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Abstract

In this thesis, we try to push our theoretical description of magnetotransport in a quantum

wire to the high magnetic field regime. Two different approaches, namely, the mode

matching approach and the partial Fourier transformation of the Lippmann-Schwinger

equation approach, have been employed to cross check our results. We have plotted the

transmission, the wavefunction, and the current density patterns and have interpreted

them in light of the edge states. A simple criteria for the formation of edge states is

reached, which is arisen from the comparison of the cyclotron radius and the effective

width of the wire. For the case of a single repulsive barrier, a transmission dip is found at

the threshold of a subband. For the case of a single attractive barrier, two transmission

dips are found for incident energy that lies below a subband threshold. These are discussed

in terms of the edge states and the evanescent modes.
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摘要

在本論文中, 我們試著將所能得到的在量子導線的磁導率增促到高磁場的範圍。 我們使用了兩種

不同的方法、 模態匹配近似法及 Lippmann-Schwinger 方程式的部分富立葉轉換近似方法、 來交

互比對確定我們的結果。 接著我們對對穿透率、 波函數、 及電流密度作圖並解釋其中邊緣態的現象。

經由比較比較磁場的迴旋半徑及通道的等效寬度, 提供了一個簡單度量邊緣態產生的方法。 在通道

含有一個排斥力的雜質時, 我們在次能帶底部之上可以發現一個凹陷。 而在吸引的雜質時, 則在入射

能量低於次能帶底部的地方發現兩個凹陷。 我們也會討論邊緣態跟衰減態的現象。
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Chapter 1

Introduction and background

The discovery of the quantized conductance steps in two-dimensional electron gas(2DEG),

micro-constrictions based on GaAs/AlxGa1−xAs heterostructures [1,2], the quantized con-

ductance steps followed an increase of interest in the study of quantum ballistic transport

through narrow channels in 2DEG [3]. In particular, the influence of impurities on the con-

ductance attracted a great deal of attention since impurities inside or near the conducting

channel may destroy the conductance quantization [4–21], The effect of the impurities is

especially strong near the step, i.e. the thresholds where propagating modes are opened.

And it is also known from experiments as well as from theory that near the steps even a

single impurity may strongly affect the conductance.

The influence of a single impurity on the conductance of a 2DEG channel was studied

theoretically in Refs. [12–14], [19] and [20]. The theoretical treatment of this program

was based on two model potentials, of the channel and of the impurity. The simplest

channel confining potential, which is an infinite uniform 2D wire with hard walls, was

considered in papers [12–14]. Actually, for a wire, realistic narrow channels in split-gate

devices cannot be taken as uniform wires, but rather as a parabolic constructions in the

propagating direction. As to the impurity potential, the short-range δ-type potential was

used in almost all papers. There are only a few exceptions: a infinite-long 2D wire with

parabolic confinement in the propagating direction and a δ-type barrier cross the wire. [14]

1



CHAPTER 1. INTRODUCTION AND BACKGROUND

It is shown that a single impurity produces fine-structure effects in the dependence of

the conductance G on the Fermi energy E near the thresholds. For instance, an attractive

impurity in an infinite uniform wire generates dips below the conductance. steps [12–14]

These dips appear as a result of resonance reflection by quasibound states in the impurity

potential. But in the case of repulsive potential, it do not have any resonance as long

as it is only a δ-type barrier. There must be two or more δ-type barrier or finite-range

barrier and the resonance happened.

Suppression of backscattering by a magnetic field is the basis of the theory of the quan-

tum Hall effect developed by Marcus Büttiker (IBM, Yorktown Heights) [22]. Büttiker’s

theory uses a multi-reservoir generalization of the two-reservoir Landauer formula. The

propagating modes in the quantum Hall effect are the magnetic Landau levels interact-

ing with the edge of the sample. There is a smooth crossover from zero-field conductance

quantization to quantum Hall effect, corresponding to the smooth crossover from zero-field

wave guide modes to magnetic edge states.

The discovery of the quantum Hall effect [23] stimulated intensive theoretical and ex-

perimental research on magnetic field influence on low dimensional nano structures(see

Refs. [24–28], and references therein). In particular, the resistances of a quantum channel

with a finite barrier inside were calculated in the limit of very strong magnetic fields. [29]

Oscillations which are periodic in the field, in the low-temperature magnetoresistance of

a point contact in the two-dimensional electron gas were observed experimentally and

explained theoretically as a tunneling between edge states across the point contact. [30]

Conductivity of the many-terminal junctions of quantum wires was theoretically inves-

tigated, [31–33] and a rich structure of the Hall resistance deviating considerably from

the wide-wire result was shown. Computational study of several different kinds of four-

terminal junctions showed that the Hall and bend resistances are extremely sensitive to the

geometry of the junction and that the classical and quantum mechanical results are qual-

itatively similar but quantitatively very different. [34] Spectroscopy of the energy levels

and associated currents of infinitely deep [35–37] and finite [38] quantum wells in crossed

2



CHAPTER 1. INTRODUCTION AND BACKGROUND

magnetic and electric fields was calculated, and a crucial role of the energy spectrum

anticrossings in the jumps of the equilibrium Hall currents was described. Theoretical

analysis revealed that the magnetic field applied to the straight quantum wire with sym-

metrically embedded quantum dots leads to the Fano resonances [39] on the conductance

Fermi energy dependence. [40–43, 70] It was predicted that asymmetric Fano resonances

occur also in the electronic conductance across a shallow quantum well in a high tilted

magnetic field. [45]

The edge state is often used to describe that what is the quantum Hall effect, and it

is a classical feature of the the electrons in a system applied magnetic filed move along

the edge of the system. In the Ref. [46], the author discuss about the two regime of high

and low magnetic field. The explanation is based on the differences in lateral extension

of the magnetic quantum states at the Fermi level in a narrow channel (of width W ).

One has to distinguish between a high-filed and a low-field regime, determined by the

relative magnitude of W and the cyclotron orbit diameter 2lB (with lB ≡ (~kF /eB)1/2,

kF being the Fermi wavevector and B the strength of magnetic field). In the high-

field regime 2lB < W , right- and left-moving electrons with Fermi energy are spatially

separated in edge states [47–49] at the opposite boundaries. These current-carrying edge

states can coexist with quantized cyclotron orbits in the bulk of the sample (Landau

states)–when the Fermi level, as determined by the carrier concentration, coincides with a

Landau level. Edge states correspond classically to electrons skipping along the boundary

(Fig.1.1). The high-field regime has been discussed by Halperin [50] and MacDonald and

co-workers, [35, 51] who have shown how a Hall voltage arises because of differences in

the population of right- and left-moving edge states. In the low-field regime 2lB > W

relevant to the experiments of Roukes et al., [52] Landau states which are unperturbed

by the boundaries no longer exist at the Fermi level. Concurrently, some edge states

begin to interact with the opposite boundary. Prange [53] has calculated the magnetic

quantum states in thin-plate geometry. The differences in lateral extension of the states

which follow from his calculation may be understood from the classical correspondence

3
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(Fig.1.1). In addition to skipping orbits (corresponding to edge states) we now also have

trajectories which traverse the channel. The corresponding “transversing states” (also

know as hybrid magnetoelectric subbands) interact with both boundaries. Because of the

presence of these traversing states the arguments of Refs.10 and 11 no longer apply, and

anomalies in the Hall voltage can be expected to occur in the low-field regime.

Figure 1.1: Top: Skipping orbits, corresponding to edge states. Center: Traversing tra-
jectory, corresponding to a traversing state(hybird magnetroelectric subband). Bottom:
Four-terminal conductor for Hall-resistance measurement. (C. W. J. Beenakker and H.
van Houten, Phys. Rev. Lett. 60, 2406 (1988))

In this thesis, we want to discuss how the edge states happen as applying the magnetic

field. The wavefunction and the direction of the current of the edge states should be match

the classical feature. We use a simple system which is a narrow wire with a parabolic
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confinement and a embedded δ-type barrier to understand how the edge states happen

when the barrier is repulsive, and what is the differences between the resonance states

come from the edge states and the quasi-bound states below each subband bottom.

To elaborate on this phenomenon and show its implication, the thesis is organized

as follows. In the chapter 2, we introduce the background formalism, Landauer-Büttiker

formalism, which is used in the calculating the transport problems. And we also describe

the details of our system and the physical model in this chapter. In the next chapter 3,

we solve this physical model in mode-matching (MM) approach, based on the Landauer-

Büttiker formalism. And then we also solve this model in an approach of partial Fourier

transformation of Lippmann-Schwinger (PFTLS) equation in chapter 4. In chapter 5, we

compare the results of these two methods in chapter 3 and 4. Next, in chapter 7 and 6, we

discuss the two cases of the attractive and repulsive δ-type potential barrier respectively

and investigating the wavefunctions and the current density patterns that illustrate the

electronic motion. And we will also discuss the two phenomena of resonance according

to the edge states and the quasi-bound states. We draw the brief summaries and some

discussions in chapter 8. And in the chapter 9, we have show some results of double and

multiple barriers here. These results are still very interesting and we will analyze in the

future.
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Chapter 2

Introduction to Landauer-Büttiker

formula and our physical model

In this chapter, we first introduce the Landauer-Büttiker formalism in Sec.2.1, and then we

draw out our system of interest in this work in Sec.2.2. We also simplify the Hamiltonian

to the dimensionless one and list the units we used in this work.

2.1 Landauer-Büttiker formalism

We adapt the Landauer-Büttiker approach to calculate the conductance across the source

and drain.

In 1957, Landauer [54] proposed a novel point of view that transport should be viewed

as a consequence of incident flux. Later in 1970 [55], he further proposed that the conduc-

tance of a one-dimensional(1-D) conductor sandwiched between two phase-randomizing

resorvoirs is given by

G =
2e2

h

T

R

where T and R are the transmission and reflection coefficients of the conductor treated

as a single complex scattering center, and only one spin direction is included.

The formula was rediscovered in 1980 by Anderson et al [56] by employing it in a
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rigorous formulation of the scaling theory of localization. Since then Landauer formula

caught the attention of wilder community [57]. Nevertheless, another version of conduc-

tance G = 2e2

h
T was obtained by Economou and Soukoulis later in 1981 [58]. The answer

was that they pertain to different physical quantities [59]

This started a long controversy on ”which of the Landauer formula is correct?”.

For the original Landauer formula, G = I
µA−µB

T , where µA and µB are the chemical

potentials on the left and the right side of the barrier. However, the conductance formula

by Economou et. al. is Gc = I
µ1−µ2

T . Here, Gc is the conductance measured between

the two outside reservoirs. The ambiguity of the two Landauer formulas was clarified by

Imry in 1986 [63].

Apart from the controversy which is confusing before mid-80s, Landauer formula faced

another practical difficulties as it is restricted in single channel one-dimensional case only.

However, the Multichannel Landauer formula were proposed by Büttiker on 1985 [60]

and later in 1986 [61], he predicted a symmetry property in a four-probe experiment

under a magnetic flux and was successfully observed by Benoit et. al. [62] Since the

confirmation of the formula, it has been a concrete foundation for quantum transport

theory. In short, Landauer’s great insight that conduction in solids can be thought as

a scattering problem, and Büttiker brilliant extension of the multichannel formula has

become the key understanding of quantum transport in mesoscopic system. Hence, It is

also now well known as Landauer-Büttiker formula.

Next, we try to derive the multichannel Landauer-Büttiker Formula starting from

single channel case based on the framework of M. Büttiker et. al. [60].

Assume that there are two reservoir of electrochemical potential µ1 and µ2 respectively

and the two end of 1D channel; and, there is a barrier in between the reservoirs.

If we add a small bias at the two reservoir, then the difference of electrochemical

potential between the reservoir will be µ1− µ2 = ∆µ. The transmission probability of an

electron from reservoir 1 to reservoir 2 can be calculated by Quantum Mechanics as T.

As both side of electrons from reservoir 1 to 2 or reservoir 2 to 1 cancel out each other,
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only those transmitted electrons in between ∆µ contribute to the current . In 1D, J = I.

Therefore the current. I can be written as

I = −2e
dn

dE
(µ1 − µ2) T

~kF

m

Note that dn
dE

(µ1 − µ2) is the number of states per unit length that are injected from

reservoir 1; the velocity is equal to ~kF /m; and, the number 2 refers to spin factor.

Besides, density of state per unit length in 1D is

dn

dE
=

dk

2π/L

1

(~2kF ) /m
=

m

~2kF

1

2π

Therefore, I = −2e
h

(µ1 − µ2) T . Moreover, the definition of conductance, G = I/V , and

µ1 − µ2 is given by the voltage across V , so that µ1 − µ2 = −eV . As a result, we have

G =
I

V
=
−2e/h (ev) T

V
=

2e2

h
T

For the N ×N multichannel system, we have the incident channel as n, the transmission

probability to m as Tnm, and the reflection probability to m as Rnm. Therefore, the total

transmission probability, Tn from the n-th channel is
∑N

m=1 Tnm; and the total current,

Itot =
∑N

n In, in which

In = −2e

h
(µ1 − µ2)

N∑
m=1

Tnm

and,

Itot = −2e

h
(µ1 − µ2)

N∑
n

N∑
m=1

Tnm

Subsequently, the conductance of N ×N multichannel system would be:

G =
2e2

h

N∑
n

N∑
m=1

Tnm
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2.2 Our physical model and formulation

Before our work, there are several previous papers that had considered similar systems.

The simplest channel confining potential, which is an infinite uniform 2D wire with hard

wall, was considered in papers [66, 67, 69]. It is easier to extend the magnetic field to

high magnetic field regime in the hard wall confinement. In the reference [67] of H.

Tamura and T. Ando in 1991, a delta-profile potential impurity is considered, and there

exist bound states with an energy larger than each landau-level energy for a repulsive

scatterer, and a quasi-bound state relate to the attractive potential is also formed below

each subband bottom. And in the other reference [66] of Gurvitz in 1995, he introduce

analytically the quasibound states of local and non-local potentials. The state relate to

the repulsive potential is not a bound one, it is rather a quasibound (resonance) state.

And such a quasibound state can generate resonant transitions of carriers between the

edges. As a result, repulsive impurities can produce direct interedge transitions inside the

propagating modes (the inner-mode transitions), in contrast with attractive impurities,

which generate interedge transitions via bound states in the evanescent modes (the inter-

mode transitions).

Actually, for a wire, realistic narrow channel in split-gate devices can not be taken as

uniform wires, but rather as a parabolic constructions in the propagating direction. The

parabolic confining potential is used in the references [40, 68, 70, 71] with magnetic field.

In the references [40, 70], the applied magnetic field is not very large and the resonance

states above the subband relate to the repulsive is not generated. In the reference [68]

of E.V. Sukhorukov et. al. in 1994, they consider a central short-range impurity in the

wire with a higher magnetic field with approximate. They found that if the magnetic

field is sufficiently strong bound states exist not only for attractive impurities but also for

the repulsive ones. Bound states are found not only below any mode threshold in series,

but also above. They showed that a series of N bound states exist above the N -th mode

threshold.
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OUR PHYSICAL MODEL

We try to push our theoretical description of magnetoconduction in a narrow parabolic

confining potential which is more realistic to the high magnetic field regime. We will

investigate the transmission dip found at the threshold of subband for repulsive potential

and the two transmission dips found for the incident energy lies below a subband threshold.

And our approach can consider a general condition raging form low magnetic field to high

magnetic field.

→
B

incident wave
-2

 0

 2

x/a*
-2

 0

 2

y/a*

 0

 4

 8

E (meV) 

Figure 2.1: The figure of our system.

Our system of interest in this work is basically a quantum wire formed out of a 2DEG.

The propagation direction o the wire is x whereas the confinement potential that define

of quantum wire is given by Vc(y). Of particular interest is the effect of a magnetic field,

pointing along z, on the transport characteristic in the presence of a transverse potential

barrier.
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The confinement potential Vc(y) is chosen to be parabolic namely

Vc(y) =
1

2
m∗ω2

yy
2, (2.1)

where m∗ is the effective mass of an electron in media and ωy is a potential parameter.

The unperturbed Hamiltonian H0 of the electron in the constriction is given by

H0 =
~2

2m∗

[(
−i∇+

e

c~
A

)2

+
1

2
m∗ω2

yy
2

]
(2.2)

where −e is the charge of the electron.

And in this work we focus on the scattering effect due to an impurity, which the

potential of impurity is Vd(x, y).

The total Hamiltonian:

H =
~2

2m
[−i∇+

e

c~
A(r)]2 + Vc(y) + Vd(x, y) (2.3)

A(r) is the vector potential

A(r) = −Byî → B(r) = ∇×A = Bk̂ (2.4)

Vc(y) is the confinement potential in the y-direction Vc(y) = 1
2
mω2

yy
2

H =
~2

2m
[−i∇− eB

c~
yî]2 +

1

2
mω2

yy
2 + Vd(x, y) (2.5)

And then we choose some units to obtain the dimensionless expression of Hamiltonian

a∗ =
1

kF

, ε∗ =
~2k2

F

2m∗

and hence ω∗c =
~k2

F

m∗ , ω∗y =
~k2

F

m∗ = 2
ε∗

~
, B∗ =

~c
e

k2
F .

Here ωc = eB/m∗c is the cyclotron frequency, and ωc = eB/m∗c = (e/m∗c) (~ck2
F /e) B =
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(~k2
F /m∗)B = ω∗cB, and lB = (~c/eB)1/2 is the magnetic length.

In our numerical examples, the nano-channel(NC) is taken to be that in a high

mobility GaAs/AlxGa1−xAs with a typical electron density n ∼ 2.5 × 1011 cm−2, and

m∗ = 0.067 meV. Correspondingly, our choice of energy unit E∗ = ~2k2
F /(2m∗) =

5, 933 meV, length unit a∗ = 1/kF = 9.7937× 10−9m = 97.937Ȧ, angular frequency unit

ω∗c~ = ω∗y~ = Ω∗~ = 2E∗ = 11.866meV, and the magnetic field unit B∗ = 6.863 Tesla.

We also take ωy = 0.5 of which ωyω
∗
y~ = 5.933 meV, such that the effective NC width

is of the order of 102Ȧ. In the following, in presenting the dependence of transmission

on µ, it is more convenient to plot transmission(T) as a function of X instead, where

X = µ/2ωy + 1
2
. The integral value of X is the number of propagating channels. The

conservation of current condition is better represented by the function CSV (n) defined

as CSV (n) = log|1−∑
n′(|tn′n|2 + |rn′n|2)|, where n is the incident channel and n′ is the

outgoing channel. We thus obtain the dimensionless Schrödinger equation

⇒ {−∇2 + Ω2y2 + 2iωcy
∂

∂x
+ Vd(x, y)}ψ(x, y) = Eψ(x, y) (2.6)

where Ω2 = ω2
c + ω2

y = ω2
y + B2

In this work, we consider now electron scattering from an barrier potential of the form

Vd(x, y) = V0Vs(y)δ(x− x0), (2.7)

where Vs(y) is an arbitrary function of the coordinate y, but we use it to be a uniform

function of the transversal coordinate y and equal to 1 for simplify. x0 is the longitudinal

position of the barrier, and the magnitude of V0 sets the magnitude of the barrier potential,

which may be repulsive (V0 > 0) or attractive (V0 < 0).

In Ch.3, we keep the scattering potential Vd(x, y) = V0Vs(y)δ(x−x0) and Vs(y) is still

an arbitrary function of the coordinate y in the analytical calculation, and set Vs(y) = 1

in the numerical process for a simpler system.
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Finally we can have the dimensionless Schrödinger equation of our physical model

{−∇2 + Ω2y2 + 2iωcy
∂

∂x
+ V0δ(x− x0)}ψ(x, y) = Eψ(x, y) (2.8)

13



Chapter 3

Mode-matching (MM) method

In this chapter, we use the mode-matching approach to solve our physical model. After

the formalism, we find that the eigen-function of the wire with magnetic field is not a or-

thogonal and complete basis set .The propagating mode with real wave vector has a center

shift on y-direction and the evanescent mode become a highly oscillating complex func-

tion. We choose another orthogonal basis set φo
n(y) to expend the eigen-function φ±n (y, kn)

which is the better one in our three choices. We also find out a special normalization con-

stant for the evanescent modes which are complex functions. The normalization constant

of propagating modes and evanescent modes are different and the normalization constant

of evanescent modes depend on the center shift αn.

3.1 Formalism

We first solve the unperturbed Hamiltonian in this section and obtain the eigen-function

of the confinement potential.

