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摘要 

我們提出了一個基於資訊流的應用程式行為模型，該模型強調應用程式執行時

所造成系統物件間的資訊流。資訊流不止是包含底層物件的屬性，同時也表現出物

件間的關聯性，此外，此模型支援用正規表示式來做詢問。我們展示將模型套用在

惡意行為識別應用上，並且在 Xen虛擬化平台上建立一個雛型行為引擎，該行為引

擎在對客戶端透明的情況下攔截客戶端所執行的系統呼叫，接著將系統呼叫軌跡轉

換成上述的模型，使其能夠接受正規表示式來做詢問。實驗部分確認雛型系統能夠

將未知的惡意軟體行為比對出來，被監控的客戶端系統仍可維持 80%的原有效能。 

 

關鍵字： 資訊流、應用程式行為 
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Information Flow Based Application Behavior Modeling 

Student： Hong-Wei Li  Advisor： Dr. Yu-Sung Wu 

Institute of Computer Science and Engineering National Chiao Tung University 

 

ABSTACT 

We propose an application behavior model based on information flow. The model focuses on 

the flow of information among system objects due to the execution of an application. A flow 

encompasses not only the attributes of its underlying objects but also the relations between the 

objects. The model supports efficient query through regular expressions. We have shown that 

the model is applicable to practical applications such as the identification of malicious behavior 

of unknown malware. We built a prototype behavior engine on top of Xen virtualization 

platform. The behavior engine transparently monitors the guest system calls, convert the system 

call trace into the information flow behavior model, and allows queries of application behavior 

through regular expressions. The evaluation confirms that the prototype system can indeed 

support behavior matching of unknown malware and incurs only a mild 20% performance 

overhead on the monitored guest system. 
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 Introduction 

Over the years, the number of malwares rises drastically. Even though anti-malware scanners 

are commonly employed to detect malicious software, there are still many malware that cannot 

be detected by anti-malware software[1]. The reason is that malware developers widely adopt 

evasion techniques, such as code obfuscation[2], executable compression[3], etc. Code 

obfuscation can transform malware source code into other form without changing malware’s 

behavior. Executable compression can compress malware’s executable file, and the compressed 

code can be extracted by itself before it is executed. On the other way, traditional or commercial 

anti-malware commonly use signature scanning as detection bases. Once a malware binary is 

transformed by either code obfuscation or packing, anti-malware scanners will need to update 

its signatures for the malware even if the malware behavior is still the same. Therefore, malware 

can easily avoid detection of anti-malware. Inevitably, the defender need to study on this issue 

for improving anti-malware performance. 

Malware detection mainly falls into two complimentary approaches, static analysis and 

dynamic analysis. Static analysis based on code signature identify malwares takes great 

advantage on speed. Nevertheless, malware can prevent it by changing code structure or 

inserting irrelative codes. On the other hand, dynamic analysis requires executing a malware 

sample in a controlled and isolated environment, like sandbox, VM, etc. to monitor the 

malware’s behavior. This solution effectively address the pitfalls of static analysis, but it is very 

time-consuming and mostly used in offline mode. 

In this paper, first, we propose an application behavior model based on information flow to 

describe application’s behavior on a system. Next, we apply it to the problem of malicious 

behavior identification and implement a behavior engine that can monitor guest system calls 

and convert the system call trace into an information flow multi-graph. Besides, for improving 
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performance of the behavior engine, we also use policy features to ignore irrelevant nodes and 

use regular expression with back-references in matching patterns. 

The rest of this paper is organized as follows: In Chapter 2, we give the related work about 

information flow and using system call to represent processes’ behaviors. Chapter 3 is a brief 

introduction about information flow. Next, Chapter 4 introduce are our application behavior 

model, and Chapter 5 shows our design and implementation for malicious behavior 

identification. The evaluation of prototype is in Chapter 6. Finally, Chapter 7 and Chapter 8 is 

future work and conclusion. 
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 Related Work 

Kolbitsch[4] analyzes a malware in a controlled environment to build a model that 

characterizes the malware’s behavior. The model is a graph composed of system calls and data 

dependencies. An example of data dependency is that if there is a variable that is an output of 

a system call 𝐴𝐴 and is a parameter of another system call 𝐵𝐵, then there is a data dependency 

from 𝐴𝐴 to 𝐵𝐵. Kolbitsch then generalizes the model and uses that to detect a family of malwares. 

