/ﬁan ¥ \/ﬁan m'n'
2 2 K)l(n— k)!

Mln[m n|
_ A ABS an Z \/—m n n n (:I: Qan)

— A 2ABS(an)2Mm[Zm’n] + s 2.} o (A.27)
= € \/20‘" V2 Wm— ) —n)! ‘

k=0

A3 [ o W)dn(y)dy

/ b (1) 0 (y)dy
= NuN, / e 2FR [\/ﬁ(y ¥ am)} e 2T [\/ﬁ(y T ozn)] dy

letx = \/ﬁy> an = \/ﬁana H;(l‘) = Hm<x*)

N N 1 *\2_ 1 2
— m-n 7*($ qm) 7*(‘% q”’b) *
e 2 2 H,, (x ) Hp( n)dx A28
) / (x T qp) Hn(x F qn) ( )
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the exponential part:

1
—{’+ 0’
—{2® — (£q, £ )z +

leta ==+q, £q,

2

—(r— 2+ {(iqm + qn)’

2
a 1 2
= —(x—=)"— - (xq¢, — (£
(0= 50 = 5 (65, — (+a,)
= P (z— g)z (A.29)
1
where a = ¢, + gn; b= 5(£4;, — (£4)) (A.30)
= / ﬁ*(y)qﬁf(y)dy
lete' =2 — =
— :l: / m H / m /
N / sC DA )y g,
,b2
= N,N ~ Hp(x — b)H, (x + b)dx (A.31)
\/_
- ) Min[m,n] nly/7
Using the identity [~ e ™ H,, (x +a) H, (x +b)dz = > 2m+”_kam_kb"_kW,
k=0
and we could get
= / O (1) 0r (y)dy
Mmmn] min!
— N N 2m+n n m nbn—n s A 2
\/ Z El(m — k)!/(n — k)! (A.32)
where b = 2(ﬂ:qm (£an)) = g{ia% — (+an)}
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b = @{ioﬁn—(ian)}

Q
o= o+ el - 2(ka),) (kay)}

and
Qpmen 1 2im(a,)2—Lim(an)?
Ny, N, =1/ —2" 2 ez e men) A A, (A.33)
T m!n!
= [ werwi
_ AmAne—%[ABS(am)2+ABS(an)2]+%(:ta;‘n)(:tan)
Min[m,n] e
m KIN—K mmn
El(m — k)!(n — k)!
— A, Ae 4[ABS(am)2+ABS(an) 1+$ (xa,) (o)
Min[mi,n| ]
-1 — A.34
x Z Ci S El(m — k)!(n — k)! (A.34)
where
VQ, o, ) vQ .
b= Yo andtor [0 oty b= Han +andtor [ 65w )y
/o) Q. PN
S anrandtor [0 oy b= 3 Hag - adbtor [ 6" Wy

A4 [ mVily)ey (y)dy

/_ 0 )Va)eE (v)dy

= N°N,V, / "3 H,, (Vo y)e "0 o3 00Fan)” BV (y F a,)dy. (A.35)
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The power of the exponential part:

1 1
——w,y? — By — o) — Sy T )’

2
= —%wyzf — By” + 2Byoy — By — %QyQ + Qayy — %Qai
= (g — 32— 5) (200 % D) — B4 — 3002
= -0y’ + 267y — Byp - éﬂai
where 7 = M +08, & =By £ QS”
=~y - gi) +5—i2—ﬁ 0_—Qa (A.36)
V1 1

/ " 8 WValb)e iy

|
= N} Nyexpls=10y8 —Qan)
n

/ o~V w—y> H, (Vy F an))dy (A.37)
gi

+ +
— ¢ YH, {Mﬂtqt vy ]Hn gt+\/§§ FVQa, At
n n n
= eftQHm [ ﬂt—!— “ [Byo + Qan]}
V 7 U 2
Q Q dt
XHy, |\ =t +—[Byo F —5— F Bo] | — A.38
1 n [BYo 9 ] NG ( )
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R e [ T Pt

p=0 ¢q=0
V2Q Wy Oy, 2 [ 2w 20
X Hp—q T(ﬁyo + y2 :Fﬁan)] /e Hy( Tyt)Hq( 1 —t)dtA.39)