In the previous Ch.2, we have obtained the dimensionless Schrödinger equation, Eq. (2.8)

{−∇2 + Ω2y2 + 2iωcy
∂

∂x
+ Vd(x, y)}ψ(x, y) = Eψ(x, y) (3.1)
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Firstable, let’s solve the wavefunction of unperturbed Hamiltonian:

{−∇2 + Ω2y2 + 2iωcy
∂

∂x
}Ψ(x, y) = EΨ(x, y) (3.2)

Because the asymptotic form of wavefunction at x → ±∞ can be expanded as plane wave,

we can assume the eigenfunction of this form

Ψ(x, y) ∼ e±ikxφ±(y) (3.3)

where k is a wavevector.

Substituting Eq. (3.3) the above wavefunction into Eq. (3.2), we obtain

⇒
{

∂2

∂y2
− Ω2(y ∓ ωck

Ω2
)2 +

ω2
ck

2

Ω2
− k2 + E

}
φ±(y) = 0 (3.4)

let α =
ωck

Ω2
, u± = y ∓ α,

which the superscript ± of u denotes the right (left) going wave,

and K2 =
ω2

ck
2

Ω2
− k2 + E = E − ω2

y

Ω2
k2

⇒
{

∂2

∂u±2 − Ω2u±2
+ K2

}
φ±(y) = 0

let u±
′
=
√

Ωu±,

⇒
{

∂2

∂u±′2
− u±

′2
+

K2

Ω

}
φ±(y) = 0 (3.5)

Based on the definition of Hermite function, we can obtain the discrete energy identity:

(2n + 1)Ω =
ω2

ck
2

Ω2
− k2 + E = E − ω2

y

Ω2
k2 (3.6)

and φn(y) ∝ e−u±
′

n

2
/2Hn(u±

′
n ) = e−

Ω
2

u±n
2

Hn(
√

Ωu±n ) (3.7)
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In Eq. (3.6), the energy is quantized, and then we change our variables to have the

quantized physical quantities labeled by the subband index n:

k → kn, α → αn =
ωckn

Ω2
, u± → u±n = y ∓ αn,

φ±(y) → φ±n (y, kn) = Nn × e−Ωu±n
2
/2Hn(

√
Ωu±n )

We can write down the total wavefunction:

ψn(x, y) = Nn e±iknxe−Ω(y∓αn)2/2Hn(
√

Ω(y ∓ αn)) (3.8)

εn = E − ω2
y

Ω2
k2

n = (2n + 1)Ω,

u±n = y ∓ αn, αn =
ωckn

Ω2

kn =
Ω

ωy

√
E − (2n + 1)Ω, Ω2 = ω2

y + ω2
c .

and φ±n (y, kn) is the eigenfunction of this equation

{
∂2

∂y2
− Ω2(y ∓ ωckn

Ω2
)2 + K2

}
φ±n (y, kn) = 0 (3.9)

which is a shifted harmonic oscillator of frequency Ω, The center of the transverse eigen-

function φ±n (y, kn) is at y = ±ωckn/Ω2. Hence the larger the momentum ±~kn along

x-direction, the more the center of wave function is shifted, and φ±n (y, kn) is not longer a

complete set. The center shift of wavefunction may be real or pure imaginary because it

depends on the momentum kn along x-direction.
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3.2 Normalization constant and evanescent mode

The eigen-function φ±n (y, kn) have a shift constant αn = ωckn/Ω2 which have presented in

the previous chapter. The shift constant and the wave vector become a pure imaginary

number for the evanescent modes, and the eigen-function become a complex function. We

have to redefine the normalization constant for both propagating modes and evanescent

modes, the normalization constant of propagation constant is similar to the case without

magnetic field; the normalization constant of evanescent modes is different and be a more

smaller number to confine the evanescent modes. And we also compare the normalization

constant of propagating modes and evanescent modes and find out the relation between

them.

In this section, we will determine the normalization constant for both the wave vector

kn are real and pure imaginary of the eigen-function φ±n (y, kn). We use N s
n for the real

kn, and Nn for the pure imaginary one.

We first write down the normalization identity,

∫
φ±∗n (y, kn)φ±n (y, kn) dy = 1. (3.10)

and then we discuss the two case of real and pure imaginary wave vector kn

1) If kn is real: (φ±∗n = φ±n )

∫
φ±n (y, kn)φ±n (y, kn)dy = 1,

N s
n

2

∫ ∞

−∞
e−Ω(y∓αn)2Hn[

√
Ω(y ∓ αn)]dy = 1,

let
√

Ω(y ∓ αn) = x±,

⇒ N s
n

2

√
Ω

∫ ∞

−∞
e−x±

2

H2
n(x±)dx± = 1,

and

∫
e−x2

H2
n(x)dx = 2nn!

√
π,

⇒ N s
n =

(
2nn!

√
π

Ω

)−1/2

.
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2) If kn is pure imaginary: substituting Eq. (3.8) into the normalization identity, Eq. (3.10),

we have

N2
n

∫ ∞

−∞
e−

Ω
2
(y∓α∗n)2Hn[

√
Ω(y ∓ α∗n)]e−

Ω
2
(y∓αn)2Hn[

√
Ω(y ∓ αn)]dy = 1

let x =
√

Ωy, qn =
√

Ωαn

N2
n

∫ ∞

−∞
e−

1
2
(x∓q∗n)2− 1

2
(x∓qn)2Hn[x∓ q∗n]Hn[x∓ qn]

dx√
Ω

= 1

where an = ±q∗n + (±qn), bn =
±q∗n − (±qn)

2
=

√
Ω

2
(±α∗n − (±αn))

⇒ N−2
n =

e−b2n√
Ω

∫ ∞

−∞
e−x2

Hn[x− bn]Hn[x + bn]dx (3.11)

Using the Eq. (A.78), we have:

∞∫

−∞

e−x2

Hm(x + a)Hn(x + b)dx

=

Min[m,n]∑

k=0

2m+n−kam−kbn−k m!n!
√

π

k!(m− k)!(n− k)!
(3.12)

=

Min[m,n]∑

k=0

2m+n−kam−kbn−k

(
n

k

)(
n

k

)
k!
√

π

using Eq. (3.12) and Eq. (3.11), it is easy to obtain the normalization constant of the
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following form

N−2
n =

√
π

Ω
e−b2

n∑

k=0

22n−k(−b2
n)n−k

(
n

k

)(
n

k

)
k!

=

√
π

Ω
e−b2n

n∑

k=0

22n−k(−b2
n)n−k n!2

k! (n− k)!2

= N s
n
−2eΩIm(αn)2

n∑

k=0

(2ΩIm(αn)2)k

k!

(
n

k

)
(3.13)

and bn =
±q∗n − (±qn)

2
=

√
Ω

2
(±α∗n − (±αn)) = ∓i

√
ΩIm(αn),

b2
n = −ΩIm(αn)2.

Nn = N s
n e−

Ω
2
Im(αn)2

[
n∑

k=0

(2ΩIm(αn)2)k

k!

(
n

k

)]−1/2

(3.14)

Define the normalization constant factor Λn for the evanescent modes

Λn ≡
[

n∑

k=0

(2ΩIm(αn)2)k

k!

(
n

k

)]−1/2

. (3.15)

In the propagating modes and kn is real, e−
Ω
2
Im(αn)2Λn = 1 and Nn = N s

n. In the

evanescent modes, e−
Ω
2
Im(αn)2Λn is smaller than 1 and Nn is smaller than N s

n,

In the case of zero magnetic field, φs
n(y) reduce to φo

n(y) = N o
ne−

ωy
2

y2
Hn(

√
ωyy), where

N o
n = (2nn!

√
π
ωy

)−1/2.

Correspondingly, we get

φs
n(y) = N s

ne−
Ω
2

y2

Hn(
√

Ωy) (3.16)

φo
n(y) = N o

ne−
ωy
2

y2

Hn(
√

ωyy) (3.17)

φ±n (y, kn) = N s
nΛne

−Ω
2
Im(αn)2e−

Ω
2

u±n
2

Hn(
√

Ωu±n ) (3.18)
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3.3 Mode-matching approach

In this section, we use the mode-matching approach to solve the problem with a δ-type

impurity barrier. We write down the formalism in a general way for three kinds of basis

set to expand the eigen-function φ±n (y, kn).

We consider an impurity or an external potential in a quantum wire, the system under

investigation can be described by H = H0 + Vd(x, y), where

H0 = −∇2 + Ω2y2 + 2iωcy
∂

∂x
(3.19)

is the unperturbed Hamiltonian, Vd(x, y) = V0δ(x)Vs(y) which is the scattering potential.

The incident wavefunction from left (L) lead is given by

ψin(x, y, kl) = eiklxφ+
l (y, kl) (3.20)

The corresponding scattering wavefunction is of the form





ψ(x < x0, y, kn) = eiklxφ+
l (y, kl) +

∑
n′

r+
n′le

−ikn′xφ−n′ (y, kn′)

ψ(x > x0, y, kn) =
∑
n′

t+n′le
ikn′xφ+

n′ (y, kn′)
, (3.21)

where

φ±n (y, kn) = Nne−
Ω
2
(y∓αn)2Hn

[√
Ω(y ∓ αn)

]
. (3.22)

In addition, we can expand the wavefunction φ±n (y, kn) into several sets of basis like

φ±n (y, kn) = Nn e−Ω(y∓αn)2/2Hn[
√

Ω(y ∓ αn)], φs
n(y) = N s

ne−
Ω
2

y2
Hn(

√
Ωy), and φo

n(y) =

N o
ne−

ωy
2

y2
Hn(

√
ωyy). And the wavefunction φ±n (y, kn) =

∑
j φ±j (y)C

(±)±
jn , φ±n (y, kn) =

∑
j φs

j(y)C
(s)±
jn , or φ±n (y, kn) =

∑
j φo

j(y)C
(o)±
jn , where C

(±)±
jn = δjn, C

(s)±
jn =

∫
dy φs

j(y)φ±n (y, kn),

and C
(o)±
jn =

∫
dy φo

j(y)φ±n (y, kn) correspondingly. In mathematically, no matter what kind

of complete set we used, the result should be the same. But according to the center shift

of the propagating and evanescent modes, the results are different and we will discuss in
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the Sec. 3.5.

In order to simplify the formalism, we use χ
(±,s,o)
n (y) to replace the functions φ±n (y, kn),

φs
n(y), and φo

n(y) correspondingly.

φ±n (y, kn) =
∑

j

χ
(±,s,o)
j (y)C

(±,s,o)±
jn (3.23)

or φ±n (y, kn) =
∑

j

χj(y)C±
jn (3.24)

And then we can rewrite Eq. (3.21) of the below form

ψ(x < x0, y, kn) =
∑

j

eiklxχj(y)C+
jl +

∑

n′,j

e−ikn′xχj(y)C−
jn′r

+
n′l (3.25)

ψ(x > x0, y, kn) =
∑

n′,j

eikn′xχj(y)C+
jn′t

+
n′l (3.26)

The Schrödinger equation in the presence of Vd(x, y) is given by

[
− ∂2

∂x2
− ∂2

∂y2
+ 2iωcy

∂

∂x
+ Ω2y2 + V0δ(x− x0)Vs(y)

]
ψ(x, y) = ψ(x, y) (3.27)

The scattering should satisfy two boundary conditions, one requirement is that ψ(x, y) has

to be continuous at x = xi and the other one stems from integration of the Schrödinger

equation across x = xi.

The wavefunction is continuous at x = 0 :

ψ|0+ = ψ|0− (3.28)

⇒
∑

j

χj(y)C+
jl +

∑

n′,j

χj(y)C−
jn′r

+
n′l =

∑

n′,j

χj(y)C+
jn′t

+
n′l (3.29)
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By integrating the Schrödinger equation through x = 0 , we get

∑

n′,j

ikn′χj(y)C+
jn′t

+
n′l−

∑
j

iklχj(y)C+
jl +

∑

n′,j

ikn′χj(y)C−
jn′r

+
n′l−V0Vs(y)

∑

n′,j

χj(y)C+
jn′t

+
n′l = 0

(3.30)

Multiply these two boundary conditions Eq. (3.29) and Eq. (3.30) by χj′(y) and then

integrate over y, we obtain

C+
j′l +

∑

n′
C−

j′n′rn′l =
∑

n′
C+

j′n′t
+
n′l, (3.31)

∑

n′
ikn′C

+
j′n′t

+
n′l − iklC

+
j′l +

∑

n′
ikn′C

−
j′n′r

+
n′l − V0

∑

n′,j

fχ,j′jC
+
jn′t

+
n′l = 0. (3.32)

where we use the below conditions. For χn(y) = φs
i (y) or χo(y) = φo

i (y), we have

∫ ∞

−∞
dy χ

(s,o)
i

∗
(y)χ

(s,o)
i (y) = δi,j;

∫ ∞

−∞
dy χ

(s,o)
i

∗
(y)Vs(y)χ

(s,o)
i (y) = f

(s,o)
χ,ij . (3.33)

and for χn(y) = φ±n (y, kn), we have

∫ ∞

−∞
dy χ±i

∗
(y)χ±i (y) =

∫ ∞

−∞
dy φ

(±)±
i

∗
(y, kn)φ

(±)±
j (y, kn) (3.34)

∫ ∞

−∞
dy χ

(±)
i

∗
(y)Vs(y)χ

(±)
i (y) = f

(±)
χ,ij . (3.35)

and we redefine the coefficient

C
(±)±
ij =

∫
dy φ

(±)±
i

∗
(y, kn)φ

(±)±
j (y, kn). (3.36)
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In order to extend Eq. (3.31) and Eq. (3.32) to matrix form, we define that:

[t±mn]j×l ≡




t±00 · · · t±0n · · · t±0l

...
. . .

...
...

t±m0 · · · t±mn · · · t±ml

...
...

. . .
...

t±j0 · · · t±jn · · · t±jl




j×l

; (3.37)

[r±mn]j×l ≡




r±00 · · · r±0n · · · r±0l

...
. . .

...
...

r±m0 · · · r±mn · · · r±ml

...
...

. . .
...

r±j0 · · · r±jn · · · r±jl




j×l

. (3.38)

[C±
mn]j×l ≡




C±
00 · · · C±

0n · · · C±
0l

...
. . .

...
...

C±
m0 · · · C±

mn · · · C±
ml

...
...

. . .
...

C±
j0 · · · C±

jn · · · C±
jl




j×l

; (3.39)

[fχ,mn]j×l ≡




fχ,00 · · · fχ,0n · · · fχ,0l

...
. . .

...
...

fχ,m0 · · · fχ,mn · · · fχ,ml

...
...

. . .
...

fχ,j0 · · · fχ,jn · · · fχ,jl




j×l

. (3.40)
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And then we can write down Eq. (3.31) and Eq. (3.32) in matrix form

[C+
mn]j′×l + [C−

mn]j′×n′ [r
+
mn]n′×l = [C+

mn]j′×n′ [t
+
mn]n′×l (3.41)

[C+
mn]j′×n′ [kmδmn]n′×n′ [t

+
mn]n′×l − [C+

mn]j′×l[kmδmn]l×l

+[C−
mn]j′×n′ [kmδmn]n′×n′ [r

+
mn]n′×l + iV0[fχ,mn]j′×j[C

+
mn]j×n′ [t

+
mn]n′×l = 0 (3.42)

Let j′ = j = n′ = l = Nc, all the matrices become square matrixes, where Nc is the

total number of subband we used in the numerical calculation

[C+
mn] + [C−

mn][r+
mn] = [C+

mn][t+mn] (3.43)

[C+
mn][kmδmn][t+mn]− [C+

mn][kmδmn] + [C−
mn][kmδmn][r+

mn] + iV0[fχ,mn][C+
mn][t+mn] = 0

(3.44)

And then, it is trivial to get the coefficient of t±mn and r±mn by the inverse.




[t±mn]

[r±mn]




2Nc×Nc

(3.45)

=




[C±
mn] − [C∓

mn]

[C±
mn] [kmδmn] + iV0 [fχ,mn] [C±

mn] [C∓
mn] [kmδmn]




−1

2Nc×2Nc




[C±
mn]

[C±
mn] [kmδmn]




2Nc×Nc

φ±n = Nne
− 1

2
Ω(y∓αn)2Hn

[√
Ω(y ∓ αn)

]
have a good physical meaning because it is the

eigenfunction in the wire in parabolic confinement with magnetic field, but not a complete

set in this space, and cause some mathematic problems. φs
n(y) = N s

ne−
1
2
Ωy2

Hn

[√
Ωy

]
is

the ordinary unshifted harmonic oscillator with confinement frequency Ω. We use this

basis to be the projecting basis χn(y), this is a complete set rather than φ±n , and has the

same oscillation frequency Ω. It has good character in calculation and better behavior

in small magnetic, but still diverge in some cases we want to see. And then we use the

eigenfunction φo
n(y) = N o

ne−
1
2
ωyy2

Hn

[√
ωyy

]
which is the eigenfunction in parabolical wire

24



CHAPTER 3. MODE-MATCHING (MM) METHOD

without magnetic field. It is also a complete set, but stronger calculation the other basis,

φs
n(y) and φ±n (y). This is the best basis in these three eigenfunctions, some problem had

be solved and good conservation in most case with not very strong magnetic field.

In this section we choose φo
n(y) to be our projecting basis, but we still list all of the

others calculation in appendix.

C(o)±
mn =

∫
dy φo

m(y)φ±n (y)

=

√
2m!n!

η
(ωyΩ)1/4e

1
2
η(Ωαn

η
)2− 1

2
ΩRe[αn]2Λn

×
m∑

p=0

n∑
q=0

H̄m−p

[
±
√

2ωyΩαn

η

]

2p

H̄n−q

[
∓
√

2Ωωyαn

η

]

2q

×





Min[p,q]−1
2∑
s

fr1(2s + 1) fr2(
p−2s−1

2
) fr3(

q−2s−1
2

) , m, n are both odd.

(Min[p,q])/2∑
s

fr1(2s) fr2(
p−2s

2
) fr3(

q−2s
2

) , m, n are both even.

0 , m + n is odd.

(3.46)

where H̄n(x) ≡ Hn(x)

2nn!
, η = ωy + Ω, αn =

ωckn

Ω2
(3.47)

and fr1(n) = (
8
√

ωyΩ

η
)n/n!, (3.48)

fr2(n) = (
3ωy − Ω

η
)n/n!, (3.49)

fr3(n) = (
3Ω− ωy

η
)n/n!. (3.50)
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f o
χ,mn =

∫ ∞

−∞
φo

i
∗(y)Vs(y)φo

i (y)dy

=

√
m!n!

2m2n

√
ωy

ωy + β
e−a2

Min[m,n]∑
κ=0

2κ

κ!

( β
ωy+β

)m−κ

(m− κ)!

( β
ωy+β

)n−κ

(n− κ)!
Hm+n−κ[a] (3.51)

where a =

√
βωy

ωy + β
y0. (3.52)

3.4 Current density and conservation condition

The current density in a system with magnetic field is different from the case without

magnetic field. In this section, we use the Hamiltonian of our system and the continuous

equation to get the form of current density in a magnetic field. And we also know that

the net current is contributed from the propagating modes and wave vector kn is real; the

current density in the evanescent mode is not zero but does not contribute to the total

net current.

We first write down our Hamiltonian and the continuous equation

H = −∇2 + 2iωcy
∂

∂x
= − ∂2

∂x2
− ∂2

∂y2
+ 2iωcy

∂

∂x
(3.53)

H∗ = − ∂2

∂x2
− ∂2

∂y2
− 2iωcy

∂

∂x
(3.54)

∂

∂t
ρ = i(H∗ψ∗H − ψ∗Hψ) = −∇ · j (3.55)

(− ∂2

∂x2
ψ∗)ψ + ψ∗

∂2

∂x2
ψ∗

= − ∂

∂x
(

∂

∂x
ψ∗ · ψ) +

∂

∂x
ψ∗

∂

∂x
ψ +

∂

∂x
(ψ∗

∂

∂x
ψ)− ∂

∂x
ψ · ψ

=
∂

∂x
{ψ∗ ∂

∂x
ψ − ∂

∂x
ψ∗ · ψ}
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(−2iωcy
∂

∂x
ψ∗)ψ − ψ∗(2iωcy

∂

∂x
)ψ

= −2iωcy
∂

∂x
(ψ∗ψ)

=
∂

∂x
(−2iωcyψ∗ψ)

⇒ ∂

∂t
ρ =

−1

i

∂

∂x
{ψ∗ ∂

∂x
ψ − ∂

∂x
ψ∗ · ψ − 2iωcyψ∗ψ} − 1

i

∂

∂y
{ψ∗ ∂

∂y
ψ − ∂

∂y
ψ∗ · ψ}

=
−1

i

∂

∂x
{ψ∗( ∂

∂x
− iωcy)ψ − c.c.} − 1

i

∂

∂y
{ψ∗ ∂

∂x
ψ − c.c.} (3.56)

and then we can define the current density along x- and y-direction

jx =
1

i
{ψ∗ ∂

∂x
ψ − ∂

∂x
ψ∗ · ψ − 2iωcyψ∗ψ} (3.57)

jy =
1

i
{ψ∗ ∂

∂y
ψ − ∂

∂y
ψ∗ · ψ} (3.58)

The third term of Eq. (3.57), −2iωcyψ∗ψ, is caused from the applied magnetic field

and the current density on x-direction is y-dependent in the coordinates.

