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 I

開放式量子環中的量子傳輸 

 

研究生: 陳淑娟                                    指導教授: 朱仲夏 

 

國立交通大學電子物理研究所 

 

摘要 

 

本論文研究電子在開放式量子環中的傳輸特性。對於開放式量子環在零磁場時，

我們可以發現其共振態符合封閉環的束縛態。並且當兩邊通道(lead)不對稱或是

環的通道大小改變時，可以發現 Fano 結構。然而我們可以藉由改變環的對稱來

調整 Fano 結構使其由寬變窄，亦可以讓環的通道變寬而使得 Fano 結構由窄變

寬。在趨進一維的情形，共振峰變的較尖銳且向左移而接近封閉環的束縛態。對

於開放式量子環在有限磁場下，我們可以發現 AB 效應(Aharonov-Bohm effect)

而且其振盪周期為 02 /pT h e= Φ = 。然而值得注意的是在高磁場的情況下，並無

周期振盪的情形。假如我們改變兩邊通道的相對角度，我們可以發現在高磁場的

情況下改變角度變化較不大，但在低磁場的時候則是相反。 
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Quantum transport through an open quantum ring 

 
Stusent: Shu-Chuan Chen                     Advisors: Dr. Chon-Saar Chu 

 
Institute of Electro-physics 

National Chiao Tung University 
 

Abstract 

     

We study quantum transport properties of an open quantum ring(OQR). For the 

OQR in zero magnetic filed, we have found that the resonant peaks correspond to the 

bond states of a close ring. Fano structure in the transmission of an OQR can be found 

in two case which the two lead are configured asymmetrically and the channel size of 

ring is changed. Moreover, we can tune the Fano structure from broad to sharp by 

varying the symmetry of OQR and tune the Fano structure from sharp to broad by 

widening the channel width of the ring. Then approaching to 1D case, the resonance 

peaks become shaper and shift toward the left to be close to bound of close ring, when 

the channel narrow down. For the OQR with finite magnetic filed, We have found that 

the AB effect when the external field are applied in the ring and the oscillating 

period 02 /pT h e= Φ = . And it should be noted that the periodic oscillations are 

disappear at high magnetic field. If we change the angle θ  of two lead for low and 

high magnetic field, we can found that it is sensitive to changing angle θ  for small 

magnetic field but not for large magnetic field. 
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Chapter 1

introduction

1.1 Introduction

In the past decade developments in mesoscopic physics have received much attention and

made rapid progress. Quantum transport in the mesoscopic systems has been extensively

studied both experimentally and theoretically. And the atomlike properties of dots or

gate-confined quantum make them a good venue for studying the physics of confined

carriers and many-body effects. Hence quantum dots have attracted considerable interest

due to its potential to various application. They lead to interesting applications in fields

such as quantum cryptography, quantum computing, optics, and optoelectronics, etc.

In recent work, however, a new geometry of semiconductor quantum rings has been

introduced in experiments of magnetocapacitance and infrared excitation for few electrons

[1, 2]. In many aspects, quantum rings are just quantum dots with a peculiar confining

potential [3]. The decisive difference in their topology that the hole in their middle

becomes prominent when an external magnetic field is applied. The magnetic flux that

penetrates the interior of the ring will then determine the nature of the electronic states.

Since the pioneering publications in Ref.4,5, the theoretical and experimental studies

of ring interferometers are studied extensively. In ring geometries strongly connected to

external leads the electron wave packets can take two different paths around the ring
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CHAPTER 1. INTRODUCTION

which gives rise to interference. This can be associated with Young’s double-slit ex-

periment for photons. The electron in a ring geometry allows the relative phase of the

electronic wave function in the two arms of the ring to be manipulated by a magnetic

field perpendicular to the plane of the ring. And Aharonov and Bohm proposed such a

setup to test experimentally the significance of the magnetic vector potential in quantum

mechanics [6]. They predicted that the phase difference of the alternative paths changes

by 2π as the flux through the ring is changed by one flux quantum h/q (q is the charge

of the particle). Then magnetic field periodic resistance oscillations in ring structure

have demonstrated that have a phase coherence length longer than or comparable to the

perimeter by many experiments. Hence in mesoscopic physics the Aharonov-Bohm (AB)

effect has become a standard tool to quantitatively investigate the phase coherence of

transport in either metallic [7] or semiconducting systems [8–10]. Figure 1.1 shows the

topography of a GaAs-AlGaAs heterostructure containing a two-dimensional electron gas

below the surface.

In this thesis we study quantum transport properties of an open quantum ring(OQR).

For simplicity, we ignore the effects of spins and the mutual interactions. Then we can

found some interesting phenomena. If we change geometric configuration from symmet-

rical to asymmetrical of OQR, the Fano structures can be found in the transmission.

Moreover the AB effect also can be observe in transmission of OQR with magnetic field.

In the following , we would introduce the Fano effect and AB effect.

1.2 Fano effect

In 1961, Fano considered a physical situation which occurs in many systems addressed

spectroscopically [11]. In the first part of the calculation, a quantum state, |φ〉 , with

energy E0
φ , is taken to be coupled via matrix elements VE′ to a continuum of states denoted

by |E ′〉 , forming a resonance in the continuum. In the second part, a transition between

another state, |i〉 , (which is not resonant with the continuum) and the resonance is

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Micrograph of the quantum ring. The red line marks the current flow form
source to drain through the two quantum point contacts angle the ring. The lateral gate
electrodes termed qc1-qc4 are used to tune the tunnel barriers (indicate by dotted lines)
connecting the quantum ring to its leads. The plunger gates allow the electron number
on the ring to be controlled (adapted from Ref. 9)

3



CHAPTER 1. INTRODUCTION

considered, and it is shown that the interference between the contributions of the original

continuum states and the resonance will always yields a characteristic asymmetric line

shape in the transition probability. The typical phenomenon of Fano structures in which

the transmission probabilities is downward dips to zero and soon rise up to one.

