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ABSTRACT

The Daya Bay reactor neutrino experiment measures
the reactor neutrino oscillation with the inverse beta decay,
where the neutron produced is captured by Gadolinium.
The cosmic muon-induced neutron cause the important
background for the Daya Bay experiment. To analyze the
muon-induced neutron vyield, calculating the neutron
capture rates by Hydrogen and Gadolinium is essential.
We analyze the data of 6 ADs in a period of time from
December 24, 2011 to July 28, 2012. We find the rates for
each AD: 84.759%+0.39% (AD1), 84.695+0.26 % (AD2),
84.679%10.39% (AD3), 85.11%+0.69%(AD4), 85.119%+
0.56% (AD5), and 85.13%;+0.599%; (AD6).
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Chapter 1

Introduction

1.1 Neutrino Physics

In 1930, Pauli proposed a new particle in order to explain the conservation law of energy-
momentum and spin angular momentum in the S-decay experiment [I]]. Two-body
decay model of the [-decay is that a neutron decay into a proton and an electron (3
particle). The emitted electron should have a fixed energy which contradict with the
continuous energy spectrum in S-decay experiment by J. Chadwick in 1914 [2]. Pauli
indicated that the new particle, named neutrino, is a neutral and extremely light fermion

in the final state of 5-decay. The spectrum of S-decay can be calculated theoretically

[3] by

ar 1 g \* — ) 2
iE = 7 \aine ) BVE —mict [(my —my)e® — E]7, (D

where I', E, g,,, My, m., m, and m, are total decay rate, energy of electron, weak
coupling constant, ¥ boson mass, electron mass, neutron mass and proton mass, re-

spectively. Figure 1.1 shows the continuous energy spectrum of S-decay.
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Figure 1.1: The energy spectrum of /3 particle in theoretical calculation.

Neutrino was first detected by Cowan and Reines in 1956 by the inverse [5-decay

process [4]

UVo+p— e +n, (1.2)

where the antineutrino was produced in a reactor. In 1962, L. Lederman, M. Schwartz,
and J. Steinberger discovered the muon neutrino v, in Brookhaven National Laboratory
[5]. The tau neutrino v, was observed by Fermi National Accelerator Laboratory in
2000 [6].

In the late 1960s, it was found that the number of electron neutrino from Sun in the
Homestake experiment are different from the number predicted by standard solar model
[7]. The experimental number is only 1/3 of the theoretical prediction. This is so-called
the solar neutrino problem. In 2001, the result of the SUDBURY Neutrino Observatory
(SNO) experiment directly demonstrated the neutrino oscillation effect which implied

that neutrinos are massive.

The neutrino oscillation is the quantum transition between various neutrino flavors.



The problem of neutrino oscillation is that neutrino weak eigenstates do not correspond
to the neutrino mass eigenstates, but are mixture of each other. Neutrinos interact in
their flavor eigenstates, but they propagate in the mass eigenstates. The transformation

relating the flavor and mass eigenstates can be written as

|Voz> = ZUai|Vi> ) (1.3)

where |v,) and |v;) represent the flavor eigenstates and the mass eigenstates of neutrino
witha = e, u, Tand? = 1, 2, 3, respectively. U,,; is the Pontecorvo-Maki—Nakagawa—
Sakata (PMNS) mixing matrix. For three neutrino flavors, the PMNS matrix is a 3x3

unitary matrix.

U U Ue
U = | Uy Up Uk
Un U Us
1 0 0 Cis 0 Spze? Cia S 0
= | 0 Co So 0 1 0 —S15 Cia 0
0 —Ss3 Chs —S13e 0 Cis 0o 0 1
gz 00
X 0 e2/2 0
0 0 1
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= —512023 - 01252351361'(S 012023 - 512523513€i5 523013

S12523 — 01202351:a€i(S —C12523 — 5120235136i5 Ca3Ch3

e/ 00
x| o ez g |, (1.4)
0 0 1

where U, is the element of transition matrix from the mass eigenstates |;) to the flavor
eigenstates |v,), S;; and Cj; are sin§,; and cos 6;; with 6;; the mixing angle between ¢

and j mass eigenstate. d, a; and v are the C'P phase and Majorana phases.

1.2 Measurement of Electron Antineutrino

The antineutrino is produced by the reactors of Daya Bay nuclear power complex. There
are two near sites and one far site with eight antineutrino detectors (ADs). Two ADs are
placed at each near site. Four ADs are placed at the far site for increasing the statistics.
The survival probability of antineutrino was measured in order to obtain ¢;3. The sur-
vival probability for electron antineutrino in vacuum with an energy F at a distance L

is given by

Psur = Pee:|(1/e|ye(t)>|2

Am?2. L . o Am2, L
—Z;’Vl — cos? 05 sin” 20,5 sin’ ZLEQj

= 1 — sin®26,3sin®

(1.5)

The ratio of the number of antineutrino events in the far site to that in the near site



is given by

Ny _ Np,s Ln ’ €f PsuT<EaLf) (1.6)

N” a Np,n Lf €n Psur(E7Ln) ’ '
where index f and n are for far site and for near site respectively. N, N,, L, and € are
measured rates, detector mass, distance to reactor, and detector efficiency, respectively.

