
 
 

 

  

Abstract—This study presents a functional-link-based fuzzy 
neural network (FLFNN) structure for temperature control. 
The proposed FLFNN controller uses functional link neural 
networks (FLNN) that can generate a nonlinear combination of 
the input variables as the consequent part of the fuzzy rules. An 
online learning algorithm, which consists of structure learning 
and parameter learning, is also presented. The structure 
learning depends on the entropy measure to determine the 
number of fuzzy rules. The parameter learning, based on the 
gradient descent method, can adjust the shape of the 
membership function and the corresponding weights of the 
FLNN. Simulation result of temperature control has been given 
to illustrate the performance and effectiveness of the proposed 
model. 

I. INTRODUCTION 
HE concept of fuzzy neural network (FNN) for control 
problem has been grown into a popular research topic in 

recent years [1]-[4]. The reason is that classical control theory 
usually requires a mathematical model for designing the 
controller. The inaccuracy of mathematical modeling of 
plants usually degrades the performance of the controller, 
especially for nonlinear and complex control problems [5]. 
On the contrary, the FNN controller offers a key advantage 
over traditional adaptive control systems. The FNN do not 
require mathematical models of plants. The FNN bring the 
low-level learning and computational power of neural 
networks into fuzzy systems and give the high-level 
human-like thinking and reasoning of fuzzy systems to neural 
networks. 

This study presents a functional-link-based fuzzy neural 
network (FLFNN) structure for temperature control. The 
FLFNN controller, which combines a fuzzy neural network 
(FNN) with functional link neural network (FLNN) [6]-[7], is 
designed improve the accuracy of functional approximation. 
Each fuzzy rule that corresponds to a FLNN consists of 
functional expansion of the input variables. The orthogonal 
polynomials and linearly independent functions are adopted 
as functional link neural network bases. An online learning 
algorithm, consisting of structure learning and parameter 
learning, is proposed to construct the FLFNN model 
automatically. The structure learning algorithm determines 
whether or not to add a new node which satisfies the fuzzy 
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partition of the input variables. Initially, the FLFNN model 
has no rules. The rules are created automatically by entropy 
measure. The parameter learning algorithm is based on 
backpropagation to tune the free parameters in the FLFNN 
model simultaneously to minimize an output error function. 

The characteristics of the proposed FLFNN model are 
explained as follows. First, the consequent of the fuzzy rules 
is a nonlinear combination of the input variables. This study 
uses the functional link neural network to the consequent part 
of the fuzzy rules. The functional expansion in FLFNN model 
can yield the consequent part of a nonlinear combination of 
input variables. Second, the online learning algorithm can 
automatically construct the FLFNN model. No rules or 
memberships exist initially. They are created automatically as 
learning proceeds, as online incoming training data are 
received and as structure and parameter learning are 
performed. Third, as demonstrated in section IV, the FLFNN 
model is a more adaptive and effective controller than the 
other methods. 

II. STRUCTURE OF FLFNN 
This section describes the structure of functional link 

neural networks and the structure of the FLFNN model. In 
functional link neural networks, the input data usually 
incorporate high order effects and thus artificially increase 
the dimensions of the input space. Accordingly, the input 
representation is enhanced and linear separability is achieved 
in the extended space. The FLFNN model adopted the 
functional link neural network generating complex nonlinear 
combination of the input variables as the consequent part of 
the fuzzy rules. The rest of this section details these 
structures. 

A. Functional Link Neural Networks 
The functional link neural network is a single layer network 

in which the need for hidden layers is eliminated. While the 
input variables generated by the linear links of neural 
networks are linearly weighted, the functional link acts on an 
element of input variables by generating a set of linearly 
independent functions, which are suitable orthogonal 
polynomials for a functional expansion, and then evaluating 
these functions with the variables as the arguments. Therefore, 
the FLNN structure considers trigonometric functions. For 
example, for a two-dimensional input Txx ]  [ 21=X , 
enhanced data are obtained using trigonometric functions as 

T,...xcos,xsin,x,...,xcos,xsin,x, ]) ( ) (  ) ( ) (  1[ 222111 ππππ=Φ . 
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Thus, the input variables can be separated in the enhanced 
space [8]. In the FLNN structure with reference to Fig. 1, a set 
of basis functions Φ  and a fixed number of weight 
parameters W  represent )(xf W . The theory behind the 
FLNN for multidimensional function approximation has been 
discussed elsewhere [6] and is analyzed below. 
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Fig. 1. Structure of FLNN. 
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=Β φ  be a set of basis functions to be 

considered, as shown in Fig. 1. The FLNN comprises M basis 
functions MM...,,, Β∈}   { 21 φφφ . The linear sum of the jth node 
is given by 