However, the system requires prior knowledge of a malware in the sense that it requires human 

expert to collect system calls of a malware, identify its malicious behaviors, and build the 

corresponding model. BinGraph[5] and HOLMES[6] also use graph based on trace of system 

calls that are indicative of a process’s behaviors, but they use graph mining techniques to 

differentiate malicious and benign behaviors automatically.  

Access control[7] has been widely employed in many systems to protect confidential data. 

Although access control can check restrictions on the release of information, it does not check 

following propagation regarded as an information flow. Therefore, Dorothy E. Denning 

proposes a lattice model of secure information flow[8] to determine whether there is a path 

which leaks confidential data or not. Taint analysis[9] commonly employs information flow 

analysis such as Panorama[10] that uses a taint graph to represent information flow to detect 

malware. Panorama can effectively protect important data by marking them as taint sources. 

However, it suffers a slowdown of 20 times on average of performance overhead. 
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 Information Flow 

Informally, information flow means information is transmitted from source to destination. 

Information can be from one bit to a conversation. In formal, information flow is a relation 

between objects like a dependency. For example, if Tom gives a gift to Amy, then there is an 

information flow or dependency from Tom to Amy. Commonly, information flows have some 

semantics labels used for semantic presentation. In the above example, the dependency has 

‘SENDER=Tom’, ’RECEIVER=Amy’, ‘ACTION=give’ and ‘OBJECT=gift’ labels. 

In modern system, many systems or processes work together. Despite that few processes can 

work alone, they also need other objects as input or output. Not considering how to trace 

information flow from fragments, information flow not only describes how information 

transmit from one to another but also shows the relation between information objects (any 

information object can record or store information). 

3.1 On the Difficulties of Tracing Information Flows 

3.1.1 Complex Flow Semantics in Real-world Systems 

Processes usually use system call to achieve some important wok such as operating file or 

sending packets and so on, which can be somehow regarded as a behavior that processes receive 

or send information through system call. For a common instance, if a process needs to write a 

file, then it will call ‘NtWriteFile’ and put some context (information) in the parameter. In this 

case, the context is transmitted from the process to the file. However, the relation between 

source and destination is usually indirect. In above case, first, the process needs to call 

‘NtOpenFile’ to get a file handle from OS, and then the handle is used as an input parameter in 

‘NtWriteFile’. As a result, to identify an information flow, one often needs to record multiple 
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system call invocations, not just one system call invocation, and use prior knowledge of the 

system call semantics to stich related invocations and their contexts. 

3.1.2 The Trade-off between Granularity and Efficiency 

Taint analysis is a common method used in tracing information flow. Although taint analysis 

can accurately catch the information flow without loss, it is well known that it usually need to 

expense a large amount of resource. The reason cause the system based on taint analysis is 

seldom online. On the other hand, if we raise the speed, inevitably, we will lose some 

information at the cost. Too shattered pieces of information give few help on information flow. 

As a result, it is important that balance between accuracy and speed. 
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 Application Behavior Modeling 

Above discussion, based on information flow, we propose a model to describe application 

behavior. 

4.1.1 Model Definition 

An information object (IO) has not many limit and can be from a variable to a disk or 

anything that can record or store the information. IO’s type shows the node represent what type 

of resource and IO’s path is used as an identifier in the environment. An information 

dependency (ID) shows a dependency from an IO to another IO as long as there is an 

information flowing in them. Considering information dependency does usually happen in the 

same source and destination, we use a multigraph to describe the situation in the environment 

like a computer or a datacenter. An information flow path (IFP) is like a path in graph theory 

but have one more condition of time. It represent an information flow through many information 

object. Therefore, it does not make sense if some object send an information before the object 

receive that information. The definition in detail is in Figure 1. 
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Figure 1. Definition of application behavior model 

4.1.2 Information Flow Mutigraph and Its Constrcuction 

We first define information flow operation (IFO) which is used to update IFMG in Figure 2. 