E and Ly (L) in Py, correspond to £, and L in Eq. ([1.3) respectively. And the value

of sin®26,5 is approximatiely given by

: 1 Np\ (L

L
where A(E, Ly) = sin® Az with Ag; = 1.267 Am2, (eV?) x 10 m)

(k 2 _
E(MeV) and Am3, =

m3 —mi.

The antinutrino is detected by the inverse $-decay process in Daya Bay experiment
[8]. There are two kinds of gamma ray signals for antineutrino measurement. The first
signal produced by positron which is annihilated immediately, called prompt signal.
A neutron is captured by proton or Gd nucleus that produced the so-call delay signal

comparing to the prompt one. If the neutron is captured by a proton, a 2.2MeV gamma-

ray is emitted for each event [§8],i.e.
n+p— D+~(22MeV) (1.8)

In order to increase the neutron capture probability, a 0.1% Gd was doped in the liquid

scintillator (LS) in AD. The Gd was excited by captured neutrons and returned to the



ground state by emitting 8 MeV gamma [§, 9].

n+Gd — Gd* (1.9)

Gd* — Gd + y(8MeV) (1.10)

The delayed signal efficiently tags antineutrino signal. The prompt and the delayed

coincidence provides a distinctive signature.

1.3 Cosmic Muon-induced Backgrounds

It is important to understanding the cosmogenic backgrounds for underground experi-

ments. Cosmic-ray muons produce neutrons through the following mechanisms [[10],

» Photo-nuclear reactions: Muons generate electromagnetic shower by Photo-nuclear

reactions [[11]].

* Muon Spallations: Muon exchange a virtual photon with nuclei and then a neu-
tron is produced. Figure 1.2 shows the lowest-order Feynman diagram for this

interaction.

N N’

n

Figure 1.2: The Feynman diagram of a muon spallation process.

» Elastic scattering: Neutrons in nuclei is elastic scattered by muon.

6



 Secondary neutrons: The neutron production from the other neutrons produced

by above processes.

1~ capture on nuclei: Neutrons are produced by a low energy ;2~ which undergoes

nuclear capture via the weak charged-current process,

o+ A(ZN)— v+ A(Z—1,N+1) (1.11)

Neutron yield is very important for neutron background estimation. The determina-
tion of the spallation neutron capture rates by Hydrogen and Gadolinium is essential for
measuring the muon-induced neutron yield. The neutron yield depends on the average
muon energy. We are interested in whether the H-Gd ratio also depends on the average
muon energy. In previous studies by Yung-Shun Yeh, the ratio has been investigated
using simulation data [[L0]. Table 1.1 shows his results. Here, we analyze the H-Gd cap-
ture ratio using the experimental data. The purpose of this thesis is to measure spallation

neutron capture rates by Hydrogen and Gadolinium in the Daya Bay experiment.

€3d,1 ag €Gd 2 TGd 2
EH1 | 0.8552 ().{](115 0.8518 | 0.0016
EH2 | 0.8526 | 0.0015 | 0.8537 | 0.0016
EH3 | 0.8548 | 0.0012 | 0.8536 | 0.0013

Table 1.1: The Gd-capture ratio using two different methods in Ref. [[10], where ¢4, and
oaq are Gd-capture ratio and the associated statstical uncertainty.



Chapter 2

The Daya Bay Neutrino Experiment

The Daya Bay experiment measures the rates and energy spectra of reactor electron
antineutrinos at different baselines to estimate the mixing angle 6,3 with a sensitivity of

0.01 or better in sin?260,5 at 90% confidence level.

2.1 Experiment Layout

The Daya Bay Experiment [12] is located at the Daya Bay nuclear power complex in
southern China. There are three nuclear power plants (NPPs) in the Daya Bay nuclear
power complex: the Daya Bay NPP, the Ling Ao NPP and the Ling Ao II NPP. Each
NPP consists of two reactor cores. The layout of the Daya Bay experiment are shown
in Figure 2.1. All six cores are functionally identical reactors of 2.9 GW thermal power
[12]. It gives a prolific source of reactor antineutrinos (~ 6 x 10%°7,/s/core).