3.4.1 Current conservation on the longitudinal direction

In this subsection, we investigate the conservation condition on the longitudinal direction,

the applied magnetic field introduce a factor depend on the magnetic field to the con-

servation condition. But the form of conservation condition is same as the one without

magnetic field.

The total wavefunctions on the left and right side of the scattering potential are given

by





ψL = eiklxφ+
l (y) +

∑
n′

e−ikn′xφ−n′(y)rn′l

ψ∗L = e−iklxφ+
l
∗
(y) +

∑
n′

eik∗
n′xφ−n′

∗
(y)r∗n′l

and





ψR =
∑
n′

eikn′xφ−n′(y)tn′l

ψ∗R =
∑
n′

e−ik∗
n′xφ−n′

∗
(y)t∗n′l

(3.59)
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where l is the incident state and kl is a real number.

Substitute Eqs.(3.59) in to Eq. (3.57) and obtain

klφ
+
l
∗
(y)φ+

l (y)−
∑

n′
kn′e

−i(kn′+kl)xφ+
l
∗
(y)φ−n′(y)rn′l

+
∑

n′
kle

i(k∗
n′+kl)xφ−n′

∗
(y)φ+

l (y)r∗n′l −
∑

n′,n′′
kn′′e

i(k∗
n′−kn′′ )xφ−n′

∗
(y)φ−n′′(y)r∗n′lrn′l

+klφ
+
l
∗
(y)φ+

l (y) +
∑

n′
kle

−i(kn′+kl)xφ+
l
∗
(y)φ−n′(y)rn′l

−
∑

n′
k∗n′e

i(kn′+kl)xφ−n′
∗
(y)φ+

l (y)r∗n′l −
∑

n′,n′′
k∗n′′e

i(k∗
n′+kn′′ )xφ−n′

∗
(y)φ−n′′(y)r∗n′lrn′l

−2ωcy{φ+
l
∗
(y)φ+

l (y) +
∑

n′
kn′e

−i(kn′+kl)xφ+
l
∗
(y)φ−n′(y)rn′l

+
∑

n′
ei(kn′+kl)xφ−n′

∗
(y)φ+

l (y)r∗n′l +
∑

n′,n′′
ei(kn′−kn′′ )xφ−n′

∗
(y)φ−n′′(y)r∗n′lrn′l (3.60)

in the left side of impurity barrier, and

∑

n′,n′′
kn′′e

−i(k∗
n′−kn′′ )xφ+

n′
∗
(y)φ+

n′′(y)t∗n′ltn′′l +
∑

n′,n′′
kn′e

−i(k∗
n′−kn′′ )xφ+

n′
∗
(y)φ+

n′′(y)t∗n′ltn′′l

−2ωcy
∑

n′,n′′
e−i(k∗

n′−kn′′)xφ+
n′
∗
(y)φ+

n′′(y)t∗n′ltn′′l (3.61)

in the right side.

And then integrate these two equations, Eq. (3.60) and Eq. (3.61), over x from −∞
to ∞, and we find that some terms with imaginary kn is vanish in this integration.

The left side should equal to the right side, and we have

klφ
+
l
∗
(y)φ+

l (y)−
∑

n′
kn′φ

−
n′
∗
(y)φ−n′(y)|rn′l|2 − ωcy

{
φ+

l
∗
(y)φ+

l (y) +
∑

n′
φ−n′

∗
(y)φ−n′(y)|rn′l|2

}

=
∑

n′
kn′φ

+
n′
∗
(y)φ+

n′(y)|tn′l|2 − ωcy
∑

n′
φ+

n′
∗
(y)φ+

n′(y)|tn′l|2 (3.62)

where the summation sum over all propagation modes.

28



CHAPTER 3. MODE-MATCHING (MM) METHOD

And then integrating over y, we also have the following two equation

∫
φ±n (y, kn)

∗
φ±n (y, kn)dy = 1, which is the normalization condition.

∫
yφ±n (y, kn)

∗
φ±n (y, kn)dy = ±Re[αn] =

±ωcRe[kn]

Ω2
(3.63)

where kn is real and φ±n (y, kn) a is real function and a orthogonal set.

Finally we have the conservation equation in the x-direction:

⇒ (1− ω2
c

Ω2
)

{∑

n′
kn′|tn′l|2 +

∑

n′
kn′|rn′l|2 − kl

}
= 0 (3.64)

where summation sum over the propagating modes and the wave vector must be real.

3.5 Numerical results

In the Fig. 3.1, we plot the results of the transmission as a function of applied magnetic

field to compare the numerical results of the three basis sets. There are three curves

in both figures, which are the results using the different basis in order, φ±n (y, kn), φs
n(y)

and φo
n(y). Except changing the basis, we fix Nc = 17, incident energy is at 7ωyE

∗, and

V0 = 1.0E∗ in (a) and V0 = −1.0E∗ in (b). The block dashed line is the transmission

without any scattering potential in the wire.

The three curves in the both figures are the results by using the different basis in order.

It is easily to see that the results (curves) of φ±n (y, kn) and φs
n(y) exceed the permitted

range (The transmission must below the black dashed line in the figures). And the third

curve of projecting to the basis φo
n(y) is more reasonable, this curve all below the black

dashed line.

Although the three curves look quite different, but all of them lie together on the

same line in the range of low magnetic filed (below B = 0.2). This result show that the

calculation in this chapter works in the low magnetic regime no matter what basis we

used, and the selection of basis effect a lots in the high magnetic regime.
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Figure 3.1: Compare the numerical results of three basis sets. The red line is the result
projected to φ±m(y, km); the green one is projected to φs

m(y); and the blue one is projected
to φo

m(y). The strength of the impurity barrier is repulsive with 1.0E∗ in (a) and attractive
with −1.0E∗ in (b).

Base on this comparison, we finally choose the basis set φo
n(y) to be our projecting

basis in this work.

In the Fig. 3.2, we fix the incident energy at 7ωyE
∗ and plot the transmission as a
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Figure 3.2: Changing the number of subband Nc to check the saturation and the accuracy
break down of the numerical calculation. We fix the incident energy at E = 7ωyE

∗, the
strength of the impurity barrier is 1.0E∗.

function of B for various Nc to check the saturation and accuracy break down of numerical

calculation. The strength of the attractive barrier in the wire is V0 = −1.0E∗. Except the

regime of high magnetic field, the more numbers of subbands we used in the calculation,

the curves saturate form low magnetic field to more high magnetic field. But as long as

we use too many of numbers of subbands, like 22 and 25 in the Fig. 3.2, the curves diverge

when the magnetic field larger than 3.3B∗ and 3.0B∗, the more numbers of subbands we

used in the calculation, the lower amplitude of magnetic field the curves diverge. This

divergence is due to the accuracy in the computation is not enough. When the magnetic

field is high, the structure of the matrix used to calculate the transmission and reflection

will be difficult to find out its the inverse. It is easily diverged and need more accuracy

to have the correct solution with less error. And the more elements of the matrix, the

accuracy error will be enlarged. In the programs, we have already use the higher precision,

quad-precision, than double precision to calculate the inverse of the matrixes, but in the
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case of high magnetic field, it is not enough and still diverged, just like the curves in

Fig. 3.2. This problem about the accuracy is the main problem if we want to have the

saturate result in higher magnetic field, and we will discuss with this later.

In the Fig. 3.3, we plot the transmission as a function of incident energy for various

numbers of subband form 26 to 30 to check the saturation the curves. The applied

magnetic field is 1.0B∗ and the strength of impurity barrier is repulsive with 1.0E∗ in

(a) and attractive with −1.0E∗ in (b). As the increasing of the numbers of subbands,

the curves saturate form the lower incident energy to higher energy but slowly. In the

Fig. 3.3, B = 1.0B∗, we find that the curves saturate below X = 4 when we use 30

subbands. In the range of X > 4, the curves is not really saturate as we magnify the

figures. Consider 30 subbands as the most total number of subband we can used in the

calculation remaining accuracy for the case of B = 1.0B∗. When the numbers of subbands

is more than 30, in the case of B = 1.0B∗, the curve will diverge. And in the case of

B > 1.0B∗, the curve diverge before saturate even if X < 3.0; on the contrary, the curves

saturate and using fewer numbers of subbands than 30 if the amplitude of magnetic field

is smaller than B = 1.0B∗.

3.6 Summary and discussions

In this chapter, we use the mode-matching approach to solve the magnetoconduction

in the wire. The transverse eigen-function in the wire with magnetic field is written as

φ±n (y, kn), and the center of the eigen-function φ±n (y, kn) is at y = ±ωckn/Ω2. As the wave

vector kn is real, the center shift along the y-direction, the larger of ωckn, the more the

center shift. As the wave vector kn is pure imaginary, the center of φ±n (y, kn) back to the

center of the y-direction and become a complex function. There are two reason why we

can not expand the eigen-function φ±n (y, kn) well. One is according to the center shift of

the eigen-function φ±n (y, kn), it is quite different to expand the eigen-function which has

two kind of shift. And another is that the eigen-function φ±n (y, kn) is not an orthogonal
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Figure 3.3: The saturation of transmission versus Nc from 26 to 30 for B = 1.0 and the
strength of impurity barrier is repulsive with 1.0E∗ in (a) and attractive with −1.0E∗ in
(b).
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basis and incomplete set, we have to expand the eigen-function to another basis which is

orthonormal. And that is why the transmission and conservation are not reasonable as we

project the eigen-function to itself. There are two choices to expand the eigen-function,

one is φs
n(y) and the other is φo

n(y).

φs
n(y) is the eigen-function of a harmonic oscillation which the confinement is Ω2y2 on

the y-direction. This kind of confinement, Ω2y2, depend on the strength of the magnetic

field and more confined in the large magnetic field regime than the original confinement,

ω2
yy

2. This eigen-function φs
n(y) is more confined to the center more localized in the y-

direction. And it may not cover the edge of the wire in a higher magnetic field where

the edge state had generated. And then, the basis φo
n(y), which is the eigen-function in

the wire without magnetic field. The covered range of this eigen-function φo
n(y) is more

extensive in the y-direction then the eigen-function φs
n(y), and match to the original wire

which have the real edge state.

And then we back to discuss the real eigen-function φ±n (y, kn) in the wire. The char-

acter of this eigen-function is very different as the wave vector is real or pure imaginary.

The center of the eigen-function shift and concentrate to the edge as the wave vector

is real and the large kinetic energy and the magnetic field, the more shift. According

to this phenomenon, it is better to choose the eigen-function φo
n(y) to be the projecting

basis. But in the case of the wave vector is pure imaginary, the eigen-function become

evanescent mode does not have the center shift and back to the center of the y-direction.

Because the wavefunction is back to the center, it is better to use the eigen-function φs
n(y)

to expand the evanescent modes in the center of y-direction, the eigen-function φs
n(y) is

also more confined to the center.

The most problem is what character is more important in the higher strength of

magnetic field, the difference is not very much in the low magnetic field. And find out

the balance of the expansion between wave vector is real and pure imaginary(propagating

modes and evanescent modes). And then we find that the eigen-function φo
n(y) is more

balanced to expand both propagating modes and evanescent modes, and we use this basis
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φo
n(y) to expand the eigen-function φ±n (y, kn).

In the classical-like picture, the wavefunction shift and concentrate on the edge of

the incident energy level when we apply a large magnetic field, and become the edge-

state. This phenomenon of edge states is more important than the evanescent modes

in the center of y-direction and need to be describe well. And that is the reason why

eigen-function φo
n(y) is better than φs

n(y).

And we also care about the divergence of the inverse of the matrixes, and we spend

lots of time to improve the accuracy of the calculation in program. And Finally we change

most of codes of the programs and the subroutine which solve the inverse of a matrix to

quad-precision, but already touch the limit of the numerical calculation. According to

this situation, we develop another method to solve this system, the approach of partial

Fourier transformation of Lippmann-Schwinger equation, and we will illustrate in next

chapter.
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Chapter 4

An approach of partial Fourier

transformation of the

Lippmann-Schwinger (PFTLS)

equation

In CH.3, the numerical results can not saturate in the high magnetic field regime and

diverge with the numerical accuracy when we use more numbers of subband in calculation.

We think that is because the eigen-function φ±n (y, kn) is not an orthogonal basis set and

the shift properties of the propagating modes and the evanescent modes are different, it is

hard to find a basis set which can describe the propagating modes and evanescent modes

well at the same time. In the reference [66], the author use a Fourier transformation on x-

direction of the Schrödinger equation, and the problem can be technically simplified when

turn to the mixed, momentum-coordinate representation of the wavefunction. We will use

a similar technic to solve our problem. Due to this technic, partial Fourier transformation,

the evanescent modes are not a complex function and the basis set of φ±n (y, k) (where k is

the integrating variable of Fourier transformation) become a orthogonal set. This method

can avoid the complex evanescent modes we worried about in the previous chapter, and
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this calculation can be extended to the high magnetic regime.

4.1 Formalism

In the beginning, we also consider the Schrödinger equation Eq. (2.8) and the electronic

transport in a laterally confined system can be described (x0 = 0)

{
− ∂2

∂x2 −
∂2

∂y2 + Ω2y2 + 2iωcy
∂

∂x
+ V0δ(x)Vs(y)

}
Ψ(x, y) = E Ψ(x, y) (4.1)

Let Ψ(x, y) =
∑
n

∫
dk
2π

eikxψn,kφn(k, y) which we partially write the total wavefunction in

coordinate space x to the momentum space k, it is easy to obtain

∑
n

{∫
dk

2π
k2eikxψn,kφn(k, y)− ∂2

∂y2

∫
dk

2π
eikxψn,kφn(k, y)

+Ω2y2

∫
dk

2π
eikxψn,kφn(k, y) + 2ωcy

∫
dk

2π
(−k)eikxψn,kφn(k, y)

+V0Vs(y)δ(x)

∫
dk

2π
eikxψn,kφn(k, y)

}
= E

∑
n

∫
dk

2π
eikxψn,kφn(k, y) (4.2)

and we transform this above equation to momentum space

∫
dx e−iqx

∫
dk

2π
k2eikxψn,kφn(k, y) = q2ψn,qφ(q, y) (4.3)

∫
dx e−iqx

∫
dk

2π
(−k)eikxψn,kφn(k, y) = −qψn,qφ(q, y) (4.4)

∫
dx e−iqxVs(y)δ(x)

∫
dk

2π
eikxψn,kφn(k, y) = Vs(y)

∫
dk

2π
ψn,kφn(k, y) (4.5)

∑
n

{
q2ψn,qφn(q, y)− ∂2

∂y2
ψn,qφn(q, y) + Ω2y2ψn,qφn(q, y)

−2ωcyqψn,qφn(q, y) + V0Vs(y)

∫
dk

2π
ψn,kφn(k, y)

}
= E

∑
n

ψn,qφn(q, y) (4.6)
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And the eigen-function of the confinement on y-direction have these conditions

− ∂2

∂y2
φn(q, y) + Ω2y2φn(q, y)− 2ωcyqφn(q, y) = ε′n(q)φn(q, y) (4.7)

ε′n(q) = εn − ω2
cq

2

Ω2
= (2n + 1)Ω− ω2

cq
2

Ω2
(4.8)

φn(q, y) = Nne
−Ω

2
(y−ωcq

Ω2 )2Hn(
√

Ω(y − ωcq

Ω2
)) (4.9)

Since q is the Fourier transform variable and must be real, φn(q, y) is an orthogonal basis

set and the normalization constant Nn of φn(q, y) should be equal to N s
n = (2nn!

√
π/Ω)−1/2.

In order to simplify our model, we choose the potential Vs(y) equal to 1 which is

uniform on transverse direction. In the case of without magnetic field, the wavefunction

and the impurity barrier are symmetry and the particles will not transit between different

subbands. The effect of subband mixing must be caused by applying magnetic field in

the case of a symmetry system on the transverse direction. And then multiply φ∗m(q, y)

to the above Eq. (4.6) and integrate over y

q2ψm,q + ε′mψm,q +
∑

n

∫
dk

2π
vm,n(q, k)ψn,k = Eψm,q (4.10)

where vm,n(q, k) = V0

∫
dy φ∗m(q, y)Vs(y)φn(k, y)

= V0 e−
α2

4
(q−k)2

Min[m,n]∑
p=0

[− α√
2
(q − k)]m−p

(m− p)!

[ α√
2
(q − k)]n−p

(n− p)!

√
m!n!

p!
(4.11)

⇒ q2ψm,q + (εm − ω2
cq

2

Ω2
)ψm,q +

∑
n

∫
dk

2π
vm,n(q, k)ψn,k = Eψm,q (4.12)

(E − εm −
ω2

y

Ω2
q2)(ψm,q − ψ(0)

m,q)−
∑

n

∫
dk

2π
vm,n(q, k)ψn,k = 0 (4.13)

where ψ(0)
m,q is the zero order perturbation of ψm,q. (4.14)
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or [
Ω2

ω2
y

(E − εm)− q2](ψm,q − ψ(0)
m,q)−

∑
n

∫
dk

2π

Ω2

ω2
y

vm,n(q, k)ψn,k = 0 (4.15)

let K2
m =

Ω2

ω2
y

(E − εm)

And then, we obtain

[K2
m − q2 + iδ](ψm,q − ψ(0)

m,q)−
Ω2

ω2
y

∑
n

∫
dk

2π
vm,n(q, k)ψn,k = 0 (4.16)

where Eq. (4.16) is a 1-D equation in momentum space.

In usually, Lippmann-Schwinger equation method or iteration is used to solve this

kind of problem in momentum space, but we use the inverse Fourier transformation to

transform the ψm,q in Eq. (4.16) back to the coordinate space. We define





ṽm,n(x) ≡ ∫ d(q−k)
2π

ei(q−k)xvm,n(q − k)

ψm(x) =
∫

dk
2π

eikxψm,k

(4.17)

or 



vm,n(q, k) =
∫
dx e−i(q−k)xṽm,n(x)

ψm,k =
∫
dx e−ikxψm(x)

(4.18)

Eq. (4.16) become

(K2
m − q2 + iδ)(ψm,q − ψ(0)

m,q)−
Ω2

ω2
y

∑
n

∫
dk

2π
vm,n(q, k)ψn,k = 0 (4.19)

(K2
m − q2 + iδ)(

∫
dx e−iqxψm(x)−

∫
dx e−iqxψ(0)

m (x))

−Ω2

ω2
y

∑
n

∫
dk

2π

∫
dx e−i(q−k)xṽm,n(x)

∫
dx e−ikxψn(x) = 0 (4.20)
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(K2
m − q2 + iδ)

(∫
dxe−iqxψm(x)−

∫
dxe−iqxψ(0)

m (x)

)

−Ω2

ω2
y

∑
n

∫
dx e−iqxṽm,n(x)ψn(x) = 0 (4.21)

⇒ (K2
m +

∂2

∂x2
+ iδ)(ψm(x)− ψ(0)

m (x))− Ω2

ω2
y

∑
n

ṽm,n(x)ψn(x) = 0 (4.22)

or (K2
m +

∂2

∂x2
)ψm(x) +

∑
n

Ω2

ω2
y

ṽm,n(x)ψn(x) = 0 (4.23)

where

ṽm,n(x) =

∫
d(q − k)

2π
ei(q−k)xvm,n(q − k) (4.24)

=
V0γ√

π
in−me−γ2x2

Min[m,n]∑
p=0

{
2p−m+n

2

√
m!n!

p!(m− p)!(n− p)!
Hm+n−2p(γx)

}
(4.25)

with γ =
Ω3/2

ωc

And finally we obtain the Eq. (4.23) which is a 1-D equation in coordinate space with

a finite-range potential barrier. According to the Fourier transformation, the physical

model we considered in Sec. 2.2, which is a 2-D wire with a δ-type embedded impurity

barrier in the longitudinal direction with magnetic field can be reduced to a 1-D system

with a finite range potential barrier. Our original model have be simplified and we can

use the scattering matrix method which we will introduce in next section to solve the

finite range potential problem.

To utilize the scattering matrix approach, we divide the scattering potential ṽmn(x)

into a series with distance δL in between, each of them is described by a δ-type potential

ṽmn(x) =

NL∑
i=1

ṽsc
mn(xi) (4.26)

ṽsc
mn(xi) = vmn(xi)δ(x− xi)δL (4.27)
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The potential ṽmn(s) can thus be described if we divide the potential into sufficiently large

number of pieces, NL.

And then we can use the scattering matrix approach to obtain the wavefunction ψn(x)

and the transmission and reflection coefficients.

