

Abstract—This study presents a functional-link-based fuzzy
neural network (FLFNN) structure for temperature control.
The proposed FLFNN controller uses functional link neural
networks (FLNN) that can generate a nonlinear combination of
the input variables as the consequent part of the fuzzy rules. An
online learning algorithm, which consists of structure learning
and parameter learning, is also presented. The structure
learning depends on the entropy measure to determine the
number of fuzzy rules. The parameter learning, based on the
gradient descent method, can adjust the shape of the
membership function and the corresponding weights of the
FLNN. Simulation result of temperature control has been given
to illustrate the performance and effectiveness of the proposed
model.

I. INTRODUCTION
HE concept of fuzzy neural network (FNN) for control
problem has been grown into a popular research topic in

recent years [1]-[4]. The reason is that classical control theory
usually requires a mathematical model for designing the
controller. The inaccuracy of mathematical modeling of
plants usually degrades the performance of the controller,
especially for nonlinear and complex control problems [5].
On the contrary, the FNN controller offers a key advantage
over traditional adaptive control systems. The FNN do not
require mathematical models of plants. The FNN bring the
low-level learning and computational power of neural
networks into fuzzy systems and give the high-level
human-like thinking and reasoning of fuzzy systems to neural
networks.

This study presents a functional-link-based fuzzy neural
network (FLFNN) structure for temperature control. The
FLFNN controller, which combines a fuzzy neural network
(FNN) with functional link neural network (FLNN) [6]-[7], is
designed improve the accuracy of functional approximation.
Each fuzzy rule that corresponds to a FLNN consists of
functional expansion of the input variables. The orthogonal
polynomials and linearly independent functions are adopted
as functional link neural network bases. An online learning
algorithm, consisting of structure learning and parameter
learning, is proposed to construct the FLFNN model
automatically. The structure learning algorithm determines
whether or not to add a new node which satisfies the fuzzy

C. H. Chen and C. T. Lin are with the Dept. of Electrical and Control
Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C.

C. J. Lin is with the Dept. of Computer Science and Information
Engineering, Chaoyang University of Technology, No.168, Jifong E. Rd.,
Wufong Township, Taichung County 41349, Taiwan, R.O.C.

*Corresponding author. (E-mail: chchen.ece93g@nctu.edu.tw)

partition of the input variables. Initially, the FLFNN model
has no rules. The rules are created automatically by entropy
measure. The parameter learning algorithm is based on
backpropagation to tune the free parameters in the FLFNN
model simultaneously to minimize an output error function.

The characteristics of the proposed FLFNN model are
explained as follows. First, the consequent of the fuzzy rules
is a nonlinear combination of the input variables. This study
uses the functional link neural network to the consequent part
of the fuzzy rules. The functional expansion in FLFNN model
can yield the consequent part of a nonlinear combination of
input variables. Second, the online learning algorithm can
automatically construct the FLFNN model. No rules or
memberships exist initially. They are created automatically as
learning proceeds, as online incoming training data are
received and as structure and parameter learning are
performed. Third, as demonstrated in section IV, the FLFNN
model is a more adaptive and effective controller than the
other methods.

II. STRUCTURE OF FLFNN
This section describes the structure of functional link

neural networks and the structure of the FLFNN model. In
functional link neural networks, the input data usually
incorporate high order effects and thus artificially increase
the dimensions of the input space. Accordingly, the input
representation is enhanced and linear separability is achieved
in the extended space. The FLFNN model adopted the
functional link neural network generating complex nonlinear
combination of the input variables as the consequent part of
the fuzzy rules. The rest of this section details these
structures.