And then, we obtain the integration :

m min!
Z pl(m = p)lal(n — )
xHyy [MW + R {@wyo 2 % Ba)
( Mmg:q Vp! ql(n\/g)zs ('2_“:?2;) > (z’g’z;% , D, q, are both even;
X (Mm[pzq% V72 Jplg! %g);s“ (%%i% (2:’:(112);1;1 , P, q, are both odd;
0 , p+ qisodd.

mn!\/w., Q +2 1
PV N expl(S — B8 — SORea, )

\ 2wy Qan Wy
i i Hmfp |: (ﬁ Yo + ) anq [@(6y0 + % + ﬂan)
X
p=0 g=0 2m=p(m — p)!2p 2n=a(n — q)!24
( Min[p,q]/2

> fr(2s) fra(®

22 fra(52
(Min[p,q]—1)/2

9 > fr1(2s+1) fr2(p_228_1) frg(%) . D, q, are both odd;

S

0 , P+ qisodd.

%) . p,q, are both even;
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mlnly/w, ¢£?

= —A exp(

1
. — Bys — §QRe[an]2)

n Hop [@W = —>] ooy [ Y223y F 5= F Ba)

XZZ 2p - 2q
p=0 ¢

—0 ¢=0
( Minp,q]/2
> fr(2s) fﬁ(p}%) frg(qfs) . D, q, are both even;
(Minlp.g]1)/2
8 S fu@s+1) fre(BE) frs(S5=) |, p,q, arebothodd; (A.40)
0 , P+ qisodd.
\
and
.yt — Relon? = ~IRelagst2) - Lo, - pyp(t D) | B0,
‘ (A.41)
where we define that
w + Q Qa,,
D= g gy O (A2
4
frl(n) = (Ewwa)"/n! (A43)
2w
fra(n) = (Ty —1)"/n! (A.44)
202
fr3(n) = (7 —1)"/n! (A.45)

The approach as  — oo, we have the limiting case of Vj is a Dirac delta function

| swviwei

N eféwyysz(\/w_yy)efg(y¥a") H, (\/ﬁ(y Fan)) - N Nn

1/4 .
= o tat) V2L et 0 R0t et B () (VO F ) X A,

N
oam+n 0 1/4 L 5 ) - .
— | e e B o) B (S F o)) X A, (A0
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A5 [ onWVily)ey (y)dy

/_ " e )V dE (y)dy

= N;lenVO/e_égysz(\/ﬁy)e_(y_yoﬁe_%Q(ijo‘")?Hn[\/ﬁ(yIFozn)]. (A.47)

The power of the exponential part:

1 1
—— O — Bly — yo)¥= Sy F &, )

2
1 0 Q0
= _59?/2—5y2+25yoy—5y8—EyziQany_Eafl
Q
= — (24 8y + (2090 + Qan)y — Byg — Son
letn:Q—i_ﬁ’5i:26y0:':905n:26y0:|:ﬁkn
[ + + 42 QO
= Ny _§_y+<§ ) +£——6y0——a2
i N n
=TT T 5 Ad
T +4n B 9 “n (A.48)
_ [ fi 1 2 Q :l: 2 2 Q 2 QZ 2 A49
R _E{ﬁ (o & 0n)? + 282 + %2} (A.49)

109



APPENDIX A. DETAIL OF THE INTEGRATIONS

then:
[~ G,V )y
et? oo 0 o +) 2
= NN, 64"_6%_2an/eXp[_77 (?J_ %) ]Hm(\/ﬁy)Hn[\/ﬁ(y:Fan)]d?lA-E)O)