There are three experimental halls (EHs) in the Daya Bay experiment: the Daya Bay
near hall (EH1) and the Ling Ao near hall (EH2), and one far hall (EH3). All experi-
mental halls are underground. There are mountains providing overburden to suppress

cosmogenic backgrounds. Table 2.1 shows the overburden, muon rate, average muon
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Figure 2.1: Layout of the Daya Bay experiment.

energy, and average distances to the reactor pairs for each EH, respectively. Each an-

EH1 | EH2 | EH3

Overburden (m.w.e) 250 | 265 | 860
Muon rate (Hz) 1.27 | 0.95 | 0.56
Average muon energy (GeV) | 57 58 | 137
Distance from D1/D2 364 | 1348 | 1912

Distance from L1/L2 8557 | 480 | 1540
Distance from L3/L4 1307 | 528 | 1548

Table 2.1: Site information including baselines (in meters) and overburdens. D1/D2,
L1/L2, and L3/L4 stand for the reactor cores and Figure 2.1 shows the layout.

tineutrino detector (AD) is put in a water pool. The water pool shields backgrounds
from the surrounding and as a detector of Cherenkov to tag cosmic-ray muons. On the
top of the water pool, the resistance plate chambers (RPCs) gives an additional muon-
tagging. Figure 2.2 shows the schematics of near hall. There is a similar layout with a

larger water pool and RPC module array in the far hall.
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Figure 2.2: Schematic of the ADs, water shields, and RPCs in near hall.

2.2 Detectors

The structure of AD is a three-zone cylindrical vessel, which is shown in Figure 2.3. The
innermost acrylic vessel (IAV) with diameters about 3 m is filled with about 20 tons of
0.1%-doped Gadolinium liquid scintillator (GdLS) as the target region. The medium
zone between [AV and the outer acrylic vessel (OAV) with diameters about 4 m is filled
with about 20 tons of pure liquid scintillator (LS) to capture gamma rays escaping from
the target region. There are 37 tons of Mineral oil (MO) filled in the outermost zone ,
between the OAV and the stainless steel vessel (SSV) with diameters about 5 m, in order
to avoid the entering of external radiation. All 192 8-inch photomultiplier tubes (PMTs)
are installed in 8 rows (rings) and 24 columns on the inner wall of SSV with rails.
There are three Automated Calibration Units (ACUs) installed on the top of the AD

as shown in Figure 2.3. The ACU-A sits on the central axis of the AD. The ACU-B

10
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Figure 2.3: The antineutrino detector.

is designed to calibrate and study the edge effects of the IAV, and the ACU-C is used
for calibrating the gamma catcher. To supplement the automated system, the manual
calibration system (MCS) has been constructed. Figure 2.4 shows the MCS. The robotic
arm of MCS could put the sources at any location inside the target volume through ACU-

A penetration. Table 2.2 summarizes the properties of the calibration sources in ACU

and MCS.
Source Type Energy Half life Rate (Hz) Auto/Manual System
LED visible v | 430 nm - 500 (adjustable) Auto
BGe et 1.022 MeV | 270.95d 10 Auto
80Co y 2.5 MeV | 1925.28 d 100 Auto and Manual
HAM-C n ~8MeV* | 4326y ~ 0.5 Auto
28pp-13C n ~ 8 MeV* | 24110 v ~ 1000 Manual

Table 2.2: Lists of calibration sources. (*) indicates the energy of capture gammas.

Most of the backgrounds come from the interactions of cosmic-ray muons with

nearby materials in the Daya Bay experiment. The muon detection system include both

11



Figure 2.4: The MCS installed on the AD.

the water Cherenkov detector and the Resistive Plate Chamber detector.

To shield backgrounds from the surrounding rocks and serve as a water Cherenkov
detector to tag cosmic-ray muons, the ADs is surrounded by a buffer of water with a
thickness of at least 2.5 m in all directions. The water pool is divided into two parts, the
inner water shield (IWS) and the outer water shield (OWS). There are 288 8-inch PMTs
installed in each near hall, and 384 in the far hall.

Each water pool is covered with an array of RPC module. 54 modules are installed
in both of the near halls, and 81 in the far hall. The structure of RPC is shown in Figure

2.5.

2.3 Measurement of 6,3 and Backgrounds

The first observation of ¢35 with a significance of 5.2 standard deviations was reported

in March, 2012. The improved measurement value sin® 26,5 = 0.089 & 0.010 (stat.)

12
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Figure 2.5: An RPC module structure.

40.005 (syst.) was given by Ref. [[13].

2.3.1 Measurement of 0,3

According to the no-oscillation assumption, the 7, spectrum in the far hall can be pre-
dicted by a weighted combination of the two near hall measurements. The ratio R is
defined as R = M;/ N, where M; and N ; are the measured and predicted event rates

in the far hall (sum of ADs), respectively. The ratio at the far hall was [[13]

R = 0.944 = 0.007 (stat.) & 0.003 (syst.) . (2.1)

The energy spectra of the prompt signal and the ratio R in far hall are shown in Fi-

gure 2.4,

The best-fit value of sin® 26,3 is determined by the x? with uncorrelated systematic

