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利用隨即幾何的方法在一般通道環境下小細胞系統

的性能分析 

 

 

學生：陳佳佳                               指導教授：王蒞君 教授 

 

國立交通大學 

電信工程研究所碩士班 

 

摘     要 

 

 隨著小細胞在蜂窩式網路拓撲結構占的比重越來越大，小細胞網路

覆蓋幾率的分析日趨重要。最近一種新的蜂窩式網路的拓撲結構被提出，

即利用隨即幾何理論，建模以及研究小細胞網路。為了避免分析上的複雜

度，之前大多數的對於泊松分佈的細胞網路研究都只是基於一種簡單的瑞

利衰弱。在這篇文章中，我們研究基於更多普遍通道影響中泊松分佈的細

胞網路的覆蓋幾率問題。首先本文得到了一個整潔的在瑞利陰影衰弱的通

道下覆蓋幾率的運算式。其次本文得到一個低複雜的在雙斜線路徑衰減通

道中覆蓋幾率運算式，最後本文得到了一個在一般陰影衰弱的通道下的覆

蓋幾率運算式。我們發現陰影衰弱對小細胞網路的性能起著很大的影響。 



Abstract

Coverage analysis of a small cell network is very crucial since small cell de-

ployment will dominates the topology of a cellular in the future. The majority

of prior work on the coverage probability is studied based on a simple and

consistent Rayleigh fading models in a Poisson-distributed cellular network

in order to avoid analytical intractability. In this paper, we study the cov-

erage probability problem in a Poisson small cell network with much more

general channel impairments. First a neat expression of the coverage prob-

ability with compose Rayleigh fading and log-normal shadowing is derived

and it discloses two important facts – the coverage performance is not im-

proved by deploying more base stations and it is significantly weakened by

shadowing. Then we find the coverage probability with low complexity for

the case that a dual-slop path loss is used, the desired signal experiences

Nakagami-m fading and interference signals undergo Rayleigh fading. It is

able to more practically reflect the coverage performance of a user.

ii



Acknowledgements

I would like to thank my parents. They always give me endless supports. I

especially thank Professor Li-Chun Wang who gave me many valuable sug-

gestions in my research during these two years. I would not finish this work

without his guidance and comments.

In addition, I am deeply grateful to my laboratory mates and junior

laboratory mates at Mobile Communications and Cloud Computing Labra-

tory at the Graduate Institute of Communications Engineering in National

Chiao-Tung University. They provide me with a lot of assistance and share

happiness with me.

iii



Contents

Abstract i

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1

1.1 Problem and Solution . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Point Process Theory in Stochastic Geometry . . . . . . . . . 6

2.2.1 The Poisson Point Process . . . . . . . . . . . . . . . . 6

2.2.2 Path Loss Law Concern of Interference . . . . . . . . . 7

2.3 Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Path Loss . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Multipath Fading . . . . . . . . . . . . . . . . . . . . . 9

iv



3 System Models 10

4 Coverage Probability with Rayleigh Fading and Log-Normal

Shadowing 13

4.1 Channel Environment . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Path-loss . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.2 Log-normal shadowing and Rayleigh fading . . . . . . . 14

4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Laplace Transform of Interference . . . . . . . . . . . . 15

4.2.2 Coverage Probability . . . . . . . . . . . . . . . . . . . 16

4.3 Lower-Bound Analysis of Coverage Probability . . . . . . . . . 17

5 Coverage Probability with Inconsistent Fading Impairments 22

5.1 Successful Transmission Probability in m-Nakagami Fading

Desired Signal Channel With Rayleigh Fading Interfering Signal 22

6 Coverage Probability with Inconsistent Fading Impairments

and Shadowing 25

6.1 Path-loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 Log-normal shadowing and m-Nakagami fading . . . . 26

7 Numerical and Simulation Result 29

7.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . 29

7.1.2 Numerical Results and Discussions . . . . . . . . . . . 30

8 Conclusion 33

Bibliography 34

v



Vita 36

Publication List 38

vi



Chapter 1

Introduction

Small cells are viewed as one of the key technologies to the success of the next

generation cellular networks since they aim at boosting network capacity

and saving energy. They are essentially defined as the low-powered radio

access nodes operating in licensed or unlicensed bands, which are also called

femtocells, picocells and microcells in different environments [1].

Small cells are viewed as one of the key technologies to the success of

the next generation wireless systems, So the performance analysis of small

cell becomes extensive discussions. For system operator aspect, they want to

make performance analysis to determine the number of small cells within an

area to optimize the trade-off among system throughput, coverage, energy

consumption and deployment cost. For cellular phone company aspect, they

analyze performance of small cell to have a knowledge that What data rates

can be transmitted to their cellular phones and Which services can be de-

livered and leverage this insightful information in designing applications for

smart phone.

One thing that influences the performance of small cell most is the elec-

tromagnetic propagation in the wireless environment. When we focus on the

1



Figure 1.1: Small Cell System

downlink, base station(BS) to mobile case, em energy radiated from the BS

of a given cell, it encounters a lots of obstacles, not just like trees, buildings,

but the particles in the air. Then it reflected, diffracted and scattered by

these various obstacles. So the signals received in the receiver’s antenna will

probably change drastically. We will introduce a propagation model to model

these environment. [2]

What’s more, as the increasing numbers of small cells are built, the inter-

ference received in mobile will increase too. So we should attach importance

to the interference analysis of small cells.

