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在多數位訊號處理器系統上進行高效率無線 

通道模擬之研討 

 

研究生：李建興                指導教授：林大衛 博士 

 

國立交通大學電機資訊學院 電子與光電學程(研究所)碩士班 

 
 

摘 要 

 
 

數位訊號處理器是個可編程以完成達到不同功能性的有用工

具。我們想要改進一個已實現於數位訊號處理器上的無線通道模擬

器。其工作平台係使用桌上型電腦為主控中心，加插一塊 Innovative 

Integration 公司的 Quatro6x DSP 板，該 DSP 板共裝置四顆德州儀

器公司出品的 TMS320C6x 數位訊號處理器。此模擬系統主要是利用其

中三顆加以實現，分別為：一顆依據 3GPP WCDMA 上行傳輸之規格的

調變器，一顆幾種不同通道的模擬器，及一顆接收濾波器。然而，有

三個問題尚待釐清解決。第一，這三顆 DSP 程式在這個工作平臺上執

行需按特定順序，難以同時啟動。第二，各訊號處理元件均可達到即

時速度，但卻在其連接後的多處理器系統上變慢。第三，由於只有浮

點格式的基本數學函數庫可用，通道係數尚未完全使用定點方式產

生。在本篇論文中，我們改進這三個問題。首先，我們將工作平台更

新到特定版本組合的一個新平台，解決了啟動的問題。然後，我們提

出一個應用雙緩衝(double buffering)技巧的管線化(pipelining)

架構，改善了速度的問題。此外，我們運用 CORDIC 演算法，以定點

算術運算四個基本數學函數，避免了浮點的問題。總之，我們找出在

多數位訊號處理器平台上順利進行高效率無線通道模擬的一些方

法，然而，WCDMA 的詳盡探討並非本文所涉及。 
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Abstract 
 
 
 

The DSP is a useful tool that is programmable to achieve different 
functionalities. We want to improve a previously developed DSP-based wireless 
channel simulator. The existing simulator includes a 3GPP WCDMA modulator, 
several kinds of channel simulator and a matched filter. A desktop PC acts as the 
controller, and an Innovative Integration’s Quatro6x DSP-embedded card is employed 
in the system. Four Texas Instruments’ TMS320C6x DSP chips are placed on the 
board. Three chips used to accomplish the system, one for modulator, one for channel, 
and one for the matched filter. However, three problems remained to be addressed. 
Firstly, synchronized execution of the three programs was not smooth on the platform. 
Secondly, real-time performance degraded on the connected multiprocessors DSP 
system. Thirdly, fixed-point generation of channel coefficients was not available yet 
for lack of fixed-point library. These three main topics are presented in this thesis. To 
begin, we do migration to a specified new platform for first problem solution. Then, 
we propose a pipelining structure applying double buffering scheme for second 
problem solution. Furthermore, we apply CORDIC algorithm to evaluate elementary 
functions in fixed-point for third problem solution. In a word, we seek out several 
methods to run an efficient wireless channel simulator smoothly on a multiprocessor 
platform, but a close study of WCDMA is not our concern. 
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Chapter 1

Introduction

Current generations of telecommunications infrastructure require real-time performance.

To meet the demands of next generation equipment, such as third generation (3G) cellular

mobile radio communication system, designers must seek methods to improve hardware

and software efficiency. This thesis is intended as an investigation of the methods.

With the advent of applications such as 3G wireless system implementation that re-

quire intensive real-time computation, distributed processing systems consisting of sev-

eral interconnected DSPs are a useful prototyping tool [38]. It comes within the scope of

this thesis to run an efficient 3G wireless channel simulator smoothly on a multiprocessor

platform, but a close study of 3G topic is not necessary for our present concern.

Fig. 1.1 gives a simple block diagram of the overall WCDMA system. A large number

of studies has been made in a team project reported in [7], [11], [23], [24], and [32]. Four

DSP boards have been used in the work, three fixed-point ones called Quatro62 and one

floating-point one called Quatro67. The Quatro6x is made by Innovative Integration (II).

It houses four Texas Instruments (TI)’s TMS320C6x01 processors in a symmetric mul-

tiprocessing relationship with interprocessor communication links. Basically, the imple-

mented individual functional blocks on the DSP processors can reach real-time computa-

tion separately. However, the interprocessor data transmission was done in a block-based,

event-driven fashion. Therefore, a more efficient implementation is desirable.

