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Abstract

Coverage analysis of a small cell network is very crucial since small cell de-
ployment will dominates the topology of a-cellular in the future. The majority
of prior work on the coverage probability is studied based on a simple and
consistent Rayleigh fading models in a Poisson-distributed cellular network
in order to avoid analytical-intractability. In this paper, we study the cov-
erage probability problem in a Poisson small cell network with much more
general channel impairments, First a neat expression of the coverage prob-
ability with compose Rayleigh fading and log-normal shadowing is derived
and it discloses two important facts — the coverage performance is not im-
proved by deploying more base stations and it is significantly weakened by
shadowing. Then we find the coverage prebability with low complexity for
the case that a dual-slop path loss is used, the desired signal experiences
Nakagami-m fading and interference signals undergo Rayleigh fading. It is

able to more practically reflect the coverage performance of a user.
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Chapter 1

Introduction

Small cells are viewed as one of the key technologies to the success of the next
generation cellular networks since they.aim at boosting network capacity
and saving energy. They are essentially defined as the low-powered radio
access nodes operating in licensed or unlicensed bands, which are also called
femtocells, picocells and microeells-in different environments [1].

Small cells are viewed as one of the key technologies to the success of
the next generation wireless systems, So the perfermance analysis of small
cell becomes extensive discussions.. For system operator aspect, they want to
make performance analysis to determine the number of small cells within an
area to optimize the trade-off among system throughput, coverage, energy
consumption and deployment cost. For cellular phone company aspect, they
analyze performance of small cell to have a knowledge that What data rates
can be transmitted to their cellular phones and Which services can be de-
livered and leverage this insightful information in designing applications for
smart phone.

One thing that influences the performance of small cell most is the elec-

tromagnetic propagation in the wireless environment. When we focus on the



Figure 1.1: Small Cell-System

downlink, basestation(BS) to mobile case, em energy radiated from the BS
of a given cell, it-encounters alots of obstacles, not just like trees, buildings,
but the particles in the air. Then it reflected, diffracted. and scattered by
these various obstacles. So.the signals received in‘the receiver’s antenna will
probably change drastically. We willintroduce a propagation model to model
these environment. [2]

What’s more, as the increasing numbers of small cells are built, the inter-
ference received in mobile will increase too. So we should attach importance

to the interference analysis of small cells.

1.1 Problem and Solution

One thing that influences the performance of small cell most is the electro-

magnetic propagation in the wireless environment. When we focus on the



downlink, base station(BS) to mobile case, em energy radiated from the BS
of a given cell, it encounters a lots of obstacles, not just like trees, buildings,
but the particles in the air. Then it reflected, diffracted and scattered by
these various obstacles. So the signals received in the receiver’s antenna will
probably change drastically. We will introduce a propagation model to model
these environment. [2]

What’s more, as the increasing numbers of small cells are built, the inter-
ference received in mobile will increase too. So we should attach importance
to the interference analysis of small cells.

However, there exist lots of problems in tractably analyzing the perfor-
mance of a small cell network because the radio propagation model of signals
and the spatial distribution-model of base stations (BSs) jointly make the
analysis with high complexity. In order to-make the analysis much more
tractable, mostrof the existing work usually uses a fairly simple channel
model to charaeterize some channel impairments such as path loss and fad-
ing. Shadowing isintentionally©verlooked due to-the intractability it induces
in mathematical analysis.

Using oversimplified channel.models is themain drawback in the previous
work on PPP-based cellular networks. Therefore the accuracy of the previous
results of the coverage probability or outage probability is doubtable. In this
paper, we consider a more general channel impairment model that includes
small-scale fading, shadowing, single-slop path loss and/or dual-slop path
loss. In particular, first we consider a Poisson-distributed small cell network
with Rayleigh fading and log-normal shadowing. The coverage probability
is obtained in a near closed form and it is severely reduced by shadowing.
This observation certainly contradicts the opinion in some previous work

that shadowing has a modest impact on the system performance. We also



show that the coverage probability can be largely improved only when the
network is not interference-limited. Then we study the coverage probability
with a dual-slop path loss, Nakagami-m fading in the desired signal channel
and Rayleigh fading in the interference channels. A low-complexity expres-
sion of the coverage probability is derived, which provides a more realistic
result for the coverage probability and thus the coverage probability with
simple Rayleigh fading and path loss obtained in the previous work could be

seriously underestimated.