The type of IFO and its meaning are as following. ‘OPEN’ represents operator can access 

operand but does not have any information flow between them yet. ‘READ’ represents operator 

Definition 1：Information Object (IO) = (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝ℎ, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) where 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the IO’s type such as file, registry or process 

 𝑝𝑝𝑝𝑝𝑝𝑝ℎ represents the IO’s absolute path in the environment 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is a set containing some labels to represent the IO’s attributes 

Definition 2：Information Dependency (ID) = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 

where 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents ID’s source 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents ID’s destination 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is a set containing some labels to represent the ID’s attributes 

Definition 3：Information Flow Multigraph (IFMG) = (𝑉𝑉,𝐸𝐸, 𝑠𝑠, 𝑡𝑡, 𝐿𝐿𝑉𝑉, 𝐿𝐿𝐸𝐸) where 

 𝑉𝑉 is a set of nodes, each of which represents an information object 

 𝐸𝐸 is a set of edges, each of which represents an information dependency 

 𝑠𝑠 is a function, 𝑠𝑠 ∶ 𝐸𝐸 → 𝑉𝑉，map an edge to its source node 

 𝑡𝑡 is a function, 𝑡𝑡 ∶ 𝐸𝐸 → 𝑉𝑉，map an edge to its destination node 

 𝐿𝐿𝑉𝑉  is node’s label function 

 𝐿𝐿𝐸𝐸  is edge’s label function 

 𝐿𝐿𝐸𝐸(edge). 𝑡𝑡𝑡𝑡 represents the timestamp of the edge construction 

Definition 4：Information Flow Path (IFP) = 

�〈𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑘𝑘〉, 〈𝑒𝑒(1,2), 𝑒𝑒(2,3), … , 𝑒𝑒(𝑘𝑘−1,𝑘𝑘)〉� in an IFMG, where 

 𝑛𝑛𝑖𝑖 ∈ IFMG.𝑉𝑉 for 1 ≤ i ≤ k 

 𝑒𝑒(𝑖𝑖,𝑖𝑖+1) ∈ IFMG.𝐸𝐸 and IFMG. 𝑠𝑠�𝑒𝑒(𝑖𝑖,𝑖𝑖+1)� = 𝑛𝑛𝑖𝑖 and IFMG. 𝑡𝑡�𝑒𝑒(𝑖𝑖,𝑖𝑖+1)� = 𝑛𝑛𝑖𝑖+1 

for 1 ≤ i < k 

 IFMG. 𝐿𝐿𝐸𝐸�𝑒𝑒(𝑖𝑖,𝑖𝑖+1)�. 𝑡𝑡𝑡𝑡 < IFMG.𝐿𝐿𝐸𝐸�𝑒𝑒(𝑖𝑖+1,𝑖𝑖+2)�. 𝑡𝑡𝑡𝑡 for 1 ≤ i < k − 1  
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get or receive information from operand. ‘WRITE’ represents operator give or send 

information to operand. Next, we can use a set of IFOs with time order to construct an IFMG. 

Figure 3 shows the algorithm of information flow multigraph construction. 

 

Figure 2. Definition of information flow operation 

 

Figure 3. Algorithm of information flow multigraph construction 

  

Definition 5：Information Flow Operation (IFO) = (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the object’ type such as OPEN, READ, WRITE 

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is an IO which type usually is a process and represents the 

operator of the operation 

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is an IO which type usually is a file or registry and represents the 

operand of the operation 

#Incremental construction of an information flow multigraph 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

For each information flow operation 𝑖𝑖𝑖𝑖𝑖𝑖 

 Get node 𝑁𝑁𝑟𝑟 with 𝑖𝑖𝑖𝑖𝑖𝑖. operator from IFMG, or create it 

 Get node 𝑁𝑁𝑑𝑑  with 𝑖𝑖𝑖𝑖𝑖𝑖. operand from IFMG, or create it 

 If 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 == ‘OPEN’ 

  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝑉𝑉 =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝑉𝑉 ∪ {𝑁𝑁𝑟𝑟 ,𝑁𝑁𝑑𝑑} 

 Else if 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 == ‘READ’ 

  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝐸𝐸 =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝐸𝐸 ∪ {(𝑁𝑁𝑟𝑟 ,𝑁𝑁𝑑𝑑)} 

 Else if 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 == ‘WRITE’ 

  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝐸𝐸 =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝐸𝐸 ∪ {(𝑁𝑁𝑑𝑑,𝑁𝑁𝑟𝑟)}  

 Else, ignore 𝑖𝑖𝑖𝑖𝑖𝑖 
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 Malicious Behavior Identification 

In modern operation system, most of important operations such as operating files or creating 

sockets and so on are achieved through system calls. System call sequences in somehow reflect 

caller’s (process’s) behavior. In addition, some system calls are related to data access, which 

can be regarded as an information flow. Therefore, we use application behavior model to 

describe process behaviors in a system, and differentiate between benign processes and 

malwares. In this part, we focus on windows. 