The components shaded in Fig. 1.1 belong to an implemented wireless channel simu-

1



Fig. 1.1: Block diagram of WCDMA system for one-way transmission (from [32]).

lator on Quatro67 platform. Although a great deal of effort has been made in the imple-

mentation by Tsai [32], several issues remained to be addressed. Firstly, synchronizing

execution of multiprocessor programs was not smooth on the platform. The individual

DSP programs needed to be executed in a particular order, that is, they could not be

loaded to the DSPs simultaneously. Secondly, real-time performance degraded on the

connected multiprocessor DSP system. The actual run time increased unexpectedly after

we connected the individual DSP programs together on the Quatro6x DSP board. It was

an issue also faced by other project team members mentioned previously. Thirdly, fixed-

point generation of channel coefficients was not available yet. The generation of channel

coefficients still depended on floating-point mathematic functions. The three issues are

addressed in this thesis.

This thesis is organized as follows. Chapter 2 reviews briefly the implemented wire-

less channel simulator. In chapter 3, we introduce the DSP environment and deal with syn-

chronizing execution problem. Chapter 4 identifies efficient multiprocessing, including

pipelining-512 structure, real speed observation, and double-buffering skill. We discuss

elementary function evaluation in fixed-point arithmetic, such as CORDIC, in chapter 5.

Finally, chapter 6 contains the conclusion and potential future work.

2



Chapter 2

Overview of An Existing DSP-Based
Wireless Channel Simulator

2.1 Introduction to the Existing Simulator [32]

A DSP-based wireless channel simulator has been implemented by Tsai [32]. This im-

plemented system employs a collaborative computing structure, which is composed of a

desktop PC and a DSP-embedded plug-in card. There are four DSP chips on the DSP-

embedded card, called DSP0 to DSP3. Three chips are used to accomplish the system.

DSP0 acts as the channel simulator. The function of DSP1 includes spreading, scram-

bling coding and pulse-shaping filtering. The matched filter is in DSP2. Fig. 2.1 shows a

block diagram of the modulator, channel simulator and receiver filter. The modulator is

used to generate the transmitted signal. The data after framing operation (not shown in

the figure) is input into the system and spread according to the 3GPP standard [3], which

includes channelization coding, scrambling coding, and the pulse-shaping filtering. Then

the data are passed through the channel, such as static and fading channels. Besides the

multipath effect, which is defined in the 3GPP standard [1], multi-user interference also

is considered. Finally, the noisy, distorted signal is received through the matched filter.

In the existing simulator [32], DSP processors are used to implement 3GPP WCDMA

transmission signal processing and simulate the wireless channel for real-time experi-

ments. However, we want to improve the existing simulator for several remained issues.
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Fig. 2.1: Block diagram of the implemented system (from [32]).

2.2 WCDMA Uplink Transmission Scheme [32]

To begin, we first introduce the transport channels. The time durations are defined by start

and stop instants, measured in integer multiples of chips. A radio frame is a processing

duration which consists of 15 slots. The length of a radio frame corresponds to 38400

chips. A slot is a duration which consists of fields containing bits. The length of a slot

corresponds to 2560 chips.

2.2.1 Spreading Modulator

The spreading modulator performs two operations. The first, called channelization, trans-

forms every source data symbol into a number of chips, thus increasing the bandwidth of

the signal. The second operation, called scrambling, distinguishes different users in the

receiver.

Channelization codes

With the channelization, data symbols on I- and Q-branches are independently multiplied

with an orthogonal variable spreading factor (OVSF) code. The cross-correlation between

orthogonal codes is zero for synchronous transmission.
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Fig. 2.2: Frame structure of uplink DPDCH/DPCCH (from [2]).

Scramble codes

After the channelization operation, the I- and Q-branch signals are multiplied by the

complex-valued scrambling code. The code can be either a short or a long code. The

required number of codes depends on the expected traffic load and spectrum efficiency.

There are 224 different uplink scrambling codes with different initial values for the gen-

erating registers. The long scrambling sequences Clong,1,n and Clong,2,n are constructed

from sum of 38400 chips segments of two binary m-sequence generated by means of

two generator polynomial of degree 25. Fig. 2.3 shows the configuration of uplink long

scrambling sequence generators.