1.2 Thesis Outline

The research in this thesis-develop several channel modeling techniques to
evaluate the performance of small cell system using stochastic geometry -
log-normal shadewed rayleigh fading channel, nakagami fading channel, log-
normal shadowed-nakagami fading channel. We organize the remaining chap-
ters of this dissertation as follows. Chapter 2 introduces the background of
smal cell systems, 3GPP. sectused in this paper and point process theory in
stochastic geometry. Chapter3.develops a system model for small cell system.
Chapter 4 introduce the previous framework and result. Chapter 5, chapter
6 demonstrate a framework to analysis the performance of the proposed sys-
tem model. Chapter 7 shows the analysis result and set up a simulator to

verify the analysis result. Chapter 8 is the conclusion.



Chapter 2

Background

In this chapter, we firstly survey related works to performance analysis of
small cells. Then, the core-method, “stochasticrgeometry,”. for analyse the
coverage probability is introduced in depth. At last; we will demonstrate the

propagation model.

2.1 Literature Survey

The coverage probability of a cellular network is an important index of the
system performance, which is ‘defined as the probability that the singal-to-
interference plus noise (SINR) of a user in a cell is higher than some predes-
ignated threshold. Prior work pertaining to the coverage probability analysis
in a wireless network focuses on the analysis of outage probability or success
probability. For instance, reference [3] provides an overview of how a Poisson
point process (PPP) is successfully applied to do the tractable analysis of the
outage probability under some random access protocols. In [4] a PPP-based
cellular network is proposed to characterize a more realistic distribution of

BSs in the network. The authors claim to acquire some tractable results of



the coverage probability and achievable rate of a user by using a simple path
loss and Rayleigh fading models. However, they only obtain the “worse-case”
results that would detach far away from the reality. Reference [5] found the
average rate of downlink heterogeneous cellular networks with a general fad-
ing assumption. It lacks of the analysis of the coverage probability and no

shadowing is in its model.

2.2 Point Process Theory in Stochastic Ge-
ometry

Stochastic geometty is & mathematical tool that analyses the characterization
of the interference: Also, instead of obtaining the results that are only valid
for a deterministic network (hexagon modeled network), itzallows averaging
of the performance, in other words, general results, over likely network real-
izations. What’s.more, the spatial model in wireless networks is emphasized

by stochastic geometry.

2.2.1 The Poisson Point Process

In this paper, we use the homogeneous poisson point process as a reference
model for the distribution of base stations in the wireless network.

A point process ¢ = x1, T, ...7;, ... is point measures mapping on a locally
finite space A. The z; is random variables. Most often, the dimension of the
space A is larger than 1. In this paper, we use the dimension d = 2, that is
the space A is the euclidean space R2. We define the intensity measure A of
® as A(B) = E®(B). ®(A;) means the counting measure of ® (] Borel B.For
a stationary PPP of intensity \,A(B) = \|B|.



Poisson point processes: A point processes @ is Poisson on A if

e The random variables ®(A;) are independent and A; € a are non-

overlapping areas.

e The random variables ®(A;) are Poisson, satisfying

QR

n!

P[®(A;) = n] = exp(—A|4]) (2.1)

where | .| the Lebesque-measure(area), and A is the density of the

homogeneous PPP:.

For convenience, we use palm.probability P? which means it always has
a point at the origin. Later.-we will use Campbell’s theorem for PPPs.
Campbell’s theorem: Let f be non-negative function: Then

E > D) E LT (i) (2.2)

xed.
2.2.2 Path Loss Law Concern of Interference

We assume that the path'loss is.g(r) = r~%,hg isthe power fading coefficient.
Interference received at origin can be written:

S (23)

zed
Since Eh, = 1,
E)=E) ra (2.4)

red*

Where &* = ||z1]|, ||x2||, ... Using Campbell’s theorem, we find that if o <
2,there is too much interference from the nodes and will be infinite. So, if we
want to apply stochastic geometry to analysis of propagation model of small

cell, we should assume that o > 2.
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2.3 Propagation Model

Here, we considers on the downlink, base station to user case. The power
emitted from the Base station will-often encounter a lot of obstacles, such
as buildings, treeés, animals, etc., The radio-will be reflected, diffracted and
scattered by these obstacles. What’s more, the received power varies as the
distance between transmitter. and.receiver.changes. One finds several effects
appearing: path-loss, shadowing ‘and fading.