+
let 4/ =y — %, then the integration became

_op 2, 7 50 0,0
5 Im(ag ] Ane 1n Yo~ 2%

m mn 1
_ QQ—T*
s m!n!

e

—ny’2 \/_ fi \/_ + ,
x / M HA VU + SV + 5 F )y
dt

let t = /ny'; dy—

_ gemn S ABIAAg R

— c.#4n
|n ™

x/etH[ | ‘/2_5 VH [\/;t+\/_(£i$an)]dt (A.51)

and using this identity H,(z+y) =27%2321(") H,—.(v22)H,(v/2y) , Gradshteyn 8.958,

we can get that the part of the integration become

e 8 () () £ () (o)
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X /etQHp ( @t> H, ( @t) dt
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Then we obtain

/ Dy o (y)dy

= 27" A, ﬂeﬂfﬁg S Relan]®
m!n! ™
Q + +
x/e_tH[ ; \/_775 ) H, h/nt—i—\/_(g F ap)|dt
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And finally we have

p=0 ¢=0 277
+0 (p— W)lg — m)lAd |

(A.55)
The exponetial part:
1 2 * 2 * 1 2 2 ﬁ 2 2
UGy + e F 200,y) + 507+ an” F 200y) + 5 (57 + 4o — 200y)}
. Q.
= —{¥(Q+8) —y[Qkay, = an) + 28] + (0}, + ) + By}
let n = Q+ 8, & = Q(+a;, + an) + 26y,
++ ++\ 2 ++2
I R < < S L B N
= —n{y"—vy p +<2n> P+ ™ 5 (™ +an) = By
G L, 2
- _ _> — (o — A.
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The Hermite part:

Hy |V ¥ 03| B [V 7 )|

- 2—’;§: m)Hm_p(q:@a;)Hp(my)xﬂ no (Z)Hn_q(ﬂpx/ﬁan)ﬂq(@y)

p=0 p q=
- 2Ry () (1) /B0, 1 B2 /250 (VB4 5T)
= [ e vweEw)dy

+42 0
= \/g%NmNn exp[€ n - _(Oéan + O‘?@) - ﬁy(z]]

4 2
e f; (j;) (q) o (EV2000) Hy (v 2000,)
< [ S By, (325 )y (A.58)

and the integration part in the above equation:
/ W0 (V) Hy (V) dy let iy =1,
_(t_fjiy 2Q 20 dt
= € Vil Hy(\ | —y)H,(y | —Yy)—
/ Wy S 2
Min(p,q) ——ﬁ
0 0 ++
) G e () o
B+Q 2(62 — ?)

by using this identity, Gradshteyn 7.374.9 ,

Min(m,n)

/ T e {1, (aw) Hy (a)de — /7 2::0 2% 1 (’Z) (Z) (1=02) " " Hyppnon [ﬁ} .

h (A-60)
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And then we could obtain

| o vty
= \/EVONmNn ze#_%(afnzﬂ‘a%)—ﬁy(ﬁ
n

X2 MMZZ( )() Hpy(FV29005;,) Hyo(FV2000,)

p=0 ¢=0

B GR) e () oo

xk=0

where n = Q + 3, ¢ = Q(+ak, + o) + 280

or we could simplify this equation to

/ O ()Va(y)on ()dy
T \/7 %(Pu%(ozm)2 + Re(a,)?) — Byd]
zm: H a,) n—q(:F\/Ea/n)
Min(p, q) esa_,
mhal (o ONET g (YO
X — Alp—r)g— k) (ﬁ + Q) 27" Hpiq-2n ( T Q2)>(A.62)
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AT [yoordy = £Re|ay)]

/ yNpe 20T H [V Q(y F o)) - Nae™ 2070 H, [VQ(y F a,)]dy

let x = \/_y, Gn = VQan,

d 2
= N [ e b ST B 0 % ) H (0 F 0)
et
— NET /xe(xg)QHn(ﬂi F ) Ho(x F gn)dz
1
leta = £q, £ .1 b= 5 [&q) — (£0.)]

