
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Int. J. Production Economics

Int. J. Production Economics 118 (2009) 253–259
0925-52

doi:10.1

E-m
journal homepage: www.elsevier.com/locate/ijpe
A periodic review replenishment model with a refined
delivery scenario
Chi Chiang

Department of Management Science, National Chiao Tung University, Hsinchu, Taiwan, ROC
a r t i c l e i n f o

Available online 22 August 2008

Keywords:

Inventory

Periodic review

Stochastic model
73/$ - see front matter & 2008 Elsevier B.V. A

016/j.ijpe.2008.08.022

ail address: cchiang@mail.nctu.edu.tw
a b s t r a c t

This paper considers a single-item replenishment problem where every n periods the

buyer plans for the quantity delivered for each upcoming period. Assuming that demand

not filled immediately is backlogged, we suggest that the quantity delivered in the

immediately upcoming period be of any size and the quantity delivered in each of the

subsequent (n�1) periods be equal to or smaller than a fixed quantity Q. We derive the

average cost per n periods and compute the optimal order-up-to level for the proposed

replenishment policy. Next, assuming a fixed cost for reviewing inventory and planning

deliveries, we obtain the optimal n by minimizing the expected cost per period. Finally,

the optimal Q can also be determined. The proposed periodic review policy is easy to

implement.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

One of the most widely used stochastic inventory
models is an order-up-to periodic review policy. Unlike a
continuous review model where the order quantity is
fixed, an order-up-to periodic policy places an order in
every period that will raise inventory to a target level.
Since demand fluctuates period by period, the order
quantity varies too. This may result in costs of adjustment
in practice due to, for example, changes in capacity or
production plans. These costs are incurred by the supplier
but may be charged to the buyer (e.g., Urban, 2000).
However, an ordinary order-up-to policy implicitly as-
sumes that these costs do not exist (or simply ignores
these costs).

It is possible that the order quantity is made (almost)
fixed in periodic review systems. Such a scenario is
attractive and desirable to both the supplier and the
buyer. It simplifies the production, order picking, delivery,
unloading (for the supplier), inspection process, and
inventory record updating procedure (for the buyer).
ll rights reserved.
It avoids any extra costs that might be incurred due to
variations in the order quantity. It also agrees with the JIT
management philosophy. However, since demand is
stochastic in the real world, a certain mechanism is
needed to absorb variations of demand. In general, there
are several ways to achieve this. One is through a standing
order inventory system where provision is made for
procuring extra units in the case of an emergency and
selling off excess inventory. Standing order systems were
first considered by Rosenshine and Obee (1976) and
recently studied in Chiang (2007). Another is through a
two-supplier inventory system (Janssen and de Kok, 1999)
in which while one supplier delivers a fixed quantity in
each period the other ships any quantity needed to raise
inventory to a target level.

In this paper, we propose a third approach to facilitat-
ing the scenario of a (almost) fixed order quantity in
periodic review systems. We suppose that every n periods
the buyer, who employs an order-up-to policy, plans for
the quantity delivered for each upcoming period. Assum-
ing that demand not filled immediately is backlogged, we
suggest that a fixed quantity Q be delivered by the
supplier for each of the upcoming n periods except

perhaps the first several periods. To be more specific, the

www.sciencedirect.com/science/journal/proeco
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2008.08.022
mailto:cchiang@mail.nctu.edu.tw


ARTICLE IN PRESS

C. Chiang / Int. J. Production Economics 118 (2009) 253–259254
immediately upcoming period’s shipment size is adjusted
first, and, if not sufficient, the upcoming second period’s
shipment size is adjusted next, and so on, such that the
quantity shipped in each of the subsequent periods is
exactly Q. Thus, the quantity to be delivered in the
immediately upcoming period is of any size and the
quantity delivered in each of the subsequent (n�1)
periods is equal to or smaller than Q. For example,
suppose that Q ¼ 5 and n ¼ 5. If demand of the previous
5 periods is 28 (resp. 22), the quantity delivered in each of
the upcoming 5 periods is 8 (resp. 2), 5, 5, 5, 5,
respectively. On the other hand, if demand of the previous
5 periods is 17 (resp. 13), the quantity delivered in each of
the upcoming 5 periods is 0, 2 (resp. 0), 5 (resp. 3), 5, 5,
respectively. For a certain n, the optimal order-up-to level
for the delivery scenario described is computed by
minimizing the average n-periods’ cost. Next, assuming
that there is a fixed cost incurred every n periods for
auditing the inventory level as well as planning and
adjusting order quantities, the optimal n can be obtained
by minimizing the average cost per period through a
simple procedure. Finally, the optimal Q can also be
determined. Hence, the proposed replenishment policy is
easy to implement.