1.1 Problem and Solution

One thing that influences the performance of small cell most is the electro-

magnetic propagation in the wireless environment. When we focus on the

2



downlink, base station(BS) to mobile case, em energy radiated from the BS

of a given cell, it encounters a lots of obstacles, not just like trees, buildings,

but the particles in the air. Then it reflected, diffracted and scattered by

these various obstacles. So the signals received in the receiver’s antenna will

probably change drastically. We will introduce a propagation model to model

these environment. [2]

What’s more, as the increasing numbers of small cells are built, the inter-

ference received in mobile will increase too. So we should attach importance

to the interference analysis of small cells.

However, there exist lots of problems in tractably analyzing the perfor-

mance of a small cell network because the radio propagation model of signals

and the spatial distribution model of base stations (BSs) jointly make the

analysis with high complexity. In order to make the analysis much more

tractable, most of the existing work usually uses a fairly simple channel

model to characterize some channel impairments such as path loss and fad-

ing. Shadowing is intentionally overlooked due to the intractability it induces

in mathematical analysis.

Using oversimplified channel models is the main drawback in the previous

work on PPP-based cellular networks. Therefore the accuracy of the previous

results of the coverage probability or outage probability is doubtable. In this

paper, we consider a more general channel impairment model that includes

small-scale fading, shadowing, single-slop path loss and/or dual-slop path

loss. In particular, first we consider a Poisson-distributed small cell network

with Rayleigh fading and log-normal shadowing. The coverage probability

is obtained in a near closed form and it is severely reduced by shadowing.

This observation certainly contradicts the opinion in some previous work

that shadowing has a modest impact on the system performance. We also

3



show that the coverage probability can be largely improved only when the

network is not interference-limited. Then we study the coverage probability

with a dual-slop path loss, Nakagami-m fading in the desired signal channel

and Rayleigh fading in the interference channels. A low-complexity expres-

sion of the coverage probability is derived, which provides a more realistic

result for the coverage probability and thus the coverage probability with

simple Rayleigh fading and path loss obtained in the previous work could be

seriously underestimated.

1.2 Thesis Outline

The research in this thesis develop several channel modeling techniques to

evaluate the performance of small cell system using stochastic geometry -

log-normal shadowed rayleigh fading channel, nakagami fading channel, log-

normal shadowed nakagami fading channel. We organize the remaining chap-

ters of this dissertation as follows. Chapter 2 introduces the background of

smal cell systems, 3GPP sec used in this paper and point process theory in

stochastic geometry. Chapter3 develops a system model for small cell system.

Chapter 4 introduce the previous framework and result. Chapter 5, chapter

6 demonstrate a framework to analysis the performance of the proposed sys-

tem model. Chapter 7 shows the analysis result and set up a simulator to

verify the analysis result. Chapter 8 is the conclusion.

4



Chapter 2

Background

In this chapter, we firstly survey related works to performance analysis of

small cells. Then, the core method, “stochastic geometry,” for analyse the

coverage probability is introduced in depth. At last, we will demonstrate the

propagation model.

2.1 Literature Survey

The coverage probability of a cellular network is an important index of the

system performance, which is defined as the probability that the singal-to-

interference plus noise (SINR) of a user in a cell is higher than some predes-

ignated threshold. Prior work pertaining to the coverage probability analysis

in a wireless network focuses on the analysis of outage probability or success

probability. For instance, reference [3] provides an overview of how a Poisson

point process (PPP) is successfully applied to do the tractable analysis of the

outage probability under some random access protocols. In [4] a PPP-based

cellular network is proposed to characterize a more realistic distribution of

BSs in the network. The authors claim to acquire some tractable results of

5



the coverage probability and achievable rate of a user by using a simple path

loss and Rayleigh fading models. However, they only obtain the “worse-case”

results that would detach far away from the reality. Reference [5] found the

average rate of downlink heterogeneous cellular networks with a general fad-

ing assumption. It lacks of the analysis of the coverage probability and no

shadowing is in its model.

2.2 Point Process Theory in Stochastic Ge-

ometry

Stochastic geometry is a mathematical tool that analyses the characterization

of the interference. Also, instead of obtaining the results that are only valid

for a deterministic network (hexagon modeled network), it allows averaging

of the performance, in other words, general results, over likely network real-

izations. What’s more, the spatial model in wireless networks is emphasized

by stochastic geometry.

2.2.1 The Poisson Point Process

In this paper, we use the homogeneous poisson point process as a reference

model for the distribution of base stations in the wireless network.

A point process Φ = x1, x2, ...xi, ... is point measures mapping on a locally

finite space A. The xi is random variables. Most often, the dimension of the

space A is larger than 1. In this paper, we use the dimension d = 2, that is

the space A is the euclidean space R
2. We define the intensity measure Λ of

Φ as Λ(B) = EΦ(B). Φ(Ai) means the counting measure of Φ
⋂

Borel B.For

a stationary PPP of intensity λ,Λ(B) = λ|B|.

6



Poisson point processes: A point processes Φ is Poisson on A if

• The random variables Φ(Ai) are independent and Ai ∈ a are non-

overlapping areas.