—b2?

b2
_ Nge—/ = H,( — b)H, (x + b)d +LN2€_/ “Hy(x = b)Hy(x + b)d
o [ e =0 e+ SN [ - o b

Q
a \/ﬁ 1
= = ——(%q, £ q,) =F (] as
NN = E[5):
w.Relk,

where [ ze™®" H, (v — b)H,(z + b)dz = Qand NQef [ ze* H,(x — b)H,(x + b)dz =

/Ie_IQHn(a: — b)H,(z + b)dx = _71 / H,(x = b)Hy (2 + b)d(e™")
~1

— {Hn(aj ),y + b)e L — /ew

2

5 d[H,(z — b)H,(z + b)]}
{/ e Hy(z — b)Hy_1(z + b)dx + /e‘wQHn(a: +b)H, 1 (x — b)dx}

(A.64)

=205k pl(n — k)
20 kln—k)n

=202k pl(n — k)
-2 kl(n—k)*n

and /e‘x H,(x —b)H,—1(z +b) x—Q”n'\/_Z

/ ~*Ho(z + b)H,_1(z — b)dz = 2"n'\/_z

_ / ¢~ Hoy(x — b)Hy (2 + b)dz (A.65)
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A.8 _70 o0 (Y)Vs(y) e, (y)d

/¢o* 162 (y)dy

= @mizn T / Hn(Bgy)e 0P e 30 (/) dy
— NN/wyy O H, () Ha (/@) dy
let 1% = (wy + B)y°, y=ﬁ
and the expential part : — w,y* — B(y — yo)* = —(t — fyy:_ 5)2 — wf:)—yﬁ
— N, N,eorib¥ / T H wy“’i ) ) J@% (A.66)
Using this mathematic relation
70 e’ 1, (az)H,(ox)dx

Min[m,n]
_ 12 Y RLAWAL == oy
= a2 > 2 H!(H)(H)ﬂ 7)) T Hop g {—ﬂ_&z)m (A.67)

x=0
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We have

/ ¢O * 0 ( )
e Wy e ‘fyﬁ’yﬁ yg
2m+”m'n' wy B

In! min
X Z 2"’C m ( ﬁ ) ;an m+nn[ wyﬁ

Nn—r)E w, + 0 wy+ﬁy0
Mln[m n] B _\m—k (_B \n—k
= 4/ / Y Y Hpypin—x A.68
2m2” Wy —|— n—=kK +n-xa) ( )
where a = ﬁwy . (A.69)

Wy —i—ﬁyo

A.9 Recurrence relations of Hermite polynomial

In order to get the better accuracy in numerial analysis,

We change the H,(z) in the calculation to H,(z), where H,(z) = 27" H,(z).

Ho(x) = 1, Hl(l‘) = 21’,
Hy1(x) —2zHy, () + 2nH,—1(x) = 0,
H,(z) —2xH,—1(x) +2(n — 1)H,_2(z) =0,

27" Hy(z) — 27" VaH, (2) + 27" Y(n - 1)H, 5(z) =0,

H, _5(x) =0, (A.70)
and Hy(z) = 1, Hy(z) = 27 Hy(2) = z,

where H,(z) = 27" H,(z).
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Hy(z) «H,1(z) (n—1)H, o(x)
S T N P T R
H,(z) = H,(x) 1 Ha(2)

2l n2ni(n— 1) 2m22(n—2)l

A.10 fe_szm(aa:)Hn(bx)dx

m 4 niseven, m,n are both even.
Min m,n [ m—2s n—2s
] (2ab)2sy/mmin!(a?—1)" 2 (b>—1)" 2

S (252 (2s)!

m +misevenm,nare both odd.

n—2s—

1

(2ab)25+1ﬁm!n'(a2—l) 7= (b%-1)