Note that Flynn and Garstka (1990) consider a related
but more complex problem where one schedules delivery
quantities for the next n periods that are generally not
equal to one another. Flynn and Garstka (1997) further
extend the analysis to determine the optimal review
period. Chiang (2001) also studies a delivery splitting
periodic model where n shipments are scheduled in future
time points that are evenly separated. However, three
major shortcomings limit the applicability of Chiang’s
model. First, these n shipments are of different sizes.
Second, the costs of adjustment due to changes in the
shipment size are not included. Third, the interval
between delivery epochs may not be an integral multiple
of a basic time unit (e.g., a day). Thus, the suggested model
may not be easily implemented in practice. Other related
periodic review models are investigated in Ehrhardt
(1997) and Urban (2000). The former considers the
problem of selecting a fixed replenishment quantity to
be delivered in each of n consecutive periods in the future,
while the latter describes a multi-period ‘‘recurrent’’
newsvendor problem where changes in the order quantity
result in an additional cost to the buyer.

The rest of this paper is organized as follows. In
Section 2, we propose a periodic review replenishment
model with the delivery scenario described above. In
Section 3, we consider a simplified version of the
proposed policy. Section 4 reports some computational
results. Finally, Section 5 concludes this paper.
2. A periodic review replenishment model

Consider the following replenishment problem: every
n periods (one period is 1 day, for example) the buyer
reviews an item and plans its shipment size for each
upcoming period to raise the inventory position (i.e.,
inventory on hand minus backorders plus inventory on
order) to a target level (i.e., an order-up-to policy is used).
Assume that the demand of each period is independently
and identically distributed. As explained in Section 1, it
benefits the supplier as well as the buyer if a fixed
quantity Q is shipped in each period. Such a situation
occurs only when demand in the previous n periods is
exactly nQ. If demand of the previous n periods is not nQ,
the buyer would like to adjust first the immediately
upcoming period’s shipment size so that the quantity
shipped in each of the subsequent (n�1) periods is exactly
Q; if adjustment to the immediately upcoming period’s
shipment size is not sufficient, the buyer would adjust
next the upcoming second period’s shipment size so that
the quantity shipped in each of the subsequent (n�2)
periods is Q; and so on. Notice that we have implicitly
assumed in the above scenario that the immediately
upcoming period’s shipment size can be adjusted if
requested by the buyer. If it takes a positive lead time
(an integral multiple of the period length) to adjust the
shipment size, our replenishment model can be modified
by appropriately defining Gi(Yjn, Q) introduced below, as
in an ordinary periodic review model (e.g., Porteus, 1990).

For the proposed replenishment policy to be clearer, let
fk( � ) be the probability density function of k periods’
demand, k ¼ 1, y, n, and D the demand during the
previous n periods (its probability density function is thus
fn( � )). If DX(n�1)Q, the quantity delivered for each of the
upcoming n periods is D�(n�1)Q, Q, y, Q, respectively; if
(n�1)Q4DX(n�2)Q, the quantity delivered for each
upcoming period is 0, D�(n�2)Q, Q,y, Q, respectively; if
(n�2)Q4DX(n�3)Q, the quantity delivered for each
upcoming period is 0, 0, D�(n�3)Q, Q,y, Q, respectively;
and so on. Let Qi be the expected quantity shipped in the
upcoming ith period. Then

Q1 ¼

Z 1
ðn�1ÞQ

ðz� ðn� 1ÞQ Þf nðzÞdz, (1)

Qi ¼

Z 1
ðn�iþ1ÞQ

Qf nðzÞdzþ
Z ðn�iþ1ÞQ

ðn�iÞQ
ðz� ðn� iÞQ Þf nðzÞdz

for 2pipn. (2)

The following theorem is immediate from (1).

Theorem 1. Q1 is decreasing in Q.

Letting m be the mean demand of a period, we have the

following result.

Theorem 2. If Qom, then Q14m .

Proof. The expected demand of n periods is nm, i.e.,
E[D] ¼ nm and thus Q1+Q2+?+Qn ¼ nm. Since QipQ for
2pipn, it follows that if Qom, then Q14m .