Composite these three phenomena together, the received signal can be

modeled and given by the following equation.
P, = G{(d)Pr (2.5)

Where P, is the received power, G is is used to characterize the fading and/or
shadowing effect of the desired signal channel and the path loss law of the
desired signal channel is described by £(d)



2.3.1 Path Loss

Path loss is a large-scale fading, varying as they do at relatively long dis-
tances caused by complicated interactions of three large-scale propagation
mechanisms: free space loss, reflection, and diffraction [6]. We define area-
mean power as the average signal power in the area where the receiver is.And

it can be estimated through path loss prediction model.

2.3.2 Shadowing

Shadowing is a large-scale fading, varying as they do at relatively long dis-
tances caused by diffraction and scattering when em encounters buildings,
terrain, and trees. The shadow loss represents the actual local-mean power
received, statistically fluctuating about the area-mean power. We use a log-

normal distribution to characterize the changing of local mean power.

2.3.3 Multipath Fading

Multipath fading is'a small-scale fading. At much smaller distances, there is
a large variation of the sigmals:.'The received signal is usually a summation
of multiple reflected waves from different path. Because of the different
phase of each reflected waves, the signal will be distorted. There is several
distribution to model the statistic of the multipath fading: Rayleigh fading,
Rician fading, m-Nakagami fading, etc. In this paper, we use m-Nakagami
fading, take the advantages of that The Nakagami pdf bdcomes the Rayleigh
density function when m is equal to unity and the Nakagami distribution

matches some empirical data better than other models.



Chapter 3

System Models

We consider an infinitely large small cell network in which all base stations
are assumed to.be independently and randomly scattered by following a
homogeneous PPP @5 of intensity Az on the plane R?; and they all use the
same transmit power P. FEach user-in the network is associated with his
nearest BS. Without loss of generalify, our analysis in this paper is based on
the reference user located at the origin, as.shown in Fig. 3.1, All transmitted
signals in the downlink suffer from the following channel impairments — path
loss, (small-scale) Rayleigh fading.and/or. (large-scale) shadowing. [7]

Let Xy and {X, j € N} denote the serving BS and interfering BSs of the
reference user, respectively. Then the interference received by the reference
user is expressed as

L(P)2P Y GUIX), (3.1)

X;€@5\Xo
where ij’s stand for the ii.d. interference channel (power) gain due to
fading and/or shadowing from BS X to the reference user, || X;|| denotes the
Euclidean distance between BS X; and the origin, and £(||X;||) represents

the path loss law of the interference channel between node X; and the origin.

10



Figure 3.1: A schematic representation of a PPP-based small cell network

with Voronoi tessellation. The reference user is located at the origin.

With the interference given in (3.1), the signal-to-interference plus noise ratio

(SINR) of the reference user is given by

Gol(R)
10(1) —+ 0'(2)/P’

where Gy is used to characterize the fading and/or shadowing effect of the

SINRy = (3.2)

desired signal channel from BS X to the reference user, o2 is the ambient

noise power, and the path loss law of the desired signal channel is described

11



by ¢(R) in which R denotes the distance from BS X to the reference user, i.e.
R = || Xo||- Since Xy is the nearest BS of the reference user, the probability
density function (pdf) of distance R is

fr(r) = 2mrApe ™2,

which can be obtained by differentiating P[R < r] = 1 — exp(—7r?Ap) with

respect to r [8].

For successful decoding, the received SINR of each user should be higher

12



Chapter 4

Coverage Probability with
Rayleigh. Fading and
Log-Normal Shadowing

In order to analyze the coverage probability in (3.3), first the statistic prop-
erty of the interference Io(P) needs to be characterized since (3.3) can be

. . A
rewritten with vy = % as
0

_ (Jo(1) +1/7)
Pcov = P [GO 2 W@}

_ /0 “Ei, { Fe, (UO(Ug(t)l/%)@)} o "

where fz(-) and Fg(-) denote the pdf and complementary cumulative dis-

tribution function (CCDF) of random variable Z, respectively. Thus, the
distributions of random variables Iy and G| are needed to simplify the result

in (4.1) to a much neat form.