13
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Figure 2.6: Top: measured prompt energy spectrum of the far hall (sum of ADs) com-
pared with the no-oscillation prediction based on the measurements of the near halls.
Bottom: the ratio of measured and predicted spectrum. Red solid curve is the best-fit of
ratio with sin” 26,5 = 0.089, whereas the dashed curve is the non-oscillation prediction.

uncertainties defined as

6 D d 2 2 6 2 2
2 _ E [Md _Td (1 tet+ r WrQr +€d) +nd} § . E €d "a
X Md—l—Bd R g + + 2 ’

d=1 r

where M, is the measured IBD event number of the d-th AD with its backgrounds sub-
tracted, B, is the corresponding background, 77; is the prediction from antineutrino flux,
including MC corrections and neutrino oscillations, w? is the fraction of IBD contribu-
tion of the r-th reactor to the d-th AD determined by the baselines and antineutrino
fluxes. The uncorrelated reactor uncertainty is o, (0.8%). The parameter o4 (0.2%) is
the uncorrelated detection uncertainty. The parameter o is the quadratic sum of the
background uncertainties listed in Table 2.3. The corresponding pull parameters are

(cvr, €4,7M4). The detector- and reactor-related correlated uncertainties are not included

14



in the analysis. The absolute normalization € was determined from the fitting to the data.

The survival probability of 7, used in the y? is

L L
P, = 1 — sin® 26,3 sin® (1.267 Amglﬁ> — cos® 65 sin® 26,5 sin® (1.267 Amglﬁ) ,

(2.3)

where Am32, = 2.32 x 1073 eV?, sin® 20, = 0.861700%, and Am2, = 7.597030 x
1072 eV? [[14]. The uncertainty of Am2, [[15] is not included in the fitting. The best-fit

value of sin” 20,5 with a x?/NDF of 3.4/4 [[13] is
sin? 2015 = 0.089 % 0.010(stat.) &= 0.005(syst.) . (2.4)

All best estimates of pull parameters are within the one standard deviation based on the
corresponding systematic uncertainties. The no-oscillation hypothesis is excluded at 7.7
standard deviations. Figure 2.7 shows the number of IBD candidates in each detector
after corrections for relative efficiency and background, relative to those expected as-
suming no oscillation. A ~ 1.5% oscillation effect appears in the near halls, largely
due to oscillation of the antineutrinos from the reactor cores in the farther cluster. The
oscillation survival probability at the best-fit values is given by the smooth curve. The

x? value versus sin” 26,5 is shown in the inset.

2.3.2 Backgrounds

The experiment mainly has two kinds of background, the accidental coincidence and

the cosmogenic background. Below are the major backgrounds to the IBD selections:

* Accidental background: The accidental background is defined as any pair of un-

15
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Figure 2.7: Top: Ratio of measured versus expected signals in each detector, assuming
no oscillation.

correlated signals that satisfy the IBD selection criteria accidentally.

* Fast neutron background: The energetic neutrons induced by cosmic-ray muons
entering the AD could mimic the prompt signal by recoiling off a proton, and give

a delayed signal after being captured on Gd.

« 9Li/®He background: The rate of correlated background from the 3-n cascade
of the cosmogenic ? Li/® He can be estimated by evaluating the time distribution

since the last muon.

¢ 13C(a;n)'60 background: The '3C (a; n)'60 background is determined by mea-

suring a-decay rate in situ and then calculate the neutron yield by MC.

* Calibration source Am-C induced background: During the data taking, neutrons
from the Am-C calibration source stored inside the ACU may mimic IBD events
by scattering inelastically with nuclei in the shielding material, and captured on

Fe, Cr, Mn or Ni in the stainless steel tank.

16



AD1 AD2 AD3 AD4 AD5 ADG
IBD candidates 69121 69714 66473 9788 9669 9452
Expected IBDs 68613 69595 66402 0922.9 9940.2 0837.7
DAQ livetime (days) 127.5470 127.3763 126.2646
€u 0.8231 0.8198 0.8576 0.9813 0.9813 0.9810
Em 0.9738 0.9742 0.9753 0.9737 0.9734 0.9732
Accidentals (per day) 9.7340.10 9.6140.10 7.5540.08  3.05 £0.04 3.04+ 004 293 1003
Fast-neutron (per day) 0.7740.24 0.774+0.24 0.5840.33 0.05£002  0.05£0.02  0.05£0.02
9Li/%He (per AD per day) 2.941.5 2.041.1 0.2240.12
Am-C correlated (per AD per day) 0.2+0.2
(@, n) background (per day) 0.0840.04 0.0740.04 0.0540.03 0.04£002  0.04£0.02  0.04£0.02
IBD rate (per day) 662.47E3.00 670.8BTE3.01 613.53£2.69 77.57E0.85 76.62E0.85 74.97X0.84

Table 2.3: Summary of signal and background in ADs in the 3 EHs.
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Chapter 3

H-Gd Ratio from Spallation Neutrons

In this Chapter, we determine the ratio of the muon-induced neutrons captured by Hy-
drogen and those captured by Gadolinium in the GALS region in the 3 experimental halls

of the Daya Bay experiment.