Control of SNR

To define the power level of input data, we have to compute the signal energy in the overall

system and find how to adjust the power to achieve different SNR. The SNR at matched

filter output for DPDCH is:

SNRd ,
Ed

σ2
v

=
4A2 · SF 2 · β2

d

2 · SF · σ2
=

2A2 · SF · β2
d

σ2
,
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Fig. 2.3: Configuration of long scrambling sequence generator (from [3]).

whereA is the amplitude of the transmitted signal, σ2 is the noise variance on each quadra-

ture branch at the input to the matched filter. For DPCCH, the SNR is:

SNRc ,
Ec

σ2
v

4A2 · 2562 · β2
d

2 · 256 · σ2
=

2A2 · 256 · β2
c

σ2
.

Hence we can adjust the amplitude factor A of the receiver input signal to achieve any

desired SNR.

2.2.2 Pulse Shaping Filter

Due to the requirement of bandwidth-limited transmission, the output chip stream from

the spreading modulator is filtered using a pulse shaping filter (PSF). The 3GPP WCDMA

employs root-raised-cosine (RRC) pulse shaping with roll-off α = 0.22 [1]. It is found

[32] that a 33-taps RRC filter can comply with the spectrum emission mask [1] to beyond

8 MHz. Fig. 2.4 is the comparison. Assume that the subsequent analog filtering can

effectively suppress the signal power above 8 MHz.
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Fig. 2.4: Frequency response of 33-tap RRC filter (4 times oversampled) vs. the emission
mask (from [32]).

At transmitter — the polyphase technique

In the transmitter, for reducing unnecessary computations, Tsai [32] consider a more ef-

ficient implementation to oversample the data and pass them through the PSF. Since only

every Lth sample of the input data is nonzero, a better implementation, shown in Fig. 2.6,

would involve applying filter coefficients only to input values that are nonzero [26].

To illustrate the advantage of Fig. 2.6 compared to Fig. 2.5, we note that if H(z)

is a filter of length N , then we then need NL multiplications and (NL − 1) additions

per unit time originally. On the other hand, we only need L(N/L) multiplications and

L(N/L− 1) additions per unit time for the set of polyphase filters, plus (L− 1) additions

to obtain an output datum. Thus we can obtain significant saving in computation. In DSP

implementation, the rearrangement reduces the required run time and makes the system

complete the signal processing in the limited amount of time [26], [32].

At receiver — the matched filter

At receiver side, a matched filter is designed to provide the maximum signal-to-noise

power ratio at its output in AWGN. Thus the amount of computation is quite large. A
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Fig. 2.5: Interpolated filtering system (from [26]).
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Fig. 2.6: Implementation of interpolated filter after applying the polyphase decomposition
(from [26]).

9-tap RRC filter is chosen [32] to replace the original 33-tap one. We need to perform

15.36M·9 ·2 = 276.84M multiplications in one TI’s TMS320C6701 chip, which is within

the real-time computation ability of the chip.

2.2.3 Channel Model

A communication channel transmits the information-bearing signal to the destination.

The signal is subject to multipath fading and addition of noise, which produce random

variations in the signal. The block diagram of channel simulator is illustrated in Fig. 2.7,

where only a single user is considered. The interference from other users is added to the

result at the output of single user channel. In our simulation, Tsai [32] implement two

kinds of channels, static and fading.
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Fig. 2.7: Block diagram of channel model (from [32]).

Static channel

In this situation, multipaths exist, but the channel coefficients do not change during the

transmission period. The channel coefficient of each path is a complex value given by

αejθ, where α is the power level of the path and can be computed from the definition

of SNR. ejθ = cos θ + j sin θ is the phase of the path. In addition to static multipath

propagation, white Gaussian noise is added.

Fading channel

Fading refers to rapid fluctuation of the amplitude of the channel gain over a short pe-

riod. The power of each multipath is time varying, resulting from moving mobile or

surrounding objects. To approximate Rayleigh fading, Jakes [13] suggests using phases

θn,j = βn + 2π(j − 1)/(N0 + 1) , where j = 1 to N0 is the waveform index. The model

becomes

T (t) =

√

2

N0

∑

[cos βn + j sin βn] cos (wnt+ θn)

where the Doppler frequency wm is given by wm = 2π v
λ
, with v being the velocity of

the mobile and λ being the wavelength of the carrier. In our case, f = 2 GHz and

λ = 3 × 108/2 × 109 = 3
20

m, wn = wm cos
(

2πn
N0

)

, n = 1, 2, · · · , N0, and βn = πn
N0

.