The Fano effect, a ubiquitous phenomenon observed in a large variety of experiments

including neutron scattering [12], atomic photoionization [13], Raman scattering [14], and

optical absorption [15]. While a statistically averaged nature of the system containing

contributions from numerous sites is observed in these experiments, the Fano effect is

essentially a single-impurity problem describing how a localized state embedded in the

continuum acquires itinerancy over the system [16]. Therefore, an experiment on a single

site would reveal this fundamental process in a more transparent way. While the single-

site Fano effect has been reported in the scanning tunneling spectroscopy study of an

atom on the surface [17, 18] or in transport through a quantum dot (QD) [19], there is

little, if any, controllability in either case since the coupling between the discrete level and

the continuum is naturally formed.

1.3 AB effect

According to quantum physics, when two coherent electron waves travelling along distinct

paths recombine, they will interfere. The outcome reflects a phase difference arising from

the different lengths of the paths taken by the electrons. If a magnetic field penetrates the

region between the two paths, it will cause an additional phase shift, and so will change

the resulting interference - a phenomenon known as the Aharanov-Bohm effect [6]

In this section, we would discuses the Aharonov-Bohm (AB) effect for a ring-shaped

conductor. Experimentally [8, 9], the conductance of the ring have been observed to

oscillate as a function of the magnetic through the ring, see Fig. 1.2and Fig. 1.3. The

fundamental period of the oscillations is found to be the flux quantum, Φ0 = h/e.

4



CHAPTER 1. INTRODUCTION

Figure 1.2: Transmission-electron micrograph of ring-shaped conductor [6]. The inside
diameter of loop is 784 nm and the width of the wires is 41 nm (adapted from Ref.6).)

Figure 1.3: (a)Magnetoresistance of the above ring measured at T = 0.01K. (b)Fourier
power spectrum in arbitrary units containing peaks at h/e and h/2e (adapted from Ref.6).
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CHAPTER 1. INTRODUCTION

The oscillations are caused by interference between the waves traversing the two

branches of the ring (see Fig. 1.4).

Figure 1.4: Aharonov-Bohm ring.

The phase shift in the upper branch of the ring is

θup =
|e|
~

∫ 2

1

−→
A · d−→r (1.1)

The fundamental period of the oscillations is found to be the flux quantum Φ0 = ~
|e| . By

choosing in cylindrical coordinates
−→
A = 1

2
Br−→uφ we obtain for the phase shift θup = π Φ

Φ0

where Φ is the total flux through the ring. Similarly, the phase shift in the lower branch

is θlow = −π Φ
Φ0

.

The total phase difference between the waves in the different branches on the r.h.s. of

the ring is thus θ = 2π Φ
Φ0

. Consequently, the transmission probability oscillates with the

period Φ0. For example, if there is only one mode propagating in the ring, the transmission

probability vanishes every time the phase shift equals an odd multiple of π.

In addition to the h/e-oscillations, there can also be observed subharmonic oscillations

with frequencies h/ne, where n is an integer. These are caused by the waves traversing n

times half of the ring in the same direction before interfering (now the total phase shift

of the waves traversing, for example, in the clockwise direction is π Φ
nΦ0

).

6



Chapter 2

Theory and formulation

2.1 Landauer-Buttiker formalism

When the characteristic sizes of semiconductor devices are small in comparison with

the elastic mean free path of carriers, the carrier transport becomes ballistic [20]. The

Landauer-Buttiker formalism, which treats the transport as a scattering process, is par-

ticular useful for the description of transport thought a mesoscopic system in the ballistic

transport regime. And in this section, we introduce the multchannel Landauer-Buttiker

formalism starting from the single channel case [4].

Assume that there are two reservoir of electrochemical potential µ1 and µ2 respectively

connected by a 1D channel and there is a barrier in between the reservoirs. Consider two

reservoirs having the difference δµ = µ1−µ2 in the electrochemical potential. We assume

that electron coming into both side reservoirs form the 1D channel will not reflect back.

So, only those transmitted electrons in between δµ contribute to the current density J

from reservoir 1 to 2 in 1D, J=I.

In order to calculate the conductance we start from the equation of the current density

at zero temperature

I = −envF (2.1)

7



CHAPTER 2. THEORY AND FORMULATION

where vF indicates Fermi velocity, n is the number of states per unit length that injected

from reservior 1 to reservoir 2, and considering the probability for transmission to be T,

n can be written as

n =

(
dN

dE

)
(µ1 − µ2) T (2.2)

For the density of state with 2 spin-states included, (dN/dE) = 2/vF in a 1D system

(only one of the propagating direction is counted). Hence, we have

I = −2e

h
δµT (2.3)

Since the voltage difference δV = δµ/(−e) , so that the conductance is in the form

G =
2e2

h
T (2.4)

For the case of multichannel system, we consider that electron propagate from the left nth

subband transmitted into right mth subband, and assume the transmission probability as

Tnm, and the reflection probability as Rnm.Therefore, the total transmission probability

Tn and the total reflection probability Rn from the nth channel is

Tn =
∑
m

Tnm

Rn =
∑
m

Rnm

(2.5)

By definition, the total current should be taken into account the contribution of all the

incident subbands, Itot =
∑
n

In, where the In is related to the current transmission Tn, so

we have

In = −2e

h
δµ

∑
m

Tnm (2.6)

8



CHAPTER 2. THEORY AND FORMULATION

and

Itot = −2e

h
δµ

∑
n

∑
m

Tnm (2.7)

Following the Landaner-Buttiker formalism, the conductance can be expressed of the form