13



4.1 Channel Environment

4.1.1 Path-loss

Note that £,(s) in (4.12) could be significantly simplified if £(r) has an ap-
propriate function of r. The path loss law between two nodes in the network
can be formulated in different ways according to different environmental sit-
uations. For simplicity, in this section we consider the case that the path

loss models of all channels have the same simple single-slope form, i.e.
Ury = 0(r) = Kr™® (4.2)

in which a > 2 is the path loss.exponent and K is a small constant with unit
meter® capable of making the-received power smaller than transmit power

asr < 1.

4.1.2 Log-normal shadowing and Rayleigh fading

For the interference, the channel environment is To characterize both log-
normal shadowing and Rayleigh fading effects on'pgoys the following compos-

ite shadowing-fading pdf of Gy obtained from [9] is adopted:

fa,(9) = /Ojo ﬁ exp (—g - W) dz, (4.3)

where o2 is the variance of the log-normal shadowing. The closed-form distri-
bution function of I is impossibly obtained. However, its Laplace functional
is useful to further simplify p.o, in (4.1), which is given in the following

theorem.

14



4.2 Performance Analysis

4.2.1 Laplace Transform of Interference

Lemma 1. Suppose the interference channel gains {é]} have the same pdf
as that of Gy given in (4.3). The Laplace functional of the interference in
(3.1) is given by

_ sKr2—o _ 2.9 2. QsK —oN
EIO(S) —e 2TAEN [ 521 (L,1-552— 55— )]e (44)

Y

where Lz(s) = Ele™*%] is tle Laplace functional.of random variable Z and

N s the standard normal random variable.

The lemma above is a form-of Gaussian quadrature. In numerical analysis,
We can use Gauss-Hermite quadrature to-approximate the value of integrals

of this.
Proof. According to the result in [10], £y, (s) has the following identity:

Lyy(s) & Eglexp(=slo)]

= Ege g, (exp(—s Z grg(r))> (4.5)

reEQ*

:Eqb*

H E,, [exp(—SgrE(T))]]

reg*

Where ¢* = ||z1||, ||x2]|, ... is the PPP ¢ of the distances.

Using Probability generating functional, we can get that,

£1(5) = exp(~2n1 [ (1= Eg,exp(—st(r)) )
R (4.6)
—exp(=2mA [ ([ (1 = expl=sgln)lrdo) foy (0)dg

15



Using hypergeometry function, (4.6) can be described as,

[e.e]

£1{5} = exp(—2mA / 1 - oxp(—sgl(r))lrdr / " fen(9)dg)

R
2r\ [ (InQ — p)?, ser*=«
o _ 4.7
exp( \/%0/0 exp( 5 )a—2 (4.7)
A1 - 22— 2 Baq)
a a7
By changing the variables m(\%)o_“ = t;, that is Q = exp(v/20t; + p1) we have
2\ [

Lin{o = exp(=22 of | foer{t1) exp(—15)39) (1)

where finter(tr) = T SRGRU, [(1, 1 - 279 2o oBEtitue),

a—2 a’ a’ ro

4.2.2 Coverage Probability

Theorem 1. Suppose all channel fading power gains are i.1.d. and have the
same pdf and the path loss of all channels follows the single-slope power law

specified . Then the_coverageprobability can be shown as follows

Pcov = / fdesired(s) eXp(_t?l) dtd (49)

_ Or
Where, s = oIty

fdesired(s) = fooo %‘Cfo-i-ag (S)fR(T) drd;
Lyz(s) = exp(—f—g) and Lg,(s) = exp(—sly(1))

16



Proof. The term Ej, in (4.1) can be rewritten as follows

I (CUESTEs)

o poo g . (Io(1) + =)0 In Qd
:/ / mEl[FGomd <T)16Xp(— )fR( )drd€2
thd

:/ / Qd\/ﬁg exp(— 252 )Efo( )L ag(s)fR(”f’)dedr
:/_ fdesired(s) eXp(—td)dtd

(4.10)

faesirea(s) in (4.1) can be rewritten as follows

FresieateiNs Om} v (5 )Ry
-/ \}_ﬁlﬁ_a()(27r)\exp(—7r)\7’2))drd (4.11)
< ! £Io+cro( /) exp(=t,)dt,

o VT

(tT )a/2 InQg=p
Coxp(V2atatn)’ &= 2o

Using Laguerre pelynomials can be used:to-compute ficsied- O

Wheres’ =

4.3 Lower-Bound Analysis of Coverage Prob-
ability

Lemma 2. Suppose the interference channel gains {é]} have the same pdf
as that of Gy given in (4.3). The Laplace functional of the interference in
(3.1) is given by