Let Gi(Yjn, Q) be the average cost of the upcoming ith

period for the proposed delivery scenario given an order-

up-to level YX0 and G(Yjn, Q) the average total n-periods’

cost, i.e.,

GðY jn;Q Þ � G1ðY jn;Q Þ þ G2ðY jn;Q Þ þ � � � þ GnðYjn;Q Þ. (3)

Only inventory holding and shortage costs (which are

charged based on the ending inventory of a period) are

included above. The procurement cost cE[D] (where c is
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the unit cost) for n periods is excluded since it is constant.

Let h and p be the holding and shortage cost per unit per

period, respectively. To derive Gi(Yjn, Q), for ip(n�1), we

consider two cases: YX(n�i)Q and Yo(n�i)Q. In the

former case, Gi(Yjn, Q) is evaluated according to whether

DX(n�i)Q or Do(n�i)Q. In the latter case, Gi(Yjn, Q) is

evaluated according to whether DX(n�i)Q, (n�i)Q4DXY,

or Y4D. It follows that for ip(n�1),

GiðYjn;Q Þ ¼

Z 1
ðn�iÞQ

f nðzÞdz
Z Y�ðn�iÞQ

0
hðY � ðn� iÞQ � xÞ

(

� f iðxÞdxþ
Z 1

Y�ðn�iÞQ
pðx� Y þ ðn� iÞQ Þf iðxÞdx

)

þ

Z ðn�iÞQ

0
f nðzÞ

Z Y�z

0
hðY � z� xÞ

(
f iðxÞdx

þ

Z 1
Y�z

pðx� Y þ zÞf iðxÞdx
�

dz if YXðn� iÞQ ,

(4)

GiðY jn;Q Þ ¼ pðimþ ðn� iÞQ � YÞ

Z 1
ðn�iÞQ

f nðzÞdz

þ

Z ðn�iÞQ

Y
f nðzÞpðimþ z� YÞdzþ

Z Y

0
f nðzÞ

�

Z Y�z

0
hðY�z�xÞ

(
f iðxÞdxþ

Z 1
Y�z

pðx�YþzÞ

� f iðxÞdx
�

dz if Yoðn� iÞQ . (5)

Also,

GnðY jn;Q Þ ¼

Z Y

0
hðY � xÞf nðxÞdxþ

Z 1
Y

pðx� YÞf nðxÞdx.

(6)

Let DGi be the first derivative of the function Gi with

respect to Y. Then, for ip(n�1),

DGiðY jn;Q Þ ¼ �pþ ðhþ pÞ

Z 1
ðn�iÞQ

f nðzÞdz
Z Y�ðn�iÞQ

0
f iðxÞdx

 

þ

Z ðn�iÞQ

0
f nðzÞ

Z Y�z

0
f iðxÞdxÞ

 !
dz

!

if YXðn� iÞQ , (7)

DGiðY jn;Q Þ ¼ �pþ ðhþ pÞ

Z Y

0
f nðzÞ

Z Y�z

0
f iðxÞdx

 !
dz

if Yoðn� iÞQ (8)

and

DGnðY jn;Q Þ ¼ �pþ ðhþ pÞ

Z Y

0
f nðzÞdz. (9)

The following lemma can be verified by examining the

second derivative of Gi(Yjn, Q).

Lemma 3. Gi(Yjn, Q) for each i is convex on Y.

Hence, the optimal order-up-to level, denoted by Y*, can

be obtained by equating DG(Yjn, Q) to zero and solving for

Y. For discrete demand distribution, we find the smallest
value of Y such that DG(Yjn, Q)X0. The minimum

n-periods’ cost is G(Y*jn, Q).

Next, we investigate the issue of how often one should
schedule for deliveries. Let K be the fixed cost for
reviewing the inventory level as well as planning and
adjusting order quantities (particularly the order quantity
of the immediately upcoming period, since it can be of any
size). Part of this cost is incurred by the buyer (for
reviewing inventory); the remaining part that is incurred
by the supplier due to changes in the shipment size is
charged to the buyer (as mentioned in Section 1). It is
assumed that the entire fixed cost K is incurred even if the
quantity to be delivered in each of the upcoming n periods
is exactly Q. The average cost per period, denoted by
AC(Q, n), is given by

ACðQ ;nÞ ¼ ½GðY�jn;Q Þ þ K�=n. (10)

Minimizing AC(Q, n) requires a certain procedure of
determining the optimal n, denoted by n*. Since the
computation shows that AC(Q, n) is quasi-convex (but not
necessarily convex) in n given Q (though we cannot prove
this), we suggest that one simply tabulates AC(Q, n) as a
function of n to obtain n*, as an approximate periodic
review model determines the optimal review period
(Hadley and Whitin, 1963, Section 5-2). Let AC*(Q)�AC(Q,
n*(Q)).