G =
2e2

h

∑
n

∑
m

Tnm (2.8)

2.2 Quantum transport through an open quantum

ring with no magnetic field

In the section, we consider an open quantum ring with no external magnetic field, as is

depicted in (Fig. 2.1).

r
1

r
2

Lead 1

L
ead

2

d

L1

L2

Figure 2.1: Schematic illustration of the ring

In the ring region, the Hamiltonian describing an electron inside the ring can be written

of the form

H =
~2

2m∗
[
− ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂θ2

]
+ Vr(r) (2.9)

where m* is the effective mass of electron, Vr (r) is the radial confinement potential. In

9



CHAPTER 2. THEORY AND FORMULATION

this case we adopt a hard-wall laterally confined model, namely,

Vr(r) =





0,r1 ≤ r ≤ r2

∞,r > r2, r < r1

(2.10)

And then we choose the energy unit E∗ = ~2k2
F /2m∗, the length unit a∗ = 1/kF . Thus

we can obtain the dimensionless Schrodinger Equation for ring:

[
− ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂θ2
+ Vr(r)

]
ψr(r, θ) = Eψr(r, θ) (2.11)

Here kF is a typical Fermi wave vector in the reservoirs.

Taking the same units, we also can obtain the dimensionless Schrodinger Equation for

leads as

[
− ∂2

∂x2
− ∂2

∂y2
+ VL(y)

]
ψ

(i)
L (x, y) = Eψ

(i)
L (x, y) (2.12)

VL(y) =





0, 0 ≤ y ≤ d

∞,y < 0, y > d

where i = 1 for lead 1, i = 2 for lead 2, VL(y) is the confinement potential, and d is the

width of lead.

By solve the Eq. (2.11) and Eq. (2.12), hence we can write down the wave function in

each region:





ψ
(1)
L (x, y) =

N∑
n=1

(a
(1)
n eiknx + b

(1)
n e−iknx)

√
2
d
sin nπy

d
,

ψr(r, θ) = 1√
2π

M∑
m=−M

cmφm(kr)eimθ

ψ
(2)
L (x, y) =

N∑
n=1

(a
(2)
n eiknx + b

(2)
n e−iknx)

√
2
d
sin nπy

d

(2.13)

10



CHAPTER 2. THEORY AND FORMULATION

and





∂ψ
(1)
L /∂x =

N∑
n=1

(ikn)(a
(1)
n eiknx − b

(1)
n e−iknx)

√
2
d
sin nπy

d

∂ψr/∂r = 1√
2π

M∑
m=−M

cmφ′m(kr)eimθ

∂ψ
(2)
L /∂x =

N∑
n=1

(ikn)(a
(2)
n eiknx − b

(2)
n e−iknx)

√
2
d
sin nπy

d

(2.14)

where n, m are both subband indices in the leads and the ring respectively. For the

region of lead, d is the width of lead and the transverse energy levels are quantized, with

En = n2π2/d2, so the wave vector for an electron with energy E and in the nth subband

is given by kn =
√

E − En. For the region of ring, φm(kr) is the radial wave function,

φm(kr) = Jm(kr) + αmYm(kr) (2.15)

where k =
√

E, and Jm(kr) and Ym(kr) are the Bessel functions of first and second kinds,

respectively. Here φm(kr) satisfies the boundary condition φm(kr1) = 0, and hence

αm = −Jm(kr1)/Ym(kr1) (2.16)

Now, by matching the wave function for the boundary conditions:

ψ
(1)
L (0, y) + ψ

(2)
L (0, y) = ψr(r2, θ) (2.17)

∂ψ
(1)
L /∂x

∣∣∣
x=0

= ∂ψr/∂r|r=r2
(2.18)

∂ψ
(2)
L /∂x

∣∣∣
x=0

= ∂ψr/∂r|r=r2
(2.19)

If we neglect the difference between the straight line of the channel and the arc line of the

ring, and the angles to which the two side of two leads are θ1, θ2 and θ3, θ4 respectively,

11
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hence we have

N∑
n=1

(a
(1)
n + b

(1)
n )

√
2
d
sin nπr2(θ−θ1)

d
+

N∑
n=1

(a
(2)
n + b

(2)
n )

√
2
d
sin nπr2(θ−θ3)

d

= 1√
2π

M∑
m=−M

cmφm(kr)eimθ

(2.20)

N∑
n=1

(ikn)(a(1)
n − b(1)

n )

√
2

d
sin

nπr2 (θ − θ1)

d
=

1√
2π

M∑
m=−M

cmφ′m(kr)eimθ (2.21)

N∑
n=1

(ikn)(a(2)
n − b(2)

n )

√
2

d
sin

nπr2 (θ − θ3)

d
=

1√
2π

M∑
m=−M

cmφ′m(kr)eimθ (2.22)

In the first stage, let us multiply both sides of Eq. (2.20) by the factor (1/
√

2π)e−im′θ.