∑
=

=
M

k
kkjj )(wŷ

1

Xφ                                (1) 

where Nℜ⊂Α∈X , T
Nxxx ],...,,[ 21=X  is the input vector 

and T
jMjj

T
j www ],...,,[ 21=W  is the weight vector associated 

with the jth output of the FLNN. jŷ  denotes the local output 
of the FLNN structure and the consequent part of the jth fuzzy 
rule in the FLFNN model. Thus, Eq.(1) can be expressed in 
matrix form as Φjjy W=ˆ , where 

T
M x...xx )](,),(),([ 21 φφφΦ =  is the basis function vector, 

which is the output of the functional expansion block. The 
m-dimensional linear output may be given by Φ= Wŷ , 

where T
mŷ...ŷŷˆ ],,,[ 21=y , m denotes the number of 

functional link bases, which equals the number of fuzzy rules 
in the FLFNN model, and W  is a (m×M)-dimensional weight 
matrix of the FLNN given by T

mwww ],...,,[ 21=W . The jth 
output of the FLNN is given by )ŷ('ŷ jj ρ= , where the 

nonlinear function ( ) ( )⋅=⋅ tanhρ . Thus, the m-dimensional 
output vector is given by 

)()ˆ(ˆ xf WyY == ρ                                (2) 

where Ŷ  denotes the output of the FLNN. In the FLFNN 
model, the functional link bases do not exist in the initial state, 
and the amount of functional link bases generated by the 
online learning algorithm is consistent with the number of 
fuzzy rules. Section III details the online learning algorithm. 

B. Structure of FLFNN Controller 

This subsection describes the FLFNN model, which uses a 
nonlinear combination of input variables (FLNN). Each fuzzy 
rule corresponds to a sub-FLNN, comprising a functional link. 
Figure 2 presents the structure of the proposed FLFNN model. 
Nodes in layer 1 are input nodes, which represent input 
variables. Nodes in layer 2 are called membership function 
nodes and act as membership functions, which express the 
input fuzzy linguistic variables. Nodes in this layer are 
adopted to determine Gaussian membership values. Each 
node in layer 3 is called a rule node. Nodes in layer 3 are 
equal to the number of fuzzy sets that correspond to each 
external linguistic input variable. Links before layer 3 
represent the preconditions of the rules, and links after layer 3 
represent the consequences of the rule nodes. Nodes in layer 4 
are called consequent nodes, each of which is a nonlinear 
combination of the input variables. The node in layer 5 is 
called the output node; it is recommended by layers 3 and 4, 
and acts as a defuzzifier. 

The FLFNN realizes a fuzzy if-then rule in the following 
form. 

Rule-j: NjNijijj AxAxAxAx  is  and ...  is  and ...  is  and  is  IF 2211  
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where xi and jŷ  are the input and local output variables, 
respectively; Aij is the linguistic term of the precondition part 
with Gaussian membership function; N is the number of input 
variables; wkj is the link weight of the local output; kφ  is the 
basis trigonometric function of the input variables; M is the 
number of basis function, and Rule-j is the jth fuzzy rule. 

The operation functions of the nodes in each layer of the 
FLFNN model are now described. In the following 
description, u(l) denotes the output of a node in the lth layer. 
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Fig. 2. Structure of proposed FLFNN model. 

Layer 1 (Input node): No computation is performed in this 
layer. Each node in this layer is an input node, which 

54

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



 
 

 

corresponds to one input variable, and only transmits input 
values to the next layer directly: 

i
)(

i xu =1 .                                         (4) 
Layer 2 (Membership function node): Nodes in this layer 

correspond to a single linguistic label of the input variables in 
layer 1. Therefore, the calculated membership value specifies 
the degree to which an input value belongs to a fuzzy set in 
layer 2. The implemented Gaussian membership function in 
layer 2 is 

⎟
⎟
⎠

⎞
⎜
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⎝

⎛ −
−=

2

21
2 ][

ij

ij
)(

i)(
ij

mu
expu

σ
                            (5) 

where mij and ijσ  are the mean and variance of the Gaussian 
membership function, respectively, of the jth term of the ith 
input variable xi. 