• The random variables Φ(Ai) are Poisson, satisfying

P[Φ(Ai) = n] = exp(−λ|Ai|)
(λ|Ai|)n

n!
(2.1)

where | � | the Lebesque measure(area), and λ is the density of the

homogeneous PPP.

For convenience, we use palm probability PO which means it always has

a point at the origin. Later, we will use Campbell’s theorem for PPPs.

Campbell’s theorem: Let f be non-negative function. Then

E

∑

x∈Φ
f(x) =

∫

R2

f(x)Λ(dx) (2.2)

2.2.2 Path Loss Law Concern of Interference

We assume that the path loss is g(r) = r−α,hx is the power fading coefficient.

Interference received at origin can be written:

I =
∑

x∈Φ
hx‖x‖−α (2.3)

Since Ehx = 1,

E(I) = E

∑

r∈Φ∗

r−α (2.4)

Where Φ∗ = ‖x1‖, ‖x2‖, ... Using Campbell’s theorem, we find that if α <

2,there is too much interference from the nodes and will be infinite. So, if we

want to apply stochastic geometry to analysis of propagation model of small

cell, we should assume that α > 2.

7



2.3 Propagation Model

Here, we considers on the downlink, base station to user case. The power

emitted from the Base station will often encounter a lot of obstacles, such

as buildings, trees, animals, etc., The radio will be reflected, diffracted and

scattered by these obstacles. What’s more, the received power varies as the

distance between transmitter and receiver changes. One finds several effects

appearing: path-loss, shadowing and fading.

Composite these three phenomena together, the received signal can be

modeled and given by the following equation.

Pr = Gℓ(d)PT (2.5)

Where Pr is the received power, G is is used to characterize the fading and/or

shadowing effect of the desired signal channel and the path loss law of the

desired signal channel is described by ℓ(d)

8



2.3.1 Path Loss

Path loss is a large-scale fading, varying as they do at relatively long dis-

tances caused by complicated interactions of three large-scale propagation

mechanisms: free space loss, reflection, and diffraction [6]. We define area-

mean power as the average signal power in the area where the receiver is.And

it can be estimated through path loss prediction model.

2.3.2 Shadowing

Shadowing is a large-scale fading, varying as they do at relatively long dis-

tances caused by diffraction and scattering when em encounters buildings,

terrain, and trees. The shadow loss represents the actual local-mean power

received, statistically fluctuating about the area-mean power. We use a log-

normal distribution to characterize the changing of local mean power.

2.3.3 Multipath Fading

Multipath fading is a small-scale fading. At much smaller distances, there is

a large variation of the sigmals. The received signal is usually a summation

of multiple reflected waves from different path. Because of the different

phase of each reflected waves, the signal will be distorted. There is several

distribution to model the statistic of the multipath fading: Rayleigh fading,

Rician fading, m-Nakagami fading, etc. In this paper, we use m-Nakagami

fading, take the advantages of that The Nakagami pdf bdcomes the Rayleigh

density function when m is equal to unity and the Nakagami distribution

matches some empirical data better than other models.

9



Chapter 3

System Models

We consider an infinitely large small cell network in which all base stations

are assumed to be independently and randomly scattered by following a

homogeneous PPP ΦB of intensity λB on the plane R
2, and they all use the

same transmit power P . Each user in the network is associated with his

nearest BS. Without loss of generality, our analysis in this paper is based on

the reference user located at the origin, as shown in Fig. 3.1. All transmitted

signals in the downlink suffer from the following channel impairments – path

loss, (small-scale) Rayleigh fading and/or (large-scale) shadowing. [7]

Let X0 and {Xj, j ∈ N+} denote the serving BS and interfering BSs of the

reference user, respectively. Then the interference received by the reference

user is expressed as

I0(P ) , P
∑

Xj∈ΦB\X0

G̃j ℓ̃(‖Xj‖), (3.1)

where G̃j’s stand for the i.i.d. interference channel (power) gain due to

fading and/or shadowing from BS Xj to the reference user, ‖Xj‖ denotes the

Euclidean distance between BS Xj and the origin, and ℓ̃(‖Xj‖) represents

the path loss law of the interference channel between node Xj and the origin.

10



Figure 3.1: A schematic representation of a PPP-based small cell network

with Voronoi tessellation. The reference user is located at the origin.

With the interference given in (3.1), the signal-to-interference plus noise ratio

(SINR) of the reference user is given by

SINR0 ,
G0ℓ(R)

I0(1) + σ2
0/P

, (3.2)

where G0 is used to characterize the fading and/or shadowing effect of the

desired signal channel from BS X0 to the reference user, σ2
0 is the ambient

noise power, and the path loss law of the desired signal channel is described

11



by ℓ(R) in which R denotes the distance from BS X0 to the reference user, i.e.

R = ‖X0‖. Since X0 is the nearest BS of the reference user, the probability

density function (pdf) of distance R is

fR(r) = 2πrλBe
−πr2λB ,

which can be obtained by differentiating P[R ≤ r] = 1 − exp(−πr2λB) with

respect to r [8].

For successful decoding, the received SINR of each user should be higher

than some predesignated value. In particular, we use the SINR in (3.2) to

define the coverage probability of the reference user in the network as follows

p
cov

, P [SINR0 ≥ θ] = P

[

G0ℓ(R)

I0(1) + σ2
0/P

≥ θ

]

(3.3)

assuming the SINR threshold is θ.