Here m′ = 0,±1,±2 · · · ±M , and integrate from zero to 2π,

N∑
n=1

(a(1)
n + b(1)

n )I−m′n +
N∑

n=1

(a(2)
n + b(2)

n )Ĩ−m′n = cm′φm′(kr2),m
′ = 0,±1,±2, ......,±M

(2.23)

Then, we multiply both sides of Eq. (2.21) and Eq. (2.22) by
√

2/d sin n′πr2 (θ − θ1)/d

and
√

2/d sin n′πr2 (θ − θ3)/d , respectively. Here n′ = 1, 2 · · ·N , and integrate from θ1

to θ2,

N∑
n=1

(ikn)(a(1)
n − b(1)

n )Un′n =
M∑

m=−M

cmφ′m(kr2)Imn′ , n
′ = 1, 2, ......, N (2.24)

N∑
n=1

(ikn)(a(2)
n − b(2)

n )Ũn′n =
M∑

m=−M

cmφ′m(kr2)Ĩmn′ , n
′ = 1, 2, ......, N (2.25)

where

I±mn =

√
1

πd

∫ θ2

θ1

sin
nπr2 (θ − θ1)

d
e±imθdθ (2.26)

Ĩ±mn =

√
1

πd

∫ θ4

θ3

sin
nπr2 (θ − θ3)

d
e±imθdθ (2.27)

12
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Un′n =
2

d

∫ θ2

θ1

sin
n′πr2 (θ − θ1)

d
sin

nπr2 (θ − θ1)

d
dθ (2.28)

Ũn′n =
2

d

∫ θ4

θ3

sin
n′πr2 (θ − θ3)

d
sin

nπr2 (θ − θ3)

d
dθ (2.29)

In Eq. (2.13) b
(1)
n and b

(2)
n are coefficients of electron waves traveling inward or increasing

exponentially with x (for imaginary kn), which are all set to be zero according to physical

consideration, except one coefficient b
(1)
i = 1/

√
ki, representing the amplitude of one

injected wave. And the coefficients a
(1)
n and a

(2)
n which are related to the transmission

and reflection amplitudes. Hence we have 2M+2N+1 equations Eq. (2.23)-Eq. (2.25) for

2M+2N+1 unknown coefficients a
(1)
n , a

(2)
n (n′ = 1, 2, ...N)and cm(m = 0,±1, ...±M).

Rewrite the Eq. (2.23)-Eq. (2.25) in matrix form

I0(A + B) + Ĩ0(A
′ + B′) = ΦC (2.30)

iUK(A−B) = I1Φ
′C (2.31)

iŨK(A′ −B′) = Ĩ1Φ
′C (2.32)

where

Solving the set of equations we obtain the coefficients a
(1)
n and a

(2)
n :

a(1)
n =

rni√
kn

(2.33)

a(2)
n =

tni√
kn

(2.34)

The total transmission and reflection probabilities are given by

T =
∑
ni

|tni|2

R =
∑
ni

|rni|2
(2.35)

which conservation condition holds for T + R = 1

13



CHAPTER 2. THEORY AND FORMULATION

Moreover, the conductance G can be found by the expression

G =
2e2

h
T (2.36)

2.3 Quantum transport through an open quantum

ring in a magnetic field

In the section, we consider an open quantum ring applied by an external perpendicular

magnetic field, while the two leads without magnetic field.

In the region of ring, the Hamiltonian of an electron in a ring with a magnetic field B

is given by

H = 1
2m∗ (P + eA)2 + Vr(r)

= 1
2m∗ (P2 + e (P · A + A · P) + e2A2) + Vr(r)

(2.37)

where m* is the effective mass of electron, Vr(r) is the radial confining potential. In this

case, again, we consider the ring with hard-wall confinement described by

Vr(r) =





0,r1 ≤ r ≤ r2

∞,r > r2, r < r1

(2.38)

and A is the magnetic vector potential such that B = ∇× A.

Assuming that the magnetic field is constant and perpendicular to the plane of the

ring, the vector potential can be expressed in polar coordinates:

A =
B

2
(0, r, 0) (2.39)

where B = |B|. Since the system is circularly symmetric it is convenient to write the

14
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Hamiltonian in polar coordinates

H =
~2

2m∗

[
−

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
− i

eB

~

(
∂

∂θ

)
+

1

~2

(
eB

2

)2

r2

]
+ Vr(r) (2.40)

Let wc = eB
m∗ , wc being the cyclotron frequency, and then the Hamiltonian can be rewrite

of the form

H =
~2

2m∗

[
−

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
− i

1

~
m∗wc

(
∂

∂θ

)
+

1

~2

1

4
(m∗)2 w2

cr
2

]
+Vr(r) (2.41)

And then we choose the energy unit E∗ = ~2k2
F /2m∗, the length unit a∗ = 1/kF , and

w∗
c = E∗/~ = ~k2

F /2m∗. Therefore we can obtain the dimensionless Schrodinger equation

describing the electronic transport through the open quantum ring, given by

[
−

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
−i

1

2
wc

(
∂

∂θ

)
+

1

16
(wc)

2 r2 + Vr(r)

]
ψr(r, θ) = Eψr(r, θ)

(2.42)

Assuming the eigenfunction can be written as

ψr(r, θ) =
eimθ

√
2π

Rm (r) (2.43)

Substituting Eq. (2.43) into Eq. (2.42), we have

[
−

(
∂2

∂r2
+

1

r

∂

∂r

)
+

(
m2

r2

)
+

1

2
mwc +

1

16
(wc)

2 r2

]
Rm (r) = ERm (r) (2.44)

⇒
[(

∂2

∂r2
+

1

r

∂

∂r

)
−

(
m2

r2

)
+

(
E − 1

2
mwc

)
− 1

16
(wc)

2 r2

]
Rm (r) = 0 (2.45)

Then we assume

Rm (r) ∼ r|m|e−(wcr2)/8u(r) = r|m|e−ar2

u (r) (2.46)

15
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here a = wc/8.