A. Functional Link Neural Networks
The functional link neural network is a single layer network

in which the need for hidden layers is eliminated. While the
input variables generated by the linear links of neural
networks are linearly weighted, the functional link acts on an
element of input variables by generating a set of linearly
independent functions, which are suitable orthogonal
polynomials for a functional expansion, and then evaluating
these functions with the variables as the arguments. Therefore,
the FLNN structure considers trigonometric functions. For
example, for a two-dimensional input Txx] [21=X ,
enhanced data are obtained using trigonometric functions as

T,...xcos,xsin,x,...,xcos,xsin,x,]) () () () (1[222111 ππππ=Φ .

A Functional-Link-Based Fuzzy Neural Network
for Temperature Control

Cheng-Hung Chen*, Chin-Teng Lin, Fellow, IEEE, and Cheng-Jian Lin, Member, IEEE

T

53

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

Thus, the input variables can be separated in the enhanced
space [8]. In the FLNN structure with reference to Fig. 1, a set
of basis functions Φ and a fixed number of weight
parameters W represent)(xf W . The theory behind the
FLNN for multidimensional function approximation has been
discussed elsewhere [6] and is analyzed below.

x1

x2 F.E. .
.
.

xN

.

.

.

.

.

.

.

.

.

1φ

2φ

Mφ

∑

∑

∑

'ˆ1y

'ˆ2y

'ˆmy

1ŷ

2ŷ

mŷ

X

W

Ŷ

Fig. 1. Structure of FLNN.

Consider a set of basis functions Κ∈Φ∈=Β kk A)}({φ ,
} 2 1{ ...,,=Κ with the following properties; 1) 11 =φ , 2) the

subset M
kj k

}{
1=

Β∈=Β φ is a linearly independent set,

meaning that if ∑ =
=

M

k kkw
1

0φ , then 0=kw for all

M...,,,k 2 1= , and 3) [] ∞<∑ =

21

1

2 /j

k Akjsup φ .

 Let M
kM k 1
}{

=
=Β φ be a set of basis functions to be

considered, as shown in Fig. 1. The FLNN comprises M basis
functions MM...,,, Β∈} { 21 φφφ . The linear sum of the jth node
is given by

∑
=

=
M

k
kkjj)(wŷ

1

Xφ (1)

where Nℜ⊂Α∈X , T
Nxxx],...,,[21=X is the input vector

and T
jMjj

T
j www],...,,[21=W is the weight vector associated

with the jth output of the FLNN. jŷ denotes the local output
of the FLNN structure and the consequent part of the jth fuzzy
rule in the FLFNN model. Thus, Eq.(1) can be expressed in
matrix form as Φjjy W=ˆ , where

T
M x...xx)](,),(),([21 φφφΦ = is the basis function vector,

which is the output of the functional expansion block. The
m-dimensional linear output may be given by Φ= Wŷ ,

where T
mŷ...ŷŷˆ],,,[21=y , m denotes the number of

functional link bases, which equals the number of fuzzy rules
in the FLFNN model, and W is a (m×M)-dimensional weight
matrix of the FLNN given by T

mwww],...,,[21=W . The jth
output of the FLNN is given by)ŷ('ŷ jj ρ= , where the

nonlinear function () ()⋅=⋅ tanhρ . Thus, the m-dimensional
output vector is given by

)()ˆ(ˆ xf WyY == ρ (2)

where Ŷ denotes the output of the FLNN. In the FLFNN
model, the functional link bases do not exist in the initial state,
and the amount of functional link bases generated by the
online learning algorithm is consistent with the number of
fuzzy rules. Section III details the online learning algorithm.

B. Structure of FLFNN Controller

This subsection describes the FLFNN model, which uses a
nonlinear combination of input variables (FLNN). Each fuzzy
rule corresponds to a sub-FLNN, comprising a functional link.
Figure 2 presents the structure of the proposed FLFNN model.
Nodes in layer 1 are input nodes, which represent input
variables. Nodes in layer 2 are called membership function
nodes and act as membership functions, which express the
input fuzzy linguistic variables. Nodes in this layer are
adopted to determine Gaussian membership values. Each
node in layer 3 is called a rule node. Nodes in layer 3 are
equal to the number of fuzzy sets that correspond to each
external linguistic input variable. Links before layer 3
represent the preconditions of the rules, and links after layer 3
represent the consequences of the rule nodes. Nodes in layer 4
are called consequent nodes, each of which is a nonlinear
combination of the input variables. The node in layer 5 is
called the output node; it is recommended by layers 3 and 4,
and acts as a defuzzifier.