Finally, it may be desirable to determine the optimal Q,
denoted by Q*, such that AC*(Q) is minimized. A simple
method of finding Q* is to enumerate feasible (possibly
integral) values of Q and choose the lowest AC*(Q).

3. A simplified policy

In the above delivery scenario, the quantity shipped
in the immediately upcoming period is of any size and
the quantity shipped in each of the subsequent (n�1)
periods is equal to or smaller than Q. Suppose that
excess inventory in the immediately upcoming period
can be salvaged or returned to the supplier at c per
unit. Then, only the quantity shipped in this period is
variable and the quantity shipped in each of the
subsequent (n�1) periods is exactly Q. This greatly
simplifies the replenishment policy. Referring to the
second paragraph of Section 2, if Do(n�1)Q, the quantity
shipped for each upcoming period is 0, Q, Q,y, Q,
respectively, and the excess units (n�1)Q�D in the
immediately upcoming period are salvaged or returned
to the supplier. If Q ¼ m and these excess units are
regarded as a negative order quantity from the supplier,
then Q1 ¼ Q and thus Q1 ¼ Q2 ¼? ¼ Qn�1 ¼ Qn. For this
simplified policy, Gi(Yjn, Q), for ip(n�1), in expressions (4)
and (5) reduce to

GiðY jn;Q Þ ¼

Z Y�ðn�iÞQ

0
hðY � ðn� iÞQ � xÞf iðxÞdx

þ

Z 1
Y�ðn�iÞQ

pðx� Y þ ðn� iÞQ Þf iðxÞdx

if YXðn� iÞQ , (11)

GiðY jn;Q Þ ¼ pðimþ ðn� iÞQ � YÞ if Yoðn� iÞQ , (12)
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and expression (6) remains unchanged for Gn(Yjn, Q). Also,
DGi(Yjn, Q), for ip(n�1), reduce to

DGiðY jn;Q Þ ¼ �pþ ðhþ pÞ

Z Y�ðn�iÞQ

0
f iðxÞdx

if YXðn� iÞQ , (13)

DGiðY jn;Q Þ ¼ �p if Yoðn� iÞQ . (14)

Let Ys be the optimal order-up-to level for this
simplified model. By comparing (13) to (7) and (14) to
(8), one can easily verify that Ys

XY*.

4. Computational results

To illustrate, consider the base case: m ¼ 4/period,
h ¼ $1, and p ¼ $100. Demand is assumed to follow a
Poisson process. If Q ¼ 4 and n ¼ 5, then Y* ¼ 29 and
G(Y*jn, Q)/n ¼ $11.06. We vary m and Q as well as n and p

in the base case (specifically, m ¼ 2, 4, and 6, Q ¼ m�1, m,
m+1, m+2, and m+3, n ¼ 1, 2, y, 20, and p ¼ $10, $100, and
$1000) and solve 900 problems. It is found that G(Y*jn, Q)/
n is increasing in n. This implies that if K ¼ 0, n* ¼ 1, i.e.,
the proposed model reduces to an ordinary periodic policy
where an order is placed in every period.

Suppose that K is positive in the base case. If K ¼ $100
and Q ¼ 4, n* ¼ 13, Y* ¼ 66, and AC*(Q) ¼ $24.46. Tables
1–3 report AC*(Q) for different values of Q given K and p

(while holding h fixed). Tables 1–3 also report the
percentage savings if the simplified policy in Section 3 is
used (which is obtained by comparing the lowest AC*(Q)
of the proposed model and the simplified policy). As we
see, Q* approaches m and n* becomes larger as p decreases
(other things being equal), i.e., one can afford to plan for
Table 1
AC*(Q) for various values of Q (data: m ¼ 4, p ¼ $1000, and h ¼ $1)

Proposed model

K Q n* Y* AC*(Q)