Substituting Eq. (2.46) into Eq. (2.45), we can obtain

{
∂2u(r)

∂r2 +
(
(2 |m|+ 1) r−1 +

(−wc

2

)
r
) ∂u(r)

∂r
+

[
(2 |m|+ 2)

(−wc

4

)
+

(
E − 1

2
mwc

)]}
u(r) = 0

(2.47)

Now, let x = 2ar2=wc

4
r2 , so we get

∂x

∂r
= wcr/2 (2.48)

∂2x

∂2r
= wc/2 (2.49)

∂u(r)

∂r
=

∂x

∂r

du(x)

dx
=

wc

2
r
du(x)

dx
(2.50)

∂2u(r)

∂r2
=

∂2x

∂2r

du(x)

dx
+

(
∂x

∂r

)2
d2u(x)

dx2
=

wc

2

du(x)

dx
+

(wc

2

)2

r2d2u(x)

dx2
(2.51)

Substituting Eq. (2.48)-Eq. (2.51) into Eq. (2.47), we have





x
d2u(x)

dx2
+ {((|m|+ 1)− x) } du(x)

dx
+

[(
E

wc

− 1

2

mwc

wc

)
− 1

2
(|m|+ 1)

]

︸ ︷︷ ︸
εm





u(x) = 0

(2.52)

where

εm =

(
E

wc

− 1

2
m

)
− 1

2
(|m|+ 1) (2.53)

Eq. (2.52) is the form of confluent hypergeometric equation, namely that the u(x) is the

so-called confluent hypergeometric function, give by

u(x) = cmM(−εm, |m|+ 1;
wc

4
r2) + dmU(−εm, |m|+ 1;

wc

4
r2) (2.54)
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It is now easy to obtain the R (r) by substituting Eq. (2.54) into Eq. (2.46):

Rm(r) = r|m|
(
cmM(−εm, |m|+ 1; wc

4
r2) + dmU(−εm, |m|+ 1; wc

4
r2)

)
e−wcr2/8

=cmr|m|
(
M(−εm, |m|+ 1; wc

4
r2) + αmU(−εm, |m|+ 1; wc

4
r2)

)
e−wcr2/8

=cmφm(r)

(2.55)

where M , U are the confluent hypergeometric functions of first and second kinds, re-

spectively. The Rm(r) satisfies the boundary condition Rm(r1) = 0, and hence

αm = −M(−εm, |m|+ 1;
wc

4
r2
1)/U(−εm, |m|+ 1;

wc

4
r2
1) (2.56)

Hence the wavefunction which in the region of ring is written as

ψr(r, θ) =
1√
2π

∑
m

cmφm (r)eimθ (2.57)

Utilizing this equation, itis easy to caculate the total transmission and reflection proba-

bilities of the open ring system by matching boundary condition which is the same as the

method in Sec. 2.2.

2.4 Quantum transport through an open quantum

ring with a magnetic flux

In the section, we consider an open quantum ring with a magnetic flux in center of ring.

Assuming that the magnetic flux is constant and in the center region of ring, the vector

potential can be expressed :





Aϕ = Φ/2πr

Ar = 0

Az = 0

(2.58)
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Hamiltonian:

H = 1
2m∗ (P + eA)2 + Vr(r)

= 1
2m∗ (P2 + e (P · A + A · P) + e2A2) + Vr(r)

(2.59)

where m* is the effective mass of electron, Vr(r) is the radial confining potential. In this

case, again, we consider the ring with hard-wall confinement described by

Vr(r) =





0,r1 ≤ r ≤ r2

∞,r > r2, r < r1

(2.60)

Since the system is circularly symmetric it is convenient to write the Hamiltonian in

polar coordinates:

H =
~2

2m∗

[
−

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
− i2

e

~

(
Φ

2πr

1

r

∂

∂θ

)
+

(
e

~
Φ

2πr

)2
]

+Vr(r) (2.61)

Let α= e
~

Φ
2π

= Φ
2Φ0

, Φ being the magnetic flux, and defining Φ0 = h
2e

as the flux

quantum, then the Hamiltonian can be rewrite of the form

H = − ~2

2m∗
[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+ i2α

∂

∂θ
− α2

)]
+ Vr(r) (2.62)

And then we choose the energy unit E∗ = ~2k2
F /2m∗, and the length unit a∗ = 1/kF .

Therefore we can obtain the dimensionless Schrodinger equation describing the electronic

transport through the open quantum ring, given by

[
−

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+ i2α

∂

∂θ
− α2

))
+ Vr(r)

]
ψr(r, θ) = Eψr(r, θ) (2.63)

Eq. (2.63) can be rewritten as

(
r2 ∂2

∂r2
+ r

∂

∂r
+ r2 (E − Vr(r))

)
ψr(r, θ) = −

(
∂2

∂θ2
+ i2α

∂

∂θ
− α2

)
ψr(r, θ) (2.64)
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Assuming the eigenfunction can be written as

ψr(r, θ) = R(r)Θ(θ) (2.65)

Substituting Eq. (2.65) into Eq. (2.64), we have

1

R(r)

(
r2 ∂2

∂r2
+ r

∂

∂r
+ r2 (E)

)
R(r) = − 1

Θ(θ)

(
∂2

∂θ2
+ i2α

∂

∂θ
− α2

)
Θ(θ) (2.66)

First,we let

− 1

Θ(θ)

(
∂2

∂θ2
+ i2α

∂

∂θ
− α2

)
Θ(θ) = d2 (2.67)

and assume

Θ(θ) =
1√
2π

ei(m′−α)θ (2.68)

Substituting Eq. (2.68) into RHS of Eq. (2.67):

− 1

ei(m′−α)θ

(
∂2

∂θ2 + i2α ∂
∂θ
− α2

)
ei(m′−α)θ

= − 1

ei(m′−α)θ

(
(i (m′ − α))2 ei(m′−α)θ + i2α (i (m′ − α)) ei(m′−α)θ − α2ei(m′−α)θ

)

= − (
(i (m′ − α))2 + i2α (i (m′ − α))− α2

)

= − (− (m′2 − 2m′α + α2)− 2m′α + 2α2 − α2)

= − (−m′2) = m′2

(2.69)

hence, d2 = m′2.