3.1 Muon-induced Neutron Production

Neutrons can be produced by the interaction between muon and the surrounding matter
when a cosmic-ray muon passes through the AD. Neutrons are produced by five kinds of
processes: (i) photo-nuclear interactions, (i) muon Spallations, (iii) elastic scattering,
(iv) secondary neutrons, and (v) x4~ capture on nuclei. When a neutron is captured on
Gd (nGd in short), it releases gamma-rays with the total energy of about 8 MeV, whereas
a neutron captured on H (nH) emits the gamma-ray with the characteristic energy about
2.2 MeV.

In order to determine the muon-induced neutron yield, it is necessary to convert
the number of nGd events to the number of total neutron capture events in GALS [|10].

Hence we evaluate the ratio in this study.

18



3.2 Event Selection

The analysis is based on the data taken from December 24, 2011 to July 28, 2012. The
data of 6 ADs deployed in 3 EHs is used. In this study, events are identified as cosmic-

ray muons passing through the AD by the following selection criteria,
* AD muon (uap): the energy deposit is greater than 20 MeV;,

* WP muon (uwp): either the number of fired PMTs in IWS or OWS are greater

than 12;
* uap and pwp are within 0.3 us.

A small number of AD PMTs spontaneously emit light due to discharge within the
base. These instrumental backgrounds are referred to as flasher events.
After applying the flasher cut, events fulfilling the following criteria are selected as

candidates for spallation neutrons captured on Gd,

* the time since the last muon (d7') must be located in the signal time window

20 pus < dT' < 300 ps, and
* the energy range is 3 sigma region around the 8 MeV peak.
* The events within |Z| < 700 mm and R (= v X2 + Y?) < 700 mm.

Any event fulfilling the following criteria is selected as the candidate for spallation neu-

tron captured on H,

* the time since the last muon (d7") must be located in the signal time window that

is defined as 20 pus < d7" < 300 s, and

* the energy range is 3 sigma region around the 2.2 MeV peak.
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* The events within |Z] < 700 mm and R (= v X? + Y?) < 700 mm.

The lower timing cut at 20 us is set for suppressing the effect of retrigger and ringing
at the very beginning of the time period after the passing of muon[[10], as depicted in

Figure 3.1.
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Figure 3.1: A 2D map showing the time since the last muon versus the energy of the
spallation products[[10].

To remove the background due to accidental coincidences, the background time win-
dow is chosen as 320 us < d1' < 600 us. Figure 3.2 shows the time since the last muon
(dT), which justifies the selection of the signal time window and the background time
window.

By subtracting events in the background time window from those in the signal time
window (side-band subtraction in short), the accidental background can be eliminated.
Figure 3.3 to Figure 3.5 show the energy spectrum in signal time window, background
time window, and the energy spectrum after background subtraction, respectively.

To prevent spallation products from other muons falling on the signal time window,
an isolation cut is applied such that there are no additional muon events ((ap Or fiwp)

before 300 us and after 610 us of this muon event.
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Figure 3.2: The time since the last muon (d1") for each AD. AD1 and AD2 are deployed
in Daya Bay near hall, whereas AD3 is deployed in Ling Ao near hall, and the AD4 to
ADG6 are deployed in far hall.

3.3 H-Gd Ratio

The

H-Gd ratio (Ry.gq) 1s defined as

Nga

Nagd

RH-Gd =

Notar  Nu + Ngg’

(3.1)

where Ngq 1s integrated around the energy at Gd-capture peak. Ny is integrated around

H-capture peak. We determine the mean of the energy peak by fitting with Gaussian.
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Figure 3.3: The energy spectrum of DYB AD1 in signal time window.
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Figure 3.4: The energy spectrum of DYB AD1 in background time window.

22



| Backgroung subtracted spectrum of AD1 |
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Figure 3.5: The spallation neutron energy spectrum of DYB AD1 with a fiducial cut of
radius and height less than 700 mm. The peak around 2 MeV is neutron captured by hy-
drogen and the peak around 8 MeV is neutron captured by Gd. Red histogram indicates
the energy spectrum for total events before background subtraction. Green histogram in-
dicates the energy spectrum in background time window, and the blue histogram shows
the energy spectrum after the background subtraction.

The integrated energy range is 3 sigma around the peak. Figure 3.6 to Figure 3.17 show
the mean and the sigma of the nH energy peak and the nGd energy peak for each AD

separately.