12



Chapter 4

Coverage Probability with

Rayleigh Fading and

Log-Normal Shadowing

In order to analyze the coverage probability in (3.3), first the statistic prop-

erty of the interference I0(P ) needs to be characterized since (3.3) can be

rewritten with γ0 ,
P
σ2
0

as

p
cov

= P

[

G0 ≥
(I0(1) + 1/γ0)

ℓ(R)
θ

]

=

∫ ∞

0

EI0

[

F c

G0

(

(I0(1) + 1/γ0)θ

ℓ(r)

)]

fR(r)dr, (4.1)

where fZ(·) and F c

Z(·) denote the pdf and complementary cumulative dis-

tribution function (CCDF) of random variable Z, respectively. Thus, the

distributions of random variables I0 and G0 are needed to simplify the result

in (4.1) to a much neat form.

13



4.1 Channel Environment

4.1.1 Path-loss

Note that LI0(s) in (4.12) could be significantly simplified if ℓ̃(r) has an ap-

propriate function of r. The path loss law between two nodes in the network

can be formulated in different ways according to different environmental sit-

uations. For simplicity, in this section we consider the case that the path

loss models of all channels have the same simple single-slope form, i.e.

ℓ(r) = ℓ̃(r) = Kr−α (4.2)

in which α > 2 is the path loss exponent and K is a small constant with unit

meterα capable of making the received power smaller than transmit power

as r ≤ 1.

4.1.2 Log-normal shadowing and Rayleigh fading

For the interference, the channel environment is To characterize both log-

normal shadowing and Rayleigh fading effects on p
cov

, the following compos-

ite shadowing-fading pdf of G0 obtained from [9] is adopted:

fG0(g) =

∫ ∞

0+

1√
2πσx2

exp

(

−g

x
− (ln(x) − µ)2

2σ2

)

dx, (4.3)

where σ2
s is the variance of the log-normal shadowing. The closed-form distri-

bution function of I0 is impossibly obtained. However, its Laplace functional

is useful to further simplify p
cov

in (4.1), which is given in the following

theorem.

14



4.2 Performance Analysis

4.2.1 Laplace Transform of Interference

Lemma 1. Suppose the interference channel gains {G̃j} have the same pdf

as that of G0 given in (4.3). The Laplace functional of the interference in

(3.1) is given by

LI0(s) = e−2πλEN [ sKr2−α

α=2 2F1(1,1− 2
α
;2− 2

α
;−ΩsK

rα
)]e−σN

, (4.4)

where LZ(s) , E[e−sZ ] is the Laplace functional of random variable Z and

N is the standard normal random variable.

The lemma above is a form of Gaussian quadrature. In numerical analysis,

We can use Gauss-Hermite quadrature to approximate the value of integrals

of this.

Proof. According to the result in [10], LI0(s) has the following identity:

LI0(s) , EI0 [exp(−sI0)]

= Eφ∗,gr

(

exp(−s
∑

r∈φ∗

grℓ(r))

)

= Eφ∗

[

∏

r∈φ∗

Egr [exp(−sgrℓ(r))]

]

(4.5)

Where φ∗ = ‖x1‖, ‖x2‖, ... is the PPP φ of the distances.

Using Probability generating functional, we can get that,

LI0(s) = exp(−2πλ

∫ ∞

R

(1 − EG0 [exp(−sgℓ(r))])rdr)

= exp(−2πλ

∫ ∞

0

(

∫ ∞

R

[1 − exp(−sgl(r)]rdv)fG0(g)dg

(4.6)

15



Using hypergeometry function, (4.6) can be described as,

LI0{s} = exp(−2πλ

∫ ∞

R

[1 − exp(−sgl(r))]rdr

∫ ∞

0

fG0(g)dg)

= exp(− 2πλ√
2πσ

∫ ∞

0

exp(−(ln Ω − µ)2

2σ2
)
scr2−α

α− 2

2F1(1, 1 − 2

α
; 2 − 2

α
;−Ωsc

rα
)dΩ)

(4.7)

By changing the variables ln(Ω)−µ√
2σ

= tI , that is Ω = exp(
√

2σtI + µ) we have

LI0{s} = exp(−2πλ√
π

∫ ∞

−∞
finter(tI) exp(−t2I)dΩ) (4.8)

where finter(tI) = scr2−α exp(
√
2σtI+µ)

α−2 2F1(1, 1 − 2
α

; 2 − 2
α

;− exp(
√
2σtI+µ)sc
rα

).

4.2.2 Coverage Probability

Theorem 1. Suppose all channel fading power gains are i.i.d. and have the

same pdf and the path loss of all channels follows the single-slope power law

specified . Then the coverage probability can be shown as follows

p
cov

=

∫ ∞

−∞
fdesired(s) exp(−t2d)dtd (4.9)

Where, s = θrα

C exp(
√
2σtd+µ)

,

fdesired(s) =
∫∞
0

1√
π
LI0+σ2

0
(s)fR(r)drd,

Lσ2
0
(s) = exp(−Ps

σ2
0
) and LI0(s) = exp(−sI0(1))

16



Proof. The term EI0 in (4.1) can be rewritten as follows

p
cov

=

∫ ∞

0

EI0[F
c
G0

(

(I0(1) + 1/γ0)θ

ℓ(r)

)