Layer 3 (Rule Node): Nodes in this layer represent the 
preconditioned part of a fuzzy logic rule. They receive 
one-dimensional membership degrees of the associated rule 
from the nodes of a set in layer 2. Here, the product operator 
described above is adopted to perform the IF-condition 
matching of the fuzzy rules. As a result, the output function of 
each inference node is 

∏=
i

)(
ij

)(
j uu 23                                      (6) 

where the ∏
i

)(
iju 2  of a rule node represents the firing 

strength of its corresponding rule. 
Layer 4 (Consequent Node): Nodes in this layer are called 

consequent nodes. The input to a node in layer 4 is the output 
from layer 3, and the other inputs are nonlinear combinations 
of input variables from a functional link neural network, 
where the nonlinear combination function has not used the 
function ( )⋅tanh , as shown in Fig. 2. For such a node, 
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where wkj is the corresponding link weight of functional link 
neural network and kφ  is the functional expansion of input 
variables. The functional expansion uses a trigonometric 
polynomial basis function, given by 
[ ]) ( ) (  ) (  ) ( 222111 xcosxsinxxcosxsinx ππππ  for 
two-dimensional input variables. Therefore, M is the number 
of basis functions, NM ×= 3 , where N is the number of input 
variables. 

Layer 5 (Output Node): Each node in this layer 
corresponds to a single output variable. The node integrates 
all of the actions recommended by layers 3 and 4 and acts as a 
defuzzifier with, 
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where R is the number of fuzzy rules, and y is the output of the 
FLFNN model. 

III. Learning Algorithms of the FLFNN Controller 
This section presents an online learning algorithm for 

constructing the FLFNN model. The proposed learning 
algorithm comprises a structure learning phase and a 
parameter learning phase. 

A. Structure Learning Phase 
The first step in structure learning is to determine whether a 

new rule from should be extracted the training data and to 
determine the number of fuzzy sets in the universal of 
discourse of each input variable, since one cluster in the input 
space corresponds to one potential fuzzy logic rule, in which 

ijm  and ijσ  represent the mean and variance of that cluster, 
respectively. For each incoming pattern x, the rule firing 
strength can be regarded as the degree to which the incoming 
pattern belongs to the corresponding cluster. For 
computational efficiency, the measure criterion calculated 
from )(

iju 2  is adopted as the entropy measure 

∑
=

−=
N

i
ijijj DlogDEM

1
2                                (9) 

where ( )12 −= )(
ijij uexpD  and ]1 0[ ,EM j ∈ . According to Eq.(9), 

the criterion for generating a new fuzzy rule and new 
functional link bases for new incoming data is described as 
follows. The maximum entropy measure 

jRjmax EMmaxEM
)T(≤≤

=
1

                                (10) 

is determined, where R(t) is the number of existing rules at 
time t. If EMEM max ≤  then a new rule is generated, where 

]1 0[ ,EM ∈  is a prespecified threshold that decays during the 
learning process. 

In the structure learning phase, the threshold parameter 
EM  is an important parameter. The threshold is set to 
between zero and one. A low threshold leads to the learning 
of coarse clusters (i.e., fewer rules are generated), whereas a 
high threshold leads to the learning of fine clusters (i.e., more 
rules are generated). If the threshold value equals zero, then 
all the training data belong to the same cluster in the input 
space. Therefore, the selection of the threshold value EM  
will critically affect the simulation results, and this value will 
be based on practical experimentation or on trial-and-error 
tests. EM  is defined as 0.26-0.3 times the input variance. 

Once a new rule has been generated, the next step is to 
assign the initial mean and variance for the new membership 
function and the corresponding link weight for the 
consequent part. Since the goal is to minimize an objective 
function, the mean, variance and weight are all adjustable 
later in the parameter learning phase. Hence, the mean, 
variance and weight for the new rule are set as follows; 

i

)R(

ij xm )t( =+ 1                                        (11) 

init

)R(

ij
)t( σσ =+1                                      (12) 

]1 1[1 ,randomw )R(

kj
)t( −=+                               (13) 
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where xi is the new input and initσ  is a prespecified constant. 
The whole algorithm for the generation of new fuzzy rules 
and fuzzy sets in each input variable is as follows. No rule is 
assumed to exist initially exist: 
Step 1: IF xi is the first incoming pattern THEN do 

{Generate a new rule 
with mean mi1=xi, variance 

initi σσ =1
, 

weight ]1 1[1 ,randomwk −=  
where 

initσ  is a prespecified constant. 
} 

Step 2: ELSE for each newly incoming xi, do 
{Find  jRjmax EMmaxEM

)t(≤≤
=

1
 

IF  EMEM max ≥  
do nothing 

ELSE 
{R(t+1) = R(t) +1 

generate a new rule 
with mean 

i

R

ij xm )t( =+1 , variance 
init

R

ij
)t( σσ =+ 1 , 

weight ]1 1[1 ,randomw )t(R

kj −=+  
where 

initσ  is a prespecified constant.} 
} 

B. Parameter Learning Phase 
After the network structure has been adjusted according to 

the current training data, the network enters the parameter 
learning phase to adjust the parameters of the network, 
optimized according to the same training data. The learning 
process involves determining the minimum of a given cost 
function. The gradient of the cost function is computed and 
the parameters are adjusted along the negative gradient. The 
backpagation algorithm is adopted for this supervised 
learning method. When the single output case is considered 
for clarity, the goal to minimize the cost function E is defined 
as 