2

a2
/e H,,(ax)H,(bzx)dx = (Wil n]—1)/2 o
% (=TT s 1)

m + nisodd.
0

\

Using the definition of Hermite polynomial function

—t2 42tz — t"
o (@)
k=0
and we has this relation
- —t242tax  —u’+2ubx —x? - e - "
e e =e ZO %Hm(ax) ZO mHn(ba:)

Integrate over x, and we obtain:

myn
_ 42,2 .2
/ x2 (bl’) lr = e t“—u /6 T +2taz+2ubz I

mln!

m,n=0
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The exponential part can be simplified to:

— 2% + 2tax +2uby = —[1* —2(ta +ub)x + (ta + ub)® — (ta + ub)?]

= —[z — (ta + ub))* + (ta + ub)?

And then Eq. (A.75) become

€t2u2+(ta+ub)2/e(x(taub))Q)dx

—00

which the integration part is a error function and equal to /7.

42,2 2

_ \/7_T€ t*—u?+(ta+ubd)

2(,2_ 2(p2_

_ \/7_T€t (a®—1)+u?(b* =19+ 2taub

0
. . cle, s X~
using the series expansion le™ = E i
k=0

q!

2% 1AL — 199 Ot (2ab)”
- ‘/EZ ol Z
p=0

=]

q=
2

r=0
2Py 2atr (g = )R — 1)7(2ab)"

rl

N

p7q7r

plqlr!

Then we have to reduce the parameter ‘p, q, r’ to ‘m, n’.

m—-r

m:2p—|—r, b= 2

Let

n—r

n=2q+r, q="495,

and m+n=2p+2¢+2r=2(p+q+r)
m—r=2p

n—r=24q

There are three case satisfied the conditions
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r < MIN[m, n]

— m + niseven,
— m — riseven,

— n — riseven.

(A.76)
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1) m+n is even; m,n are both even; and r — even.

oo MIN[m,n]

tmu™ (2ab)"minl(a® — 1)"7 (1* — 1)z
Eq. (A.76) = e
m;() Z m!n! ()
let r = 23,

) i MIN[ZHI:H]/Q ™ (2ab) = minl(a2 — 1) "2 (B2 — 1)"2"

min! (252 1(552) 1 (2)]

m,n=0

2) m+n is even; m,n are both odd; and r — odd. Let r=2s+1.

E A 76 B i (MIN[% 1)/2 My (Qab)Zs-i-lm'n‘(a/ . 1)m 25— 1<b2 . 1>n 2s—1
mn= minl (I I(2s 4 1)!
3) m+n is odd.
Eq.-(A.76) =0.

Finally we have

/ e ., (ax) H, (ba)dx

(
MIN[Zm:’nV (2ab) 2 minl(a?—1) "2 (12 —1) "2
. (m225)|(n 25)|( )
= (MIN{m,n]=1)/2 (2ab)?*T1mlinl(a®—1) meget (b%-1) g
(D) (22T 1(25+1)!

;m,n are both even.

;m,nareboth odd. (A.TT7)

s

0 :m + nisodd.

A1l [e ™ Hy(x+a)H,(z + b)dx

Proof of Mathematic equation

7 " H, (2 + a)H, (x + b)d Mm(zmn) yrtn-pgm-pyi—p____ VTN (A.78)
e m(x+a T a )
E pard pl(m = p)l(n —p)’

oo Hn()

e " and we can have this
= n!