]fR(r)dr

=

∫ ∞

0

∫ ∞

0

1

Ωd

√
2πσ

EI [F
c
G0|Ωd

(

(I0(1) + 1
γ0

)θ

ℓ(r)

)

] exp(− ln Ωd − µ

2σ2
)fR(r)drdΩd

=

∫ ∞

0

∫ ∞

0

1

Ωd

√
2πσ

exp(− ln Ωd − µ

2σ2
)LI0(s)Lσ2

0
(s)fR(r)dΩddr

=

∫ ∞

−∞
fdesired(s) exp(−t2d)dtd

(4.10)

fdesired(s) in (4.1) can be rewritten as follows

fdesired(s) =

∫ ∞

0

1√
π
LI0+σ2

0
(s)fR(r)drd

=

∫ ∞

0

1√
π
LI0+σ2

0
(s)(2πλ exp(−πλr2))drd

=

∫ ∞

0

1√
π
LI0+σ2

0
(s′) exp(−tr)dtr

(4.11)

Wheres′ =
θ( tr

πλ
)α/2

C exp(
√
2σtd+µ)

, td = lnΩd−µ√
2σ

.

Using Laguerre polynomials can be used to compute fdesired.

4.3 Lower-Bound Analysis of Coverage Prob-

ability

Lemma 2. Suppose the interference channel gains {G̃j} have the same pdf

as that of G0 given in (4.3). The Laplace functional of the interference in

(3.1) is given by

LI0(s) = e
−2πλ

∫

∞

0
EN

[

sℓ̃(r)eσNr

1+sℓ̃(r)eσN

]

dr
, (4.12)

where LZ(s) , E[e−sZ ] is the Laplace functional of random variable Z and

N is the standard normal random variable.
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Proof:

According to the result in [10], LI0(s) has the following identity:

LI0(s) = exp

{

−2πλ

∫

R+

[

1 − LG0

(

sℓ̃(r)
)]

rdr

}

. (4.13)

Whereas the explicit result of LG0(sℓ̃(r)) with the pdf of G0 in (4.3) is carried

out as

LG0

(

sℓ̃(r)
)

=

∫∫

R+

1√
2πσx2

e
−
(

[ 1
x
+sℓ̃(r)]g+

(lnx)2

2σ2

)

dgdx

=
1√
2πσ

∫ ∞

0

1

x(1 + sℓ̃(r)x)
e−

(lnx)2

2σ2 dx.

Then doing the variable change of y = lnx
σ

(i.e. x = eσy) gives rise to

LG0

(

sℓ̃(r)
)

=
1√
2π

∫ ∞

−∞

1

1 + sℓ̃(r)eσy
e−

y2

2 dy

= EN

[

1

1 + sℓ̃(r)eσN

]

.

Substituting the above result into (4.13), we arrive at (4.12). Furthermore,

by Jensen’s inequality LI(s) is lower bounded by

LI0(s) ≥ exp

(

−2πλB

∫ ∞

0

1

1 + e−
σ2

2 /sℓ̃(r)
dr

)

, (4.14)

which indicates much clearly that the shadowing power significantly affects

the magnitude of L0(s). Note that LI0(s) in (4.12) could be significantly

simplified if ℓ̃(r) has an appropriate function of r. The path loss law between

two nodes in the network can be formulated in different ways according to

different environmental situations. For simplicity, in this section we consider

the case that the path loss models of all channels have the same simple

single-slope form, i.e.

ℓ(r) = ℓ̃(r) = Kr−α (4.15)
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in which α > 2 is the path loss exponent and K is a small constant with unit

meterα capable of making the received power smaller than transmit power

as r ≤ 1. With the consistent path loss law in (6.1), the result in Lemma 2

can have a closed form as given in the following Lemma.

Lemma 3. If the path loss law in (6.1) is in use, the Laplace functional of

I in (4.12) is given by

L0I(s) = exp
(

−πλB(sK)
2
αφα

)

, (4.16)

where φα , 2
α

Γ
(

2
α

)

Γ
(

1 − 2
α

)

e2(
σ
α)

2

and Γ(t) ,
∫∞
0

xt−1e−xdx is the standard

Gamma function.

Proof: Since ℓ̃(r) = Kr−α, we rewrite (4.12) as

LI0(s) = e
−2πλBEN

[

∫

∞

0
sKeσN r

rα+sKeσN dr
]

.

and for constant ρ we know

∫ ∞

0

2ρr

rα + ρ
dr =

2ρ
2
α

α
Γ

(

2

α

)

Γ

(

1 − 2

α

)

.

Therefore, it follows that

LI0(s) = e
− 2π

α
Γ( 2

α)Γ(1− 2
α)λB(sK)

2
α EN

[

e
2σN
α

]

.