) SZ(T)EUN dr
'CIO(S) —e fO N|:1+sl(r)eUN:| 7 (412)

where Lz(s) = E[e™*?] is the Laplace functional of random variable Z and

N is the standard normal random variable.

17



Proof:
According to the result in [10], £,(s) has the following identity:

L1,(5) = exp {—QM /R + [1 ~ Le, (sé(r))} rdr} . (4.13)

Whereas the explicit result of L¢, (s0(r')) with the pdf of Gy in (4.3) is carried

out as

\V2mox?

~ 1 (1 S~7" (lnac)2
Lg, <5£(T)) = // e ([x+ AT )dgdx
Ry

]_ /OO 1 _(n 12)2 d
B = e 20 xZ.
v2ro Jo x(1+ sl(r)z)

Then doing the variable change-of y = 1‘179” (i.e. & = e%Y) gives rise to

~ 1 i 1
-t <8€(T)> - E /_oo 1 Sg(r)e"ye

1
By ||,
1+ sl(r)e™
Substituting the @bove result into (4.13); we arrive at (4.12). Furthermore,

by Jensen’s inequality L£;(s) is lower bounded by

L1,(s) > exp —27r)\B/ 012 —dr |, (4.14)
0 “T4e = /sl(r)

which indicates much clearly that the shadowing power significantly affects

the magnitude of Ly(s). Note that L;,(s) in (4.12) could be significantly
simplified if !7(7") has an appropriate function of r. The path loss law between
two nodes in the network can be formulated in different ways according to
different environmental situations. For simplicity, in this section we consider
the case that the path loss models of all channels have the same simple
single-slope form, i.e.

0r)y=10(r) = Kr—® (4.15)

18



in which a > 2 is the path loss exponent and K is a small constant with unit
meter® capable of making the received power smaller than transmit power
as r < 1. With the consistent path loss law in (6.1), the result in Lemma 2

can have a closed form as given in the following Lemma.

Lemma 3. If the path loss law in (6.1) is in use, the Laplace functional of
I in (4.12) is given by

L,1(s) = exp (—WAB(SK)%%) , (4.16)

o \2 109 .
where ¢o, = 2T (2) T (1 = 2) eX2)" and I{t) = [ a' e "du is the standard

Gamma function.

Proof: Since /(#) = K7~ we rewrite (4.12) as

oo sKeN

Lr,(s) = e_QMBEN[ 0 TotsKerN dr].

and for constant p we know

N\ 204 72 2
/ i WA r(—)r(1——>.
0 T+ p « « «

Therefore, it follows that

EIO(S) = 6_%F(%)F(1_%))\B(8K)%EN [eT].

Also, we know EN[e%] — €22 from the moment generating function

(MGF) of N and thus we can use it to derive (4.16). This completes the
proof. Apparently, Lemma 3 verifies the fact that shadowing significantly
impacts the statistic property of the interference as well, and it is also very
helpful for attaining a near-closed form of the coverage probability, as shown

in the following theorem.

19



Theorem 2. Suppose all channel fading power gains are i.i.d. and have the
same pdf given in (4.3) and the path loss of all channels follows the single-
slope power law specified in (6.1). Then the coverage probability in (4.1) can

be shown as follows

[e.9]

TAgdw
Pecov = EN / ol 2o . (417)
0 e(KW(UJJe"NM’\Bw(Ga%e : +1))

For the interference-limited network case (i.e. g = 00), Peoy in (4.17) reduces

to

1
pcoV:E |:1+9 ¢ _%N:| : (418>

Proof: The termnE; -] in (4.1) can be rewritten as follows

Ergl B, ((Io(D1/10)0K"1")]

_g_ (n(@)®
E /oo 7 Lzaz)dd
=1y — . dadg
\ (Io(1)+1/70)0r>/K J0 2mox?