$0 1 11 $8.29

50 2 5 33 28.27

3 6 38 26.30

4 7 43 24.21

5 8 50 22.83

6 7 47 23.21

7 6 44 24.55

100 2 7 42 36.43

3 9 52 33.26

4 11 63 29.92

5 12 70 27.87

6 10 64 29.29

7 8 56 31.66

200 2 11 61 47.37

3 13 71 42.50

4 18 95 37.07

5 18 100 34.44

6 14 87 37.72

7 12 81 41.39

Note that the lowest AC*(Q) values given K are underlined.
the order quantities for more periods and Q* may equal m
when the unit shortage cost is low. In addition, n*
becomes larger as the fixed cost K increases, which
intuitively makes sense. In Tables 4 and 5, we vary m in
the base case and observe similar results. If the ordinary
order-up-to policy is used, the total one-period cost is K

plus the one-period holding and shortage cost (which
equals, for example, $6.24 in Table 2). Thus, as K is larger,
the proposed model becomes more attractive relative to
the ordinary order-up-to policy.

In general, we observe throughout the computation
that Q*Xm. This is probably because for Qom, Q1 is greater
than m by Theorem 2, implying that the safety stock for
the immediately upcoming period will be larger than that
for the upcoming n periods, which is not reasonable. For
example, in Table 2, if K ¼ $100 and Q ¼ 3, then n* ¼ 10
and Y* ¼ 51; thus, the safety stock for the upcoming 10
periods is equal to 11. But the on-hand inventory after the
first delivery is at least Y*�(n*�1)Q ¼ 24 and thus the
safety stock for the immediately upcoming period is at
least 20, which is apparently too high! Related to this
result is that in Tables 1–5, if Q is very large or small
(relative to m), n* is small, i.e., the inventory system cannot
plan for the order quantities for too many periods; hence,
K is spread over less periods and a large or small Q seems
not optimal.

Note that for a given Q the simplified policy usually
gives a lower one-period cost, as it allows the system to
salvage or return excess units (in the immediately
upcoming period) to the supplier. However, if Q is smaller
than m the simplified policy yields almost the same one-
period cost as the proposed model, since the probability of
salvaging excess units is very low, and if Q is very large the
simplified policy may give a higher one-period cost than
Simplified policy

n* Y* AC*(Q) Savings (%)

1 11 $8.29

5 33 28.27

6 38 26.30

7 43 24.11

9 55 22.12

8 53 21.88 4.16

6 45 23.30

7 42 36.43

9 52 33.26

11 63 29.79

13 75 26.73 4.09

11 71 27.35

9 66 30.10

11 61 47.37

13 71 42.50

18 95 36.93

20 110 32.67 5.14

15 95 35.28

12 87 39.92
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Table 2
AC*(Q) for various values of Q (data: m ¼ 4, p ¼ $100, and h ¼ $1)

Proposed model Simplified policy

K Q n* Y* AC*(Q) n* Y* AC*(Q) Savings (%)

$0 1 9 $6.24 1 9 $6.24

50 2 6 33 24.12 6 33 24.12

3 7 38 21.98 7 38 21.97

4 8 43 19.77 8 43 19.65

5 9 51 18.83 10 56 18.05 4.14

6 7 43 19.93 8 50 18.89

7 6 40 21.46 6 43 20.80

100 2 8 41 31.38 8 41 31.38

3 10 51 28.00 10 51 28.00

4 13 66 24.46 13 66 24.32

5 14 75 23.32 15 80 22.18 4.89

6 10 60 25.58 11 68 24.32

7 9 58 28.01 9 63 27.63

200 2 12 59 41.31 12 59 41.31

3 15 73 36.14 15 73 36.14

4 20 97 30.43 20 97 30.27

5 19 100 29.36 21 110 27.70 5.65

6 15 88 33.46 15 91 32.19

7 13 82 36.96 12 84 37.31

Note that the lowest AC*(Q) values given K are underlined.

Table 3
AC*(Q) for various values of Q (data: m ¼ 4, p ¼ $10, and h ¼ $1)

Proposed model Simplified policy

K Q n* Y* AC*(Q) n* Y* AC*(Q) Savings (%)