Also, we know EN [e
2σN
α ] = e2(

σ
α
)2 from the moment generating function

(MGF) of N and thus we can use it to derive (4.16). This completes the

proof. Apparently, Lemma 3 verifies the fact that shadowing significantly

impacts the statistic property of the interference as well, and it is also very

helpful for attaining a near-closed form of the coverage probability, as shown

in the following theorem.
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Theorem 2. Suppose all channel fading power gains are i.i.d. and have the

same pdf given in (4.3) and the path loss of all channels follows the single-

slope power law specified in (6.1). Then the coverage probability in (4.1) can

be shown as follows

p
cov

= EN





∞
∫

0

πλBdw

e

(

θw
α
2

Kγ0e
σN +πλBw(θ

2
α φαe

−2σN
α +1)

)



 . (4.17)

For the interference-limited network case (i.e. γ0 = ∞), p
cov

in (4.17) reduces

to

p
cov

= EN

[

1

1 + θ
2
αφαe

− 2σN
α

]

. (4.18)

Proof: The term EI0 [·] in (4.1) can be rewritten as follows

EI0

[

F c

G0

(

(I0(1) + 1/γ0)θK
−1rα

)]

= EI0







∫ ∞

(I0(1)+1/γ0)θrα/K

∫ ∞

0

e

(

− g
x
− (ln(x))2

2σ2

)

√
2πσx2

dxdg







=

∫ ∞

0

1√
2πσx

e
−
(

(ln(x))2

2σ2 + θrα

Kγ0x

)

EI0

[

e−
θrα

Kx
I0
]

dx

=

∫ ∞

0

1√
2πσx

e
−
(

(ln(x))2

2σ2 + θrα

Kγ0x

)

LI0

(

θrα

Kx

)

dx.

= EN

[

e
−
(

θrα

Kγ0
e−σN

)

LI0

(

θrα

KeσN

)]

= EN

[

e
−
(

θrα

Kγ0
e−σN

)

e−πλBr2φαθ
2
α e−

2σN
α

]

.

Thus, it follows that

p
cov

=

∞
∫∫

0

√
2πλB

2σx
e
−
(

(lnx)2

2σ2 + θw
α
2

Kγ0x
+πwλB

)

LI0

(

θw
α
2

Kx

)

dxdw

= λB

√

π

2σ2

∞
∫∫

0

e
−
(

(lnx)2

2σ2 + θw
α
2

Kγ0x
+πλBw(( θ

x)
2
α φα+1)

)

dx

x
dw.

20



Then (4.17) is obtained by changing the variable x with eσN and we can

have (4.18) by substituting 1/γ0 = 0 into (4.17). There are two important

observations that can be drawn from Theorem 2. First, we notice that p
cov

in (4.18) does not depend on the BS intensity λB for the interference-limited

case, i.e. γ0 = ∞. This phenomenon discloses the fact that deploying more

BSs cannot improve the coverage probability accordingly and large shadowing

power σ2
s significantly reduces the coverage probability with high probability.

Secondly, the upper bound on p
cov

in the interference-limited case is

p
cov

≤ 1

1 + θ
2
α

2
α

Γ
(

2
α

)

Γ
(

1 − 2
α

)
,

which is acquired by applying Jensen’s inequality to the concave function of

e
2σ
α
N and using the MGF of N . This upper bound is exactly equal to the

result in (4.17) for σ = 0 and γ0 = ∞, i.e. the coverage probability without

noise and shadowing. Thus this means that shadowing does not improve p
cov

and could even weaken it significantly.
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Chapter 5

Coverage Probability with

Inconsistent Fading

Impairments

5.1 Successful Transmission Probability in m-

Nakagami Fading Desired Signal Channel

With Rayleigh Fading Interfering Signal

In the previous section, the coverage probability analysis is completed under

the assumption that desired and interference signals all experience the same

channel impairment models, such as fading, shadowing and path loss. How-

ever, in general a user is usually associated with his nearest BS and interfering

BSs are all far away from him very likely. Accordingly, this motivates us the

analysis of the coverage probability with inconsistent fading models. Specifi-

cally, we assume the desired signal channel of a user undergoes Nakagami-m

fading and all interference channels experiences Rayleigh fading.
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The path loss for all interference channels is a dual-slop based model [12]

[13] that is given by

ℓ̃(r) = Kr−α

(

1 +
r

τd

)−β

, (5.1)

where τd is the turning distance and β is called additional attenuation ex-

ponent. The path loss model for the desired signal channel is the regular

single-slop model described in (6.1). In other words, ℓ̃(r) = (1 + r/τd)
−β ℓ(r)

and this inherently makes the interference channels have a larger path loss

compared with the desired signal channel. According to these assumptions

on channel models, the coverage probability can be explicitly reformulated

in the following:

p
cov

=

∫ ∞

0

EĨ0

[

F c
G0

(

rαθ

K

(

Ĩ0(1) +
1

γ0

))]

fR(r)dr, (5.2)

where Ĩ0(0) ,
∑

Xj∈ΦB\X0
G̃j‖Xj‖−α

(

1 +
‖Xj‖
τd

)−β

, {G̃j} are i.i.d. exponen-

tial random variables with unit mean and variance, and now G0 has a Gamma

distribution with unit mean and variance 1/m given by

fG̃(g) = mm gm−1

Γ(m)
exp(−mg). (5.3)

The coverage probability in (5.2) can be simplified as a low-complexity form

as shown in the following theorem.

Theorem 3. If the desired signal channel is under Nakagami-m fading and

the interference channels are in Rayleigh fading. The coverage probability

given in (5.2) is

p
cov

= πλB

m−1
∑

k=0

(−mθ)k

k!