<1n<z>>2 ore )
+ P _ or
/ T 2.2 "TKy ]EIO [6 Kz Ioi| dx

2ﬁax

<1n<z>> (n)? | ore ) Ore
REaNT L —— ) dz.
/ WDy < (Ka:) v
(97" 7<7N
:EN{ e 510( N)]
60’
20N

or® —oN _

Thus, it follows that

Peor = / V2mhy ~(4F +%+’T”AB)£IO @?) dzdw

20

2
(lnac) 9w7 Y]
= Ap —7T e \ 27 +K”°””+m\3w((5> %H)—dxdw
202
0

20




Then (4.17) is obtained by changing the variable z with e’" and we can
have (4.18) by substituting 1/vy = 0 into (4.17). There are two important
observations that can be drawn from Theorem 2. First, we notice that peoy
in (4.18) does not depend on the BS intensity Ap for the interference-limited
case, i.e. 79 = oo. This phenomenon discloses the fact that deploying more
BSs cannot improve the coverage probability accordingly and large shadowing
power o2 significantly reduces the coverage probability with high probability.
Secondly, the upper bound on p.., in the interference-limited case is

l
FF 02T () T

pCOV S

which is acquired by applying Jensen’s inequality to the concave function of
e« and using the MGF of N. This upper bound is exactly equal to the
result in (4.17) for o = 0 and 4y = o0, i.e. the coverage probability without
noise and shadowing. Thus this means that shadowing does not improve peoy

and could even weaken it significantly.
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Chapter 5

Coverage Probability with
Inconsistent Fading

Impairments

5.1 Successful Transmission Probability in m-
Nakagami Fading Desired Signal Channel
With Rayleigh Fading Interfering Signal

In the previous section, the coverage probability analysis is completed under
the assumption that desired and interference signals all experience the same
channel impairment models, such as fading, shadowing and path loss. How-
ever, in general a user is usually associated with his nearest BS and interfering
BSs are all far away from him very likely. Accordingly, this motivates us the
analysis of the coverage probability with inconsistent fading models. Specifi-
cally, we assume the desired signal channel of a user undergoes Nakagami-m

fading and all interference channels experiences Rayleigh fading.
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The path loss for all interference channels is a dual-slop based model [12]

[13] that is given by

i(r) = Kr—® (1 + 1) _B, (5.1)

Td

where 74 is the turning distance and S is called additional attenuation ex-
ponent. The path loss model for the desired signal channel is the regular
single-slop model described in (6.1). In other words, £(r) = (1+r/75) " £(r)
and this inherently makes the interference channels have a larger path loss
compared with the desired signal channel. According to these assumptions
on channel models, the coverage probability can be explicitly reformulated

in the following:

Peov = /Ooo E;, {FG (% (io(l) + %))] Falr)dr, (5.2)

~ ~ -8 ~
- X ..
where I,(0) £ ) xjem %0 Gill X7 (1 + ”T—;”) . {G,} areii.d. exponen-
tial random variables with unit mean-andwvariance, and now G has a Gamma

distribution with unit mean and variance 1/m given by

{lo) & miLeekp(=amg), (53

The coverage probability in (5:2) can be simplified as a low-complexity form

as shown in the following theorem.

Theorem 3. If the desired signal channel is under Nakagami-m fading and
the interference channels are in Rayleigh fading. The coverage probability

given in (5.2) is

ey A
Peov = TARB /EL(]]Z) (mbw?) e 2™ 5w duw, (5.4)
0

where Jo £ Io(1) + 71(), ES’Z)(S) = i—ZEJO(s) and L, (s) is given by

_ oo sKr _ s
27r)\}3f0 5K+T.a(1+%)ﬁdr 70)

Lj,(s) = e< (5.5)
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Proof: The Laplace functional of Iy(1) can be derived by using the result
in (4.12) for o, = 0 and £(r) in (5.1). For Jo = Io(1) + %, the Laplace func-
tional of Jy is Lj,(s) = £I~O(s)e_%. The CCDF of Gy with the distribution
(5.3) is

Lum,mg) = (mg)
F7 =1- =e ™ E .
Go (g) F(m) € e k! ) (5 6)
where T'y(s, ) fo le=*dz is the lower incomplete Gamma function. Also

we have the following identity of L7 (s):

de N e
Ef,lz)(s) A d;k( ) = (-1)'E [Jk Jo]

which generates

/ a@ - 1 (—mr 9 Y
Ez, {FGO ( )] Z EL(]]Z) (mOr?) .