5.1 Interception of System Calls 

We use the CPUID-based approach mentioned in [11]. Figure 4 is the flow chart of 

interception of system calls. First, we insert privileged instruction (CPUID) into the process 

handling system calls on DomU Guest. Once DomU Guest execute the instruction, it triggers 

VMExit that switches the control from DomU Guest to VMM. Then VMM can collect relative 

information of the system calls and send it to the monitor. 

 

Figure 4. Flow chart of interception of system calls 
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5.2 Extraction of Information Flow from System Call Trace 

Many of system calls about operating objects can be classified into four classes, ‘OPEN’, 

‘READ’, ‘WRITE’ and ‘CLOSE’ respectively. ‘OPEN’ contains some system calls like 

‘NtOpenFile’, ‘NtCreateKey’ and so on that help a process request authority for an object like 

file or registry from OS. The process normally get a handle from OS in return if the request is 

accepted. The handle is used for following operation and represented the object. Some system 

calls that help a process operate an object like ‘NtReadFile’, ‘NtWriteValueKey’ and so on 

belonging to ‘READ’ or ‘WRITE’. These system calls usually need a handle in input parameters, 

and we can regard them as information dependencies because they commonly come with an 

information flow from one object to another. When a process does not need an object any longer, 

it will call a system call belonging to the last class, ‘CLOSE’ containing system calls like 

‘NtClose’, to make OS release resource occupied by that. 

We record the handle once an ‘OPEN’ system call triggered, and trace it in following ‘READ’ 

and ‘WRITE’ until relative ‘CLOSE’ system calls triggered. Each time ‘READ’ system call 

triggered, there is an information dependency from the callee (object) to the caller (process). 

Similarly, for ‘WRITE’, there is an information dependency from the caller (process) to the 

callee (object). Figure 5 is the procedure in detail. 
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Figure 5. Analyze system calls’ semantics 

 

5.3 Behavior Matching 

We define an encode function to map information flow path into string. It is well known that 

processes in handing regular expression are very efficient. As a result, we use a regular 

expression to describe a pattern of information flow path. Note that we only translate nodes 

without edges. This will be discussed in chapter (6.3). A pattern match an information flow path 

#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝ℎ is the string of ObjectName of ObjectAttributes which is one of 

parameters of that system call  (Need Ref) 

#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the value of reference of Handle which is one of 

parameters of that system call  (Need Ref) 

#Pool is a global hashtable that mapps paths to information objects 

#𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝐻𝐻 is a hashtable that mapps handles to paths 

For each system call 𝑠𝑠 invoked by some process 𝑘𝑘 (𝑘𝑘. 𝑖𝑖𝑖𝑖 represent the IO for 𝑘𝑘) 

 If 𝑠𝑠.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 == NtCreateFile || 𝑠𝑠.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 == NtOpenFile 

  Put (𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝ℎ, 𝑖𝑖𝑖𝑖 = (FILE, 𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝ℎ, {process: k})) to Pool 
  Add (𝑠𝑠.ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑖𝑖𝑖𝑖) to 𝑘𝑘.𝐻𝐻, and create an IFO = (OPEN,𝑘𝑘. 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖) 

 Else if 𝑠𝑠.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 == NtCreateKey || 𝑠𝑠.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 == NtCreateKeyEx 

  Put (𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝ℎ, 𝑖𝑖𝑖𝑖 = (REGISTRYKEY, 𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝ℎ, {process: k}) to Pool 
  Add (𝑠𝑠.ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑖𝑖𝑖𝑖) to 𝑘𝑘.𝐻𝐻, and create an IFO = (OPEN,𝑘𝑘. 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖) 

 Else if s == NtReadFile || NtQueryValueKey 

  𝑖𝑖𝑖𝑖 = 𝑘𝑘.𝐻𝐻.𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝ℎ), if doesn’t exist, then ignore s 

  Create an IFO = (READ,𝑘𝑘. 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖) 

 Else if 𝑠𝑠.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 == NtWriteFile || 𝑠𝑠.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 == NtSetValueKey 

  𝑖𝑖𝑖𝑖 = 𝑘𝑘.𝐻𝐻.𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝ℎ), if doesn’t exist, then ignore s 

  Create an IFO = (WRITE,𝑘𝑘. 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖) 

 Else if 𝑠𝑠.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 == NtClose 

  Remove 𝑠𝑠. ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 from 𝑘𝑘.𝐻𝐻 

 Else, ignore 𝑠𝑠 
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iff the string encoded by that path belong to the language defined by that pattern. The definition 

in detail is in Figure 6. 