The FLFNN realizes a fuzzy if-then rule in the following
form.

Rule-j: NjNijijj AxAxAxAx is and ... is and ... is and is IF 2211

MMjjj

M

k
kkjj

w...ww

wŷ

φφφ

φ

+++=

= ∑
=

2211

1

 THEN
 (3)

where xi and jŷ are the input and local output variables,
respectively; Aij is the linguistic term of the precondition part
with Gaussian membership function; N is the number of input
variables; wkj is the link weight of the local output; kφ is the
basis trigonometric function of the input variables; M is the
number of basis function, and Rule-j is the jth fuzzy rule.

The operation functions of the nodes in each layer of the
FLFNN model are now described. In the following
description, u(l) denotes the output of a node in the lth layer.

x1

x2

F.E.

x1

x2

y

w11
w21

wM1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

N
or

m
al

iz
at

io
n

1ŷ

2ŷ

3ŷ

1φ

2φ

Mφ

∑

∑

∑

Fig. 2. Structure of proposed FLFNN model.

Layer 1 (Input node): No computation is performed in this
layer. Each node in this layer is an input node, which

54

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

corresponds to one input variable, and only transmits input
values to the next layer directly:

i
)(

i xu =1 . (4)
Layer 2 (Membership function node): Nodes in this layer

correspond to a single linguistic label of the input variables in
layer 1. Therefore, the calculated membership value specifies
the degree to which an input value belongs to a fuzzy set in
layer 2. The implemented Gaussian membership function in
layer 2 is

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

2

21
2][

ij

ij
)(

i)(
ij

mu
expu

σ
 (5)

where mij and ijσ are the mean and variance of the Gaussian
membership function, respectively, of the jth term of the ith
input variable xi.

Layer 3 (Rule Node): Nodes in this layer represent the
preconditioned part of a fuzzy logic rule. They receive
one-dimensional membership degrees of the associated rule
from the nodes of a set in layer 2. Here, the product operator
described above is adopted to perform the IF-condition
matching of the fuzzy rules. As a result, the output function of
each inference node is

∏=
i

)(
ij

)(
j uu 23 (6)

where the ∏
i

)(
iju 2 of a rule node represents the firing

strength of its corresponding rule.
Layer 4 (Consequent Node): Nodes in this layer are called

consequent nodes. The input to a node in layer 4 is the output
from layer 3, and the other inputs are nonlinear combinations
of input variables from a functional link neural network,
where the nonlinear combination function has not used the
function ()⋅tanh , as shown in Fig. 2. For such a node,

∑
=

⋅=
M

k
kkj

)(
j

)(
j wuu

1

34 φ (7)

where wkj is the corresponding link weight of functional link
neural network and kφ is the functional expansion of input
variables. The functional expansion uses a trigonometric
polynomial basis function, given by
[]) () () () (222111 xcosxsinxxcosxsinx ππππ for
two-dimensional input variables. Therefore, M is the number
of basis functions, NM ×= 3 , where N is the number of input
variables.

Layer 5 (Output Node): Each node in this layer
corresponds to a single output variable. The node integrates
all of the actions recommended by layers 3 and 4 and acts as a
defuzzifier with,

∑

∑

∑

∑ ∑

∑

∑

=

=

=

= =

=

= =
⎟
⎠

⎞
⎜
⎝

⎛

=== R

j

)(
j

R

j
j

)(
j

R

j

)(
j

R

j

M

k
kkj

)(
j

R

j

)(
j

R

j

)(
j

)(

u

ŷu

u

wu

u

u
uy

1

3

1

3

1

3

1 1

3

1

3

1

4

5

φ
 (8)

where R is the number of fuzzy rules, and y is the output of the
FLFNN model.