Further discussion will be presented in chapter 5.
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Table 2.1: Propagation Conditions for Multipath (Fading) Environments [1]
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Multipath propagation

Some multipath propagation conditions are defined in [1]. Table 2.1 shows the propaga-

tion conditions that are used for the performance measurements in multipath environment.

A chip in our program is 1/3.84 = 260 ns. After oversampling by 4 times, each symbol

is 260/4 = 65 ns. The conversion of the delay listed in Table 2.1 is computed by

delay symbol = delay/65.

For 976 ns delay, we implement 15 points shift in our program. Except the defined multi-

path propagation listed in the Table 2.1, Tsai [32] also simulate other kinds of propagation

channels including the birth-death and moving propagation conditions [1].

Gaussian noise

The signal transmitted through channel is added white Gaussian noise. Tsai [32] generate

the noise by warping two uniform distribution random sequences. The operation is done

on the PC and the noise is stored in files. After using Matlab functions to compare the

power spectral density between the amount of the noise we store and use repeatedly and

the real situation, we decide to store 298801 complex-valued noise data in files. Further

discussion will be presented in chapter 5.
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Fig. 2.8: The scaling situation of each step (from [32]).

2.2.4 Fixed-Point Simulation

For improving the speed and saving the memory, we have to simulate with fixed-point

numbers instead of floating-point numbers. The mechanism we want is that the data

saved in the internal memory in DSP board should be 16-bit integers. For maintaining the

precision, the method is to shift each data to 16-bit integer. After addition or multiplica-

tion operations, Tsai [32] put them in a longer temporary register to avoid overflow. Tsai

pay attention to the addition of each step during the simulation and make sure the scale on

the two data are the same. The scale of the data in each step is illustrated in Fig. 2.8. The

example in Fig. 2.8 is for static channel with SNR = 10 dB. When we save the data into

memory, we have to measure the maximum value and downshift them to 16-bit integers.

Further discussion will be presented in chapter 5.
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Fig. 2.9: Transmission mechanism in the existing simulator (from [32]).

2.3 DSP Implementation of the Existing Simulator [32]

A DSP-based simulator has been implemented by Tsai [32]. In this existing simulator, one

floating-point Quatro67 DSP board is used to implement to the modulator, the wireless

channel simulator and the receiver. This section shows briefly their key record.

2.3.1 Transmission Mechanism

Fig. 2.9 shows the transmission mechanism of the existing simulator [32]. The transmis-

sion between two chips or two boards is performed by a flexible FIFO-based interpro-

cessor communications network. And if we want to process the data saved in external

memory, we use DMA controller to move data rapidly. Further discussion will be pre-

sented in the following chapter.
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Table 2.2: Memory Arrangement [32]
CPU1 (Modulation) CPU0 (Channel) CPU2 (Matched Filter)

Internal Memory 56.19 Kbytes 63.46 Kbytes 43.28 Kbytes
External Memory 150 Kbytes 1167 Kbytes

(Scramble codes) (Noise)

Table 2.3: Profiles of Scrambling Operation for Different Versions of the Code [32]
Modified Version Total Cycle Computation Time (per frame) Memory Usage
If-else statement 2210565 1.326 × 10−2 s 9.375 Kbytes

Direct multiplication 117974 7.708 × 10−4 s 150 Kbytes
and addition

2.3.2 Memory Arrangement

The existing simulator [32] processes a slot of information each time. In each slot, after

oversampling 4 times, the amount of data are 10240 chips of complex data. For the data

saved as 16-bit integer, the memory size is 40.96 Kbytes. Table 2.2 shows the memory

arrangement for each block in each CPU.

2.3.3 Optimization and Profile

Tsai [32] use software pipelining, loop unrolling, speculative execution replacement and

loop partition to optimize the performance [43], [39]. The profiles of different transceiver

functions are given in Tables 2.3, 2.4 and 2.5, respectively. The measurement tool used

here is the profile, which is provided by TI’s TMS320C6x Code Composer Studio (CCS).