)(
2
1)]()([

2
1)( 22 tetytytE d =−=                       (14) 

where yd(t) is the desired output and y(t) is the model output 
for each discrete time t. In each training cycle, starting at the 
input variables, a forward pass is adopted to calculate the 
activity of the model output y(t). 

When the backpropagation learning algorithm is adopted, 
the weighting vector of the FLFNN model is adjusted such 
that the error defined in Eq.(14) is less than the desired 
threshold value after a given number of training cycles. The 
well-known backpropagation learning algorithm may be 
written briefly as 

⎟⎟
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⎞
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⎛
∂
∂

−+=Δ+=+
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tW
tEtWtWtWtW η          (15) 

where, in this case, η  and W represent the learning rate and 
the tuning parameters of the FLFNN model, respectively. Let 

Tw,,mW ][ σ=  be the weighting vector of the FLFNN model. 

Then, the gradient of error )(⋅E  in Eq.(14) with respect to an 
arbitrary weighting vector W is 

W
tyte

W
)tE

∂
∂

=
∂

∂ )()(( .                                (16) 

Recursive applications of the chain rule yield the error term 
for each layer. Then the parameters in the corresponding 
layers are adjusted. With the FLFNN model and the cost 
function as defined in Eq.(14), the update rule for wj can be 
derived as follows; 

)()()1( twtwtw kjkjkj Δ+=+                            (17) 
where 
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Similarly, the update laws for mij, and 
ijσ  are 
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where wη , mη  and ση  are the learning rate parameters of the 
weight, the mean, and the variance, respectively. 

IV. Control of Water Bath Temperature System 
The goal of this section is to elucidate the control of the 

temperature of a water bath system according to, 

CT
tyY

C
tu

dt
)tdy

R

)()(( 0 −
+=                             (20) 

where y(t) is the output temperature of the system in C°  ; u(t) 
is the heat flowing into the system; 0Y  is room temperature; C 
is the equivalent thermal capacity of the system, and TR is the 
equivalent thermal resistance between the borders of the 
system and the surroundings. 

TR and C are assumed to be essentially constant, and the 
system in Eq.(20) is rewritten in discrete-time form to some 
reasonable approximation. The system 

04050
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+=+      (21) 

is obtained, where α  and δ  are some constant values of TR 
and C. The system parameters used in this example are 
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400151 −= e.α , 3679738 −= e.δ  and 0Y =25.0 ( C° ), which were 
obtained from a real water bath plant considered elsewhere 
[9]. The input u(k) is limited to 0, and 5V represent voltage 
unit. The sampling period is Ts=30. 
 The conventional online training scheme is adopted for 
online training. Figure 4 presents a block diagram for the 
conventional online training scheme. This scheme has two 
phases - the training phase and the control phase. In the 
training phase, the switches S1 and S2 are connected to nodes 
1 and 2, respectively, to form a training loop. In this loop, 
training data with input vector )](  )1([)( kykykI pp +=  and 
desired output can be defined, where the input vector of the 
FLFNN controller is the same as that used in the general 
inverse modeling [10] training scheme. In the control phase, 
the switches S1 and S2 are connected to nodes 3 and 4, 
respectively, forming a control loop. In this loop, the control 
signal )k(û  is generated according to the input vector 

)](  )1([)( kykyk'I pref += , where py  is the plant output and refy  
is the reference model output. 

A sequence of random input signals urd(k) limited to 0 and 
5V is injected directly into the simulated system described in 
Eq.(21), using the online training scheme for the FLFNN 
controller. The 120 training patterns are selected based on the 
input-outputs characteristics to cover the entire reference 
output. The temperature of the water is initially 25 c° , and 
rises progressively when random input signals are injected. 
After 10000 training iterations, four fuzzy rules are generated. 
The obtained fuzzy rules are as follows. 
Rule-1: 249)(27.234,7. is  and .615)(32.416,11 is  IF 21 μμ xx  
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Rule-2: .977)(46.281,13 is  and 27)(34.96,9.6 is  IF 21 μμ xx  
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Rule-3: .864)(62.499,15 is  and 910)(62.771,6. is  IF 21 μμ xx  

           
) (103.33) (36.75240.322

) (46.359) (10.90725.735 THEN
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xcosxsinxŷ

ππ
ππ
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Rule-4: 097)(64.654,9. is  and 769)(79.065,8. is  IF 21 μμ xx  

           
) (34.838) (61.0655.8152

) (57.759) (37.22346.055 THEN
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Fig. 3. Conventional online training scheme. 