III. Learning Algorithms of the FLFNN Controller
This section presents an online learning algorithm for

constructing the FLFNN model. The proposed learning
algorithm comprises a structure learning phase and a
parameter learning phase.

A. Structure Learning Phase
The first step in structure learning is to determine whether a

new rule from should be extracted the training data and to
determine the number of fuzzy sets in the universal of
discourse of each input variable, since one cluster in the input
space corresponds to one potential fuzzy logic rule, in which

ijm and ijσ represent the mean and variance of that cluster,
respectively. For each incoming pattern x, the rule firing
strength can be regarded as the degree to which the incoming
pattern belongs to the corresponding cluster. For
computational efficiency, the measure criterion calculated
from)(

iju 2 is adopted as the entropy measure

∑
=

−=
N

i
ijijj DlogDEM

1
2 (9)

where ()12 −=)(
ijij uexpD and]1 0[,EM j ∈ . According to Eq.(9),

the criterion for generating a new fuzzy rule and new
functional link bases for new incoming data is described as
follows. The maximum entropy measure

jRjmax EMmaxEM
)T(≤≤

=
1

 (10)

is determined, where R(t) is the number of existing rules at
time t. If EMEM max ≤ then a new rule is generated, where

]1 0[,EM ∈ is a prespecified threshold that decays during the
learning process.

In the structure learning phase, the threshold parameter
EM is an important parameter. The threshold is set to
between zero and one. A low threshold leads to the learning
of coarse clusters (i.e., fewer rules are generated), whereas a
high threshold leads to the learning of fine clusters (i.e., more
rules are generated). If the threshold value equals zero, then
all the training data belong to the same cluster in the input
space. Therefore, the selection of the threshold value EM
will critically affect the simulation results, and this value will
be based on practical experimentation or on trial-and-error
tests. EM is defined as 0.26-0.3 times the input variance.

Once a new rule has been generated, the next step is to
assign the initial mean and variance for the new membership
function and the corresponding link weight for the
consequent part. Since the goal is to minimize an objective
function, the mean, variance and weight are all adjustable
later in the parameter learning phase. Hence, the mean,
variance and weight for the new rule are set as follows;

i

)R(

ij xm)t(=+ 1 (11)

init

)R(

ij
)t(σσ =+1 (12)

]1 1[1 ,randomw)R(

kj
)t(−=+ (13)

55

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

where xi is the new input and initσ is a prespecified constant.
The whole algorithm for the generation of new fuzzy rules
and fuzzy sets in each input variable is as follows. No rule is
assumed to exist initially exist:
Step 1: IF xi is the first incoming pattern THEN do

{Generate a new rule
with mean mi1=xi, variance

initi σσ =1
,

weight]1 1[1 ,randomwk −=
where

initσ is a prespecified constant.
}

Step 2: ELSE for each newly incoming xi, do
{Find jRjmax EMmaxEM

)t(≤≤
=

1

IF EMEM max ≥
do nothing

ELSE
{R(t+1) = R(t) +1

generate a new rule
with mean

i

R

ij xm)t(=+1 , variance
init

R

ij
)t(σσ =+ 1 ,

weight]1 1[1 ,randomw)t(R

kj −=+
where

initσ is a prespecified constant.}
}

B. Parameter Learning Phase
After the network structure has been adjusted according to

the current training data, the network enters the parameter
learning phase to adjust the parameters of the network,
optimized according to the same training data. The learning
process involves determining the minimum of a given cost
function. The gradient of the cost function is computed and
the parameters are adjusted along the negative gradient. The
backpagation algorithm is adopted for this supervised
learning method. When the single output case is considered
for clarity, the goal to minimize the cost function E is defined
as

)(
2
1)]()([

2
1)(22 tetytytE d =−= (14)

where yd(t) is the desired output and y(t) is the model output
for each discrete time t. In each training cycle, starting at the
input variables, a forward pass is adopted to calculate the
activity of the model output y(t).

