Contents

Abstract (in Chinese)		
Abstract		
Acknowledgements		
Contents		
Table Captions		
Figure Captions	vii	
Chapter 1 Introduction	1	
1.1 Recent Development of VCSELs	1	
1.2 Advantages and Drawbacks of VCSELs	2	
1.3 VCSELs Applications	4	
Chapter 2 Fundamental Design Consideration of VCSELs	9	
2.1 Typical Lateral Confinement Schemes of VCSELs	9	
2.1.1 Air-Post Structures	9	
2.1.2 Etched/Regrown Buried Heterostructures	10	
2.1.3 Ion-Implanted Structures	11	
2.1.4 Oxide-Confined Structures	12	
2.2 Threshold Condition	12	
2.2.1 VCSELs with Bulk Active Layer	12	
2.2.2 VCSELs with Quantum-Well Active Layer	14	
2.3 Design and Analysis of Distributed Bragg Reflector	17	
2.3.1 Transfer Matrix Method	18	
2.3.2 Simulation Results of DBRs Reflectivity	19	
Chapter 3 Experiments	29	

iv

3.1	Fabrication Procedures		
3.2	Measu	rement Setup	33
Chaj	pter 4	Experimental Results and Discussion	40
4.1	The C	W L-I-V Characteristics	40
	4.1.1	The Dependence of VCSEL Performance on Device Size	41
	4.1.2	Slope Efficiency and Wall-Plug Efficiency	42
4.2	Transv	erse Mode Behavior	43
	4.2.1	Influence of Spatial Hole Burning (SHB) and Self-Focusing Effect	
		on the Transverse Modes	43
	4.2.2	Kink and Slope Efficiency in L-I Curve	45
4.3	Influer	ace of Temperature on VCSEL Performance	46
	4.3.1	Thermal Roll-Over Effect	46
	4.3.2	Determination of Active Region Temperature	47
	4.3.3	Influence of Temperature on Threshold Current and Output Power	48
Cha	pter 5	Conclusion	63
Refe	rences		65

v

Table Captions

- **Table 2.1**Material parameters used in the calculation of the room temperature threshold
current density of GaAs/AlGaAs VCSELs.27
- **Table 2.2**The parameters of our ion-implanted VCSEL structure.28

Chapter 1

- **Figure 1.1** Schematic drawing of (a) an edge-emitting laser and (b) a VCSEL. 6
- Figure 1.2Scheme of a parallel free-space interconnection using VCSEL array and
photodetector array integrated with microlens array.7
- Figure 1.3 (a) A WDM optical data link transmits over a multimode optical fiber; (b) scheme of a monolithically integrated multiple wavelengths VCSEL (transmitter) and a channel-matched wavelength-selective narrowband photodetector array (receiver).

Chapter 2

Figure 2.1	Structures of (a) air-post, (b) etched/regrown, (c) ion-implanted, (d) oxide	Э-	
	confined VCSELs. 2	1	
Figure 2.2	Schematic diagram of VCSELs with uniform gain structure. 2	22	
Figure 2.3	Scheme of a MQW with a separate confinement heterostructure. 2	22	
Figure 2.4	Threshold current density J_{th} and threshold current I_{th} against the	ie	
	diameter of active region 2W for VCSELs. 2	3	
Figure 2.5	The dependence of threshold current density J_{ih} on the number of quantum	m	
	wells n_w with different values of reflectivity R. 2	23	
Figure 2.6	Wave vectors and their associated electric fields for the case of normal		
	incidence on a single dielectric layer. 2	24	
Figure 2.7	The reflection spectra of (a) top 20.5 pairs DBR, and (b) bottom 30.5 pairs		
	DBR. 2	25	
Figure 2.8	The reflection spectrum for 850 nm VCSEL with 20.5 pairs top-DBR an	d	
	30.5 pairs bottom-DBR.	6	
Chapter 3			

Figure 3.1 The process procedures of the device with (a) SiO₂ deposition, (b) top and bottom metal evaporation, (c) ion implantation, and (d) bonding pad metal

	evaporation.	34
Eigung 2.2	-	
Figure 3.2	Top view sketch of the device.	38
Figure 3.3	Probe station measurement setup.	39
Chapter 4		
Figure 4.1	Schematic diagram of typical L-I-V characteristics of a VCSEL.	50
Figure 4.2	The continuous wave I-V characteristics of the devices with different ac region diameter.	ctive 50
Figure 4.3	The series resistance versus active region radius.	51
Figure 4.4	The continuous wave L-I characteristics of the devices with different ac region diameter.	ctive 51
Figure 4.5	The threshold current density and threshold current versus the active regarea.	gion 52
Figure 4.6	Operating current range and maximum output power versus the active regarea.	gion 52
Figure 4.7	The spatial hole burning effect starts with (a) the initial gain above threshold, (b) the increasing intensity of light reduces the gain in the middle along with the injection current, and (c) the gain in the surroundings eventually above threshold and the high order mode starts to lase. 53	
Figure 4.8	(a) The self-focusing effect, and (b) the kink of the L-I curve correspond to the transverse mode formation.	ding 54
Figure 4.9	The slope efficiency in relation to the kink in the L-I curve.	55
Figure 4.10	The emission spectra in the vicinity of the kink in L-I curve.	56
Figure 4.11	(a) The scheme of the alignment between the gain peak as well as the resonance mode, and (b) the thermal roll-over effect.	e FP 57
Figure 4.12	The electroluminescence spectrum of a 12 μ m diameter VCSEL at conscurrent 10mA, as a function of temperature from 20°C to 80°C.	stant 57
Figure 4.13	The electroluminescence spectrum of a 12 μ m diameter VCSEL at var bias current values at the heat-sink temperature of 25°C.	ious 58
Figure 4.14	The measured FP mode wavelengths at various bias current values.	58

- Figure 4.15 (a) The CW L-I-V characteristics of a 12 μm diameter VCSEL at a constant heat-sink temperature of 25°C, and (b) the corresponding active region temperature at various current.
- **Figure 4.16** The L-I characteristics of a 12 μ m diameter VCSEL under CW current operations for various heat-sink temperatures from 20°C to 90°C. 60
- Figure 4.17 (a) The variation of threshold current for various heat-sink temperatures, and (b) the operating current range and maximum output power, as functions of the heat-sink temperature.
- **Figure 4.18** The slope efficiency, as functions of the heat-sink temperature. 62