Substituting the above result into (5:2) gives poy in (5.4).

Theorem 3 assists us to learn that p.,, monotonically increases along m
since larger m givesrise to less fading impact on the desired signal. Moreover,
for the case of vy = 00 m'= 1 (the interference-limited and Rayleigh fading

case) Peoy in (5.4) lower ‘bounded by
1

pCOV -_ )
2
a+59 oI <a+ﬁ) I (1 - a+ﬁ>

which shows that the coverage probability is able to considerably augment

(5.7)

under the dual-slop path loss law for the interference channels. Numerical

results in Section 7.1 will illustrate the observations here.
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Chapter 6

Coverage Probability with
Inconsistent Fading

Impairments and Shadowing

In the previous section, the coverage probability analysis is.completed under
the assumption that desired and interference signals all'experience the same
channel impairment models, such as fading, shadewing and path loss. How-
ever, in general a user is usually associated with his nearest BS and interfering
BSs are all far away from him very likely. Accordingly, this motivates us the
analysis of the coverage probability with inconsistent fading models. Specifi-
cally, we assume the desired signal channel of a user undergoes Nakagami-m
fading with log-normal shadowing and all interference channels experiences

Rayleigh fading with log-normal shadowing.
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6.1 Path-loss

Note that £,(s) in (4.12) could be significantly simplified if /(r) has an ap-
propriate function of r. The path loss law between two nodes in the network
can be formulated in different ways according to different environmental sit-
uations. For simplicity, in this section we consider the case that the path loss

models of all channels have the same simple single-slope form, i.e. [12] [13]
0r)=0(r) = Kr— (6.1)

in which a > 2 is the path loss-exponent-and K is a.small constant with unit
meter® capable of making the received power.smaller than transmit power

asr < 1.

6.1.1 Log-normal shadowing and m-Nakagami fading

For the interferers is farer than the serving base station, the environment
channel for interference can be modeled by the composite of log-normal shad-
owed fading and Rayleigh fading channel. The pdf of the received interference
is given by a log-normal distribution superimposed on a Rayleigh distributed

random variable,

o) = | o2 -2 )

where o is the shadowing standard derivation of channel and €2 is the log-
normal shadowing random variable. For the desired signal’s channel, we
use the composite of log-normal shadowed fading and m-Nakagami fading
channel to model it. The pdf of the received interference is given by a log-

normal distribution superimposed on a Rayleigh distributed random variable,

mg (InQ—p)?

m—1
mY

)= /OOO \/2_7:0(227” I'(m)
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where ¢ is the shadowing standard derivation of channel and €2 is the log-
normal shadowing random variable.

The CCDF of the received power is [14]

m—1

(mg)* mg  (InQ— p)?
Fg, (g / mamz T ep(— — o)A (6.4)

k=0

Theorem 4. Suppose all channel fading power gains are i.i.d. and have the
same pdf and the path loss of all channels follows the single-slope power law

specified . Then the coverage probability can be shown as follows,

:/ fdesired(5> eXp(_té)dtd (65)
Where s = ggad
ﬁgk)(s) _ dkdﬁszk(S) > (_l)kE[Ike—sI]

and fdesired(s) - fooo %‘Cl—l—ag (S)fR(’r) dr

Proof.

o = [ Bl (FHeE 1l

R e In s —
:/0 /0 oo iy (W>]exp(— 2 fr(r)drdQy

o oo 1 Q L
:/ / exp(— ”0 r)dQudr
o Jo QqVv21

k:O
m—1 )
= Z/ fdesired(s) eXp(—ti)dtd
k=0 ¥~

(6.6)

0 o«
Where s = oo

ﬁ(k (s) = d* Ezk( s) _ (—l)kE[Ik —sl]

and fdeszred fo kl\/_ [+J )fR( )
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We can get Hermit integration form for coverage probability.

faesirea(s) in (4) can be rewritten as follows

<1
fovsral) = | G ) n(r)ars

I B 2
B A k‘!ﬁﬁfo—kag (S) (Zﬂ')\ eXp(_ﬂ-)\r ))d?“d

o0 1 i
= ﬁ( ) ) / _tr dtr
/0 R/ Do (8 exp(=t)

Wheres’ = _ 0GR —
Cexp(v20tgtp)’ ¢

Using Laguerre polyno
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Chapter 7

Numerical and Simulation

Result

7.1 Simulation Results

To verify the accuracy and correction of the analytical results in the previ-
ous sections, simulation results of the coverage probability are provided in
this section. The simulation setup is first specified in Section 7.1.1 and the

numerical results are presented. in-Section7.1.2.