When the backpropagation learning algorithm is adopted,
the weighting vector of the FLFNN model is adjusted such
that the error defined in Eq.(14) is less than the desired
threshold value after a given number of training cycles. The
well-known backpropagation learning algorithm may be
written briefly as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+=Δ+=+
)(
)()()()()1(
tW
tEtWtWtWtW η (15)

where, in this case, η and W represent the learning rate and
the tuning parameters of the FLFNN model, respectively. Let

Tw,,mW][σ= be the weighting vector of the FLFNN model.

Then, the gradient of error)(⋅E in Eq.(14) with respect to an
arbitrary weighting vector W is

W
tyte

W
)tE

∂
∂

=
∂

∂)()((. (16)

Recursive applications of the chain rule yield the error term
for each layer. Then the parameters in the corresponding
layers are adjusted. With the FLFNN model and the cost
function as defined in Eq.(14), the update rule for wj can be
derived as follows;

)()()1(twtwtw kjkjkj Δ+=+ (17)
where

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⋅⋅−=

∂
∂

−=Δ

∑ =

R

j

)(
j

k
)(

j
w

kj

wkj

u

u
e

w
Etw

1

3

3

)(

φ
η

η

.

Similarly, the update laws for mij, and
ijσ are

)()()1(tmtmtm ijijij Δ+=+ (18)
)()()1(ttt ijijij σσσ Δ+=+ (19)

where

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⋅⋅−=

∂
∂

−=Δ

∑ =

2

1

1

3

4)(2

)(

ij

ij
)(

i
R

j

)(
j

)(
j

m

ij

mij

mu

u

u
e

m
Etm

σ
η

η

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⋅⋅−=

∂
∂

−=Δ

∑ =

3

21

1

3

4)(2

)(

ij

ij
)(

i
R

j

)(
j

)(
j

ij

ij

mu

u

u
e

Et

σ
η

σ
ησ

σ

σ

where wη , mη and ση are the learning rate parameters of the
weight, the mean, and the variance, respectively.

IV. Control of Water Bath Temperature System
The goal of this section is to elucidate the control of the

temperature of a water bath system according to,

CT
tyY

C
tu

dt
)tdy

R

)()((0 −
+= (20)

where y(t) is the output temperature of the system in C° ; u(t)
is the heat flowing into the system; 0Y is room temperature; C
is the equivalent thermal capacity of the system, and TR is the
equivalent thermal resistance between the borders of the
system and the surroundings.

TR and C are assumed to be essentially constant, and the
system in Eq.(20) is rewritten in discrete-time form to some
reasonable approximation. The system

04050
]1[)(

1

)1(
)()1(k yeku

e

e
kyey Ts

)k(y.

Ts

Ts α

α

α α
δ

−

−

−

− −+
+

−
+=+ (21)

is obtained, where α and δ are some constant values of TR
and C. The system parameters used in this example are

56

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

400151 −= e.α , 3679738 −= e.δ and 0Y =25.0 (C°), which were
obtained from a real water bath plant considered elsewhere
[9]. The input u(k) is limited to 0, and 5V represent voltage
unit. The sampling period is Ts=30.
 The conventional online training scheme is adopted for
online training. Figure 4 presents a block diagram for the
conventional online training scheme. This scheme has two
phases - the training phase and the control phase. In the
training phase, the switches S1 and S2 are connected to nodes
1 and 2, respectively, to form a training loop. In this loop,
training data with input vector)]()1([)(kykykI pp += and
desired output can be defined, where the input vector of the
FLFNN controller is the same as that used in the general
inverse modeling [10] training scheme. In the control phase,
the switches S1 and S2 are connected to nodes 3 and 4,
respectively, forming a control loop. In this loop, the control
signal)k(û is generated according to the input vector

)]()1([)(kykyk'I pref += , where py is the plant output and refy
is the reference model output.