3.3.1 Cut Selection

The ratio Ry.gq is affected by three cuts, which are fiducial cut (or vertex cut), energy
cut, and timing cut. The fiducial cut (F' in short) involves two parameters, vertex Z and
R (= VX2 +Y?). Figure 3.18 shows the ratio Ry.gq with various ranges of fiducial
cut for all ADs. The energy cut (£ in short) determines the range of the Gd-capture

peak and the H-capture peak. We adjusted the range of the Gd-capture peak and the H-
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Figure 3.6: The mean and the sigma of the nH energy peak for AD1.
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Figure 3.7: The mean and the sigma of the nGd energy peak for ADI.
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Figure 3.8: The mean and the sigma of the nH energy peak for AD2.
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Figure 3.9: The mean and the sigma of the nGd energy peak for AD2.
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| Backgroung subtracted spectrum of AD3
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Figure 3.10: The mean and the sigma of the nH energy peak for AD3.
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Figure 3.11: The mean and the sigma of the nGd energy peak for AD3.
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Figure 3.12: The mean and the sigma of the nH energy peak for AD4.
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Figure 3.13: The mean and the sigma of the nGd energy peak for AD4.
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Figure 3.14: The mean and the sigma of the nH energy peak for ADS.
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Figure 3.15: The mean and the sigma of the nGd energy peak for ADS.
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Figure 3.16: The mean and the sigma of the nH energy peak for AD6.
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Figure 3.17: The mean and the sigma of the nGd energy peak for AD6.
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capture peak simultaneously from 2.5 sigma to 3.5 sigma. The timing cut (7" in short)
decides the signal time window. The width of the signal time window is kept constant
(280 p5) while the beginning of the signal time window is shifted by 1 us each time and

the background time window is moved accordingly.
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Figure 3.18: The Ry.gq versus different ranges of fiducial cut. Vertex means |Z| <
vertex and R < vertex.

Only one cut out of three is adjusted at once. Namely, when the energy cut is ad-
justed, the other two cuts are maintained according to the criteria in Section 3.2. We
show the results of various energy cuts and timing cuts in Figure 3.19 and Figure 3.20,
respectively.

In the plots, the statistical error (o) is calculated by

Ruca(1 — Ruga)
stat — 5 2
Ot \/ Ntotal (3 )

It is the standard deviation for binomial distribution.
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Figure 3.19: The Ry.gq versus various energy cuts for all ADs.
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Figure 3.20: The Ry.gq versus various timing cuts for all ADs.
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3.3.2 Cut Efficiency

We have calculated different cut efficiencies by Monte Carlo (MC) method (the data was
produced by Yung-Shun Yeh[[10]). For all cut selections, we considered the efficiency
of nGd and of nH separately.

The cut efficiency of the fiducial cut (ep,qq and €, 5 ) are defined as follows,

Number of nGd with fiducial cut

= 33
CrnGd Number of nGd in GdLS (3-3)
and
~ Number of nH with fiducial cut (3.4)
FnH = " Number of nH in GALS .
Similarly, the other cut efficiency can be defined as follows :
Number of nGd with timing cut in GALS (3.5)
€TnGd = , .
ncid Number of nGd in GdLS
_ Number of nH with timing cut in GALS (3.6)
Tl = Number of nH in GdLS '
_ Number of nGd with energy cut in GALS (3.7)
ChinGd = Number of nGd in GALS '
Number of nH with energy cut in GALS
€EnH = (38)

Number of nH in GdLS

Figure 3.21 to Figure 3.26 show the results of various cut efficiencies.
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Then, we define the new ratio Ry}, ;4 with cut efficiency €qq (= €rngd X €rnca X

eEnGd) and €H (: €EpnH X €rnH X EEnH) instead of the RH-Gd as

Naq
/ _ €Gd
Ryga = Noa Ny N Ny (3.9

€ad €H
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Figure 3.21: The ep,qq versus various fiducial cuts.

We also redefine the o, with cut efficiency as

1 1
Ot = Ripga (Rige — 1) N + Neg

(3.10)

The derivation of o, is shown in Appendix A. Figure 3.27 to Figure 3.29 and Figure

/

3.1 to Figure 3.3 show results of Ry}, ;4 and o7,,.
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Figure 3.22: The €p,y versus various fiducial cuts.
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Figure 3.23: The er,gq Versus various timing cuts.
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Figure 3.24: The e,y versus various timing cuts.
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Figure 3.25: The €g, 4 versus various energy cuts.
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| Energy cut efficiency of nH for each EH
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Figure 3.26: The €, versus various energy cuts.
E AD1 AD2 AD3 AD4 AD3 ADG6