In the programs, we write the equation ṽm,n(x) as

ṽm,n(x) =
V0γ√

π
in−me−γ2x2

Min[m,n]∑
p=0

2p−m+n
2

√
m!n!

p!(m− p)!(n− p)!
Hm+n−2p(γx)

=
V0γ√

π
in−m

√
m!n!

2m2n
e−γ2x2

Min[m,n]∑
p=0

2p

p!

2m−p

(m− p)!

2n−p

(n− p)!

Hm+n−2p(γx)

2m+n−2p
(4.28)

and we define that f1(n) = 2n/n!, f2(n) =
√

n!/2n, and Ht(n) = Hn(γx)/2n.

The explicit derivation of vm,n(q, k) and ṽm,n(x) are given as follows

vm,n(q, k) = V0

∫
dy φ∗m(q, y)Vs(y)φn(k, y) (4.29)

= V0NmNn

∫
dy

{
e−

Ω
2
(y−ωcq

Ω2 )2Hm[
√

Ω(y − ωcq

Ω2
)]

× e−
Ω
2
(y−ωck

Ω2 )2Hn[
√

Ω(y − ωck

Ω2
)]

}
(4.30)

let t =
√

Ωy, γ = Ω3/2/ωc.

= V0NmNn

∫
dt√
Ω

e−
1
2
(t− q

γ
)2− 1

2
(t− k

γ
)2Hm[(t− q

γ
)]Hn[(t− k

γ
)] (4.31)

=
V0NmNn√

Ω
e−[ 1

2γ
(q−k)]2

∫
dk e−[t− 1

2γ
(q−k)]2Hm(t− q

γ
)Hn(t− k

γ
) (4.32)
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and let u = t− 1

2γ
(q + k)

t = u +
q

2γ
+

k

2γ

t− q

γ
= u− q

2γ
+

k

2γ
= u− q − k

2γ

t− k

γ
= u +

q

2γ
− k

2γ
= u +

q − k

2γ

and W =
q − k

2γ

⇒ vm,n(q, k) =
V0NmNn√

Ω
e−W 2

∫
due−u2

Hm(u−W )Hn(u + W ) (4.33)

∼ vm,n(q − k) (4.34)

ṽm,n(x) =

∫
d(q − k)

2π
ei(q−k)xvm,n(q, k) (4.35)

let W =
q − k

2γ

=
γ

π

∫
dWei2xγW V0NmNn√

Ω
e−W 2

∫
du e−u2

Hm(u−W )Hn(u + W ) (4.36)

where NmNn = 2−
m+n

2

√
1/m!n!

√
Ω/π

and using Eq. (A.78).

=
V0γ

π

Min[m,n]∑
p=0

{
2

m+n
2
−p

√
m!n!

p!(m− p)!(m− p)!
(−1)m−p

×
∫

dWei2xγW−W 2

Wm+n−2p

}
(4.37)

Using this relation:

∞∫

−∞

xne−β2x2

eiaxdx = in
√

π

(2β)n
e
−a2

4β2 Hn(a/2β) (4.38)
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ṽm,n(x) = V0
γ

π

Min[m,n]∑
p=0

2
m+n

2
−p

√
m!n!

p!(m− p)!(m− p)!
(−1)m−p

×im+n−2p

√
π

2m+n−2p
e−γ2x2

Hm+n−2p(γx) (4.39)

=
V0γ√

π
in−me−γ2x2

Min[m,n]∑
p=0

2p−m+n
2

√
m!n!

p!(m− p)!(n− p)!
Hm+n−2p(γx) (4.40)

where γ = Ω3/2/ωc.

4.2 Scattering matrix method

In the previous section, we have wrote down the scattering potential in pieces in Eq. (4.26)

and Eq. (4.27), and in this section we introduce the scattering matrix method in a general

way.

To utilize the scattering matrix approach, we divide the scattering potential into a

series with distance δL in between, each of them is described by a δ-type potential

Vsc(xi, y) = δL V0(xi)Vs(y)δ(x− xi) (4.41)

The potential Vd can thus be described by Vd(x, y) =
∑NL

i=1 Vxi,y if we divide the potential

into sufficiently large number of pieces.

For a right-going incident wave ψ(x, y) from the nth mode of the left reservoir, the

corresponding scattering wavefunction can be expressed in the form

ψ(i)
n (x < xi, y, kn) = eiknxφ+

n (y, kn) +
∑

n′
e−ikn′xφ−n′(y, kn)r+

i,n′n, (4.42)

ψ(i)
n (x > xi, y, kn) =

∑

n′
eikn′xφ+

n′(y, kn)t+i,n′n. (4.43)

where φ±n (y, kn) is the unperturbed eigen-function in the wire.

Following similar procedure we can also obtain the reflection and transmission coeffi-
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cients, r−i,n′n and t−i,n′n for the left-going incident wave.

Refer to the paper, PRB. 44 1792 (1991), H. Tamura and T. Ando, we can have a

detailed description of scattering matrix method. Due to the transmission and reflection

coefficient amplitudes, t±m,n and r±m,n. The scattering matrix, or the S matrix, is defines

as

S =




r+ t−

t+ r−


 (4.44)

The current conservation law requires the unitarity of the S matrix as

S̃†S̃ = S̃S̃† = 1 (4.45)

where S̃ consists of Nc×Nc transmission matrices t± and the reflection matrices r±, which

contain the scattering amplitudes from Nc incoming conducting channels to Nc outgoing

conducting channels.

The overall S matrix for the disordered region containing a certain number of impurities

with δ-type potential can be obtained by decomposing it into single-impurity parts and

free-propagating parts using a composition law. ref If we consider the two S matrices

defined by

S1 =




r+
1 t−1

t+1 r−1


 and S2 =




r+
2 t−2

t+2 r−2


 (4.46)

then the composed S matrix S12 ≡ S1 ⊗ S2 for S1 and S2 in series can be calculated as




B

C


 =




r+
1 t−1

t+1 r−1







A

D


 and




D

E


 =




r+
2 t−2

t+2 r−2







C

F


 (4.47)

⇒





B = r+
1 A + t−1 D

C = t+1 A + r−1 D
and





D = r+
2 C + t−2 F

E = t+2 C + r−2 F
(4.48)
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D = r+
2 (t+1 A + r−1 D) + t−2 F = r+

2 t+1 A + r+
2 r−1 D + t−2 F

⇒ D = (1− r+
2 r−1 )−1r+

2 t+1 A + (1− r+
2 r−1 )−1t−2 F (4.49)

and

B = r+
1 A + t−1 D

= [r+
1 + t+1 (1− r+

2 r−1 )−1r+
2 t+1 ]A + t−1 (1− r+

2 r−1 )−1t−2 F (4.50)

C = t+1 A + r−1 D = t+1 A + r−1 r+
2 C + r−1 t−2 F

⇒ C = (1− r−1 r+
2 )−1t+1 A + (1− r−1 r+

2 )−1r−1 t−2 F (4.51)

and

E = t+2 C + r−2 F

= t+2 (1− r−1 r+
2 )−1t+1 A + [r−2 + t+2 (1− r−1 r+

2 )−1r−1 t−2 ]F (4.52)




B

E


 =




r+
1 + t+1 (1− r+

2 r−1 )−1r+
2 t+1 t−1 (1− r+

2 r−1 )−1t−2

t+2 (1− r−1 r+
2 )−1t+1 r−2 + t+2 (1− r−1 r+

2 )−1r−1 t−2







A

F




=




r+
12 t−12

t+12 r−12







A

F


 (4.53)

⇒





t+12 = t+2 (1− r−1 r+
2 )−1t+1 ,

t−12 = t−1 (1− r+
2 r−1 )−1t−2 ,

r+
12 = r+

1 + t−1 r+
2 (1− r−1 r+

2 )−1t+1 ,

r−12 = r−2 + t+2 r−1 (1− r+
2 r−1 )−1t−2 .

(4.54)

Note that the composition law satisfies the associative law (S1⊗S2)⊗S3 = S1⊗(S2⊗S3),

but does not satisfy the commutative law in general, i.e., S2 ⊗ S1 6= S1 ⊗ S2. The overall
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S matrix can be expressed as

S = Sfree
1 ⊗ Simp

1 ⊗ Sfree
2 ⊗ · · · ⊗ Simp

NI
⊗ Sfree

NI+1 (4.55)

where NI is the total number of impurities. It must be noted that this decomposition

method of the disordered region into parts by Eq. (4.55) cannot be applied to the system

containing impurities with the long-range potential.

4.3 Wavefunction and current density

We will write down the equations of wavefunction and the current density in the wire

with magnetic field in this section.

In the beginning, we have known that the total wavefunction could be written as the

below equation

Ψ(x, y) =
∑

n

∫
dk

2π
eikxψn,kφn(k, y), (4.56)

where k is also the variable of the Fourier transformation here and must be a real number

φn(k, y) = N s
ne−

Ω
2
(y− ωc

Ω2 k)2Hn

[√
Ω(y − ωc

Ω2
k)

]
(4.57)

and then

Ψn(x, y) =

∫
dk

2π
eikxψn,kφn(k, y)

=

∫
dx′ψ̃n(x′)

∫
dk

2π
eik(x−x′)φn(k, y) (4.58)
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where

∫
dk

2π
eik(x−x′)φn(k, y)

=

∞∫

−∞

dk

2π
N s

ne−
Ω
2
(y− ωc

Ω2 k)2Hn

[√
Ω(y − ωc

Ω2
k)

]
eik(x−x′) , let u =

√
Ωy − k

γ

=
N s

n

2π
(−γ)

−∞∫

∞

du e−
u2

2 Hn[u]eiγ(
√

Ωy−u)(x−x′) (4.59)

=
N s

n

2π
γeiγ

√
Ωy(x−x′)

∞∫

−∞

du e−
u2

2 Hn[u]e−iγ(x−x′)u

=
N s

n√
2π

γeiγ
√

Ωy(x−x′)e−
1
2
γ2(x−x′)2Hn [γ(x′ − x)] in (4.60)

=
N s

n√
2π

inγe−
1
2
Ωy2

e
1
2
[iγ(x−x′)+

√
Ωy]2Hn [−γ(x− x′)] (4.61)

where we use the Eq.7.376 in the mathematic table [64],
∫
dx eixye−

x2

2 Hn(x) =
√

2πe−
y2

2 Hn(y)in.

Ψn(x, y) =

∫
dx′ψ̃n(x′)

N s
n√
2π

inγeiΩ2

ωc
y(x−x′)e−

1
2
[γ(x′−x)]2Hn [γ(x′ − x)]

=
N s

n√
2π

inγeiΩ2

ωc
yx

∫
dx′ ψ̃n(x′)e−iγ

√
Ωyx′e−

1
2
γ2(x′−x)2Hn(γ(x′ − x)) (4.62)

=
N s

n√
2π

inγe−
1
2
Ωy2

∫
dx′ ψ̃n(x′)e

1
2
[iγ(x−x′)+

√
Ωy]2Hn(γ(x′ − x)) (4.63)

where ψ̃n(x) is exactly the solution of Eq. (4.23).

And we write this Eq. (4.63) in programs as:

Ψn(x, y) =
N s

n√
2π

inγe−
1
2
Ωy2

∫
dx′ ψ̃n(x′)e

1
2
[iγ(x−x′)+

√
Ωy]2Hn(γ(x′ − x))

= (
1√
2
)n+1 1√

n!

√
√

Ω(
1√
π

)3 e−
Ω
2

y2

γ in

×
∑

j

ψ̃n(xj)(∆x)e
1
2
[iγ(x−xj)+

√
Ωy]2Hn(−γ(x− xj)) (4.64)

where ∆x is the interval distance of xj+1 and xj.
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In the Sec. 3.4, we have the relation of the current density:

jx =
1

i
{ψ∗ ∂

∂x
ψ − ∂

∂x
ψ∗ · ψ − 2iωcyψ∗ψ} = ψ∗(

∂

i∂x
− ωcy)ψ + c.c. (4.65)

jy =
1

i
{ψ∗ ∂

∂y
ψ − ∂

∂y
ψ∗ · ψ} = ψ∗

∂

i∂y
ψ + c.c. (4.66)

∂

i∂x
Ψn =

∂

i∂x

Nn√
2π

inγeiΩ2

ωc
yx

×
∫

dx′ ψ̃n(x′)e−iγ
√

Ωyx′e−
1
2
γ2(x′−x)2Hn(γ(x− x′))

=
Nn√
2π

inγeiΩ2

ωc
yx

∫
dx′

{
ψ̃n(x′)e−iγ

√
Ωyx′e−

1
2
γ2(x′−x)2

×1

i




iΩ2

ωc
yHn[γ(x′ − x)] + γ2(x′ − x)Hn[γ(x′ − x)]

−2γ2(x′ − x)Hn[γ(x′ − x)]−Hn+1[γ(x′ − x)]








=
Nn√
2π

inγeiΩ2

ωc
yx

∫
dx′

{
ψ̃n(x′)e−iγ

√
Ωyx′e−

1
2
γ2(x′−x)2

×




Ω2

ωc
yHn[γ(x′ − x)] + iγ2(x′ − x)Hn[γ(x′ − x)]

−iγHn+1[γ(x′ − x)]








(4.67)

∂

i∂y
Ψn =

Nn√
2π

inγeiΩ2

ωc
yx

×
∫

dx′ ψ̃n(x′)
√

Ωγ(x− x′)e−iγ
√

Ωyx′e−
1
2
γ2(x′−x)2Hn(γ(x− x′)) (4.68)

where γ = Ω3/2/ωc.

And then we can substitute Eq. (4.67) and Eq. (4.68) into Eq. (4.65) and Eq. (4.66)

and obtain the current density.

4.4 Numerical results

In the Fig. 4.1, we discuss the saturation versus Nc and plot the transmission as a function

of B for various number of subband for the case of the barrier strength is repulsive with
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Figure 4.1: The saturation versus the numbers of subband Nc for a repulsive barrier
with 1.0E∗ in (a) and an attractive barrier with −1.0E∗ in (b). The incident energy is at
7ωyE

∗.
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1.0E∗ in (a) and attractive −1.0E∗ in (b) We change the numbers of subbands used in

the calculation for various of 10, 20, 30, 40, and 50. We can find that the curves had

saturate for the larger numbers of subbands in both repulsive and attractive potential,

and it is also conform to the conservation condition. Although it is saturate for the more

subbands, but it saturate slowly and need much more subbands than the mode-matching

approach.
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Figure 4.2: The saturation versus the number of subband for repulsive barrier with 1.0E∗

in (a) and −1.0E∗ in (b). And the amplitude of the magnetic field is 1.0B∗.
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Figure 4.3: The saturation versus the number of subband for repulsive barrier with 1.0E∗

in (a) and −1.0E∗ in (b). And the amplitude of the magnetic field is 2.0B∗.

In Fig. 4.2 and Fig. 4.3, we find that the curves of transmission versus incident energy

saturate and used fewer numbers of subbands in the higher strength of magnetic field. In

the Fig. 4.2, the curves saturate with 80 subbands when B = 1.0, and in the Fig. 4.2, the
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curves saturate with 20 subbands when B = 2.0 Because the subband level spacing will be

wider as we increase the strength of the magnetic field, the overlap of each subbands and

the transition of each subbands is smaller. And it need fewer subbands and can describe

the interaction between subbands well.
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Figure 4.4: The probability density of |ψn(x)|2 as a function of coordinate variable x for
various Nc from 10 to 22, incident energy is 1.4ΩE∗ and the amplitude of magnetic field
is 1.0. The barrier is repulsive in (a), and attractive in (b).

In the Fig. 4.4, we plot the magnitude square of wave function ψ̃n(x) which is the

solution of Eq. (4.23) near x = 0 for various of numbers of subbands, 10, 18, 20, and 22.

The incident energy is X = 1.4, the amplitude of the magnetic field is fixed to 1.0, and

the barrier is (a) repulsive, V0 = 1.0E∗, and (b) attractive, V0 = −1.0E∗.

In the Fig. 4.4, we can find that the curves of wavefunctions does not really saturate

yet even when we used 22 subbands in the case of B = 1.0, and the curves start to diverge

when we increase the numbers of subbands to 23. And it not strange that the curves is

not saturate because the transmission in the same parameter is not saturate either in

Fig. 4.2, the strange thing is why the wavefunction diverge in this few subbands, we can

have reasonable results in calculating the transmission with much more subbands. In the

process of calculating the wavefunction ψ̃n(x), we use the scattering matrix method to

obtain the wavefunction of each position on x-direction. We have to inverse the scattering

matrix to obtain the coefficients here, and there is a problem about the accuracy of

calculation. Of course we have to improve the precision and algorithm, but it is still a
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limit of the numerical calculation.

We know that the wavefunction is more sensitive than the transmission and more hard

to be saturate. In the Fig. 4.4, the curves are not saturate in quantity, but we believe

that the character and profile will be almost saturate in qualitatively. According to this

result, we use 20 subbands in our calculation and plot several figures of wavefunction

in the case of small magnetic field which smaller than B = 1.0B∗. And investigate the

physical insights about what happened in this system when we apply the magnetic field.
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Figure 4.5: The saturation of the wavefunction of PFTLS approach. We plot the wave-
function of −10 < x < 10 and x = 0 for various numbers of subbands, 10, 18, 20, and 22,
and the incident energy X = 1.6, the amplitude of magnetic field is 1.0, and the strength
of the barrier is repulsive, 1.0 in (a), and attractive, −1.0 in (b).

In the Fig. 4.5, we plot the wavefunction of −10 < x < 10 and y = 0 by using the

approach of PFTLS for various numbers of subbands, 10, 18, 20, and 22 in the case of

incident energy X = 1.6, the amplitude of magnetic field is 1.0, and the strength of barrier

is repulsive, 1.0 in (a) and attractive, −1.0 in (b). We can find that the wavefunction

saturate down as we increase the numbers of subbands to 20 and 22, and in the others

plotting of wavefunction by using the approach of PFTLS, we all use 20 subbands.

4.5 Summary

In Ch.3, we have discuss about the center shift of the eigen-function φ±n (y, kn), the center

of the eigen-function shift to the edge in the wire as the wave vector is real, and the
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center is back to the center of the wire as the wave vector is pure imaginary. In other

words, the eigen-function φ±n (y, kn) is a propagating mode and a real function if the wave

vector is real, and be an evanescent mode and a complex function if the wave vector is

pure imaginary. Because the eigen-function φ±n (y, kn) is not a orthonormal basis and a

complete set as the wave vector kn is a pure imaginary variable, we have to expand the

eigen-function φ±n (y, kn) to a orthonormal basis φo
n(y) which we have done in Ch.3.

In this chapter, we use the approach of partial Fourier transformation to transform

the x coordinate to momentum space and keep the wave vector real and be the Fourier

transformation variable. According to this method, the eigen-function φ±n (y, kn) will be

a orthonormal and complete basis. It is a good news to avert the expansion of eigen-

function φ±n (y, kn) to another, but what we have to pay is the more heavily numerical

calculation and the δ-type barrier will become a finite range potential.

After we transform the original Hamiltonian to partial momentum space and then

transform back to the coordinate space, the original two-dimensional problem which is

a wire and embedded a δ-type barrier will become a quasi-one-dimensional problem. In

some sense, it is earlier to be solved then a two-dimensional problem here and we use the

scattering matrix method.

In the next chapter, we will discuss what is the same and what is different between

these two approaches, MM and PFTLS, and which one is better in our case. And we have

also compare the numerical results of these two approach, and make sure our calculation

is correct and believable.
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Chapter 5

Comparing the numerical results

from the MM and PFTLS

approaches

We compare the numerical results from the MM and PFTLS approaches in this chapter.

We compare the curves of transmission ,the wavefunction and current density patterns,

and find that the results of these two approaches are almost the same.

5.1 Transmission

In the Fig. 5.1, we plot the transmission versus the amplitude of magnetic field of the two

approaches, MM and PFTLS. We fix the incident energy at E = 7ωyE
∗ which X = 3 and

the barrier strength is repulsive with 1.0E∗ in (a) and attractive with −1.0E∗ in (b). We

find that the curves in both approaches in Fig. 5.1(a) and (b) does not overlay together

but they have more overlap when we increase the numbers of subbands. In the Ch. 3

and 4, we know that the two approaches have their own regime which can saturate easier

and the unsuitable regime which can not saturate in the calculations, e.q. the approach of

MM is more easier to saturate in the lower magnetic field regime and can’t saturate in the
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Figure 5.1: The transmission versus the amplitude of magnetic field of the two approaches,
MM and PFTLS. we fix the incident energy at 7ωyE

∗ which X = 3 and the barrier strength
is repulsive with 1.0E∗ in (a) and attractive with −1.0E∗ in (b).

higher magnetic field regime which we had discussed in the Sec. 3.6; and the approach of

PFTLS is easier to saturate in the higher magnetic field regime and hard to saturate in
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the lower magnetic field regime which we had also discussed in the Sec. 4.5. According

to the different of these two approaches, the curves in Fig. 5.1 of these two approaches

is reasonable that does not overlay together. But the the regime of lower magnetic field,

the curves should be closer as we increase the numbers of subbands which used in the

approach of PFTLS, and it does, e.q. the curves of approach of MM are roughly saturate

below the amplitude of the magnetic field is B = 1.0B∗, and the curves of approach of

PFTLS are saturate above the amplitude of the magnetic field is B = 1.0B∗ by using

80 subbands. The curves should overlay together near the amplitude of magnetic field is

B = 1.0B∗ in the Fig. 5.1.