The boundary condition of Θ(θ) is

Θ(θ) = Θ(θ + 2π) (2.70)
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Substituting Eq. (2.68) into Eq. (2.70), we can obtain

ei(m′−α)2π = 0 (2.71)

Hence, m′ − α = 0,±1,±2 · · · ±M .

Then Eq. (2.66) can be rewritten as

1

R(r)

(
r2 ∂2

∂r2
+ r

∂

∂r
+ r2 (E)

)
R(r) = m′2 (2.72)

For any m′

(
r2 ∂2

∂r2
+ r

∂

∂r
+ r2E −m′2

)
Rm′(r) = 0 (2.73)

Now, let k =
√

E and t = kr, so Eq. (2.73) become

∂2Rm′(t)

∂t2
+

1

t

∂Rm′(t)

∂t
+ (1− m′2

t2
)Rm′(t) = 0 (2.74)

Eq. (2.74) is the form of bessel equation, hence Rm′(kr) give by

Rm′(kr) =





cm′ (Jm′(kr) + αm′Nm′(kr)) ,m′ = 0,±1,±2 · · · ±M

cm′ (Jm′(kr) + αm′J−m′(kr)) , other
(2.75)

where Jm′(kr) and Ym′(kr) are the Bessel functions of first and second kinds, respectively.

Here Rm′(kr) satisfies the boundary condition Rm′(kr1) = 0, and hence

αm′ =




−Jm′(kr1)/Nm′(kr1),m

′ = 0,±1,±2 · · · ±M

−Jm′(kr1)/J−m′(kr1), other
(2.76)
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Let m′ − α = m = 0,±1,±2, L,±M , so Eq. (2.75) become

Rm′(kr) =





cm (Jm+α(kr) + αmNm+α(kr)) ,m + α = 0,±1,±2 · · · ±M

cm

(
Jm+α(kr) + αmJ−(m+α)(kr)

)
, other

= cmφm+α(kr)

(2.77)

Hence the wavefunction which in the region of ring is written as

ψr(r) = R(r)Θ(θ) =
1√
2π

M∑
m=−M

cmφm+α(kr)eimθ (2.78)

Utilizing this equation, it is easy to calculate the total transmission and reflection proba-

bilities of the open ring system by matching boundary condition which is the same as the

method in Sec. 2.1.
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Chapter 3

Result and discussion of open

quantum ring without magnetic field

We already derive the transmission probabilities of an open quantum ring (OQR) match-

ing method. And the electronic transmission and the electron wave function can be exactly

calculated numerically. In this chapter, we would like to show our results of electronic

transport through an OQR of r2 = 2, r1 = 1, s = 1. And then we vary the angle (θ) of

the two lead and the channel size of ring, the result are shown in the section 3.2. Finally,

we approach our result to 1-D case.

3.1 Mesoscopic transport properties of an open quan-

tum ring

The coefficient of electron transmission through the open quantumnh ring in zero magnetic

field was calculated in Chap.2. As shown in Fig. 3.1, the transmission probabilities T

(solid line) as a functions of the momentum of injected electron for an OQR of r2 = 2,

r1 = 1, s = 1 and θ = π. Here, we just consider the momentum of the range from 1 to

2, only first subband contributes to the transmission. The solid line refers transmission

probabilities and the dashed line refers the momentum of confined states in the closed
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ring. Here, n and m are the radial and angular quantum number, respectively.

In Fig. 3.1, for the solid line, there are seven peaks and dips, the maximum value is

one for each peak and the minimum value of dip is form of envelope. And the momentum

of those peaks are 1.032, 1.127, 1.266, 1.434, 1.618, 1.80 and 1.96, the momentum of

those dip are 1.063, 1.185, 1.344, 1.529, 1.723, 1.929 and 1.977. And for the dashed line,

there are eight confined states of close ring, we denote them as (n,m) = (1,1)(1,2)...(1,8),

respectively.

From the Fig. 3.1, we observe that the peaks are sharper and they also match better

with confined states when the momentum k are near the subband of lead (k=1,2). And

we can found that there are eight dashed line, but there are only seven peaks, it seems

that one peak in the transmission is missing. In order to understand the incident electron

behavior in space, hence we plot wave function probability at the maximum value of

peak. They are shown in Fig. 3.2. Comparing Fig. 3.2(a)-(g), we can found that the wave

function at k= 1.032(a), 1.127(b), 1.266(c) and 1.344(d), the number of waves in the ring

are 1, 2, 3 and 4, respectively. And directly perceived through the senses, it seems that the

number of waves in the ring at k=1.618(e) shall be 5 by sense, but from the Fig. 3.2(e),

we can see that there are 6 waves in the ring at k=1.618. So we can know that the peak

of missing shall between k=1.4339 and 1.618. And the scale of wavefunctioin probability

in the ring for k=1.032 and 1.8 are larger than lead. However, it seems that the electron

like to stay in the ring relatively.

3.2 Tuning of the Fano resonance in an open quan-

tum ring

3.2.1 Effect of symmetrically to asymmetrically

Fano structure in the transmission of an OQR can be found in two case which the two lead

are configured asymmetrically and the channel size of ring is changed. First, we consider
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Figure 3.1: The solid line refers transmission probabilities as functions of the electron
momentum for an OQR of r2 = 2, r1 = 1, s = 1 and θ = π. The dashed line refers the
momentum of confined states in the closed ring. The n and m is the radial and angular
quantum number, respectively.
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Figure 3.2: The wave function of k=1.032(a), 1.127(b), 1.266(c), 1.434(d), 1.618(e), 1.8(f),
1.96(g) for r2 = 2, r1 = 1, s = 1 and θ = π
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the case that two lead are configured asymmetrically, that is shown in Fig. 3.3 From

Fig. 3.3, we see that the typical phenomenon of Fano structures in which the transmission

probabilities manifests downward dips to zero and soon rise up to one, when we vary the

angle (θ) of two lead. And those Fano structures are near confined states of the closed

ring. When θ are varied continuously, the Fano peak seems to become broader. Hence, we

can tune the Fano resonance by varying the geometric parameters such that the quantum

ring is either symmetric to asymmetric.
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Figure 3.3: Current transmission as a function of the electron momentum of the OQR of
r2 = 2, r1 = 1, s = 1, for different angle θ = π(a), 0.99π(b), 0.98π(c), 0.97π(d), 0.96π(e),
0.95π(f).
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3.2.2 Effects of varying channel size of ring

According to section 3.2.1, we can tune the Fano peak by varying the angle of two lead.