 

Figure 6. Definition related to behavior matching 

5.4 Implementation 

Based on above, we introduce our implementation. Environment parameters and architecture 

are in Table 1 and Figure 7. We modify Xen 4.2.1 kernel and use CPUID-based approach to 

intercept system calls. Dmm_Tool mainly negotiates communication, which 1) makes Xen start 

to intercept system calls, 2) retrieves system call information from Xen 3) and transmits it to 

the behavior engine through JNI[12]. The behavior engine is deployed on Dom0 for malicious 

behavior identification. 

Host OS Fedora Linux Core 3.9.10 (x86_64) 

Guest OS Windows 7 (x86_64) 

Virtual Layer Xen hypervisor 4.2.1 

Language Java SE 1.7 

Table 1. Environment parameters 

Definition 6：Encode Function (EF), EF ∶ Information Flow Path → String 

 For an information flow path 𝑖𝑖𝑖𝑖𝑖𝑖 =

�〈𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑘𝑘〉, 〈𝑒𝑒(1,2), 𝑒𝑒(2,3), … , 𝑒𝑒(𝑘𝑘−1,𝑘𝑘)〉� in a IFMG 

EF(𝑖𝑖𝑖𝑖𝑖𝑖) = " < 𝑛𝑛1. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >< 𝑛𝑛2. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > ⋯ < 𝑛𝑛𝑘𝑘 . 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > ", where  

𝑛𝑛𝑖𝑖 . 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= "|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1? 𝐼𝐼𝐹𝐹𝑀𝑀𝐺𝐺. 𝐿𝐿𝑉𝑉�𝑛𝑛1�. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2? 𝐼𝐼𝐹𝐹𝑀𝑀𝐺𝐺. 𝐿𝐿𝑉𝑉�𝑛𝑛2�. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2| … |" 

Definition 7：Pattern is a regular expression with backreferences, and 

𝐿𝐿�𝑝𝑝𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑟𝑟𝑛𝑛� represents the language that pattern defines. 

Definition 8：Match(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑖𝑖𝑖𝑖) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡        𝑖𝑖𝑖𝑖 𝐸𝐸𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖) ∈ 𝐿𝐿(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
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Figure 7. Architecture of environment 

Figure 8 is the flow chart of our behavior engine. After the hypervisor intercepts a system 

call, it decodes some parameters and sends the system call to the behavior engine. The behavior 

engine first analyzes system calls semantic and ignores unimportant system calls. Next, it finds 

corresponding rule from the policy applying the caller (process) for updating security flag. 

Finally, it generates corresponding information flow operation to update the information flow 

multigraph. The pattern matcher periodically check if there is a user-defined pattern matches 

some information flow path for malicious behaviors. The following part introduces some 

features in behavior engine in detail. 
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Figure 8. Behavior engine flow chart 

5.4.1 Policy for processes 

If we record and monitor all information flows in a system, the computation is definitely 

considerably tremendous. In fact, malware accounts for very small part in processes of a system. 

It is reasonable that using multi-level monitor to optimize behavior engine’s performance. In 

short, for each process, we use security flag to distinguish between high-risk and low-risk 

processes for the sake of distributing monitor resource. 

In our system, there are many policies defined by users beforehand. Figure 9 is a policy 

example. Policy path and policy match method are used to determine what policy apply to the 

process. Policy contains many rules, each of which defines if the process access a file in some 

directory or a registry key in some path, then behavior engine will do what action like raising 

the process’s security flag. There are presently two security flag in our system, SAFE and 

WARNING respectively. If a process in WARNING, behavior engine not only records system 

calls but also construct corresponding IFOs to update the IFMG. If a process in SAFE, behavior 
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engine only log its system call record for the situation that needs the process’s information flows 

in future. 