Using the definition of Hermite polynomial 2% = "
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relation:

o2 2(ata)t—2 2(e+bju—u? Z Z m (T + @) 4m H,(z +b) o (A.79)

|
n=0 n=0 n
And integrate over x, we can obtain
/ ~*H,\(z + a)H,(z + b)dz
m‘ n!
n= 0 n=0
_ 6—t2—u /e—m2+2(m+a)t+2(w+b Ul

4242 2
—e t*—u +2at+2bu/e T —l—21’t—|—23¢udaj

22 2 '
—e t* —u”+2at+2bu+(t+u) /6 (z—(t+u)) de

_ ettt dtugf (A.80)
Where/ e‘(m(H“))Qdm:/ e ¥de = /7

and — t* — u* 4 2at + 2bu+(t + u)® = 2at + 2bu + 2tu

€2at+2bu+2tu

2P ()P o= 29 (at)T o= 27 (bu)"
S (p!)z (q!)z (H)

p q r
- Z lglr!

par pq:r:

Letm=p+q,n=p+r.

oo Min[m,n] 2m+n P Ky I

= ; Z I (A.82)

2P+Q+raq br tp-l-qup—i-r

(A.81)

Finally we have

7 T e LU (A.83)
e " Hylx+a T+ MIN=PgMm=ppn= )
— p!(m —p)!(n —p)!
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A.12 fe_<x_y)2Hm(ax)Hn(ozx)dx

Proof of Mathematic equation

[e.9]

/6_(x_y)2Hm(ozx)Hn(ozx)d$

—0o0

Min[m,n] (m—c)/2 (n—c)/2

1)(1 (Oé2 o 1)6 (2062)2 (20( )m—?a—c <20é )m—2b—c
B Z ; Z m'n‘\/_ al b! c (m E2a—c)( 32()—0)

(A.84)

oo Hn(z)

Using the definition of Hermite polynomial 2t~ = Yooy —==t" and we can have this

relation:
f i H;’;—(!”T)sm i H’;—(!m)tne_(‘”_y)zdx
— fn, E [ e e B, (aw) H, (ax)da = /6_52+28°‘$6_t2+2t0‘x6_(x_y)Qdas
m= On
_ 52—t —y? f625aa:+2tazfx2+2xydx — o5ty (sattaty)? /e—(w—a)de
_ JTe s iyt (sattaty)® (A.85)

the exponential part of the Eq. (A.85) could be simplify to:

— =t =y + (sa+ta+y) = (o —1)s* + (o — 1)t? + 2a°st + 2aty + 2asy (A.86)
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and using the series expansion of e =Y &=

e(a2 —1)s2+(a?—1)t2+2a? st+2aty+2asy

o)

_1a2aoo 2_1bt2b°o2c 2CCtC 2, dtd o2 af gF g
- Z(a au) Z(a bl) Z &C'S Z Z Oésy

a=0 ’ b=0 ’ c=0 ’ c=0

_ Z 1 82a+c+dt2b+c+f (&2 - 1>a+ba20+d+fyd+f2c+d+f

alblcld!f!

a,b,c,d, f

m=2a+c+d d=m—2a—c
let ,and : (A.87)

n=2b+c+f f=n—-2b—c
g N m|n|(a2 _ 1)a+bam+n—2a—2bym+n—2a—2b—202m+n—2a—2b
" mlnl Z alblel(m — 2a — ¢)!(n — 2a — ¢)!

a,b,c;m—2a—c,n—2b—c

(A.88)
we have:
d=m-—2a—ce N >0 m >2a+c m>ec, m-—c>2a, "C>a
= =
f=n—-20—ceN2>0 W 20 € n>c mn—c>2b >0
(A.89
Here we confine the range of ¢ first, and then we can also know the range of a and b.
%) oo oo Min[m,n] (m—c)/2 (n—c)/2
> =X X (A.90)
a,b,c,m—2a—c,n—2b—c m=0n=0 =0 a=0

And finally we have:

/e_(x_y)QHm(ax)Hn(ax)dx
Min[m,n] (m—c)/2 (n—c)/2

_ 1)‘1 (a2 _ 1)6 (2@2)2 (2ay)m72a—c (20@)7"*21’*0
= Z g Z m'nl\/_ a b! ' (m—2a—c)l(m—2b—c)!

(A.91)
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