Table 2.4: Profiles of Pulse Shaping Filter Operation for Different Versions of the Code
[32]

Modified Version Total Cycle Computation Time (per frame)
Original 10763220 6.458 × 10−2 s

Loop Unrolling 15727890 9.437 × 10−2 s
Loop Partition 1539691 9.238 × 10−3 s
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Table 2.5: Profiles of Matched Filter Operation for Different Versions of the Code [32]
Modified Version Total Cycle Computation Time (per frame)

33-tap Filter 19340310 1.16 × 10−1 s
9-tap Filter 3032278 1.819 × 10−2 s
9-tap Filter 1391295 8.348 × 10−3 s

(After data declaration)

Table 2.6: Complexity and Performance of Implementation [32]

2.3.4 Complexity and Performance

When we analyze the complexity, we focus on the multiplications in our program. The

amount of data we consider is 38400 chips, equal to a frame. It should be completed in 10

ms. The complexity and final performance are given in Table 2.6. The percentage figures

listed in the table reflect the achievement from the effort spent in optimization by Tsai

[32]. Two demo systems were constructed: the demo subsystem (shown in Fig. 2.10) and

the multi-user system (not shown here).

2.4 Problems with the Existing Simulator

In summary, Tsai [32] implements a 3GPP WCDMA modulator, several kinds of chan-

nel simulators, and a matched filter on the Quatro67 multi-DSP card. For single user

transmission under static channel with multipath propagation, the processing speed of
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Fig. 2.10: Block diagram of the demo subsystem (from [32]).

the modulator and channel simulator can achieve the needed 3.84 Mchips per second.

However, the existing simulator suffers from three problems. They will be improved in

following three chapters respectively.

2.4.1 Synchronizing Execution Problem

In the existing simulator [32], three DSP chips are used to implement the modulator, the

channel, and the receiver respectively. However, the three programs need to be executed

in a particular order. That is, the system fails to download them simultaneously. We study

the synchronizing problem in chapter 3.

2.4.2 Real-Time Multiprocessing Problem

A real-time DSP-based modulator, wireless channel simulator and receiver filter has been

implemented [32]. For example, three individual parts channel, modulation, and matched

filter can run at real-time in about 7.5, 10.2, and 8.3 ms per frame, respectively. We

15



connect three main parts and download them to the Quatro6x DSP board. However, the

actual run time is about 20 ms per frame [32]. But in 3GPP standard, each frame has

length 10 ms. We study the real-time multiprocessing problem in chapter 4.

2.4.3 Fixed-Point Generation Problem

We use the Quatro67 DSP board to simulate the channel model. The TMS320C67x DSPs

on the board do floating-point number operations. With the restriction of the DSP, the

performance of the fading channel is not so good because the programs have to call special

mathematic functions to generate the channel coefficients. There are several methods to

change the generation of the channel coefficients without using special functions which

need branching [32]. These methods are fixed-point methods. We study the problem in

chapter 5.
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Chapter 3

The Quatro6x Multiprocessor Platform

3.1 Overview

Fig. 3.1 shows the DSP board we use. It is an Innovative Integration (II)’s Quatro6x DSP

board which houses four Texas Instruments (TI)’s TMS320C6x DSP chips. A host PC

and several development tools work together with the board to provide a complete design

environment. The development tools are TI’s Code Composer Studio integrated develop-

ment environment, JTAG emulator and II’s Zuma toolset for the Quatro6x. In the existing

simulator [32], three DSP chips are used to implement the modulator, the channel, and

the receiver respectively. However, the three DSP programs need to execute in a certain

specified order. Otherwise, troubles arise. Is it due to the platform or our application?

Therefore, in this chapter, after introduction of the DSP environment, we are concerned

with the interprocessor interaction mechanism, and the problem of synchronizing execu-

tion in the multiprocessor environment.

Fig. 3.1: Innovative Integration’s Quatro6x DSP board (from [18]).
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3.2 Introduction to the Multi-DSP Board

The DSP board we use is Innovative Integration (II)’s Quatro6x DSP board. It houses four

Texas Instruments (TI)’s TMS320C6x01 DSP chips. The four chips may be fixed-point

TMS320C6201 DSPs or floating-point TMS320C6701 DSPs. In the following, Quatro62

and Quatro67 refer to Quatro6x (or Q6x) that houses TMS320C6201 and TMS320C6701

DSPs, respectively, and Quatro6x (or Q6x) refer to either case. This section introduces

the DSP chip and the DSP board.

3.2.1 TMS320C6x DSP Chip

Much description given in this subsection is taken from [41] and [42]). TI’s TMS320C6701

is a 167 MHz floating-point DSP, and TMS320C6201 is a 200 MHz fixed-point DSP.