 

Figure 9. Policy example 

5.4.2 Pattern for user-defined behavior 

Users can define pattern in database beforehand to forbid some information flows in the 

system. Practically, pattern matcher first translate patterns into the strings fitting with Encoding 

Function, and then it can use these strings to match information flow paths. 

Figure 10 is a pattern example. The pattern describe an information flow from a file to a 

windows startup registrykey through some process that the path is same as the file’s. Simply 

speaking, the process copy itself and modify windows startup registrykey. Furthermore, the 

behavior mentioned above is common in viruses or malwares. 

Policy name: Default 

Policy path: c:\ 

Policy match_method: prefix match 

Rules: 

//Rule format  Rule #: type | path | match_method | action 

Rule 1: file | C:\windows | prefix match | raise secrity_flag to WARNING 

Rule 2: registrykey | \registry\machine\software\microsoft\windows\windows 

error reporting | fully match | ignore 

…… 
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Figure 10. Pattern example 

 

5.4.3 Handling of Information Flow Path 

Using pattern to match information flow paths is the most importance part of behavior 

matching. Due to incremental construction of IFMG and periodically need of behavior 

matching, we implement a set of information flow paths which construction is also incremental. 

Assuming that collected system calls have increasing time order, information flow operations 

as well as information dependencies generated by them with only one handle also have 

increasing time order. Therefore, new IFPs resulting from new information dependency must 

add destination node of the ID to the end of the paths that are end with the source node of the 

ID. The algorithm is in Figure 11. 

{"expression":"A.*B.*C" 

"A":{"type":"file","path":".*"} 

"B":{"type":"process","path":"\\k<A0path>","PID":".*"} 

"C":{"type":"registrykey","path":"\\\\registry\\\\machine\\\\software\\\\wow643

2node\\\\microsoft\\\\windows\\\\currentversion\\\\run"}} 

#\\k<A0path> in path of B is a backreference representing the value of path f B is 

same as A’s in matching. 

 

The translated string of the regular expression 

(<\|type\?(?<A0type>file)\|path\?(?<A0path>([^<>?|])*)\|>)(?:<\|(([^<>?|])*

\?([^<>?|])*\|)*>)*(<\|type\?(?<B0type>process)\|path\?(?<B0path>\k<A0pat

h>)\|PID\?(?<B0PID>([^<>?|])*)\|>)(?:<\|(([^<>?|])*\?([^<>?|])*\|)*>)*(<\|t

ype\?(?<C0type>registrykey)\|path\?(?<C0path>\\registry\\machine\\software\

\ 6 32 d \\ f \\ d \\ \\ )\| ) 
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Figure 11. Algorithm of incremental construction of the set of information flow paths 

 

  

#𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ is a hashtable, which key is information node and value is set of 

strings encoded by Encode Function from information flow paths 

#concatenate(𝑎𝑎, 𝑏𝑏) is a function concatenating two string 

# 𝐸𝐸𝐸𝐸 is Encode Function 

When an ID id = (𝑠𝑠, 𝑑𝑑, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) update an 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, then 

 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ. get(𝑠𝑠) 

 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ. get(𝑑𝑑) 

 For each path 𝑝𝑝 in 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑆𝑆𝑆𝑆𝑆𝑆 

  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ = concatenate(𝑝𝑝,𝐸𝐸𝐸𝐸(𝑑𝑑)) 

  𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∪ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ 
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 Evaluation 

In the chapter, we first evaluate effectiveness of our behavior engine with two viruses. Next, 

evaluate performance and overhand under high pressure. Finally, we discuss issues of subpath 

check and partial information. Table 2 is our testbed environment. 

Host CPU Intel(R) Xeon(R) CPU E5520 @ 2.27GHz    x16 

Host Memory 9.07 GB 

Disk storage 3 TB 

# of virtual CPU 1 

Guest Memory 3072 MB 

Guest disk storage 26 GB 

Table 2. Testbed environment 

6.1 Effectiveness of Malware Behavior Matching 

6.1.1 Backdoor virus 

We design a backdoor virus (infector.exe), which can receive external command to modify 

or infect specific files. It also copy itself and add its path to windows startup registry key when 

it is executed. We use the pattern mentioned in Figure 10 to match the information flow 

generated from this virus. 