Besides the comparing of quantity, in qualitatively the character is the same in both

approaches which showed in the Fig. 5.1.

In the Fig. 5.2, we compare the curves of transmission versus incident energy of the

two approaches, MM and PFTLS. In this comparison, we fix the amplitude of magnetic

field to B = 1.0B∗ and the strength of barrier to 1.0E∗ but repulsive in (a) and attractive

in (b). According to the discussion of the Fig. 3.3 and Fig. 4.2, we use 30 subbands for

the calculation of the approach of MM and the curve is saturate below X = 4, and use 80

subbands for the calculation of the approach of PFTLS and the curve is saturate. And we

find that the curves in Fig. 5.2 overlay together in the lower incident energy, e.q. X < 3,

and within a little space between two curves above X = 4. And the two curves roughly

overlay together between 3 < X < 4.

In Fig. 5.3, we enlarge the regime of 0.95 < X < 2.5 and 1.8 < X < 2.01 in Fig. 5.2,

and check how close of the curves of the two approaches. In the Fig. 5.3(a), it is still

hard to separate the difference of curves of the two approaches, MM and PFTLS. In the

Fig. 5.3(b), we find that the curves of ‘MM, Nc = 30’ and ‘PFTLS, Nc = 80’ does have

a little space between them and the spacing depend on the numbers of subbands used in

the calculation, the more numbers of subbands used, the less spacing between the two

approaches. According to this, we believe that the two approaches will be the same if we

can use “enough” subbands, but it is hard to do in the numerical calculation. And the
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Figure 5.2: The transmission versus the incident energy X of the two approaches, MM
and PFTLS. The magnetic field amplitude is 1.0B∗ and the strength of the repulsive
barrier is V0 = 1.0E∗ in (a) and the attractive barrier is V0 = −1.0E∗ in (b).

physical insight must had be saturate down in both approaches.
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Figure 5.3: Comparing the saturation of the two approaches by plotting the transmission
versus the incident energy, the magnetic field amplitude is B = 0.5B∗ and the strength
of the impurity barrier is V0 = −1.0E∗. And we enlarge one part of figure (a) from 1.8 to
2.01 in (b).
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Figure 5.4: Compare the wavefunction of the two approaches, MM and PFTLS, for
−10 < x < 10 and y = 0. The incident energy X = 1.6, and the strength of the barriers
are repulsive and 1.0 in (a) and (c), attractive and −1.0 in (b) and (d), and the amplitude
of the magnetic field are 0.1 in (a) and (b), 0.2 in (c) and (d).
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5.2 Wavefunction and current pattern

In the Fig. 5.4, we plot the wavefunctions of −10 < x < 10 and y = 0 by using the

two approaches in the case of incident energy X = 1.6, we also change the amplitude

of magnetic field and strength of barrier, which the amplitude of magnetic field are 0.1

in figures (a) and (b) and 0.2 in figures (c) and (d), and the strength of barriers are

repulsive, 1.0, in figures (a) and (c) and attractive, −1.0, in figures (b) and (d). And

the used numbers of subbands are 50 in the approach of MM and 20 in the approach of

PFTLS, which the wavefunction of MM and PFTLS are both saturate.

In the Fig. 5.4, we can find that the two curves of the two approaches are very close

in each figure. In the case of B = 0.1 in figures (a) and (b), the two curves are almost

overlap together, but B = 0.2, in figures (c) and (d), the two curves look similar but not

overlap together. The spacing between the two curves become wider as the amplitude of

magnetic field increase, because the transmission of the the approach of PFTLS is not

saturate by using this few subbands in calculation, which we had also discussed about

the Fig. 5.3 in the section 5.1. But in the case of B = 0.1, the amplitude of the magnetic

field is too small, and the two approaches can both describe the system with magnetic

field well.

In the Fig. 5.5, we plot the current density patterns in the wire with the implied

magnetic field, B = 0.15B∗, and the incident energy X = 1.9, the strength of the barrier is

20 which is very strong the the total transmission is approach to zero. And the Fig. 5.5(a)

is plotted by using the approach of MM and (b) use the approach of PFTLS. The two

current density patterns of the two approaches look very similar. The direction of the

current density patterns are almost the same but few place near x = 0. The current

density of the place that the direction is different is very small and near the place which

the current flow together, and it is very sensitive to the direction. But in the place of

larger current, the current patterns are the same. Besides the direction of the current

density patterns, the strength of the current density are also similar of these two figures
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Figure 5.5: The current density in the wire with magnetic field, B = 0.15B∗, and the
incident energy is X = 1.9 which is close to the subband bottom of second subband.
And the strength of the barrier is repulsive, 20. (a) is the current density by using the
approach of MM, and (b) use the approach of PFTLS.

in the Fig. 5.5.
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5.3 Summary

In this chapter, we had compare about the numerical results of the two approaches, MM

and PFTLS, and find that the results are very close in quantity and should be the same

in qualitative. In the Sec. 5.1, the curves of the transmission versus incident energy

are qualitatively the same, and the difference between the two kinds of curve is smaller

as increasing the subband numbers. And in the Sec. 5.2, the wavefunction and the

current density patterns are the same, but the quantities are different between these two

approaches and it is because the transmission is not saturate in the approach of PFTLS

by using 20 subbands. In the final, we can be sure that these two approaches have the

same results in this calculation of this model, and each one has its suitable regime for

approaching.
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Chapter 6

Magnetoconduction in quantum

channel with a repulsive barrier

In this chapter, we discuss the phenomena with a repulsive barrier in the wire by tuning

the magnetic field and the barrier strength. And we investigate the wavefunction and the

current density patterns, the generation of the edge states and the edge state resonance

above each subband bottom but the first subband.

6.1 Tuning of the magnetic field

In the Fig. 6.1 and Fig. 6.2 we plot the transmission of the first subband and second

subband as a function of incident energy for various amplitudes of magnetic field from

0.0B∗ to 2.0B∗ and the strength of the repulsive had be fixed to 1.0. In these figures, we

find that the curves of transmission has valley structures above each subband bottoms but

the first one. In the Fig. 6.1, there is one valley above X = 2 for each curve, and in the

range of the energy above X = 3, the curves have two valleys in the larger magnetic field,

e.g. B > 1.2B∗. And in the Fig. 6.2, in the range of the energy above X = 2, the curves

have one valley when B > 0.6B∗; in the range of the energy above X = 3, each curve

has one valley at least here and has two valley as B > 1.6B∗. The valley structure are
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Figure 6.1: The transmission versus the incident energy and incident from the first
subband for various amplitudes of the magnetic field form 0.0B∗ to 2.0B∗ and the strength
of the repulsive barrier is V0 = 1.0E∗. The dips structure happen above X = 2 and X = 3

the resonance of the edge states on the transverse direction near the barrier and we will

discuss the valleys in detail in the section 6.3 with the wavefunction and current density

patterns.

6.2 Tuning of the barrier strength

In the Fig. 6.3, the valley structures become stronger as increasing of the strength of the

repulsive barrier, and we can see the two valleys above X = 3 become more clear when the

strength of the magnetic field is larger. It is because the strength of the valleys depend

on the amplitude of the overlap between the subbands and the impurity barrier, the more

of the barrier potential, the larger of the valley profiles.
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Figure 6.2: The transmission versus the incident energy and incident from the second
subband for various amplitudes of the magnetic field form 0.0B∗ to 2.0B∗ and the strength
of the repulsive barrier is V0 = 1.0E∗. The valleys structures happen just above the
integral X

6.3 Analyses of numerical results and physical inter-

pretations

In the Fig. 6.4, we plot the total wavefunction and the current density patterns which

we can see the edge states clearly in the wire of the repulsive barrier is 20, which is

really strong and the transmission is almost zero, the amplitude of the magnetic field is

B = 1.0B∗, and the incident energy is X = 1.7 and incident from the first subband. And

the magnetic length is 1.0a∗, and the cyclotron radius is 2.8a∗ in this case. In the figure

of the transport particle current density, the electrons are seen to describe the edge state

current along the edge of the wire, the edge states is clearly generated in the Fig. 6.4;

we are in the quantum Hall regime. The particle current density flow into the wire on

the topside form the left side, and almost total reflect to the left on the underside of the
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Figure 6.3: The transmission versus the incident energy and incident from the first
subband for various strength of repulsive barrier from 0.0E∗ to 1.4E∗ and the amplitude
of the magnetic field is 2.0B∗.

wire and before the barrier at x = 0. This phenomenon and the path of the edge state

is suitable to the classical picture that the charged particle move on the edge when it is

applied a large magnetic field.

In the Fig. 6.5, Fig. 6.6, and Fig. 6.7, we plot the wavefunction and the current density

patterns of the strength of repulsive barrier is V0 = 1.0E∗, the amplitude of the magnetic

field is 0.5B∗ and the magnetic length is lB = 1.41a∗ , the the incident wave come form

the first subband which the incident energy is X = 1.8, X = 2.2, and X = 2.8 in the

three figures in sequence. And the cyclotron radius are rc = 5.98a∗, rc = 7.33a∗ and

rc = 8.97a∗ in the three figures. The small curve on the right of the top of each figure is

the transmission versus the incident energy and the wave incident from the first subband.

We want to find out the reason why there is a resonance valley near X = 2.2 in the

curve of transmission. In the Fig. 6.5, the edge state had generated and come from the left

to the right side in the upside of the wire, and the current has interference with the other
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Figure 6.4: The total wavefunction and the current density patterns in the wire with a
strong repulsive barrier V0 = 20E∗, the amplitude of the magnetic field is 1.0B∗, and the
incident energy is X = 1.7 from the first subband.

edge state on the underside of the wire. We don’t think the edge strongly interact with

the evanescent modes because the amplitude of the evanescent mode is two order smaller

then the propagating mode. In the Fig. 6.6, the incident energy is X = 2.2 and there is a

valley on the transmission here. We can find that the propagating mode interact with the

second propagating mode and have back scattering in both first and second propagating

modes. And in the Fig. 6.7, the incident energy is X = 2.8 which is the highest one of

these three figures. The first propagating mode had shift to the edge, and the center shift

of the second propagating mode is also larger then the shift in Fig. 6.6. The interference of

each propagating mode itself or between each other is small and have less back reflection.

We find that the resonance valley near X = 2.2 is a resonance with the propagating
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Figure 6.5: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is V0 = 1.0E∗, the amplitude of magnetic field is B = 0.5B∗,
and the incident energy is X = 1.8 from the first subband; Left of bottom: The wave-
function and the current density components of the first subband; Right of bottom: The
wavefunction and the current density components of the second subband.

modes themselves but not have much interference with the evanescent modes because

we can see the amplitude of the evanescent mode is not very large. In order to have
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Figure 6.6: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is V0 = 1.0E∗, the amplitude of magnetic field is B = 0.5B∗,
and the incident energy is X = 2.2 from the first subband; Left of bottom: The wave-
function and the current density components of the first subband; Right of bottom: The
wavefunction and the current density components of the second subband.

the resonance, the shifted wavefunction of propagating modes must have some overlap to

each other and then the resonance can have interference between each other. Due to the
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Figure 6.7: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is V0 = 1.0E∗, the amplitude of magnetic field is B = 0.5B∗,
and the incident energy is X = 2.8 from the first subband; Left of bottom: The wave-
function and the current density components of the first subband; Right of bottom: The
wavefunction and the current density components of the second subband.

necessary overlap of each wavefunction, the resonance easier happen at the energy which

is a little large then each subband bottom.
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This kind of resonance is very different with the resonance of the finite range potential.

The resonance of the finite range potential is that one propagating mode has interference

with itself and depend on the phase of the path difference, this kind of resonance could

be a large one; but the edge state resonance is due to the interference of the propagating

modes which are always not only one propagating mode, and the resonances are not a

large one. And another specially character of the edge state resonance could be generated

for a δ-type potential which is a localized potential on the longitudinal direction. That is

never happened for a coordinate resonance without magnetic field.

And then we also plot the wavefunction and the current density patterns in Fig. 6.8

of the case of strength of repulsive barrier is V0 = 1.0E∗ and the amplitude of magnetic

field is 0.5, like the parameter of the three figures Fig. 6.5, Fig. 6.6, and Fig. 6.7. But

change the incident energy and incident subband to the second propagating mode. In

the Fig. 6.8, the incident energy is X = 2.2 and the cyclotron radius is rc = 2.99a∗. The

physical insight is similar to the above discuss, but in this figure we can easily see the

particle current cycle and the diameter of the cycle is match to the magnetic length and

the cyclotron radio (but the cyclotron radius is a radius) in order.

6.4 Summary

In this chapter, we find that the resonance valleys is according to the interference of

the propagating modes themselves and not only one propagating mode. In order to

have the resonance and the interference between different propagating modes, the shift

wavefunction must have some overlap to each other and the impurity potential. Because

our potential barrier is uniform of the transverse direction, the more strength of the

impurity potential, the larger of the overlap. Sometimes, the wavefunction have not only

one peak or one node, due to the overlap of the wavefunctions, they may have two or

more valleys on the transmission. Besides, Due to the necessary overlap between each

subbands, the resonance easier happen at the energy which is a little larger then each
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Figure 6.8: Top: The total wavefunction and the current density patterns of the strength
of the repulsive barrier is 1.0, the amplitude of magnetic field is 0.5, and the incident energy
is X = 2.2 and incident from the second subband; Left of bottom: The wavefunction and
the current density components of the first subband; Right of bottom: The wavefunction
and the current density components of the second subband.

subband bottom. In other words, they should have a wavefunction with small kinetic

energy or small cyclotron radius to be the media to mix the propagating modes together.
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This kind of resonance will not happen above the first subband bottom, because there is

only one propagating mode here.

This kind of resonance is very different between the resonances due to the multiple

scattering in a final range of potential. The resonance of the multiple scattering of a final

range potential is that one propagating mode has interference with itself and depend on

the phase difference of the multiple scattering and the position difference; this kind of

resonance could be a large one. The edge state resonance is due to the interference or the

overlap of different propagating modes and the impurity potential, the amplitude of the

overlap are often small and the resonance will not be a large one.

And another specially character of the edge state resonance could be generated for

a δ-type potential which is a localized potential on the longitudinal direction. The edge

state resonance is a kind of resonance on the transverse direction, and differ with the

resonance on the longitudinal direction without magnetic field. The physical insight is

close to the classical picture, which the edge states mean the charged particle move along

the edge and the potential barrier when it is applied a magnetic field. When the edge

state move along the potential barrier, there are two boundaries which are the edge of

the wire around the edge states, and the edge states can have the resonance between the

edge of the wire on the transverse direction.
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Chapter 7

Magnetoconduction in quantum

channel with an attractive barrier

We discuss the phenomena with an attractive barrier in the wire by tuning the magnetic

field and the barrier strength in this chapter. And we will investigate the effective strength

of the impurity barrier with the applied magnetic field, the two quasi-bound states of the

evanescent modes in pair caused from the complex property of eigen-function, and we

also compare the magnetic length and the cyclotron radius with the classical width of the

wire.

7.1 Tuning of the magnetic field

In the Fig. 7.1, we plot the transmission as a function of X for various B and fix V0 =

−1.0E∗. And in the Fig. 7.2, we change the amplitude of the applied magnetic field from

0.0B∗ to 5.0B∗ and mark the position in energy of the dip structures, and the strength

of the impurity barrier is −1.0E∗ in (a) and −1.4E∗ in (b).

In the first curve of the Fig. 7.1(a), because the impurity barrier is uniform on the

transverse direction, the system should be symmetry without magnetic field and could

be reduced to a one dimension problem which T ∼ 1
1−2V0/ik

, and there are not subband
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Figure 7.1: The transmission versus the incident for various amplitudes of magnetic field
from 0.0 to 2.0, and the strength of the impurity barrier is 1.0.
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transition between each subbands.

As we apply the magnetic field to B = 0.2B∗, there is a fano profile happened suddenly

at X = 1.79. And then we increase the amplitude of magnetic field to 0.4B∗, the fano

has a blue shift to the higher energy at X = 1.85. we can find that the first dips move

to the higher energy when we increase the applied magnetic field till B = 0.8B∗(which is

figured in the Fig. 7.2), and the fano become more and more sharp. As we increase the

amplitude of magnetic field to 0.6B∗, the second dip appear below the subband bottom

of the second subband. The larger of the magnetic field, the second dips have red shift to

the lower energy till B > 2.8B∗.

And then we trace out the relation of the energy of the first two dips and the amplitude

of the applied magnetic field. In the Fig. 7.2, we and find that in the small magnetic field

regime, the first dips move to the higher energy and the second dips move the the lower

energy. As increasing the amplitude of magnetic field, the two dips mix together and the

minimum of the transmission of the dips will not touch zero in the regime of the magnetic

filed near 0.7B∗; the Fano structures is gone in this regime. And in the high magnetic

field regime, the third and the fourth dips appear below the bottom of second subband.

As long as the magnetic field is large enough, the fifth and sixth dips or the 7-th and 8-th

dips will be appear.

And in the Fig. 7.2, we find that the larger of the applied magnetic field, the smaller

of the energy difference of the first two dips, and in the high magnetic field regime, the

first two dip degenerate into together.

7.2 Tuning of the barrier strength

In the Fig. 7.3 and 7.4, we fix the amplitudes of the magnetic field of these two figures to

0.2B∗ and 1.0B∗, and plot the transmission as a function of X for various V0 from 0.0E∗

to −1.4E∗.

We find that the energy of the dip structures move to the lower energy as the strength
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Figure 7.2: The position in energy X of the dip structure in the transmission curve versus
the amplitude of magnetic field; the strength of the impurity barrier is 1.0E∗ in (a) and
1.4E∗ in (b).

of the attractive barrier become larger. In the Fig. 7.3, we find that the energy spacing

between one and the next data is getting larger when we increase the strength of the
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Figure 7.3: The transmission as a function of X for various strength of impurity barrier
from 0.0 to −2.0E∗. The magnetic field is 0.2B∗.

impurity barrier, but in the Fig. 7.4, the difference of the energy spacing does not change

so obviously. The energy spacings or the position of the dips have fewer dependence in

the higher magnetic field regime.

In the regime of low magnetic field, the edge states are not generated and the wave-

function is spread in the center of the wire. The effective impurity potential should be

proportional to the impurity barrier in the wire below the Fermi energy. In the Fig. 7.5,

we define δE is the energy difference between the first dips and the subband bottom of

second mode, and we find that the slope of the curve approach to 0.5 as the magnetic

field approach to 0.0B∗, which mean that the relation of the δE and the strength of the

impurity barrier is V0 ∝
√

δE or δE ∝ V 2
0 in the small magnetic field regime. In the

regime of high magnetic field, the edge states are generated and shift to the edge of the

wire. In this situation, the transport of the two dimensional problem can be reduced to a

one dimensional like problem, and the electrons moving in the wire only see the barrier in
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78



CHAPTER 7. MAGNETOCONDUCTION IN QUANTUM CHANNEL WITH AN
ATTRACTIVE BARRIER

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-2 -1.5 -1 -0.5  0  0.5

Lo
g(

E
ne

rg
y 

di
ffe

re
nc

e)

Log(V)

B=0.01, slope: 0.4987
B=0.1, slope: 0.5083
B=0.2, slope: 0.5272
B=1.0, slope: 0.7630
B=2.0, slope: 0.7936
B=5.0, slope: 0.8671

Figure 7.5: The relation of the position of the first dips with V0.

the edge regime which is a small area. And the effective impurity potential is no longer

the barrier in the wire and below the fermi energy, but the part of the edge regime, the

effective strength of the effective impurity potential will be proportional to the strength

of the impurity barrier more linearly.

7.3 Analyses of numerical results and physical inter-

pretations

In the Figs.7.6 - 7.10, we plot the wavefunction and the current density patterns of the

first two dips for V0 = 1.4E∗ and the amplitude of the magnetic field is 0.4B∗, 0.7B∗, and

1.0B∗ correspondingly, which the first two dips have mixed together at B = 0.7B∗.