Fig. 3.2 give their block diagrams. The TMS320C6x (’C6x) DSP processor consists of

three main parts: the core, memory, and peripherals.

DSP core

The DSP core has two paths A and B in which processing occurs. Each data path has a

register file containing sixteen 32-bit registers. Each path has four functional units to per-

form multiplication (.M), addition (.L), branching (.S) and load/store (.D). The functional

units of each data path have a data bus to connect with the registers on the opposite side

of the DSP core so that the units can exchange data.

Internal memory

The ’C6x has 64 Kbytes internal program memory and 64 Kbytes internal data mem-

ory. The program memory is 256 bits wide, having one fetch packet per line. The pro-

gram memory can be configured as a program cache or a directed program memory. The

64 Kbytes of data memory of the ’C6x is organized into two blocks of 32 Kbytes: the

TMS320C6701 have eight banks per block, and the TMS320C6201 have four banks per

block.
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Fig. 3.2: Block diagram of TMS320C6x01 DSP chip (from [33]).
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Peripherals

The ’C6x chip contains several peripherals for communication with off-chip memory,

coprocessors, host processors, and serial devices. Peripherals include a direct memory

access (DMA) controller, power-down logic, external memory interface (EMIF), serial

ports, expansion bus or host port, and timers. EMIF provides the interface for the DSP

core to connect with several external devices, allowing additional data and program mem-

ory space. The DMA controller transfers data between regions in the memory map with-

out passing through the DSP core. The DMA allows the movement of data at the internal

memory, internal peripheral, or the external devices occurs in the background of the DSP

core operation.

3.2.2 Quatro6x DSP Board

Much description given in this subsection is taken from [19] and [7]. Fig. 3.3 shows a

block diagram of the Quatro6x board. Four DSP chips and memories are shown with

connection to peripherals and other interfaces. The Quatro6x is a PCI bus compatible

DSP board housing four Texas Instruments (TI)’s TMS320C6x (’C6x) DSP chips in a

symmetric multiprocessing relationship with interprocessor communication links. The

four chips are called DSP0 to DSP3 (CPU0 to CPU3 or DSP-A to DSP-D) anticlockwise.

The Quatro6x’s features include the following:

Six interprocessor FIFOLinks

The Quatro6x implements a high speed, flexible FIFO-based interprocessor communica-

tion network called FIFOLink. The FIFOLink network allows any on-board processor

to transmit to and receive from any other processor on the card via a high-speed 32-bit

wide FIFO buffered interface. Each of the six available links implements a 512 × 32 bidi-

rectional buffer, and the maximum transfer rate reaches 160 Mbytes/sec on a 200 MHz

Quatro6x board. Further discussion of FIFOLinks will be presented in the following
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Fig. 3.3: Innovative Integration’s Quatro6x block diagram (from [18]).
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chapter.

Three interboard FIFOPorts

The FIFOPort feature provides a means for interboard communications. It provide three

bidirectional buffered 16-bit interfaces which allow external hardware or other II’s DSP

boards to communicate with the Quatro6x. A 512 x 16 FIFO is provided per FIFOPort,

and up to 80 Mbytes/sec writing rate and 57 Mbytes/sec reading rate can be reached. Only

DSP1, 2, and 3 support FIFOPorts, but DSP0 (first processor) has not. More details about

applying FIFOPort can be found in [11].

PCI interface with ASRAM buffer memory

The Quatro6x provides a standard 32-bit PCI bus interface for communication between

the PC and the DSP board. Only first processor (DSP0) can communicate directly with

the host PC through PCI. The ASRAM (asynchronous SRAM) accessible by the PCI bus

interface device. The 128K × 32 ASRAM is used as a buffer for busmaster and slave data

movement on the PCI bus. Further understanding of PCI can be gained from [7].

External SBSRAM and SDRAM memory pools

Optional SBSRAM (synchronous burst SRAM) and 16 Mbytes SDRAM (synchronous

DRAM) memories provide large areas to store data or program. The SBSRAM and

SDRAM are not accessible by the PCI interface and are private to their associated proces-

sor. The processors allow 8-, 16-, and 32-bit wide data movement to and from off-chip

SBSRAM and SDRAM memory.

3.3 Introduction to the Development Tools

Much description given in this section is taken from [19]. The development tools of the

Quatro6x are Code Composer Studio integrated development environment, JTAG emula-

tor and Zuma toolset for the Quatro6x.
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3.3.1 Code Composer Studio

TI’s Code Composer Studio (CCS) is an integrated development environment to provide

editing, compiling, downloading and low level debugging.