But in the experiment, it’s hard to varying the angle of lead. So we try to vary other

parameter to see if there are still Fano peaks. Consequently, we find that Fano peak occur

as varying the channel size of ring. Then, we vary the channel size of ring by changing

r1 from 1 to 0.95 and fix the r2 = 2 and s = 1. The transmission probability for each

r1 is shown in Fig.3.2.2. Comparing Fig. 3.4(a)-(f), we can see that the Fano structures

appear at the momentum after k=1.9 in Fig. 3.4(d). Before k=1.9 in Fig. 3.4(a)-(f), the

profile just shift forward to low momentum. And the shift of profile just like the shift

of the confined momentum of close ring (dashed line) before k=1.9 in Fig. 3.4(a)-(f). It

is interesting to see if there is any significant difference before k=1.9 and after k=1.9 in

Fig. 3.4. Consequently, we observe in Fig. 3.4 that the Fano structures appear near the

confined state (1,8) of close ring in Fig. 3.4(d)-(f). And the different of Fig. 3.4(a)-(c)

and (d)-(f) is that the confined state (1,8) is beyond the (2,0) in Fig. 3.4(d)-(f) but not in

Fig. 3.4(a)-(e). And the Fano peak become shaper, when we vary the channel size from

1 to 0.95.

3.3 Approach to 1D rings

Here, we approach our result to 1D case and we just consider energy below the second

subband and that particle propagates only within the first subband. In order to comparing

more convenient, we use the longitudinal wave number k// =
√

E − E0
CR instead of the

momentum k, where E is total energy and E0
CR is the energy at confined state (1,0) of

close ring. And we define λ// = 2π/k// as the wavelength, and L1,2 = Rθ1,2 as armlengths,

here R = (r2 + r1)/2 and θ1,2 are the angles shown in Fig. 2.1. We compare the two cases

of broad channel (R/s = 3.5) and narrow channel (R/s = 9.5), where s is the width of

ring. The transmission venues (L1 + L2)/λ// at symmetrical arms (L1 = L2) in the ring

is shown as Fig. 3.5. Form Fig. 3.5, it are seen that resonance peaks become shaper and
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Figure 3.4: The solid line is transmission probabilities as functions of the electron mo-
mentum of the OQR of r1 = 1, s = 1 and θ = π, for different r2 = 1(a), 0.99(b), 0.98(c),
0.97(d), 0.96(e), 0.95(f).

28



CHAPTER 3. RESULT AND DISCUSSION OF OPEN QUANTUM RING
WITHOUT MAGNETIC FIELD

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

(L
1
 + L

2
 )/λ 

//

T
ra

ns
m

is
si

on

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

(L
1
 + L

2
)/λ 

//

T
ra

ns
m

is
si

on

(a)

(b)

Figure 3.5: The solid line is transmission probabilities as functions of (L1 + L2)/λ// of
the OQR of θ = π, for (a)R/s = 3.5, (b)R/s = 9.5
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shift toward the left to be close to confined state of close ring , when the channel narrow

down. And the confined states of close ring are dashed line in Fig. 3.5, and those dashed

line are very close (L1 + L2)/λ = integer. It seems that the number of waves in the ring

is n when (L1 + L2)/λ = n.

In section 3.2, we found that the Fano structure can be tuned by change geometry

symmetric. Here, we would like to see the change of the Fano structure as approaching to

1D case. Fig. 3.6, shows the transmission probabilities for the case of asymmetrical arms.

From Fig. 3.6, it is seen that the Fano structure become very sharp when the channel is

narrower. But the Fano structures do not shift their position when the channel narrows

down. This is different with the resonance peaks.
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Figure 3.6: The solid line is transmission probabilities as functions of (L1 + L2)/λ// of
the OQR for (a)R/s = 3.5, L1/L2 = 0.9 (b)R/s = 9.5, L1/L2 = 0.9, (c)R/s = 3.5,
L1/L2 = 0.7, (d)R/s = 3.5, L1/L2 = 0.7
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Chapter 4

Numerical results with finite

magnetic field

4.1 Magnetic field character on quantum transport

Figure 4.1 shown the transmission probability as a function of Φ/Φ0 for an AB ring,

the system parameters r2 = 2, r1 = 1, θ = π and k = 1.182, where Φ is flux through

the ring section area and Φ0 = h/2e is flux quantum. Form Fig. 4.1 we see that T

changes periodically with magnetic field, which is basic characteristic of the AB ring.

The oscillating period is 2Φ0 = h/e. This is known as the (h/e) AB effect since one cycle

of oscillation corresponds to a change in the enclosed magnetic flux (Φ = BS),where S is

the area of the ring. Moreever we can see that the peak of periodic oscillation may split

into two peaks at Φ/Φ0 ≥ 16 see Fig. 4.1, then the periodic oscillation are disappearing

at large magnetic field.