∞
∫

0

L(k)
J0

(

mθw
α
2

)

e−2πλBww
αk
2 dw, (5.4)

where J0 , Ĩ0(1) + 1
γ0
, L(k)

J0
(s) = d

k

dsk
LJ0(s) and LJ0(s) is given by

LJ0(s) = e

(

−2πλB

∫

∞

0
sKr

sK+rα(1+ r
τd

)β
dr− s

γ0

)

. (5.5)
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Proof: The Laplace functional of Ĩ0(1) can be derived by using the result

in (4.12) for σs = 0 and ℓ̃(r) in (5.1). For J0 = Ĩ0(1) + 1
γ0

, the Laplace func-

tional of J0 is LJ0(s) = LĨ0
(s)e

− s
γ0 . The CCDF of G0 with the distribution

(5.3) is

F c
G0

(g) = 1 − Γl(m,mg)

Γ(m)
= e−mg

m−1
∑

k=0

(mg)k

k!
, (5.6)

where Γl(s, t) =
∫ t

0
xs−1e−xdx is the lower incomplete Gamma function. Also

we have the following identity of LĨ0
(s):

L(k)
J0

(s) ,
dkLJ0(s)

dsk
= (−1)kE

[

Jk
0 e

−sJ0
]

,

which generates

EĨ0

[

F c
G0

(

rαθ

K
J0

)]

=

m−1
∑

k=0

(−mrαθ)k

k!
L(k)

J0
(mθrα) .

Substituting the above result into (5.2) gives p
cov

in (5.4).

Theorem 3 assists us to learn that p
cov

monotonically increases along m

since larger m gives rise to less fading impact on the desired signal. Moreover,

for the case of γ0 = ∞ m = 1 (the interference-limited and Rayleigh fading

case) p
cov

in (5.4) lower bounded by

p
cov

≥ 1

1 + 2
α+β

θ
2
α Γ
(

2
α+β

)

Γ
(

1 − 2
α+β

) , (5.7)

which shows that the coverage probability is able to considerably augment

under the dual-slop path loss law for the interference channels. Numerical

results in Section 7.1 will illustrate the observations here.
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Chapter 6

Coverage Probability with

Inconsistent Fading

Impairments and Shadowing

In the previous section, the coverage probability analysis is completed under

the assumption that desired and interference signals all experience the same

channel impairment models, such as fading, shadowing and path loss. How-

ever, in general a user is usually associated with his nearest BS and interfering

BSs are all far away from him very likely. Accordingly, this motivates us the

analysis of the coverage probability with inconsistent fading models. Specifi-

cally, we assume the desired signal channel of a user undergoes Nakagami-m

fading with log-normal shadowing and all interference channels experiences

Rayleigh fading with log-normal shadowing.
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6.1 Path-loss

Note that LI0(s) in (4.12) could be significantly simplified if ℓ̃(r) has an ap-

propriate function of r. The path loss law between two nodes in the network

can be formulated in different ways according to different environmental sit-

uations. For simplicity, in this section we consider the case that the path loss

models of all channels have the same simple single-slope form, i.e. [12] [13]

ℓ(r) = ℓ̃(r) = Kr−α (6.1)

in which α > 2 is the path loss exponent and K is a small constant with unit

meterα capable of making the received power smaller than transmit power

as r ≤ 1.

6.1.1 Log-normal shadowing and m-Nakagami fading

For the interferers is farer than the serving base station, the environment

channel for interference can be modeled by the composite of log-normal shad-

owed fading and Rayleigh fading channel. The pdf of the received interference

is given by a log-normal distribution superimposed on a Rayleigh distributed

random variable,

fG0(g) =

∫ ∞

0

1√
2πσΩ2

exp(− g

Ω
− (ln Ω − µ)2

2σ2
)dΩ (6.2)

where σ is the shadowing standard derivation of channel and Ω is the log-

normal shadowing random variable. For the desired signal’s channel, we

use the composite of log-normal shadowed fading and m-Nakagami fading

channel to model it. The pdf of the received interference is given by a log-

normal distribution superimposed on a Rayleigh distributed random variable,

fG0(g) =

∫ ∞

0

1√
2πσΩ2

mm gm−1

Γ(m)
exp(−mg

Ω
− (ln Ω − µ)2

2σ2
)dΩ (6.3)
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where σ is the shadowing standard derivation of channel and Ω is the log-

normal shadowing random variable.

The CCDF of the received power is [14]

FG0(g) =

∫ ∞

0

1√
2πσΩ2

m−1
∑

k=0

(mg)k

k!
exp(−mg

Ω
− (ln Ω − µ)2

2σ2
)dΩ (6.4)

Theorem 4. Suppose all channel fading power gains are i.i.d. and have the

same pdf and the path loss of all channels follows the single-slope power law

specified . Then the coverage probability can be shown as follows,

ps =

∫ ∞

−∞
fdesired(s) exp(−t2d)dtd (6.5)

Where s = θrα

CΩd

L(k)
I (s) = d

kLI(s)
dsk

= (−1)kE[Ike−sI ]

and fdesired(s) =
∫∞
0

1√
π
LI+σ2

0
(s)fR(r)dr

Proof.

p
cov

=

∫ ∞

0

EI [F
c
G0

(

(I + 1/γ0)θ

ℓ(r)

)

]fR(r)dr

=

∫ ∞

0

∫ ∞

0

1

Ωd

√
2πσ

EI [F
c
G0|Ωd

(

(I + 1
γ0

)θ

ℓ(r)

)