When infector.exe is executed, it first copy itself to ‘c:\warning\virus.exe’ and add that path 

to windows startup registry key. Then, it connect to external server for receiving command. In 

this test, server send a command which makes the virus modify ‘c:\test.txt’. 

Figure 12 and Figure 13 is the test result. Figure 14 shows the result in diagram. Our behavior 

engine use the pattern to correctly match the path generated from infector.exe. 

 

18 

 



 

 

Figure 12. Information flow multigraph generated from infector.exe 

Multgraph: num_nodes=6 num_edges=6 

nodes: 

 #1 {"SN":3,"object":"id=3427934978828028696 

path=<|type?file|path?c:\\warning\\virus.exe|>"} 

 #2 {"SN":6,"object":"id=7666627252376717717 

path=<|type?file|path?c:\\test.txt|>"} 

 #3 {"SN":4,"object":"id=8564971190246524015 

path=<|type?file|path?:zone.identifier:$data|>"} 

 #4 {"SN":2,"object":"id=-8024328038771964644 

path=<|type?file|path?c:\\users\\vm_win7\\desktop\\infector.exe|>"} 

 #5 {"SN":1,"object":"id=4858098434634041749 

path=<|type?process|path?c:\\users\\vm_win7\\desktop\\infector.exe|PID?1004|

>"} 

 #6 {"SN":5,"object":"id=-7188960800393575958 

path=<|type?registrykey|path?\\registry\\machine\\software\\wow6432node\\m

icrosoft\\windows\\currentversion\\run|>"} 

edges: 

 #1 {"timestamp":5321,"to":1,"repeat_times":0,"from":2,"operator":"?"} 

 #2 {"timestamp":5322,"to":3,"repeat_times":0,"from":1,"operator":"?"} 

 #3 {"timestamp":5336,"to":1,"repeat_times":0,"from":4,"operator":"?"} 

 #4 {"timestamp":5337,"to":4,"repeat_times":0,"from":1,"operator":"?"} 

 #5 {"timestamp":5350,"to":5,"repeat_times":0,"from":1,"operator":"?"} 

 #6 {"timestamp":11408,"to":6,"repeat_times":0,"from":1,"operator":"?"} 
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Figure 13. Matching result 

 

Figure 14. Diagram based on Figure 12 and Figure 13(the red block represent the matched 

path) 

Table 3. Policy effect show the effect of policy feature. If we do not use policy to filter 

unimportant node such as the registry key which record OS whether enable WER (windows 

error report) or not, the multigraph would be very large. Besides, a large number of information 

flow paths has big impact on the time of matching. Using policy feature can increase 

performance of behavior engine. 

(2014/06/05 03:19:17)Recongnizer Read_Self with 

reg=(<\|type\?(?<A0type>file)\|path\?(?<A0path>([^<>?|])*)\|>)(?:<\|(([^<>

?|])*\?([^<>?|])*\|)*>)*(<\|type\?(?<B0type>process)\|path\?(?<B0path>\k<A

0path>)\|PID\?(?<B0PID>([^<>?|])*)\|>)(?:<\|(([^<>?|])*\?([^<>?|])*\|)*>)*(

<\|type\?(?<C0type>registrykey)\|path\?(?<C0path>\\registry\\machine\\softw

are\\wow6432node\\microsoft\\windows\\currentversion\\run)\|>)  

Match 

<|type?file|path?c:\users\vm_win7\desktop\infector.exe|><|type?process|path?c:\

users\vm_win7\desktop\infector.exe|PID?2204|><|type?registrykey|path?\registry

\machine\software\wow6432node\microsoft\windows\currentversion\run|> 

20 

 



 

Policy feature On Off 

# of nodes of multigraph 6 47 

# of edges of multigraph 6 48 

# of paths 13 82 

Time of matching (ms) 4 10 

Table 3. Policy effect comparison 

6.1.2 Netsky virus 

Netsky is a prolific family of computer worms which affect Microsoft Windows operating 

systems. The worm mainly sends itself to e-mail addresses that it finds on the infected computer. 

Like most of virus, it also copies itself to another path and add that path to windows startup 

registry key. Therefore, we also use the pattern mentioned in Figure 10 to match the information 

flow generated from this worm. 