We first determine the generation of the edge states depend on the amplitude of the

magnetic field. In the Fig. 7.6 and 7.7, the applied magnetic fields are both 0.4B∗ and

the magnetic length is lB = 1.58a∗ and the cyclotron radius are 7.23 and 8.31 in the two
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Figure 7.6: The wavefunction and the current density patterns at the first dip with
B = 0.4, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

figures. The cyclotron are both larger then the classical width of the wire, which are

rc = 4.89a∗ and rc = 5.62a∗. And we can also see the figures, the interference between the

upside and downside edge states is still viewable in the center part of the wire, and the

edge states are not clearly generated. And in the Fig. 7.8, the amplitude of the applied
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Figure 7.7: The wavefunction and the current density patterns at the second dip with
B = 0.4, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

magnetic field is 0.7B∗ and the magnetic length is lB = 1.20a∗. The cyclotron radius is

rc = 4.52a∗ in this figure and the classical width of the wire is 5.34a∗. The length scales

of cyclotron radius and classical width are more comparable and a little smaller then the

case of B = 0.4B∗, and we can also see the figure and find that the interference is less
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Figure 7.8: The wavefunction and the current density patterns at the dip structure with
B = 0.7, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

in the center part of the wire. The edge states are roughly generated in this magnetic

field regime. In the Fig. 7.9 and 7.10, the amplitude of the magnetic field is B = 1.0B∗

and the magnetic field is 1.0B∗ in these two figures. The cyclotron radius are 3.1a∗ and

3.2a∗ and the classical width of the wire are 5.26a∗ and 5.42a∗, and it is allowed to have
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Figure 7.9: The wavefunction and the current density patterns at the first dip with
B = 1.0, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

the skipping orbit current in the wire. The cyclotron radius are smaller then the classical

width and we can also see the figures, the amplitude of the interference of the edge states

in the center part of the wire is very small and the edge state had been already generated.

Due to the comparison, we know that we can compare the cyclotron radius and the width
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Figure 7.10: The wavefunction and the current density patterns at the second dip with
B = 1.0, Top: the total wavefunction and current density patterns in the wire; Left of
bottom: the contribution of the propagating mode; Right of bottom: the contribution of
the evanescent mode.

of the wire to know does the edge states are generated or not, although it is not really

correct and roughly.

In the system with magnetic field, we have two length scales about magnetic interaction

scale, magnetic length and cyclotron radius. Cyclotron radius is more classical-like then
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the magnetic length and is better to describe the circular motion due to the Lorenz force.

And we can also use the scale, cyclotron radius, to separate the edge states and the

traversing states in the Fig. 1.1.

The amplitude of the wavefunction in the Fig. 7.7 is much larger then the other figures,

the maximum value is at the center of the x- and y-direction and about 37. The next

largest one is the Fig. 7.9, the maximum value is about 27. And the dip structures are also

very sharp for these two figures, the wavefunction and the particle are highly attracted in

the evanescent mode and be a strong bounding state.

And then we look for the current density patterns. The applied magnetic field in the

system is perpendicular to the 2DEG wire and parallel to the +ẑ direction. The current

density is the particle current and according to the applied magnetic field, the current

flow to right on the upside of the wire and flow to left on the downside as the edge

states had generated. And we can also find the current density patterns of the bound

states move vortically and anticlockwise in substance. Some small structure of the current

density pattern between two edge states have opposite current density patterns, that are

the interference of the two main edge state current.

In the Fig. 7.2(b), we can find that the point curve of first dips and the second dips

have overlap near B = 7B∗, and compare to the Fig. 7.2(a), the original properties and

reasons of these two dips should be different. In the five figures, Figs.7.6-7.10, the Fig. 7.6,

7.8, and 7.9 are the wavefunctions and the current density patterns of the first dips for

various magnetic fields, and the Fig. 7.7, 7.8, and 7.10 are the second dips. Fig. 7.8 is a

mixing point and we can look for the other four figures first, it is easy to compare the

wavefunction and the figures of the evanescent mode to find that the wavefunction and

the current density patterns are very different between the first dips and the second dips.

For x = 0, we can find that there are even peaks on y-direction in the figures of first dips,

and there are odd peaks for the second dips.
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In order to discuss this phenomenon, we recall the equation 4.63

Ψn(x, y) =
inN s

nγ√
2π

eiΩ2

ωc
yx

∫
dx′ ψ̃n(x′)e−iγ

√
Ωyx′e−

1
2
γ2(x′−x)2Hn(γ(x′ − x)) (7.1)

for x = 0, we can rewrite Eq. (7.1)

Ψn(0, y) =
inN s

nγ√
2π

∫
dx ψ̃n(x)e−iγ

√
Ωyxe−

1
2
γ2x2

Hn(γx) (7.2)

=

∫
dx ψ̃n(x) φ̃n(x, y) (7.3)

where we define φ̃n(x, y) = inNs
nγ√

2π
e−iγ

√
Ωyxe−

1
2
γ2x2

Hn(γx).

For the evanescent mode (n = 1), φ̃1(x, y) = (πΩ)−1/4γ2xe−
γ2x2

2 {sin (γ
√

Ωxy) +

i cos (γ
√

Ωxy)}. The real part of φ̃1(x, y) is odd on the y-direction and even on the

x-direction; the imaginary part of φ̃1(x, y) is even on the y-direction and odd on the x-

direction. And then we compare to the results of the wavefunction patterns, the real part

of the φ̃1(x, y) should be eliminated or be very small in the integration of Eq. (7.3) for

the first dips; and similar, the imaginary part of φ̃1(x, y) should be eliminated or be very

small in the integration for the second. Due to this property, the function ψ̃1(x) have a

phase shift or phase difference between the two dips.

Extending the above discussion, we know the wavefunction have a phase shift between

the first dips and the second dips, and these two bound states are according to the real

part and imaginary part of the wavefunction on y-direction, φ±n (kn, y).

The real part and imaginary part are both part of the function φ̃n(x, y) and have

the same eigen-energy, and depend on the magnetic field. As we fix the magnetic field

and incident into the wire from one state, there are two kinds of overlap coupling to the

evanescent mode for the impurity barrier, one couple to the real part of the evanescent

mode and the other one couple to the imaginary mode. The effective amplitude must be

different due to the even and odd property of the evanescent mode. When we incident

from the first propagating mode and applied a magnetic field, the wavefunction shift to
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the edge on both ±y-direction and symmetry for the plus or minus wave vector, it has

larger overlap with the real part of the evanescent mode which is even. That is why the

evanescent mode of the first dips is even in the figures. And the overlap depend on the

wavefunction between incident mode and other modes, the overlap with the even (real)

part will not always be the larger one and be first dip.

7.4 Summary

In this chapter, we have discussed the magnetoconduction in the wire with a attractive

barrier, and there are more than one dip structure as we apply the magnetic field. The dips

structure move with the amplitude of the applied magnetic field; in the small magnetic

field regime, the fist dips structures have the blue shift,and the second one move to the

lower energy; and in the high magnetic field regime, the first two dips structures degenerate

together.

When we change the strength of the impurity barrier, the dips structures move to

the lower energy as the impurity barrier become more attractive. In the small magnetic

field regime, the energy shift of the dips structure move like a quasi-2D system and the

δE ∝ V 2
0 ; and in the high magnetic field, the edge states had generated and the current

density patterns move like a quasi-1D system and the energy shift of the dips structure

proportion to the strength of the impurity barrier more linearly.

And we have also discussed the wavefunction and current density patterns of the first

two dips structures and investigate the reason the the two dips. The profiles of the bound

states in the first and second dips is due to the real and imaginary part of the evanescent

mode and the overlap of the propagating mode and the evanescent mode. The impurity

barrier is different for the real part and the imaginary part, and the amplitude of the

overlap between wavefunction and impurity barrier correspond to the position of the two

dips. And that is why the position curves in the Fig. 7.2 has mixed together or cross over.

And we can also know that the wavefunction has a phase shift between these two dips,
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the wavefunction may be even at the energy of the first dips and changed to odd at the

second, or be contrary.

Furthermore, we have also discussed the two length scales, magnetic length and the

cyclotron radius. Cyclotron radius is more classical-like then the magnetic length and

is better to describe the circular motion due to the Lorenz force; the edge states is a

classical-like phenomenon. And we can also use the scale, cyclotron radius, to separate

the edge states and the traversing states in the Fig. 1.1.
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Concluding remarks

In this thesis, we have investigated how the edge states happen and the other phenomena

in the wire as applying the magnetic field. We solve the physical model in two approaches

and compare the results to have a believing feature about the physical phenomena. And

we also using the wavefunction and the current density patterns to investigate the edge

states and the other properties in detail. In the introduction, we know that the classical-

like picture of the edge states had be used for a long time and it is quite reasonable to

discuss most of the experiments, and we also compare our results to the classical-like

picture and have a explanation in quantum mechanic.

In the beginning of this work, we have used the mode-matching approach to solve

the physical model, but the conservation is not good enough in the high magnetic field

regime and we can not plot the wavefunction and the current density patterns which

the edge states had built up. Without the figures of wavefunction and current density

density pattern, it is hard to make sure what kinds of structures were caused by the edge.

And then we use the approach of partial Fourier transformation of Lippmann-Schwinger

equation. This approach is better in the high magnetic field regime and the plotting of

the wavefunction and the current density patterns is stable to show the patterns of edge

states. And we also compare the results of these two approaches. In the regime of low

magnetic field, the results of two approach are almost the same; this is a independent
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check of the calculation.

And then, the first thing is separating the two kinds of states in the wire as we apply

the magnetic field, the edge states and the traversing states which is showed in the Fig. 1.1.

We can compare the cyclotron radius and the classical width of the wire for a given Fermi

energy, as long as the cyclotron radius smaller then the width of wire, the electrons can

have a circular motion along one edge without touch another edge on the other side; and

the edge states had built up. The applied magnetic field in the system is perpendicular

to the 2DEG wire and parallel to the +ẑ-direction. The current density is the particle

current and according to the applied magnetic field, the current flow to right on the

upside of the wire and flow to left on the downside as the edge states had generated. And

we can also find the current density patterns of the bound states move vortically and

anticlockwise in substance. Some small structure of the current density pattern between

two edge states have opposite current density patterns, that are the interference of the

two main edge state current.

When a repulsive impurity barrier is embedded, the edge state resonance will be gener-

ated. The edge state resonance is due to the interference of different subbands, especially

the propagating mode, and be easily happened in the range of small kinetic energy, like

the beginning of each subbands. And the edge state resonance can be introduced for a

δ-type embedded impurity barrier, which is a local potential in the longitudinal direction.

As we embed an attractive impurity barrier, the quasi-bound states will be generated,

and there are not only one quasi-bound state but two or more as the applied magnetic

field is large. In usually, the quasi-bound states generated in pair, and one is caused from

the real part of evanescent mode and the other is caused from the imaginary part. Due

to this property of the dips, we know the wavefunction has phase shift as increase the

incident energy or the magnetic field, and it is corresponding to the position of the edge

state, the path of the edge states are different when the kinetic energy and the magnetic

field are changed, and the difference of the path may introduce the phase shift.

The position of the dips also move as we change the strength of the impurity barrier.
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In the case of attractive barrier, in the small magnetic field regime, the shift of the

quasi-bound state energy proportion to the square of the strength of the impurity barrier,

δE ∝ V 2
0 ; and in the high magnetic field regime and the edge state had generated, the

energy shift of the quasi-bound state move more linearly to the strength of impurity

barrier.

91



Chapter 9

Possible future works

We have a basic model of a δ-type impurity barrier in a wire with magnetic field. It is

easy to extend form this model to a final range potential in the longitudinal direction by

using the scattering matrix method in the future. For example, we already have some

numerical results of double barriers or multiple barriers in the wire with magnetic field.

9.1 Double and multiple barriers

We plot few figures for the case of double barriers and multiple barriers and there are some

interesting structures. In the Fig. 9.1 and Fig. 9.2, they are the results of double δ-type

barrier and we had also change the amplitude of magnetic field or the distance between

the two barrier to find out some properties in the figures. It does has some special fano

or dip structure which didn’t happen in the discussion of one impurity barrier. And we

think that the fano and dips structures may be caused from the dot-like pattern between

the two barriers.

We first focus on the repulsive barriers in the Fig. 9.1(a) and Fig. 9.2(a). In the case

of without the magnetic field, we know that the two impurity barriers can introduce the

resonance states on the longitudinal direction between them, and the propagating mode

can have interaction to the resonance states and introduce the resonance valleys, but not
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fano structures. After applying the magnetic field, the resonance valleys are still there.

The current density patterns start to have the circular motions, and in some situation

of the cyclotron radius match the size of the dot, the current density can have circular

motions resonance. This kind of circular motions resonance is a bound state and grab

electrons in the dot. That may be the most possible reason to have the Fano or dip

structures in the figures.

In the figures of attractive barriers, Fig. 9.1(b) and 9.2(b), there may be similar struc-

tures of circular motion resonance, but there are too many structures in the figures and

need more time for further discussion in the near future.

And in the Fig. 9.3, we plot the result of multiple δ-type barriers, which is 25 slice in

the wire. we can find that there are more band gaps as we increase the magnetic field. We

know that the periodic potential barrier can introduce some band gaps in transmission,

but we still don’t know why the magnetic field move the position of the band gaps and

also generate some extra band gaps.

Also, it might be interesting to discuss these structures and figure out the transport

phenomena such as the Fano and dip structures in the conductance.
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Figure 9.1: Two embedded δ-type barrier in the wire which the distance between them
is 2.0a∗, and we plot the transmission as a function of incident energy X for various
amplitude of magnetic field from 0.0B∗ to 1.0B∗, and the strength of the two barrier are
both 1.0E∗ in (a) and −1.0E∗ in (b).
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Figure 9.2: The transmission versus the incident energy for double embedded impurity
barrier which the strength is 1.0E∗ in (a) and −1.0E∗ in (b), the distance between the
two barrier is changed for various distance from 2.0a∗ to 4.0a∗.
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Figure 9.3: The transmission of the first channel versus the incident energy for 25 slices of
δ-type barrier and the distance between two near slices is 3.0a∗. We change the amplitude
of magnetic field from 0.0B∗ to 0.4B∗ in series of these five figures.
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Appendix A

Detail of the integrations

In this appendix we present the detailed calculation of the integrations we used.

We have three kinds of wavefunctions in y-direction, which φo
n(y) is the ordinary wave-

function in the parabolically confined wire with no magnetic field, φ±n (y, kn) is the wave-

function in the parabolic wire with magnetic field, and φs
n(y) is the wavefunction which

similar to φo
n(y) but replace the parameter ωy by Ω.

φo
n(y) = N o

ne−
1
2
ωyy2

Hn

[√
ωyy

]
(A.1)

φs
n(y) = N s

ne−
1
2
Ωy2

Hn

[√
Ωy

]
(A.2)

φ±n (y) = Nne
− 1

2
Ω(y∓αn)2Hn

[√
Ω(y ∓ αn)

]
(A.3)
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where

N o
n =

(
2nn!

√
π

ωy

)−1/2

(A.4)

N s
n =

(
2nn!

√
π

Ω

)−1/2

(A.5)

Nn = N s
n e−

Ω
2
Im(αn)2

[
n∑

k=0

(2ΩIm(αn)2)k

k!

(
n

k

)]−1/2

(A.6)

= N s
n e−

Ω
2
Im[αn]2Λn (A.7)

Λn =

[
n∑

k=0

(2ΩIm[αn]2)k

k!

(
n

k

)]−1/2

(A.8)

There are few integration that have to be calculated, which are

∫
φo

m(y)φ±n (y)dy, (A.9)

∫
φs

m(y)φ±n (y)dy, (A.10)

∫
φ±m

∗
(y)φ±n (y)dy, (A.11)

∫
φo

m(y)Vs(y)φ±n (y)dy, (A.12)

∫
φs

m(y)Vs(y)φ±n (y)dy, (A.13)

∫
φ±m

∗
(y)Vs(y)φ±n (y)dy, (A.14)

∫
yφ±n

∗
φ±n dy = ±Re[αn]. (A.15)
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A.1
∫

φo
m(y)φ±n (y)dy

We first calculate the integration of Eq. (A.9).

∫
φo

m(y)φ±n (y)dy

= N o
mNn

∫
e−

1
2
ωyy2

Hm(
√

ωyy)e−
1
2
Ω(y∓αn)2Hn[

√
Ω(y ∓ αn)]dy (A.16)

where N o
mNn = 2−

m+n
2 (m!n!)−1/2 (ωyΩ)1/4

√
π

e−
Ω
2
Im(αn)2Λn

Since the power of the exponential part can be expressed as:

−1

2
ωyy

2 − 1

2
Ω(y ∓ αn)2

=
−1

2

(
ωyy

2 + Ωy2 ∓ 2Ωαny + Ωα2
n

)

=
−1

2

[
(ωy + Ω)y2 ∓ 2Ωαny + Ωα2

n

]

let η = ωy + Ω

=
−η

2

[
y2 ∓ 2Ωαn

η
y + (

Ωαn

η
)2 − (

Ωαn

η
)2 +

Ωα2
n

η

]

=
−η

2
(y ∓ Ωαn

η
)2 +

η

2
(
Ωαn

η
)2 − 1

2
Ωα2

n (A.17)

we get

∫
φo

m(y)φ±n (y)dy = N o
mNne

η
2
(Ωαn

η
)2− 1

2
Ωα2

n

∫
e−

η
2
(y∓Ωαn

η
)2Hm(

√
ωyy)Hn(

√
Ω(y ∓ αn))dy.

(A.18)
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The integration part:

∫
e−

η
2
(y∓Ωαn

η
)2Hm(

√
ωyy)Hn(

√
Ω(y ∓ αn))dy

=

∫
e
−(
√

η
2
y∓Ωαn√

2η
)2
Hm(

√
ωyy)Hn(

√
Ωy ∓

√
Ωαn)dy

let t =

√
η

2
y, y =

√
2

η
t

⇒
∫

e
−(t∓Ωαn√

2η
)2
Hm(

√
2ωy

η
t)Hn(

√
2Ω

η
t∓

√
Ωαn)

√
2

η
dt

let x = t∓ Ωαn√
2η

, t = x± Ωαn√
2η

⇒
√

2

η

∫
e−x2

Hm

[√
2ωy

η
x±

√
ωyΩαn

η

]
Hn

[√
2Ω

η
x∓

√
Ωωyαn

η

]
dx (A.19)

Using this relation 2
n
2 Hn(x + y) =

∑n
k=0

(
n
k

)
Hn−k(

√
2x)Hk(

√
2y)

⇒
√

2

η
2−

m+n
2

m∑
p=0

n∑
q=0

(
m

m− p

)(
n

n− q

)
Hm−p

[
±

√
2ωyΩαn

η

]
Hn−q

[
∓
√

2Ωωyαn

η

]

∫
e−x2

Hp[2

√
ωy

η
x]Hq[2

√
Ω

η
x]dx (A.20)

and using the relation of Eqs. (A.75), we have

∫
φo

m(y)φ±n (y)dy

= N o
mNn ×

√
2

η
2−

m+n
2 e

1
2
η(Ωαn

η
)2− 1

2
Ωα2

n

×
m∑

p=0

n∑
q=0

(
m

m− p

)(
n

n− q

)
Hm−p

[
±

√
2ωyΩαn

η

]
Hn−q

[
∓
√

2Ωωyαn

η

]

×





(Min[p,q]−1)/2∑
s

√
πp!q!

[ 8
η

√
ωyΩ]

2s+1

(2s+1)!

h
3ωy−Ω

η

i p−2s−1
2

( p−2s−1
2

)!

h
3Ω−ωy

η

i q−2s−1
2

( q−2s−1
2

)!
, m, n are both odd.

(Min[p,q])/2∑
s

√
πp!q!

[ 8
η

√
ωyΩ]

2s

(2s)!

h
3ωy−Ω

η

i p−2s
2

( p−2s
2

)!

h
3Ω−ωy

η

i q−2s
2

( q−2s
2

)!
, m, n are both even.

0 , m + n is odd.

where N o
mNn = 2−

m+n
2 (m!n!)−1/2 (ωyΩ)1/4

√
π

e−
Ω
2
Im[αn]2Λn
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and simplify this equation, we obtain:

∫
φo

m(y)φ±n (y)dy

=

√
2m!n!

η
(ωyΩ)1/4e

1
2
η(Ωαn

η
)2− 1

2
ΩRe[αn]2Λn

×
m∑

p=0

n∑
q=0

Hm−p

[
±
√

2ωyΩαn

η

]

2m−p2p(m− p)!

Hn−q

[
∓
√

2Ωωyαn

η

]

2n−q2q(n− q)!

×





(Min[p,q]−1)/2∑
s

fr1(2s + 1) fr2(
p−2s−1

2
) fr3(

q−2s−1
2

) , m, n are both odd.

(Min[p,q])/2∑
s

fr1(2s) fr2(
p−2s

2
) fr3(

q−2s
2

) , m, n are both even.

0 , m + n is odd.