When used in conjunction with II’s JTAG emulator, CCS allows to access specific DSP

registers and functions. The PCI-style JTAG debugger is a separate card connecting with

Quatro6x DSP board via cable. Using the JTAG-based, hardware-assisted C/Assembler

source debugger, typical application programs will consist of one or more C (.c), header

(.h), and assembly language (.asm) source files, as needed. Additionally, target program

generation requires use of a linker command file (.cmd) which specifies the memory map

(.map) for the target and optionally includes commands defining the libraries to be linked

into the final application.

The linker command file serves three main objectives. The first objective is to de-

scribe to the linker the memory map of the system to be used, and this is specified by

“MEMORY{...}”. The second objective is to tell the linker how to bind each section of

the program to a specific section as defined by the “MEMORY{...}” area, which is speci-

fied in the “SECTION{...}”. The third objective is to supply the linker with the input and

output files, and options of the linker.

3.3.2 Zuma Software Toolset

The Zuma toolset is a comprehensive collection of tools and libraries used to develop

application programs for several series of II’s DSP boards, which includes:

1. DSP Peripheral Library – supporting on-board peripheral and DSP functions.

2. Dynamic Link Library (DLL) – for host PC software application development.

3. Host Support Applets – for terminal emulation and automatic program download.

4. Sample Applications – showing Host PC as well as target DSP coding techniques.
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UniTerminal and MPO are II’s support applets for terminal emulation and automatic pro-

gram download.

UniTerminal

Each of the development packages is supplied with a terminal emulator application called

“UniTerminal,” which can be used either stand-alone or in conjunction with CCS. If we

invoke the UniTerminal utility and it is successfully started, then UniTerminal will display

“Status: Active. DSP DLL Loaded OK” at the bottom of its client window.

The terminal emulator UniTermimal provides a C language-compatible, standard I/O

terminal emulation facility for interacting with the stdio library running on an Innovative

Integration target DSP processor. The DSP program execution will be halted automati-

cally at the first stdio library call if the terminal emulator is not executing when the DSP

application is run, since standard I/O uses hardware handshaking.

The UniTerminal supports downloading of either COFF (Common Object File For-

mat) files (.OUT) or multiprocessor out (.MPO) files. The .MPO file provides a means

of downloading separate .OUT files to multiple processors simultaneously, which greatly

simplifies the task of synchronizing execution in a multiprocessor environment.

MPO

The MPO editor provides a means of editing the special configuration files used on

the Quatro6x to allow downloading of multiple COFF object files simultaneously. The

UniTerminal applets understand the MPO file format and are able to consume .MPO files

as well as .OUT files as download arguments. Attempting to download an MPO file from

within UniTerminal will cause new code to be loaded onto and executed by all proces-

sors. This is in contrast to the downloading a standard COFF .OUT file, which simply

downloads and executes code on DSP0 (first processor) only.
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TEST example program

One may refer to the target board directory for example programs provided with II’s de-

velopment package for examples of the use of the Quatro6x. These programs are provided

as models for custom user software, and II highly recommends that the user examine these

examples before beginning a first development effort for the target DSP. Full source code

is provided for user inspection and reuse in modified or customer application.

TEST and TEST2 are board level hardware test programs, capable of exercising the

major peripherals on the Quatro6x to double-check proper hardware functionality. As

such, it contains routines for exercising each of the peripherals on the Quatro6x, includ-

ing:

1. FIFOLinks,

2. FIFOPorts,

3. Internal timers,

4. Sync serial ports,

5. Busmastering, and

6. Interprocessor interrupts.

The programs aim to be encompassing in that they try to test as much of the board-level

functionality as possible. The code included for TEST and TEST2 are broken down into

functional pieces which are called separately for each subsystem to be tested, it is possible

to factor out individual tests for use in other programs.

For example, the Quatro6x implements an interprocessor interrupt generation archi-

tecture which allows any one processor to notify any other processor of an event or condi-

tion via an interrupt. The ’C6x has two 32-bit general-purpose timers that is used to time

events, count events, generate pulses, interrupt the CPU and send synchronization events
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Fig. 3.4: FIFOLink block diagram (from [19]).

to the DMA controller. If we want to apply interprocessor interrupt based on internal

timer, it is one of ways to factor out them from TEST and TEST2.