A sequence of random input signals urd(k) limited to 0 and
5V is injected directly into the simulated system described in
Eq.(21), using the online training scheme for the FLFNN
controller. The 120 training patterns are selected based on the
input-outputs characteristics to cover the entire reference
output. The temperature of the water is initially 25 c° , and
rises progressively when random input signals are injected.
After 10000 training iterations, four fuzzy rules are generated.
The obtained fuzzy rules are as follows.
Rule-1: 249)(27.234,7. is and .615)(32.416,11 is IF 21 μμ xx

) (35.204) (7994102617

) (54634) (8497432.095 THEN

222

1111

xcosxsin.x.
xcos.xsin.xŷ

ππ
ππ

+−−
−+=

Rule-2: .977)(46.281,13 is and 27)(34.96,9.6 is IF 21 μμ xx

) (70.946) (61.82752.923
) (77.705) (11.76621.447 THEN

222

1112

xcosxsinx
xcosxsinxŷ

ππ
ππ

+−−
−+=

Rule-3: .864)(62.499,15 is and 910)(62.771,6. is IF 21 μμ xx

) (103.33) (36.75240.322

) (46.359) (10.90725.735 THEN

222

1113

xcosxsinx
xcosxsinxŷ

ππ
ππ

++−
−−=

Rule-4: 097)(64.654,9. is and 769)(79.065,8. is IF 21 μμ xx

) (34.838) (61.0655.8152

) (57.759) (37.22346.055 THEN

222

1114

xcosxsinx
xcosxsinxŷ

ππ
ππ

++−
−−=

yp(k+1)

yref(k+1)
yp(k+1)

1

3
S1

Z-1

2

4

S2

)(ˆ ku

)(ku

+
Plant

Z-1

–
FLFNN

Controller

Fig. 3. Conventional online training scheme.

This study compares the FLFNN controller to the PID
controller [11], the manually designed fuzzy controller (FC)
[3], the functional link neural network (FLNN) and the
TSK-type fuzzy neural network (TSK-type FNN). Each of
these controllers is applied to the water bath temperature
control system. The performance measures include the

set-points regulation, the influence of impulse noise and a
large parameter variation in the system.

The first task is to control the simulated system to follow
three set-points.

⎪
⎩

⎪
⎨

⎧

≤<
≤<

≤

°
°
°

=
.k

k
k

for
for
for

,c
,c
,c

kyref

12080
8040

40

75
55
35

)(. (22)

Figure 4 presents the regulation performance of the FLFNN
controller. We also test the regulation performance by using
the FLNN controller and the TSK-type FNN controller. To
test their regulation performance, a performance index, the
sum of absolute error (SAE), is defined by

∑ −=
k

ref kykySAE)()((23)

where)(kyref and)(ky are the reference output and the
actual output of the simulated system, respectively. The SAE
values of the FLFNN controller, the PID controller, the fuzzy
controller, the FLNN controller and the TKS-type NFN
controller are 352.8, 418.5, 401.5, 379.2 and 361.9, which
are given in the second row of Table 1. The proposed FLFNN
controller yields a much better SAE value of regulation
performance than the other controllers.

The second set of simulations is performed to elucidate the
noise-rejection ability of the five controllers when some
unknown impulse noise is imposed on the process. One
impulse noise value C°−5 is added to the plant output at the
sixtieth sampling instant. A set-point of C°50 is adopted in
this set of simulations. For the FLFNN controller, the same
training scheme, training data and learning parameters as
were used in the first set of simulations. Figure 5 presents the
behaviors of the FLFNN controller under the influence of
impulse noise. The SAE values of the FLFNN controller, the
PID controller, the fuzzy controller, the FLNN controller and
the TSK-type FNN controller are 270.4, 311.5, 275.8, 324.51
and 274.75, which are shown in the third row of Table 1. The
FLFNN controller performs quite well. It recovers very
quickly and steadily after the presentation of the impulse
noise.