$0 1 7 $3.93 1 7 $3.93

50 2 7 30 18.53 7 30 18.53

3 8 35 16.29 8 35 16.29

4 12 55 14.12 12 55 13.99

5 11 55 14.23 11 56 13.62 3.54

6 8 44 15.89 8 47 15.63

7 7 41 17.34 6 39 17.94

100 2 10 42 24.63 10 42 24.63

3 12 51 21.11 12 51 21.11

4 18 80 17.53 18 80 17.38 0.86

5 16 79 18.13 16 80 17.39

6 12 65 20.85 11 64 20.91

7 11 64 22.90 9 60 24.51

200 2 14 57 33.06 14 57 33.06

3 18 75 27.64 18 75 27.64

4 24 105 22.04 24 105 21.86 0.82

5 22 108 23.49 22 110 22.68

6 18 97 27.70 15 87 28.57

7 15 86 30.62 12 80 34.00

Note that the lowest AC*(Q) values given K are underlined.
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the proposed model. For example, if K ¼ $200 and Q ¼ 7 in
Table 2, then n* ¼ 13, Y* ¼ 82 and AC*(Q) ¼ $36.96 for the
proposed model and n* ¼ 12, Y* ¼ 84 and AC*(Q) ¼ $37.31
for the simplified policy. This is because a large Q yields a
relatively high Y* for the simplified policy, since the
system needs some safety stock for the immediately
upcoming period and still has Q to be delivered for each of
the subsequent (n�1) periods; in order for Y* not to be too
high, n* may be smaller and K is thus spread over less
periods.
5. Conclusion

This paper considers a single-item replenishment
problem where every n periods the buyer plans for the
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Table 4
AC*(Q) for various values of Q (data: m ¼ 2, p ¼ $100, and h ¼ $1)

Proposed model Simplified policy

K Q n* Y* AC*(Q) n* Y* AC*(Q) Savings (%)

$0 1 6 $4.60 1 6 $4.60

50 1 8 23 18.51 8 23 18.51

2 10 29 15.81 10 29 15.66

3 10 32 15.63 11 36 14.55 6.91

4 8 30 17.48 7 29 16.79

5 7 28 18.83 6 30 19.30

100 1 11 30 23.91 11 30 23.91

2 16 43 19.57 16 43 19.40

3 15 46 19.83 16 50 18.42 5.88

4 11 39 22.69 11 44 22.33

5 11 42 24.58 9 44 26.12

200 1 16 41 31.24 16 41 31.24

2 26 66 24.32 26 66 24.13

3 21 63 25.53 21 65 23.83 2.01

4 17 58 29.81 15 60 30.24

5 16 59 32.37 12 59 35.92

Note that the lowest AC*(Q) values given K are underlined.

Table 5
AC*(Q) for various values of Q (data: m ¼ 6, p ¼ $100, and h ¼ $1)

Proposed model Simplified policy

K Q n* Y* AC*(Q) n* Y* AC*(Q) Savings (%)

$0 1 12 $7.48 1 12 $7.48

50 4 5 40 26.37 5 40 26.37

5 6 47 24.46 6 47 24.45

6 7 55 22.54 7 55 22.45

7 8 64 21.32 9 71 20.82 2.35

8 7 60 21.81 8 68 20.86

9 6 55 23.10 6 56 22.24

100 4 8 60 34.10 8 60 34.10

5 9 67 31.04 9 67 31.03

6 11 82 27.93 11 82 27.81

7 13 99 26.22 13 99 25.39 3.17

8 10 83 27.64 11 91 26.33

9 9 79 29.97 9 82 29.01

200 4 11 79 44.53 11 79 44.53

5 14 99 39.78 14 99 39.78

6 18 128 34.69 18 128 34.55

7 19 141 32.54 20 148 31.30 3.81

8 15 121 35.72 15 123 34.03

9 12 104 39.42 12 109 38.59

Note that the lowest AC*(Q) values given K are underlined.

C. Chiang / Int. J. Production Economics 118 (2009) 253–259258
quantity delivered for each upcoming period. Depending
on the demand of the previous n periods, the quantity
delivered in the immediately upcoming period may be of
any size and the quantity delivered in each of the
subsequent (n�1) periods is equal to or smaller than a
fixed quantity Q. If excess inventory in the immediately
upcoming period can be salvaged or retuned to the
supplier at the original purchase cost, the quantity shipped
in each of the subsequent (n�1) periods is exactly Q.
Computation shows that the optimal Q is greater than
or equal to the mean period demand. However, as the ratio
p/h decreases, the optimal n increases and the optimal Q

may approach the mean period demand. In addition, as K

increases the optimal n increases, and if K ¼ 0 the optimal
n is equal to 1. In this sense, the ordinary order-up-to
policy where an order is placed in every period could be
regarded as a special case of the proposed replenishment
model. More importantly, as K is larger, the proposed
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model becomes more attractive relative to the ordinary
order-up-to policy.
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