(Sigma) | R' (%) | &' (%) | R' (%) | ¢’ (%0) [ R" (%) | o' (%) | R" (%) | o' (%) | R* (%) | &" (%) | R" (®0) | &' (%)
25 85.05 0.1 8493 0.1 84 .61 011 8544 031 8539 031 85.51 0.31
2.6 8497 0.1 84 84 0.1 8494 011 8532 0.31 85.56 03 85.32 0.31
2.7 84.95 0.1 84.83 0.1 84.94 0.11 853 0.31 85.25 0.31 85.31 0.31
2.8 84 83 0.1 84.73 0.1 84 83 011 8522 0.31 85.18 031 85.23 0.31
2.0 84.71 0.1 84.65 0.1 84.76 011 8515 0.31 85.15 031 85.27 0.31
3 84.75 0.1 84.6 0.1 84.67 0.11 8511 0.31 85.11 031 85.13 0.31
31 84.68 0.1 84.61 0.1 84.76 011 8511 0.31 85.11 031 85.13 0.31
3.2 84.66 0.1 84.6 0.1 84 .69 011 85.17 0.31 85.17 031 85.19 0.31
i3 8477 0.1 84.66 0.1 8482 011 8495 0.31 8495 0231 84.95 0.31
34 84.7 0.1 84 64 0.1 84.75 011 84 96 0.31 8496 0.31 84 .95 0.31
35 84.66 0.1 84 68 0.1 84.77 011 8499 0.31 8499 0.31 85 0.31

Table 3.1: The Ry 54 and o, of energy cuts for each AD.

3.3.3 Ratio, Statistical Error and Systematical Error for Each AD

We already obtained 66 sets of the R}, ;4 and the o

stat

for each AD. Then, we use 11

sets of data for each cut selections for each AD to get systematical error for energy cut,

fiducial cut, and timing cut.

At first, we calculate the mean of the 11 sets of the R}, ;4 for each cut selections,
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F AD1 AD2 AD3 AD4 ADS ADG
(mm) | R' (%) | o' (%) | R' (%) | o’ (%) | R’ (%) | o' (%) | R' (%) | &’ (%) | R'(%) | o' (%) | R' (%) ] o' (%)
650 | 8467 | 011 | 8449 | 011 | 84.84 | 012 | 8509 | 035 | 8516 | 035 | 8529 | 0.35
660 | 8477 | 011 | 8456 | 011 | 849 | 012 | 849 | 035 | 8495 | 034 | 8499 | 035
670 | 8466 | 011 | 8451 | 011 | 8478 | 012 | 8505 | 034 | 8506 | 033 | 8515 | 034
680 | 8471 | 01 | 8459 | 01 | 8479 | 011 | 8518 | 033 | 8524 | 032 | 8522 | 033
690 | 8461 | 01 | 8447 | 01 | 8492 | 011 | 8529 | 032 | 8536 | 031 | 8535 | 032
700 | 8475 | 01 | 846 | 01 | 8467 | 011 | 8511 | 031 | 8511 | 031 | 8513 | 031
710 | 8479 | 009 | 84.64 | 009 | 8464 | 011 | 8508 | 03 | 8517 | 03 | 8524 | 03
720 84.73 0.09 84.57 0.09 84.66 0.1 84.96 0.3 85.17 0.29 85.07 03
730 | 848 | 009 [ 8462 | 009 | 845 | 01 | 8501 | 029 | 8524 | 028 | 8514 | 029
740 | 8482 | 009 | 8466 | 009 | 8436 | 01 | 8496 | 028 | 8516 | 0.28 | 8511 | 028
750 | 8482 | 009 | 8471 | 009 | 8422 | 01 | 8485 | 028 | 8509 | 028 | 8493 | 028

Table 3.2: The Ry, 4 and o, of fiducial cuts for each AD.
T AD1 AD2 AD3 AD4 ADS ADG
(1s) | R'(%)] o' (%) | R'(%) | o’ (%) R’ (%) | o' (%) | R' (%) | &' (%) | R' (%) | o' (%) | R’ (%) ] o’ (%)
[20300]| 8475 | 01 | 846 | 01 | 8467 | 011 | 8511 | 031 | 8511 | 031 | 8513 | 031
[21.301]] 8477 | 01 | 846 | 01 | 8474 | 011 | 8509 | 031 | 8508 | 031 | 8523 | 031
22302]| 8477 | 01 | 8462 | 01 | 8469 | 011 | 8504 | 032 | 8504 | 032 | 8518 | 032
[23,303]| 8472 | 01 | 8457 | 0.1 | 8466 | 012 | 8497 | 033 | 8501 | 032 | 8513 | 0.33
[24.304] | 84.62 | 01 | 8451 | 01 | 8461 | 012 | 84.87 | 033 | 84.99 | 033 | 8504 | 0.33
[25.305]| 84.66 | 011 | 8454 | 011 | 846 | 012 | 8485 | 034 | 8507 | 033 | 8501 | 034
[26,306]| 846 | 011 | 8447 | 011 | 8453 | 012 | 8466 | 035 | 8492 | 034 | 8497 | 034
[27.307]] 8454 | 011 | 8444 | 011 | 8445 | 012 | 8464 | 035 | 8477 | 035 | 8492 | 035
[28.308] | 8459 | 011 | 845 | 011 | 844 | 013 | 8462 | 036 | 8474 | 036 | 8489 | 036
[20,300] | 8454 0.11 84.46 0.11 844 0.13 84.56 0.37 8484 0.36 84.71 0.36
[30,310] | B4.36 0.12 843 0.12 84.35 0.13 84.78 0.37 849 0.37 84.67 0.37
Table 3.3: The R}, 4 and o, of timing cuts for each AD.
| Energy cut |
# DYB AD1
= 86 : DYB AD2
2 %
— i 4 LAADY
a 85-8 e T e A ML A W
T r 1 Far AD1
o OO ISR SO SO - A By » ..z 30 SO SO S [ Far AD2
85.6 i
- ' Far AD3
85.4
85.2
85
84.81
84.6 i
84.4
84.2 __ .............................. .............................. ..............................
a L | | 1 | 1 | | I | 1 | | | 1 | 1 1 | I | 1 1
5.4 2.6 2.8 3 3.2 3.4 3.6
Sigma