7.1.1 Simulation setup

(i) According to [15], we can define a simulation area that has a center
at the origin and radius 1/4/€ to approximate an infinitely large area
so that the mean interference in the simulation area (outside radius 1)
should match the theoretical mean in an infinite network up to a factor

1 — €. In the following simulation, e = 0.01 is used.

(ii) The number of base stations in this simulation area is generated by a
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Poisson distribution with intensity Az = 0.4\,, and A\, = 370 users/ km?

is the intensity of users.

(iii) The reference user is located at origin and he is associated with the
nearest base station from the origin in the simulation area. Other base
stations in the simulation area except the associated base station are

generating interference to the reference user.

(iv) By referring to [16], the network parameters for simulation here are
listed in the following: g = & = 140:7dB, C = 8.7 x 107*m™*, y =
0
—In(10)0%/20, o = 8dB, the intensity of user is:370/km?

7.1.2 Numerical Results and-Discussions

The numerical results in Fig. 7.1 show the coverage probability versus the
base station density in three different fading environments. The three combi-
nations of the fading models for the-desired and interference channels are: (1)
Nakagami-2 fading.in the desired channel and Rayleigh fading in the inter-
ference channels; (2) Rayleigh fading in all channels (3) Rayleigh fading and
log-normal shadowing in‘the desired.channel and Rayleigh fading in the inter-
ference channels. As can be seen; the analytical results perfectly match with
the simulated results, which indicates our analysis is correct and accurate.
The coverage probability initially increases along the base station intensity
and then gradually becomes constant in the large intensity regime. This phe-
nomenon has been point out in the previous analysis, that is, deploying many
base stations in a given area is not an effective method to improve the cov-
erage probability. Also, we can observe the fact that shadowing indeed plays
a pivotal role that weakens the coverage probability. However, shadowing

effects are neglected in most of prior work on the stochastic-geometry-based
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Figure 7.1: Coverage probability versus the number/of the base stations per
user. All the solid lines represent the analytical tesults and all the lines with
circles stand for the simulation results:” The red lines are for the case of all
channels with Rayleigh fading. The back lines are for the case of the desired
channel with Nakgami-2 fading and the dual-slope path loss law and the
interference channels with Rayleigh fading. Whereas the blue lines are for

the case of all channels with Rayleigh fading and log-normal shadowing.

analysis in cellular network.
Fig. 7.2 presents the numerical results for the coverage probability versus
the SINR threshold in the three different fading environments, as the same

combinations used in Fig. 7.1. In this figure, we also verify the accuracy of
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Figure 7.2: Coverage probability versus SINR threshold. All colorful lines

have the same representativermeaning as those'in Fig. 7.1.

our previous analysis again, and we also can see that shadowing significantly
impacts on the coverage performance especially when the SINR thresholds
are small. Hence, showing effects should not be neglected in the cellular

networks under the stochastic geometry framework.
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Chapter 8

Conclusion

In this paper, first. we investigate how the desired channel and interference
channels impact the coverage performance when they experience inconsistent
fading and shadowing in a Poisson small cell network: A very neat formula of
the coverage probability with Rayleigh fading and log-normal shadowing is
found and it intuitively shows the severe impact of shadowing on the coverage
performance of a user. We also show that coverage performance cannot
be improved in a dense (interference-limited) network. A low-complexity
expression of the coverage probability is found for the case that all channels
follow the dual-slop path loss law; the desired signal channel has Nakagami-m
fading and Rayleigh fading exists in all interference channels. This expression
reflects a more practical coverage performance in a cellular network. Finally,
some simulation results are provided to support the correctness and accuracy

of our analysis.
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