Because the worm scans all directories to find e-mail addresses, the information flow 

multigraph is very complicated (many nodes and edges). Considering limitations of space, we 

only shows the simplified information flow multigraph in Figure 15. Our behavior engine can 

correctly detect Netsky with the pattern. 

 

Figure 15. The simplified information flow multigraph (the red block represent the 

matched path) 
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6.2 Perfomance Overhead 

6.2.1 Matching And Complexity Of Multigraph 

We design a generator (workload_generator.exe), which can generate file or registry access 

operations. By changing the number of generators for varying level of workload, we can 

observe the performance of the behavior engine. Table 4 lists other parameters of generators. 

Total number of files 10000 

Total number of registries 10000 

The number of accesses 

for each generator 
500 

access delay time (ms) 10 

Table 4. Generator parameters 

Figure 16 and Figure 17 are the complexity of IFMG and performance in different number 

of generators. With the increasing of the number of generators, the number of IFMG’s nodes 

and edges increase in linear growth. However, the number of paths increases in very fast speed. 

The cause is that the IMFG can generator more and longer information flow paths whenever a 

file or registry is accessed by at least two generators. In addition, because behavior engine does 

not compress information flow paths, the preceding part of each information flow path is stored 

in many times. The above-mentioned causes also explain if we did not use multi-level design 

to filter some unimportant nodes or ignore the reliable processes, behavior engine would have 

higher load and worse performance. 
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Figure 16. Complexity of IFMG 

 

Figure 17. Runtime performance of the prototype with respect to different number of 

generators 

 

6.2.2 Guest VM Performance Degradation 
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We measure the time of compressing and decompressing a 1 gigabyte sized file with random 

context on a Guest VM with and without intercepting system calls. The result is presented in 

Table 5. We can see that the behavior engine incurs less than 20% of performance degradation 

on the compression / decompression applications on the guest VM. 

 
Without  

behavior engine 

With  

behavior engine 

Performance 

degradation 

Compress 1G file 73.67 s 86.67 s 15% 

Decompress 1G file 26 s 32 s 18.75% 

Table 5. The running times of compression and decompression applications 

6.3 Discussion 

6.3.1 Subpath check 

Table 6 shows the performance evaluation of the subpath check feature. The number of 

generators is fixed to four. Subpath check is that whenever behavior engine generates a new 

path, it does check if that is a subpath of another stored path. Original intention of this design 

is to reduce the number of repeated paths. However, the result shows that, the paths reduced by 

subpath check does not account for great proportion (about 3%). Moreover, subpath check takes 

about six times of CPU time of non-check. 

Subpath Check Not check Check 
Performance degradation 

(Check – Not check) / Not check 

CPU time (sec) 44.333 322 626.3% 

The number of paths 168376 162138 -3.7% 

Average of path length 4.61 4.567 -0.9% 

Table 6. Performance comparison of sub-path check 

6.3.2 Partial Information 
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Although application behavior model can contains partial information in 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , present 

design does not accept partial information. In other word, if a process read a small part of a file, 

behavior engine will consider the process either obtaining all information of the file or nothing 

(due to system call loss). Because of this, pattern design does only consider information objects 

without the information dependency. In addition, it reflect another problem of low tolerance of 

dependency loss. Once an important system call loss happens (like NtOpenFile), we may lose 

many following information dependencies relative to the system call. Behavior engine requires 

a recovering feature to handle this. 
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 Future Work 

As discussed in Sec. 6.3, we will extend our design for partial information and increase 

tolerance of dependency loss. In addition, to improve the expression power of patterns, we will 

create encoding functions that are able to translate edges. 

We plan to extend the dependencies to cover network communication. This will allow the 

behavior engine to model the behavior of distributed applications that span across multiple 

machines. On the other hand, the current representation of the information flow may include 

redundant paths or subpaths due to repeated system calls. We also plan to design new 

mechanism to attain a more compact and efficient representation of information flow for this 

scenario. 
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 Conclusion 

This paper proposes an information flow based model to describe application behaviors. We 

apply it on malicious behavior identification and design a behavior engine that can detect user-

defined behaviors. In addition, we use regular expression with back references to represent 

paths and use policy feature to ignore unimportant nodes (objects) for better performance. The 

evaluation indicates our behavior engine can indeed support behavior matching of unknown 

malware and incurs only a mild 20% performance overhead on the monitored guest system. 
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