This study compares the FLFNN controller to the PID 
controller [11], the manually designed fuzzy controller (FC) 
[3], the functional link neural network (FLNN) and the 
TSK-type fuzzy neural network (TSK-type FNN). Each of 
these controllers is applied to the water bath temperature 
control system. The performance measures include the 

set-points regulation, the influence of impulse noise and a 
large parameter variation in the system. 

The first task is to control the simulated system to follow 
three set-points. 
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Figure 4 presents the regulation performance of the FLFNN 
controller. We also test the regulation performance by using 
the FLNN controller and the TSK-type FNN controller. To 
test their regulation performance, a performance index, the 
sum of absolute error (SAE), is defined by 

∑ −=
k

ref kykySAE )()(                           (23) 

where )(kyref  and )(ky  are the reference output and the 
actual output of the simulated system, respectively. The SAE 
values of the FLFNN controller, the PID controller, the fuzzy 
controller, the FLNN controller and the TKS-type NFN 
controller are 352.8, 418.5, 401.5, 379.2 and 361.9, which 
are given in the second row of Table 1. The proposed FLFNN 
controller yields a much better SAE value of regulation 
performance than the other controllers. 

The second set of simulations is performed to elucidate the 
noise-rejection ability of the five controllers when some 
unknown impulse noise is imposed on the process. One 
impulse noise value C°−5  is added to the plant output at the 
sixtieth sampling instant. A set-point of C°50  is adopted in 
this set of simulations. For the FLFNN controller, the same 
training scheme, training data and learning parameters as 
were used in the first set of simulations. Figure 5 presents the 
behaviors of the FLFNN controller under the influence of 
impulse noise. The SAE values of the FLFNN controller, the 
PID controller, the fuzzy controller, the FLNN controller and 
the TSK-type FNN controller are 270.4, 311.5, 275.8, 324.51 
and 274.75, which are shown in the third row of Table 1. The 
FLFNN controller performs quite well. It recovers very 
quickly and steadily after the presentation of the impulse 
noise. 

One common characteristic of many industrial-control 
processes is that their parameters tend to change in an 
unpredictable way. The value of )2(70 −∗ ku.  is added to the 
plant input after the sixtieth sample in the third set of 
simulations to test the robustness of the five controllers. A 
set-point of C°50  is adopted in this set of simulations. Figure 
6 presents the behaviors of the FLFNN controller when in the 
plant dynamics change. The SAE values of the FLFNN 
controller, the PID controller, the fuzzy controller, the FLNN 
controller and the TSK-type FNN controller are 263.3, 322.2, 
273.5, 311.5 and 265.4, which values are shown in the fourth 
row of Table 1. The results present the favorable control and 
disturbance rejection capabilities of the trained FLFNN 
controller in the water bath system. 

The results present the favorable control and disturbance 
rejection capabilities of the trained FLFNN controller in the 
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water bath system. The aforementioned simulation results, 
presented in Table 1, demonstrate that the proposed FLFNN 
controller outperforms other controllers. 

 
Fig. 4. Final regulation performance of the FLFNN controller for water bath 
system. 

 
Fig. 5. Behavior of the FLFNN controller under the impulse noise for water 
bath system. 

 
Fig. 6. Behavior of the FLFNN controller when a change occurs in the water 
bath system. 

V. Conclusion 
This study proposes a functional-link-based neuro-fuzzy 

network (FLFNN) structure for temperature control. The 
FLFNN model uses the functional link neural network 
(FLNN) as the consequent part of the fuzzy rules. Therefore, 
the FLFNN model can generate the consequent part of a 
nonlinear combination of the input variables to be 
approximated more effectively. The FLFNN model can 
automatically construct and adjust free parameters by 

performing online structure/parameter learning schemes 
concurrently. Finally, computer simulation results have 
shown that the proposed FLFNN controller has better 
performance than that of other models. 
 

Table 1: Comparison of performance of various controllers. 

 FLFNN PID [11] FC [3] FLNN TSK-type 
FNN  

Regulation 
Performance 352.84 418.5 401.5 379.22 361.96 

Influence of 
Impulse Noise 270.41 311.5 275.8 324.51 274.75 

Effect of Change 
in Plant 

Dynamics 
263.35 322.2 273.5 311.54 265.48 
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