=

√
2m!n!

η
(ωyΩ)1/4e

1
2
η(Ωαn

η
)2− 1

2
ΩRe[αn]2Λn

m∑
p=0

n∑
q=0

H̄m−p

[
±
√

2ωyΩαn

η

]

2p

H̄n−q

[
∓
√

2Ωωyαn

η

]

2q

×





(Min[p,q]−1)/2∑
s

fr1(2s + 1) fr2(
p−2s−1

2
) fr3(

q−2s−1
2

) , m, n are both odd.

(Min[p,q])/2∑
s

fr1(2s) fr2(
p−2s

2
) fr3(

q−2s
2

) , m, n are both even.

0 , m + n is odd.

(A.21)

where

H̄n(x) ≡ Hn(x)

2nn!
, η = ωy + Ω, αn =

ωckn

Ω2
(A.22)

and

fr1(n) = (
8
√

ωyΩ

η
)n/n!, fr2(n) = (

3ωy − Ω

η
)n/n!, fr3(n) = (

3Ω− ωy

η
)n/n!. (A.23)
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A.2
∫

φs
m(y)φ±n (y)dy

Then we calculate the integration of Eq. (A.10).

∫
φs

m(y)φ±n (y)dy

= N s
mNn

∫
e−

1
2
Ωy2

Hm(
√

Ωy)e−
1
2
Ω(y∓αn)2Hn[

√
Ω(y ∓ αn)]dy (A.24)

Since the exponential part can be expressed as:

− 1

2
Ωy2 − 1

2
Ω(y ∓ αn)2 = −

(√
Ωy ∓

√
Ωαn

2

)2

− Ω

4
α2

n, (A.25)

we get

∫
φs

m(y)φ±n (y)dy

= N s
mNne−

Ω
4

α2
n

∫
e−(

√
Ωy∓

√
Ωαn
2

)2Hm

(√
Ωy

)
Hn

(√
Ωy ∓

√
Ωαn

)
dy.

Define p =
√

Ωy, and p′ = p±
√

Ωαn

2
,

= N s
mNne−

Ω
4

α2
n

∫
e−p2

Hm

(
p±

√
Ωαm

2

)
Hn

(
p∓

√
Ωαn

2

)
dp√
Ω

. (A.26)

Using the identity
∫∞
−∞ e−x2

Hm (x + a) Hn (x + b) dx =
Min[m,n]∑

k=0

2m+n−kam−kbn−k m!n!
√

π
k!(m−k)!(n−k)!

,
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then we obtain

∫
φs

m(y)φ±n (y)dy

= N s
mNn

√
π

Ω
e−

Ω
4

α2
n

Min[m,n]∑
κ=0

2m+n−κ

(
±
√

Ωαn

2

)m−κ (
∓
√

Ωαn

2

)n−κ
m!n!

κ!(m− κ)!(n− κ)!

=

√
Ω

π
2−

m+n
2

1√
m!n!

e−
Ω
2
Im(αn)2Λn

×
√

π

Ω
e−

Ω
4

α2
n

Min[m,n]∑
κ=0

2m+n−κ

(
±
√

Ωαn

2

)m−κ (
∓
√

Ωαn

2

)n−κ
m!n!

κ!(m− κ)!(n− κ)!

= Λne−
Ω
4
ABS(αn)2

Min[m,n]∑
κ=0

√
2

(m−κ)+(n−κ)

(
±
√

Ωαn

2

)m−κ (
∓
√

Ωαn

2

)n−κ √
m!n!

κ!(m− κ)!(n− κ)!

= Λne−
Ω
4
ABS(αn)2

Min[m,n]∑
κ=0

(
±

√
Ω

2
αn

)m−κ (
∓

√
Ω

2
αn

)n−κ √
m!n!

κ!(m− κ)!(n− κ)!
(A.27)

A.3
∫

φ±m
∗
(y)φ±n (y)dy

∫
φ±m

∗
(y)φ±n (y)dy

= NmNn

∫
e−

Ω
2
(y∓α∗m)2H∗

m

[√
Ω(y ∓ αm)

]
e−

Ω
2
(y∓αn)2H∗

n

[√
Ω(y ∓ αn)

]
dy

let x =
√

Ωy, qn =
√

Ωαn, H∗
m(x) = Hm(x∗)

=
NmNn√

Ω

∫
e−

1
2
(x∓q∗m)2− 1

2
(x∓qn)2Hm(x∓ q∗m)Hn(x∓ qn)dx (A.28)
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the exponential part:

−1

2
{x2 + q∗m

2 ∓ 2q∗m + x2 + q2
n ∓ 2qnx}

= −{x2 − (±q∗m ± qn)x +
q∗m

2 + q2
n

2
}

let a = ±q∗m ± qn

= −(x− a

2
)2 +

1

4
{(±q∗m ± qn)2 − 2(q∗m

2 + q2
n)}

= −(x− a

2
)2 − 1

4
(±q∗m − (±qn))2

= −b2 − (x− a

2
)2 (A.29)

where a = ±q∗m ± qn; b =
1

2
(±q∗m − (±qn)) (A.30)

⇒
∫

φ±m
∗
(y)φ±n (y)dy

= NmNn
e−b2

√
Ω

∫
e−(x−a

2
)2Hm(x∓ q∗m)Hn(x∓ qn)dx

let x′ = x− a

2

= NmNn
e−b2

√
Ω

∫
e−x′2Hm(x′ − ±q∗m − (±qn)

2
)Hn(x′ +

±q∗m − (±qn)

2
)dx′

= NmNn
e−b2

√
Ω

∫
e−x2

Hm(x− b)Hn(x + b)dx (A.31)

Using the identity
∫∞
−∞ e−x2

Hm (x + a) Hn (x + b) dx =
Min[m,n]∑

k=0

2m+n−kam−kbn−k m!n!
√

π
k!(m−k)!(n−k)!

,

and we could get

⇒
∫

φ±m
∗
(y)φ±n (y)dy

= NmNn

√
π

Ω
e−b2

Min[m,n]∑
κ=0

2m+n−κ(−b)m−κbn−κ m!n!

k!(m− κ)!(n− κ)!
(A.32)

where b =
1

2
(±q∗m − (±qn)) =

√
Ω

2
{±α∗m − (±αn)}
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b =

√
Ω

2
{±α∗m − (±αn)}

b2 =
Ω

4
{α∗m2 + α2

n − 2(±α∗m)(±αn)}

and

NmNn =

√
Ω

π
2−

m+n
2

1√
m!n!

e−
Ω
2
Im(αm)2−Ω

2
Im(αn)2ΛmΛn (A.33)

⇒
∫

φ±m
∗
(y)φ±n (y)dy

= ΛmΛne−
Ω
4
[ABS(αm)2+ABS(αn)2]+Ω

2
(±α∗m)(±αn)

×
Min[m,n]∑

κ=0

2
m+n

2
−κ(−b)m−κbn−κ

√
m!n!

k!(m− κ)!(n− κ)!

= ΛmΛne−
Ω
4
[ABS(αm)2+ABS(αn)2]+Ω

2
(±α∗m)(±αn)

×
Min[m,n]∑

κ=0

(−
√

2b)m−κ(
√

2b)n−κ

√
m!n!

k!(m− κ)!(n− κ)!
(A.34)

where

b =

√
Ω

2
{α∗m − αn} for

∫
φ+

m
∗
(y)φ+

n (y)dy, b =

√
Ω

2
{α∗m + αn} for

∫
φ+

m
∗
(y)φ−n (y)dy,

b =
−√Ω

2
{α∗m + αn} for

∫
φ−m

∗
(y)φ+

n (y)dy, b =
−√Ω

2
{α∗m − αn} for

∫
φ−m

∗
(y)φ−n (y)dy.

A.4
∫

φo
m(y)Vs(y)φ±n (y)dy

∫ ∞

−∞
φo

m(y)Vs(y)φ±n (y)dy

= N o
mNnV0

∫
e−

1
2
ωyy2

Hm(
√

ωyy)e−β(y−y0)2e−
1
2
Ω(y∓αn)2Hn[

√
Ω(y ∓ αn)]dy. (A.35)
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The power of the exponential part:

−1

2
ωyy

2 − β(y − y0)
2 − 1

2
Ω(y ∓ αn)2

= −1

2
ωyy

2 − βy2 + 2βy0y − βy2
0 −

1

2
Ωy2 ± Ωαny − 1

2
Ωα2

n

= y2(−1

2
ωy − 1

2
Ω− β) + y(2βy0 ± Ωαn)− βy2

0 −
1

2
Ωα2

n

= −ηy2 + 2ξ±y − βy2
0 −

1

2
Ωα2

n

where η =
ωy + Ω

2
+ β, ξ± = βy0 ± Ωαn

2

= −(
√

ηy − ξ±√
η
)2 +

ξ±2

η
− βy2

0 −
1

2
Ωα2

n (A.36)

∫ ∞

−∞
φo

m(y)Vs(y)φ±n (y)dy

= N o
mNn exp(

ξ±2

η
− βy2

0 −
1

2
Ωα2

n)
∫

e
−(
√

η− ξ±√
η
)2
Hm(

√
ωyy)Hn(

√
Ω(y ∓ αn))dy (A.37)

t =
√

ηy − ξ±√
η
,
√

ηy = t +
ξ±√

η
,

y =
t√
η

+
ξ±

η
, dy =

dt√
η
.

e
−(
√

ηy− ξ±√
η
)2
Hm(

√
ωyy)Hn(

√
Ω(y ± αn))dy

→ e−t2Hm

[√
ωy

η
t +

√
ωyξ

±

η

]
Hn

[√
Ω

η
t +

√
Ωξ±

η
∓
√

Ωαn

]
dt√
η

= e−t2Hm

[√
ωy

η
t +

√
ωy

η
[βy0 ± Ωαn

2
]

]

×Hn

[√
Ω

η
t +

√
Ω

η
[βy0 ∓ ωyαn

2
∓ βαn]

]
dt√
η

(A.38)
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⇒ 1√
η
2−

m+n
2

m∑
p=0

n∑
q=0

(
m

m− p

)(
n

n− q

)
Hm−p

[√
2ωy

η
(βy0 ± Ωαn

2
)

]

×Hn−q

[√
2Ω

η
(βy0 ∓ ωyαn

2
∓ βαn)

]∫
e−t2Hp(

√
2ωy

η
t)Hq(

√
2Ω

η
t)dt(A.39)

And then, we obtain the integration :

∫ ∞

−∞
φo

m(y)Vs(y)φ±n (y)dy

=

[
2−

m+n
2 (m!n!)−1/2 (ωyΩ)1/4

√
π

e−
Ω
2
Im(αn)2Λn

]
exp(

ξ±2

η
− βy2

0 −
1

2
Ωα2

n)

√
1

η
2−

m+n
2

×
m∑

p=0

n∑
q=0

m!n!

p!(m− p)!q!(n− q)!

×Hm−p

[√
2ωy

η
(βy0 ± Ωαn

2
)

]
Hn−q

[√
2Ω

η
(βy0 ∓ ωyαn

2
∓ βαn)

]

×





Min[p,q]/2∑
s

√
πp!q!

( 4
η

√
ωyΩ)2s

(2s)!

(
2ωy

η
−1)

p−2s
2

( p−2s
2

)!

( 2Ω
η
−1)

q−2s
2

( q−2s
2

)!
, p, q, are both even;

(Min[p,q]−1)/2∑
s

√
πp!q!

( 4
η

√
ωyΩ)2s+1

(2s+1)!

(
2ωy

η
−1)

p−2s−1
2

( p−2s−1
2

)!

( 2Ω
η
−1)

q−2s−1
2

( q−2s−1
2

)!
, p, q, are both odd;

0 , p + q is odd.

=

√
m!n!

√
ωyΩ

η
Λn exp(

ξ±2

η
− βy2

0 −
1

2
ΩRe[αn]2)

×
m∑

p=0

n∑
q=0

Hm−p

[√
2ωy

η
(βy0 ± Ωαn

2
)

]

2m−p(m− p)!2p

Hn−q

[√
2Ω
η

(βy0 ∓ ωyαn

2
∓ βαn)

]

2n−q(n− q)!2q

×





Min[p,q]/2∑
s

fr1(2s) fr2(
p−2s

2
) fr3(

q−2s
2

) , p, q, are both even;

(Min[p,q]−1)/2∑
s

fr1(2s + 1) fr2(
p−2s−1

2
) fr3(

q−2s−1
2

) , p, q, are both odd;

0 , p + q is odd.
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=

√
m!n!

√
ωyΩ

η
Λn exp(

ξ±2

η
− βy2

0 −
1

2
ΩRe[αn]2)

×
m∑

p=0

n∑
q=0

H̄m−p

[√
2ωy

η
(βy0 ± Ωαn

2
)

]

2p

H̄n−q

[√
2Ω
η

(βy0 ∓ ωyαn

2
∓ βαn)

]

2q

×





Min[p,q]/2∑
s

fr1(2s) fr2(
p−2s

2
) fr3(

q−2s
2

) , p, q, are both even;

(Min[p,q]−1)/2∑
s

fr1(2s + 1) fr2(
p−2s−1

2
) fr3(

q−2s−1
2

) , p, q, are both odd;

0 , p + q is odd.

(A.40)

and

ξ±2

η
− βy2

0 −
1

2
ΩRe[αn]2 = −Ω

2
Re[αn]2(

ωy + 2β

2η
)− Ω2

4η
Im[αn]2 − βy2(

ωy + Ω

2η
) +

βΩαn

η
y

(A.41)

where we define that

η =
ωy + Ω

2
+ β, ξ± = βy0 ± Ωαn

2
(A.42)

fr1(n) = (
4

η

√
ωyΩ)n/n! (A.43)

fr2(n) = (
2ωy

η
− 1)n/n! (A.44)

fr3(n) = (
2Ω

η
− 1)n/n! (A.45)

The approach as β →∞, we have the limiting case of Vs is a Dirac delta function

∫ ∞

−∞
φo

m(y)Vs(y)φ±n (y)dy

→ e−
1
2
ωyy2

Hm(
√

ωyy)e−
Ω
2
(y∓αn)2Hn(

√
Ω(y ∓ αn)) ·N s

mNn

= 2−
m+n

2 (m!n!)−1/2 (ωyΩ)1/4

√
π

e−
Ω
2
Im[αn]2e−

ωy
2

y2−Ω
2
(y2+α2

n∓2αny)Hm(
√

ωyy)Hn(
√

Ω(y ∓ αn))× Λn

=

√
2m+n

m!n!

(ωyΩ)1/4

√
π

e−
1
2
(ωy+Ω)y2±Ωαny−Ω

2
Re[αn]2H̃m(

√
ωyy)H̃n(

√
Ω(y ∓ αn))× Λn (A.46)
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A.5
∫

φs
m(y)Vs(y)φ±n (y)dy

∫ ∞

−∞
φs

m(y)Vs(y)φ±n (y)dy

= N s
mNnV0

∫
e−

1
2
Ωy2

Hm(
√

Ωy)e−(y−y0)2e−
1
2
Ω(y∓αn)2Hn[

√
Ω(y ∓ αn)]. (A.47)

The power of the exponential part:

−1

2
Ωy2 − β(y − y0)

2 − 1

2
Ω(y ∓ αn)2

= −1

2
Ωy2 − βy2 + 2βy0y − βy2

0 −
Ω

2
y2 ± Ωαny − Ω

2
α2

n

= − (Ω + β) y2 + (2βy0 ± Ωαn) y − βy2
0 −

Ω

2
α2

n

let η = Ω + β; ξ± = 2βy0 ∓ Ωαn = 2βy0 ∓ ωc

Ω
kn.

= −η

[
y2 − ξ±

η
y +

(
ξ±

2η

)2
]

+
ξ±2

4η
− βy2

0 −
Ω

2
α2

n

= −η

[
y − ξ±

2η

]2

+
ξ±2

4η
− βy2

0 −
Ω

2
α2

n (A.48)

= −η

[
y − ξ±

2η

]2

− 1

4η

{
2βΩ (y0 ± αn)2 + 2βΩy2

0 + Ω2α2
n

}
(A.49)
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then:

∫ ∞

−∞
φs

m(y)Vs(y)φ±n (y)dy

= N s
mNn e

ξ±2

4η
−βy2

0−Ω
2

α2
n

∫
exp[−η

(
y − ξ±

2η

)2

]Hm(
√

Ωy)Hn[
√

Ω(y ∓ αn)]dy(A.50)

let y′ = y − ξ±

2η
, then the integration became

=

√
Ω

π
2−

m+n
2

1√
m!n!

e−
Ω
2
Im[αn]2Λne

ξ±2

4η
−βy2

0−Ω
2

α2
n

×
∫

e−ηy′2Hm[
√

Ω(y′ +
ξ±

2η
)]Hn[

√
Ω(y +

ξ±

2η
∓ αn)]dy′

let t =
√

ηy′; dy′ =
dt√
η
.

= 2−
m+n

2
1√
m!n!

Λn

√
Ω

πη
e

ξ±2

4η
−βy2

0−Ω
2
Re[αn]2

×
∫

e−t2Hm[

√
Ω

η
t +

√
Ωξ±

2η
)]Hn[

√
Ω

η
t +

√
Ω(

ξ±

2η
∓ αn)]dt (A.51)

and using this identity Hn(x+y) = 2−n/2
n∑

κ=0

(
n
κ

)
Hn−κ(

√
2x)Hκ(

√
2y) , Gradshteyn 8.958,

we can get that the part of the integration become

2−
m+n

2

m∑
p=0

(
m

p

)
Hm−p

(√
2Ωξ±

2η

)
n∑

q=0

(
n

q

)
Hn−q

(√
2Ω(

ξ±

2η
∓ αn)

)

×
∫

e−t2Hp

(√
2Ω

η
t

)
Hq

(√
2Ω

η
t

)
dt

= 2−
m+n

2
√

π

m∑
p=0

n∑
q=0

(
m

p

)(
n

q

)
Hm−p

(√
2Ωξ±

2η

)
Hn−q

(√
2Ω(

ξ±

2η
∓ αn)

)

×
Min[p,q]∑

k=0

2kk!

(
p

k

)(
q

k

)(
β − Ω

β + Ω

) p+q
2
−k

Hp+q−2k (0). (A.52)
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Then we obtain

∫ ∞

−∞
φs

m(y)Vs(y)φ±n (y)dy

= 2−
m+n

2
1√
m!n!

Λn

√
Ω

πη
e

ξ±2

4η
−βy2

0−Ω
2
Re[αn]2

×
∫

e−t2Hm[

√
Ω

η
t +

√
Ωξ±

2η
)]Hn[

√
Ω

η
t +

√
Ω(

ξ±

2η
∓ αn)]dt

= 2−(m+n) 1√
m!n!

Λn

√
Ω

η
e

ξ±2

4η
−βy2

0−Ω
2
Re[αn]2

×
m∑

p=0

n∑
q=0

(
m

p

)(
n

q

)
Hm−p

(√
2Ωξ±

2η

)
Hn−q

(√
2Ω(

ξ±

2η
∓ αn)

)

×
Min[p,q]∑

k=0

2kk!

(
p

k

)(
q

k

) (
β − Ω

β + Ω

) p+q
2
−k

Hp+q−2k (0).

= Λn

√
Ω

η
e

ξ±2

4η
−βy2

0−Ω
2
Re[αn]2

m∑
p=0

n∑
q=0

Hm−p

(√
2Ωξ±

2η

)
Hn−q

(√
2Ω(

ξ±

2η
∓ αn)

)

×
Min[p,q]∑

k=0

2k−m−n

√
m!n!

(m− p)!(p− k)!(n− q)!(q − k)!k!

(
β − Ω

β + Ω

) p+q
2
−k

Hp+q−2k (0).

= Λn

√
Ω

η
e

ξ±2

4η
−βy2

0−Ω
2
Re[αn]2

m∑
p=0

n∑
q=0

2p−m

(m− p)!
Hm−p

(√
2Ωξ±

2η

)
2q−n

(n− q)!
Hn−q

(√
2Ω(

ξ±

2η
∓ αn)

)

×
Min[p,q]∑

κ=0

2−κ

√
m!n!

(p− κ)!(q − κ)!κ!

(
β − Ω

β + Ω

) p+q
2
−k

22κ−p−qHp+q−2κ (0). (A.53)
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And finally we have

∫ ∞

−∞
φs

m(y)Vs(y)φ±n (y)dy

= Λn

√
Ω

η
e

ξ±2

4η
−βy2

0−Ω
2
Re[αn]2 ×

m∑
p=0

n∑
q=0

H̄m−p

(√
2Ωξ±

2η

)
H̄n−q

(√
2Ω(

ξ±

2η
∓ αn)

)

×
Min[p,q]∑

κ=0

2−κH̃p+q−2κ (0)

(
β − Ω

β + Ω

) p+q
2
−k

√
m!n!