4.2 Momentum characteristics on quantum transport

The Fig. 4.2 show that the transmission of an OQR in weak magnetic field (Φ0/Φ =

0.48, dashed-dot line) and in zero magnetic field (Φ/Φ0 = 0, solid line). Comparing the
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Figure 4.1: The transmission probability as a function of Φ/Φ0 for an AB ring, the
parameters r2 = 2, r1 = 1, θ = π and k = 1.182.
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transmission of an OQR in weak and zero magnetic field, we can find that there are 14

peaks in weak magnetic filed and 7 peaks in zero field. It is shown that each peak has

been splitted into two peaks when weak magnetic field is applied. And it can be also seen

that there are Fano structure, locate at the bound states of a corresponding close ring.

For the case of low magnetic field, if we change the angle θ between the two leads of

connected from the OQR, the transmission characteristics are shown in Fig. 4.3. From the

Fig. 4.3, it is seen that the value of dip with transmission zero are increased by varying θ

from π. However other shallow dips are decreased. Interestingly the Fig. 4.4 shows that

the variation of transmission of OQR with high magnetic field, when we change θ. Then

it show that those transmission in Fig. 4.4 only change a little as varying the angle θ.

Hence, it seems that the interference effect are not obvious at large field.
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Figure 4.2: The transmission of an OQR in weak magnetic field (Φ/Φ0 = 0.48, dash-dotted
line) and in zero magnetic field (Φ/Φ0 = 0, solid line)
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Figure 4.3: The transmission of an OQR r2 = 2 and r1 = 1 in lower magnetic field
(Φ/Φ0 = 0.48)for different θ = π(solid line), 0.96π(dotted line), 0.92π(dashed line).
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Figure 4.4: The transmission as a function of momentum k. The parameters are r2 = 2,
r1 = 1,and k = 1.182 in higher magnetic field (Φ/Φ0 = 9.87)for different θ = π(solid line),
0.97π(dash-dotted line), 0.8π(dashed line).
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Chapter 5

Numerical results with magnetic flux

5.1 Comparison with the 1D result

In this chapter, we show the result of an open quantum ring with a magnetic flux in

center of ring. First, we compare our schemes with the 1D calculation in a chosen type of

system. The way that we calculate the transmission probability for a 1D ring connected

to two leads, which is the simplest multiply connected 1D system, using our connection

schemes at the three-leg junction (Y junction) [23].

Fig. 5.1 shows the transmission probabilities obtained by different schemes. We have

considered different flux Φ/Φ0 = 0− 2.0, and in each case we have presented the result of

the 1D scheme with r = 3.5 and the results of the Q1D scheme with r2 = 4 and r1 = 3.

It is seen that in all cases, the difference between the Q1D and 1D results is slight in the

scale of this graph. There are good comparisons between the results due to Q1D scheme

and the 1D calculation.

5.2 Magnetic flux character on quantum transport

Fig. 5.2 presents the transmission probabilities of open quantum ring with r2 = 2, r1 = 1

and k = 1.11. As expected the transmission show Aharonov-Bohm oscillations. From
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Figure 5.1: The transmission probability T is plotted versus the dimensionless longitudi-
nal wave number in Q1D scheme (r2 = 4, r1 = 3, solid line) and 1D(r = 3.5, dash line)
scheme [24], for different flux Φ/Φ0 =(a)2.0, (b)1.6, (c)1.2, (d)1.0, (e)0.8, (f)0.4, (g)0.
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Fig. 5.2, the oscillating period is Φ/Φ0 = 2(Φ0 = h/2e). Moreover, there are two kinds of

strange dips. One is the value of dip equals zero and another is that the minimum value

of dip is form of envelope.

Then we choose some dips and peaks, and plot wave function probability at the max-

imum value of peak and the minimum vale of dip. They are shown in Fig. 5.3. For peaks,

the wave function at Φ/Φ0 = (a)12.93 and (c)14.97 are seem that electron like to exit from

lower branch and stay on upper branch. On the contrary, the wave function at Φ/Φ0 =

(b)13.21 and (d)15.21 seem that like to exit from upper branch and stay on lower branch.

For dips, the wave function probability at upper and lower branch for Φ/Φ0 = (e)15.09

and (f)14.1 are symmetry. It differs from the wave function at peaks.
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Figure 5.2: The transmission probability as a function of Φ/Φ0 for an OQR with a mag-
netic flux in center of ring , the parameters r2 = 2, r1 = 1, θ = π and k = 1.11.
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Figure 5.3: The wave function of Φ/Φ0= (a)12.93, (b)13.21, (c)14.97, (d)15.21, (e)15.09,
(f)14.1, for r2 = 2, r1 = 1, s = 1, k = 1.11 and θ = π
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Chapter 6

Conclusions and future work

Throughout the thesis, the quantum transport properties through a OQR are calculated

and numerically analyzed. We have found that the resonant peaks correspond to the

bond states of a close ring. Moreover, we can tune the Fano structure from broad to

sharp by varying the symmetry of OQR and turn the Fano structure from sharp to broad

by widening the channel width of the ring. Then approaching to 1D case, the resonance

peaks become shaper and shift toward the left to be close to bound of close ring, when

the channel narrow down. We have found that the AB effect when the external field are

applied in the ring and the oscillating period Tp = 2Φ0 = h/e. It should be noted that

the periodic oscillations are disappear at high magnetic field. If we change the angle θ

of two lead for low and high magnetic field, we can found that it is sensitive to changing

angle θ for small magnetic field but not for large magnetic field. In the thesis, a number

of interesting phenomena on quantum transport through an OQR are observed. For the

case of zero magnetic field, we have found that the transmission resonances a function of

energy has only one missing to match with the bound-state levels of a close ring. The

physics behind is still not very clear, and our group member will make diligence on the

detail transport mechanisms through the OQR systems. Further studies such as spin-orbit

interaction, and time-dependent modulation will be studied in the near future.
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