One common characteristic of many industrial-control
processes is that their parameters tend to change in an
unpredictable way. The value of)2(70 −∗ ku. is added to the
plant input after the sixtieth sample in the third set of
simulations to test the robustness of the five controllers. A
set-point of C°50 is adopted in this set of simulations. Figure
6 presents the behaviors of the FLFNN controller when in the
plant dynamics change. The SAE values of the FLFNN
controller, the PID controller, the fuzzy controller, the FLNN
controller and the TSK-type FNN controller are 263.3, 322.2,
273.5, 311.5 and 265.4, which values are shown in the fourth
row of Table 1. The results present the favorable control and
disturbance rejection capabilities of the trained FLFNN
controller in the water bath system.

The results present the favorable control and disturbance
rejection capabilities of the trained FLFNN controller in the

57

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

water bath system. The aforementioned simulation results,
presented in Table 1, demonstrate that the proposed FLFNN
controller outperforms other controllers.

Fig. 4. Final regulation performance of the FLFNN controller for water bath
system.

Fig. 5. Behavior of the FLFNN controller under the impulse noise for water
bath system.

Fig. 6. Behavior of the FLFNN controller when a change occurs in the water
bath system.

V. Conclusion
This study proposes a functional-link-based neuro-fuzzy

network (FLFNN) structure for temperature control. The
FLFNN model uses the functional link neural network
(FLNN) as the consequent part of the fuzzy rules. Therefore,
the FLFNN model can generate the consequent part of a
nonlinear combination of the input variables to be
approximated more effectively. The FLFNN model can
automatically construct and adjust free parameters by

performing online structure/parameter learning schemes
concurrently. Finally, computer simulation results have
shown that the proposed FLFNN controller has better
performance than that of other models.

Table 1: Comparison of performance of various controllers.

 FLFNN PID [11] FC [3] FLNN TSK-type
FNN

Regulation
Performance 352.84 418.5 401.5 379.22 361.96

Influence of
Impulse Noise 270.41 311.5 275.8 324.51 274.75

Effect of Change
in Plant

Dynamics
263.35 322.2 273.5 311.54 265.48

ACKNOWLEDGMENT
This research was sponsored by Department of Industrial

Technology, Ministry of Economic Affairs, R.O.C. under the
grant 95-EC-17-A-02-S1-029.

REFERENCES
[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its

applications to modeling and control,” IEEE Trans. on Syst., Man,
Cybern., vol. 15, pp. 116-132, 1985.

[2] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference
system,” IEEE Trans. on Syst., Man, and Cybern., vol. 23, pp. 665-685,
1993.

[3] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy
Synergism to Intelligent System, NJ: Prentice-Hall, 1996.

[4] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Systems,
vol. 6, no.1, pp. 12-31, Feb. 1998.

[5] K. J. Astrom and B. Wittenmark, Adaptive Control, MA:
Addison-Wesley, 1989.

[6] J. C. Patra and R. N. Pal, “A functional link artificial neural network for
adaptive channel equalization,” Signal Process, vol. 43, pp. 181-195,
May 1995.

[7] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of
nonlinear dynamic systems using functional link artificial neural
networks,” IEEE Trans. on Syst., Man, and Cybern., vol. 29, Apr. 1999.

[8] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, MA:
Addison-Wesley, 1989.

[9] J. Tanomaru and S. Omatu, “Process control by on-line trained neural
controllers,” IEEE Trans. on Ind. Electron, vol. 39, pp. 511-521, 1992.

[10] D. Psaltis, A. Sideris, and A. Yamamura, “A multilayered neural
network controller,” IEEE Contr. Syst., vol. 8, pp. 17–21, 1988.

[11] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and
Design, Prentice Hall, 1995.

58

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