(p− κ)!(q − κ)!κ!
. (A.54)

A.6
∫

φ±m
∗
(y)Vs(y)φ±n (y)dy

∫ ∞

−∞
φ±m

∗
(y)Vs(y)φ±n (y)dy

=

√
β

π
V0NmNn

∫
e−

Ω
2
(y∓α∗m)2H∗

m

[√
Ω(y ∓ αm)

]
e−β(y−y0)2e−

Ω
2
(y∓αn)2Hn

[√
Ω(y ∓ αn)

]
dy

(A.55)

The exponetial part:

−Ω{1

2
(y2 + α∗m

2 ∓ 2α∗my) +
1

2
(y2 + αn

2 ∓ 2αny) +
β

Ω
(y2 + y2

0 − 2y0y)}

= −{y2(Ω + β)− y [Ω(±α∗m ± αn) + 2βy0] +
Ω

2
(α∗m

2 + α2
n) + βy2

0}

let η = Ω + β, ξ±± = Ω(±α∗m ± αn) + 2βy0,

= −η{y2 − y
ξ±±

η
+

(
ξ±±

2η

)2

}+
ξ±±2

4η
− Ω

2
(α∗m

2 + α2
n)− βy2

0

= −η

(
y − ξ±±

2η

)2

+ {ξ±±2

4η
− Ω

2
(α∗m

2 + α2
n)− βy2

0} (A.56)
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The Hermite part:

Hm

[√
Ω(y ∓ α∗m)

]
Hn

[√
Ω(y ∓ αn)

]

= 2−
m
2

m∑
p=0

(
m

p

)
Hm−p(∓

√
2Ωα∗m)Hp(

√
2Ωy)× 2−

n
2

n∑
q=0

(
n

q

)
Hn−q(∓

√
2Ωαn)Hq(

√
2Ωy)

= 2−
m+n

2

m∑
p=0

n∑
q=0

(
m

p

)(
n

q

)
Hm−p(∓

√
2Ωα∗m)Hn−q(∓

√
2Ωαn)Hp(

√
2Ωy)Hq(

√
2Ωy)(A.57)

⇒
∫ ∞

−∞
φ±m

∗
(y)Vs(y)φ±n (y)dy

=

√
β

π
V0NmNn exp[

ξ±±2

4η
− Ω

2
(α∗m

2 + α2
n)− βy2

0]

×2−
m+n

2

m∑
p=0

n∑
q=0

(
m

p

)(
n

q

)
Hm−p(∓

√
2Ωα∗m)Hn−q(∓

√
2Ωαn)

×
∫

e−η(y− ξ±±
2η

)2Hp(
√

2Ωy)Hq(
√

2Ωy)dy (A.58)

and the integration part in the above equation:

∫
e−η(y− ξ±±

2η
)2Hp(

√
2Ωy)Hq(

√
2Ωy)dy let

√
ηy = t,

=

∫
e
−(t− ξ±±

2
√

η
)2
Hp(

√
2Ω

η
y)Hq(

√
2Ω

η
y)

dt√
η

=

√
π

η

Min(p,q)∑
κ=0

2κκ!

(
p

κ

)(
q

κ

)(
β − Ω

β + Ω

) p+q
2
−κ

Hp+q−2κ

( √
Ωξ±±√

2(β2 − Ω2)

)
(A.59)

by using this identity, Gradshteyn 7.374.9 ,

∫ ∞

−∞
e−(x−y)2Hm(αx)Hn(αx)dx =

√
π

Min(m,n)∑
κ=0

2κκ!

(
m

κ

)(
n

κ

) (
1− α2

)m+n
2
−κ

Hm+n−2κ

[
αy

(1− α2)1/2

]
.

(A.60)
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And then we could obtain

∫ ∞

−∞
φ±m

∗
(y)Vs(y)φ±n (y)dy

=

√
β

π
V0NmNn

√
π

η
e

ξ±±2

4η
−Ω

2
(α∗m

2+α2
n)−βy2

0

×2−
m+n

2

m∑
p=0

n∑
q=0

(
m

p

)(
n

q

)
Hm−p(∓

√
2Ωα∗m)Hn−q(∓

√
2Ωαn)

×
Min(p,q)∑

κ=0

2κκ!

(
p

κ

)(
q

κ

)(
β − Ω

β + Ω

) p+q
2
−κ

Hp+q−2κ

( √
Ωξ±±√

2(β2 − Ω2)

)
(A.61)

where η = Ω + β, ξ±± = Ω(±α∗m ± αn) + 2βy0.

or we could simplify this equation to

∫ ∞

−∞
φ±m

∗
(y)Vs(y)φ±n (y)dy

=

√
β

π
V0

√
Ω

η
ΛmΛn exp[

ξ±±2

4η
− Ω

2
(Re(αm)2 + Re(αn)2)− βy2

0]

×
m∑

p=0

n∑
q=0

H̄m−p(∓
√

2Ωα∗m)H̄n−q(∓
√

2Ωαn)

×
Min(p,q)∑

κ=0

√
m!n!

κ!(p− κ)!(q − κ)!

(
β − Ω

β + Ω

) p+q
2
−κ

2−κH̃p+q−2κ

( √
Ωξ±±√

2(β2 − Ω2)

)
(A.62)
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A.7
∫

yφ±n
∗φ±n dy = ±Re[αn]

∫
yNne

−Ω
2
(y∓α∗n)2Hn[

√
Ω(y ∓ α∗n)] ·Nne

−Ω
2
(y∓αn)2Hn[

√
Ω(y ∓ αn)]dy

let x =
√

Ωy, qn =
√

Ωαn

= N2
n

∫
dx

Ω
xe−

1
2
(x∓q∗n)2− 1

2
(x∓qn)2Hn(x∓ q∗n)Hn(x∓ qn)

= N2
n

e−b2

Ω

∫
xe−(x−a

2
)2Hn(x∓ q∗n)Hn(x∓ qn)dx

let a = ±q∗n ± qn; b =
1

2
[±q∗n − (±qn)]

= N2
n

e−b2

Ω

∫
xe−x2

Hn(x− b)Hn(x + b)dx +
a

2
√

Ω
N2

n

e−b2

√
Ω

∫
e−x2

Hn(x− b)Hn(x + b)dx

=
a

2
√

Ω
=

√
Ω

2
√

Ω
(±q∗n ± qn) = ±1

2
(α∗n + αn)

= ±Re[αn] = ±ωcRe[kn]

Ω2
(A.63)

where
∫

xe−x2
Hn(x− b)Hn(x + b)dx = 0 and N2

n
e−b2√

Ω

∫
xe−x2

Hn(x− b)Hn(x + b)dx = 1.

∫
xe−x2

Hn(x− b)Hn(x + b)dx =
−1

2

∫
Hn(x− b)Hn(x + b)d(e−x2

)

=
−1

2

{
Hn(x− b)Hn(x + b)e−x2|∞−∞ −

∫
e−x2

d[Hn(x− b)Hn(x + b)]

}

=
n

2

{∫
e−x2

Hn(x− b)Hn−1(x + b)dx +

∫
e−x2

Hn(x + b)Hn−1(x− b)dx

}

= 0 (A.64)

and

∫
e−x2

Hn(x− b)Hn−1(x + b)dx = 2nn!
√

π

n−1∑

k=0

(−2b2)n−k

2b

n!(n− k)

k!(n− k)!2n
∫

e−x2

Hn(x + b)Hn−1(x− b)dx = 2nn!
√

π

n−1∑

k=0

(−2b2)n−k

−2b

n!(n− k)

k!(n− k)!2n

= −
∫

e−x2

Hn(x− b)Hn−1(x + b)dx (A.65)
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A.8
∞∫
−∞

φo
m
∗(y)Vs(y)φo

n(y)dy

∞∫

−∞

φo
m
∗(y)Vs(y)φo

n(y)dy

= (2mm!2nn!
π

ωy

)−1/2

∫
e−

ωy
2

y2

Hm(
√

ωyy)e−β(y−y0)2e−
ωy
2

y2

Hn(
√

ωyy)dy

= NmNn

∫
e−ωyy2−β(y−y0)2Hm(

√
ωyy)Hn(

√
ωyy)dy

let t2 = (ωy + β)y2, y =
t√

ωy + β

and the expential part : − ωyy
2 − β(y − y0)

2 = −(t− βy0√
ωy + β

)2 − βωy

ωy + β

= NmNne
−βωy
ωy+β

y2
0

∫
e
−(t− βy0√

ωy+β
)2

Hm(

√
ωy

ωy + β
t)Hn(

√
ωy

ωy + β
t)

dt√
ωy + β

(A.66)

Using this mathematic relation

∞∫

−∞

e−(x−y)2Hm(αx)Hn(αx)dx

= π1/2

Min[m,n]∑
κ=0

2κκ!

(
m

κ

)(
n

κ

)
(1− κ2)

m+n
2
−κHm+n−2κ

[
αy

(1− α2)1/2

]
(A.67)
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We have

∞∫

−∞

φo
m
∗(y)Vs(y)φo

n(y)dy

=

√
1

2m+nm!n!

√
ωy

ωyβ
e
− βωy

ωy+β
y2
0

×
Min[m,n]∑

κ=0

2κ m!n!

(m− κ)!(n− κ)!κ!
(

β

ωy + β
)

m+n
2
−κHm+n−κ

[√
ωyβ

ωy + β
y0

]

=

√
m!n!

2m2n

√
ωy

ωy + β
e−a2

Min[m,n]∑
κ=0

2κ

κ!

( β
ωy+β

)m−κ

m− κ

( β
ωy+β

)n−κ

n− κ
Hm+n−κ[a] (A.68)

where a =

√
βωy

ωy + β
y0. (A.69)

A.9 Recurrence relations of Hermite polynomial

In order to get the better accuracy in numerial analysis,

We change the Hn(x) in the calculation to H̃n(x), where H̃n(x) = 2−nHn(x).

H0(x) = 1, H1(x) = 2x,

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0,

Hn(x)− 2xHn−1(x) + 2(n− 1)Hn−2(x) = 0,

2−nHn(x)− 2−(n−1)xHn−1(x) + 2−(n−1)(n− 1)Hn−2(x) = 0,

⇒ H̃n(x)− xH̃n−1(x) +
n− 1

2
H̃n−2(x) = 0, (A.70)

and H̃0(x) = 1, H̃1(x) = 2−1H1(x) = x,

where H̃n(x) = 2−nHn(x).
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or

Hn(x)

2n
− xHn−1(x)

2n−1
+

(n− 1)Hn−2(x)

2 · 2n−2
= 0

Hn(x)

2nn!
− x

n

Hn−1(x)

2n−1(n− 1)!
+

1

2n

Hn−2(x)

2n−2(n− 2)!
= 0

let H̄n(x) ≡ Hn(x)

2nn!
, and then, we have (A.71)

H̄n(x)− x

n
H̄n−1(x) +

1

2n
H̄n−2(x) = 0

and H̄0(x) = 1, H̄1(x) =
H1(x)

211!
= x.

A.10
∫

e−x2
Hm(ax)Hn(bx)dx

∫
e−x2

Hm(ax)Hn(bx)dx =





m + n is even. m, n are both even.
Min[m,n]/2∑

s

(2ab)2s√πm!n!(a2−1)
m−2s

2 (b2−1)
n−2s

2

(m−2s
2

)!(n−2s
2

)!(2s)!

m + n is even. m, n are both odd.
(Min[m,n]−1)/2∑

s

(2ab)2s+1√πm!n!(a2−1)
m−2s−1

2 (b2−1)
n−2s−1

2

(m−2s−1
2

)!(n−2s−1
2

)!(2s+1)!

m + n is odd.

0

(A.72)

Using the definition of Hermite polynomial function

e−t2+2tx =
∞∑

k=0

tk

k!
Hk(x) (A.73)

and we has this relation:

e−x2

e−t2+2taxe−u2+2ubx = e−x2
∞∑

m=0

tm

m!
Hm(ax)

∞∑
n=0

tn

n!
Hn(bx) (A.74)

Integrate over x, and we obtain:

∞∑
m,n=0

tmun

m!n!

∫
e−x2

Hm(ax)Hn(bx)dx = e−t2−u2

∫
e−x2+2tax+2ubxdx (A.75)
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The exponential part can be simplified to:

− x2 + 2tax + 2ubx = −[x2 − 2(ta + ub)x + (ta + ub)2 − (ta + ub)2]

= −[x− (ta + ub)]2 + (ta + ub)2

And then Eq. (A.75) become

e−t2−u2+(ta+ub)2

∞∫

−∞

e−(x−(ta−ub))2)dx

which the integration part is a error function and equal to
√

π.

=
√

πe−t2−u2+(ta+ub)2

=
√

πet2(a2−1)+u2(b2−1)+2taub

using the series expansion ex =
∞∑

k=0

xk

k!

=
√

π

∞∑
p=0

t2p(a2 − 1)p

p!

∞∑
q=0

t2q(b2 − 1)q

q!

∞∑
r=0

trur(2ab)r

r!

=
√

π
∑
p,q,r

t2p+ru2q+r(a2 − 1)p(b2 − 1)q(2ab)r

p!q!r!
(A.76)

Then we have to reduce the parameter ‘p, q, r’ to ‘m, n’.

Let





m = 2p + r, p = m−r
2

,

n = 2q + r, q = n−r
2

,
r < MIN[m, n]

and m + n = 2p + 2q + 2r = 2(p + q + r) → m + n is even,

m− r = 2p → m− r is even,

n− r = 2q → n− r is even.

There are three case satisfied the conditions
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1) m+n is even; m,n are both even; and r → even.

Eq. (A.76) =
∞∑

m,n=0

MIN[m,n]∑
r

tmun

m!n!

(2ab)rm!n!(a2 − 1)
m−r

2 (b2 − 1)
n−r

2

(m−r
2

)!(n−r
2

)!r!

let r = 2s,

=
∞∑

m,n=0

MIN[m,n]/2∑
s

tmun

m!n!

(2ab)2sm!n!(a2 − 1)
m−2s

2 (b2 − 1)
n−2s

2

(m−2s
2

)!(n−2s
2

)!(2s)!

2) m+n is even; m,n are both odd; and r → odd. Let r=2s+1.

Eq. (A.76) =
∞∑

m,n=0

(MIN[m,n]−1)/2∑
s

tmun

m!n!

(2ab)2s+1m!n!(a2 − 1)
m−2s−1

2 (b2 − 1)
n−2s−1

2

(m−2s−1
2

)!(n−2s−1
2

)!(2s + 1)!

3) m+n is odd.

Eq. (A.76) = 0.

Finally we have

∫
e−x2

Hm(ax)Hn(bx)dx

=





MIN[m,n]/2∑
s

(2ab)2sm!n!(a2−1)
m−2s

2 (b2−1)
n−2s

2

(m−2s
2

)!(n−2s
2

)!(2s)!
; m,n are both even.

(MIN[m,n]−1)/2∑
s

(2ab)2s+1m!n!(a2−1)
m−2s−1

2 (b2−1)
n−2s−1

2

(m−2s−1
2

)!(n−2s−1
2

)!(2s+1)!
; m,n are both odd.

0 ; m + n is odd.

(A.77)

A.11
∫

e−x2
Hm(x + a)Hn(x + b)dx

Proof of Mathematic equation

∞∫

−∞

e−x2

Hm(x + a)Hn(x + b)dx =

Min(m,n)∑
p=0

2m+n−pam−pbn−p

√
πm!n!

p!(m− p)!(n− p)!
(A.78)

Using the definition of Hermite polynomial e2xt−t2 =
∑∞

n=0
Hn(x)

n!
tn and we can have this
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relation:

e−x2

e2(x+a)t−t2e2(x+b)u−u2

=
∞∑

n=0

∞∑
n=0

e−x2 Hm(x + a)

m!
tm

Hn(x + b)

n!
un (A.79)

And integrate over x, we can obtain

∞∑
n=0

∞∑
n=0

tm

m!

un

n!

∫
e−x2

Hm(x + a)Hn(x + b)dx

= e−t2−u2

∫
e−x2+2(x+a)t+2(x+b)udx

= e−t2−u2+2at+2bu

∫
e−x2+2xt+2xudx

= e−t2−u2+2at+2bu+(t+u)2
∫

e−(x−(t+u))2dx

= e2at+2bu+2tu
√

π (A.80)

where

∫ ∞

−∞
e−(x−(t+u))2dx =

∫ ∞

−∞
e−x2

dx =
√

π

and − t2 − u2 + 2at + 2bu + (t + u)2 = 2at + 2bu + 2tu

e2at+2bu+2tu

=
∞∑
p

2p(tu)p

p!

∞∑
q

2q(at)q

q!

∞∑
r

2r(bu)r

r!

=
∞∑

p,q,r

2p+q+raqbrtp+qup+r

p!q!r!
(A.81)

Let m = p + q, n = p + r.

=
∞∑

m,n

Min[m,n]∑
p=0

2m+n−pam−pbn−ptmun

p!(m− p)!(n− p)!
(A.82)

Finally we have

∞∫

−∞

e−x2

Hm(x + a)Hn(x + b) =

Min[m,n]∑
p=0

2m+n−pam−pbn−p m!n!
√

π

p!(m− p)!(n− p)!
(A.83)
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A.12
∫

e−(x−y)2Hm(αx)Hn(αx)dx

Proof of Mathematic equation

∞∫

−∞

e−(x−y)2Hm(αx)Hn(αx)dx

=

Min[m,n]∑
c=0

(m−c)/2∑
a=0

(n−c)/2∑

b=0

m!n!
√

π
(α2 − 1)a

a!

(α2 − 1)b

b!

(2α2)2

c!

(2αy)m−2a−c

(m− 2a− c)!

(2αy)m−2b−c

(m− 2b− c)!

(A.84)

Using the definition of Hermite polynomial e2xt−t2 =
∑∞

n=0
Hn(x)

n!
tn and we can have this

relation:

∫ ∞∑
m=0

Hm(x)
m!

sm
∞∑

n=0

Hn(x)
n!

tne−(x−y)2dx

=
∞∑

m=0

∞∑
n=0

sm

m!
tn

n!

∫
e−(x−y)2Hm(αx)Hn(αx)dx =

∫
e−s2+2sαxe−t2+2tαxe−(x−y)2dx

= e−s2−t2−y2 ∫
e2sαx+2tαx−x2+2xydx = e−s2−t2−y2+(sα+tα+y)2

∫
e−(x−a)2dx

=
√

πe−s2−t2−y2+(sα+tα+y)2 (A.85)

the exponential part of the Eq. (A.85) could be simplify to:

− s2 − t2 − y2 + (sα + tα + y)2 = (α2 − 1)s2 + (α2 − 1)t2 + 2α2st + 2αty + 2αsy (A.86)
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and using the series expansion of ex =
∑∞

k=0
xk

k!

e(α2−1)s2+(α2−1)t2+2α2st+2αty+2αsy

=
∞∑

a=0

(α2 − 1)as2a

a!

∞∑

b=0

(α2 − 1)bt2b

b!

∞∑
c=0

2cα2csctc

c!

∞∑
c=0

2dαdtdyd

d!

∞∑
c=0

2fαfsfyf

f !

=
∑

a,b,c,d,f

1

a!b!c!d!f !
s2a+c+dt2b+c+f (α2 − 1)a+bα2c+d+fyd+f2c+d+f

let





m = 2a + c + d

n = 2b + c + f
, and





d = m− 2a− c

f = n− 2b− c
. (A.87)

=
sm

m!

tn

n!

∑

a,b,c,m−2a−c,n−2b−c

m!n!(α2 − 1)a+bαm+n−2a−2bym+n−2a−2b−2c2m+n−2a−2b

a!b!c!(m− 2a− c)!(n− 2a− c)!

(A.88)

we have:





d = m− 2a− c ∈ N ≥ 0

f = n− 2b− c ∈ N ≥ 0
⇒





m ≥ 2a + c

n ≥ 2b + c
⇒





m ≥ c, m− c ≥ 2a, m−c
2
≥ a

n ≥ c, n− c ≥ 2b, n−c
2
≥ b

.

(A.89)

Here we confine the range of c first, and then we can also know the range of a and b.

∞∑

a,b,c,m−2a−c,n−2b−c

=
∞∑

m=0

∞∑
n=0

Min[m,n]∑
c=0

(m−c)/2∑
a=0

(n−c)/2∑

b=0

(A.90)

And finally we have:

∫
e−(x−y)2Hm(αx)Hn(αx)dx

=

Min[m,n]∑
c=0

(m−c)/2∑
a=0

(n−c)/2∑

b=0

m!n!
√

π
(α2 − 1)a

a!

(α2 − 1)b

b!

(2α2)2

c!

(2αy)m−2a−c

(m− 2a− c)!

(2αy)m−2b−c

(m− 2b− c)!

(A.91)
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