Figure 3.27: The Ry g4 Versus various energy cuts.
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| Fiducial cut |
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-

R

86
85.8
85.6
85.4
85.2

85
84.8
84.6
84.4
84.2

2 DYB AD1
= : : : . ; DYB AD2
- £ LAAD
- Far AD1
B Far AD2

Far AD3

1 ] ] i ] ] ] | ] ] I I I I
Bedvl] 660 680 700 720 740 760
Vertex (mm)

Figure 3.28: The Ry, 4 versus various fiducial cuts.

Timing cut
| |
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85.6
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85.2

85
84.8
84.6
84.4
84.2

84

# DYB AD1

- DYB AD2
: : : : : . | & LAADY

: i : : : . Far AD1

U SO, 2 N\ o o S | O Far AD2

20 22 24 26 28 30
Lower limit of signal window (us)

Figure 3.29: The Ry}, ;, versus various timing cuts.
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called R’

mean- 1hen we define the oy, Ogyse, and ogyer as

11

1
Osys = E Z ( i-I—Gd o R;nean)2 ) (311)

i=1

and define the oy = \/ (O'Sysp)2 + (O'SySE)2 + (asysT)Q. Table 3.4 shows the result.

~—__ | AD1 | AD2 | AD3 | AD4 | AD5 | ADG

OsysF (%) | 0.07 | 0.07 | 0.22 | 0.13 | 0.11 | 0.12

Osysg (%0)| 0.14 | 0.11 | 0.1 | 0.16 | 0.18 | 0.17

OsysT (%) | 0.12 1 0.09 | 0.14 | 0.2 | 0.13 | 0.18

Osyst (%0)| 0.2 | 0.16 | 0.28 | 0.29 | 0.25 | 0.28

Table 3.4: The ogysr, Osys, Osyst, and ogy for each AD.

The ratio and the statistical error for each AD are Ry 4 and o/, which satisfy the

criteria in Section 3.2.
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Chapter 4

Conclusion

We analyzed and calculated the H-Gd ratio, cut efficiency, statistical error, and system-

atical error for 6 ADs in Daya Bay experiment. The following is the results of the H-Gd

ratio (R) :

Rap1 = 84.75% =+ 0.10%(stat.) & 0.20%(syst.)
Rapy = 84.60% =+ 0.10%(stat.) &+ 0.16%(syst.)
Raps = 84.67% + 0.11%(stat.) + 0.28%(syst.)
Raps = 85.11% + 0.31%(stat.) £ 0.29%(syst.)
Raps = 85.11% = 0.31%(stat.) & 0.25%(syst.)

Raps = 85.13% + 0.31%(stat.) & 0.28%(syst.)

(4.1)
(4.2)
(4.3)
(4.4)
(4.5)

(4.6)

Figure 4.1 shows the H-Gd ratio with statistical error and systematical error for each

AD. In this study, the H-Gd ratio and the average muon energy do not have significant

correlations. Such a non-correlation agrees well with the result of Ref. [[10].
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| H-Gd ratio |

84.8
84.6
84.4
84.2

84

© DYB ADA
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& LA ADY
# Far AD1
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Figure 4.1: The H-Gd ratio with statistical error and systematical error for each AD.
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Appendix A

. . /
The Derivation of Tgtat

The ratio Ry, o4 With cut efficiency is defined as

Nag
N/
Rl ™ = €ad Gd 7 (Al)
§ % A S NH Néd N/
€Gd €H
and
1 N/
aeigs R (A.2)
Ry 6a Ngq
N/ 1 1 — NH EGd (A 3)
Néa  Ruaa NGd €H
s N s Nu s @5_
Niq Ngq €n Ngq
]_ _6R/ -Gd
= 5R’ =5 H . (A.4)
H-Gd H-Gd
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let

thus

—0 Ryt .64

45

(A.5)

(A.6)
(A7)

(A.8)

(A.9)

(A.10)



0Riy.cq = Riga (Rizga — 1) \/ o + v = Oiar - (A.11)
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