] exp(− ln Ωd − µ

2σ2
)fR(r)drdΩd

=

∫ ∞

0

∫ ∞

0

1

Ωd

√
2π

exp(− ln Ωd − µ

2σ2
)

m−1
∑

k=0

L(k)

I+σ2
0

k!
(s)fR(r)dΩddr

=

m−1
∑

k=0

∫ ∞

−∞
fdesired(s) exp(−t2d)dtd

(6.6)

Where s = θrα

CΩd

L(k)
I (s) = d

kLI(s)
dsk

= (−1)kE[Ike−sI ]

and fdesired(s) =
∫∞
0

1
k!
√
π
L(k)

I+σ2
0
(s)fR(r)dr
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We can get Hermit integration form for coverage probability.

fdesired(s) in (4) can be rewritten as follows

fdesired(s) =

∫ ∞

0

1

k!
√
π
L(k)

I0+σ2
0
(s)fR(r)drd

=

∫ ∞

0

1

k!
√
π
L(k)

I0+σ2
0
(s)(2πλ exp(−πλr2))drd

=

∫ ∞

0

1

k!
√
π
L(k)

I0+σ2
0
(s′) exp(−tr)dtr

(6.7)

Wheres′ =
θ( tr

πλ
)α/2

C exp(
√
2σtd+µ)

, td = lnΩd−µ√
2σ

.

Using Laguerre polynomials can be used to compute fdesired.
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Chapter 7

Numerical and Simulation

Result

7.1 Simulation Results

To verify the accuracy and correction of the analytical results in the previ-

ous sections, simulation results of the coverage probability are provided in

this section. The simulation setup is first specified in Section 7.1.1 and the

numerical results are presented in Section 7.1.2.

7.1.1 Simulation setup

(i) According to [15], we can define a simulation area that has a center

at the origin and radius 1/
√
ǫ to approximate an infinitely large area

so that the mean interference in the simulation area (outside radius 1)

should match the theoretical mean in an infinite network up to a factor

1 − ǫ. In the following simulation, ǫ = 0.01 is used.

(ii) The number of base stations in this simulation area is generated by a
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Poisson distribution with intensity λB = 0.4λu, and λu = 370 users/km2

is the intensity of users.

(iii) The reference user is located at origin and he is associated with the

nearest base station from the origin in the simulation area. Other base

stations in the simulation area except the associated base station are

generating interference to the reference user.

(iv) By referring to [16], the network parameters for simulation here are

listed in the following: γ0 = P
σ2
0

= 140.7dB, C = 8.7 × 10−4m−α, µ =

−ln(10)σ2/20, σ = 8dB, the intensity of user is 370/km2

7.1.2 Numerical Results and Discussions

The numerical results in Fig. 7.1 show the coverage probability versus the

base station density in three different fading environments. The three combi-

nations of the fading models for the desired and interference channels are: (1)

Nakagami-2 fading in the desired channel and Rayleigh fading in the inter-

ference channels; (2) Rayleigh fading in all channels (3) Rayleigh fading and

log-normal shadowing in the desired channel and Rayleigh fading in the inter-

ference channels. As can be seen, the analytical results perfectly match with

the simulated results, which indicates our analysis is correct and accurate.

The coverage probability initially increases along the base station intensity

and then gradually becomes constant in the large intensity regime. This phe-

nomenon has been point out in the previous analysis, that is, deploying many

base stations in a given area is not an effective method to improve the cov-

erage probability. Also, we can observe the fact that shadowing indeed plays

a pivotal role that weakens the coverage probability. However, shadowing

effects are neglected in most of prior work on the stochastic-geometry-based
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Figure 7.1: Coverage probability versus the number of the base stations per

user. All the solid lines represent the analytical results and all the lines with

circles stand for the simulation results: The red lines are for the case of all

channels with Rayleigh fading. The back lines are for the case of the desired

channel with Nakgami-2 fading and the dual-slope path loss law and the

interference channels with Rayleigh fading. Whereas the blue lines are for

the case of all channels with Rayleigh fading and log-normal shadowing.

analysis in cellular network.

Fig. 7.2 presents the numerical results for the coverage probability versus

the SINR threshold in the three different fading environments, as the same

combinations used in Fig. 7.1. In this figure, we also verify the accuracy of
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Figure 7.2: Coverage probability versus SINR threshold. All colorful lines

have the same representative meaning as those in Fig. 7.1.

our previous analysis again, and we also can see that shadowing significantly

impacts on the coverage performance especially when the SINR thresholds

are small. Hence, showing effects should not be neglected in the cellular

networks under the stochastic geometry framework.
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Chapter 8

Conclusion

In this paper, first we investigate how the desired channel and interference

channels impact the coverage performance when they experience inconsistent

fading and shadowing in a Poisson small cell network. A very neat formula of

the coverage probability with Rayleigh fading and log-normal shadowing is

found and it intuitively shows the severe impact of shadowing on the coverage

performance of a user. We also show that coverage performance cannot

be improved in a dense (interference-limited) network. A low-complexity

expression of the coverage probability is found for the case that all channels

follow the dual-slop path loss law, the desired signal channel has Nakagami-m

fading and Rayleigh fading exists in all interference channels. This expression

reflects a more practical coverage performance in a cellular network. Finally,

some simulation results are provided to support the correctness and accuracy

of our analysis.
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