3.4 Interprocessor Interaction

Much description given in this section is taken from [19], [11], and [32]. On the Quatro6x

DSP board, each of the four DSP processors has FIFOLink connected to another onboard

processor. The FIFOLinks are compatible with the DMA controller for high-performance

interprocessor data flow. Both FIFOPort and FIFOLink have several modes that can be

used: single word, full words by DMA and almost full mode. In this section, we introduce

the way to use FIFOLink and DMA functions for communication between two processors.

3.4.1 FIFOLink Functions

Fig. 3.4 shows the details of a single FIFOLink interface connection and its attendant

control and status signals. Each FIFOLink includes a 512-element × 32-bit bidirectional

buffer with full level and interrupt control on data transmission and reception. In this
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subsection, we describe some important functions used in FIFOLink. Before using FIFO

(both the FIFOLink and the FIFOPort), there are some important things to do:

• Include the header file “periph.h.”

• Declare the variables used by FIFO as global variables.

FIFOLink reset

The receive FIFO may be cleared and its condition reset at any time by using the function:

reset fifo link(cpu), cpu ∈ 0, 1, 2, 3.

FIFOLink status

The current fullness of a given link may be determined by reading the status port. The

low-order six bits of the status port shows the status of Full, Empty, and Almost Full from

each device. The FIFO status is defined in Table 3.1. We can use the following function

to get the status:

get fifo link status(cpu), cpu ∈ 0, 1, 2, 3.

FIFOLink data transfer functions using CPU

Data may be moved between memory blocks and each of the FIFOLinks using the func-

tions listed in Table 3.2. These routines are coded as inline functions for speed. The

address of FIFOLinks is defined as Periph->FLink[fifo link(cpu)]. For example, when

we want to transmit a single word “a” to other CPUs through FIFOLink buffer, the used

instruction as follows,

Periph->FLink[fifo link(cpu)]=a; // cpu ∈ 0, 1, 2, 3.

It’s same as fifo link split(cpu,a). If we check FIFOLink status before the transfer, that is,

while(!(get fifo link status(cpu)&Tx FIFO EMPTY);

Periph->FLink[fifo link(cpu)]=a;
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Table 3.1: FIFO Status Definition [19]

C #define Bits # Condition
Rx FIFO FULL 0 Receive FIFO contains 512 elements
Rx FIFO EMPTY 1 Receive FIFO contains 0 elements
Rx FIFO AF 2 Receive FIFO contains more elements than pro-programmed threshold
Tx FIFO FULL 3 Transmit FIFO contains 512 elements
Tx FIFO EMPTY 4 Transmit FIFO contains 0 elements
Tx FIFO AF 5 Transmit FIFO contains more elements than pro-programmed threshold

Table 3.2: FIFOLink Data Transfer Functions Using CPU [19]

C Function Description
fifo link spit(cpu,a) Write a single word to the transmit FIFO using CPU without handshaking
fifo link emit(cpu,a) Write a single word to the transmit FIFO using CPU with handshaking
fifo link eat(cpu) Read a single word from the receive FIFO using CPU without handshaking
fifo link key(cpu) Read a single word from the receive FIFO using CPU with handshaking
fill fifo link() Write up to 512 elements from a memory buffer into the transmit FIFO using CPU
bleed fifo link() Read up to 512 elements from receive FIFO into memory buffer using CPU

This is single word transfer with handshaking, and same as fifo link emit(cpu,a). Similar

examples can be found in II recommended example program, TEST and TEST2.

3.4.2 DMA Transfer Functions

The DMA controller transfers data between regions in the memory map without interven-

tion by the CPU. It has four independent programmable channels, allowing four different

contexts for DMA operation. The DMA channels may be used to transfer data between

any of the FIFOLinks and a memory buffer using the inline functions in Table 3.3. The

call sequences are:

dma mem to port(int channel, int* src, int* dest, int count, int block),

dma port to mem(int channel, int* src, int* dest, int count, int block),

dma copy mem(int channel, int* src, int* dest, int count, int block).

For instance, the function dma copy mem(int channel, int* src, int* dest, int count,

int block) copies “count” words of memory from the source buffer “src” to the destination
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Table 3.3: DMA Data Transfer Functions [19]

C Function Description
dma port to mem() Read up to 65536 words from a FIFO at indicated address into a memory

buffer using specified DMA channel
dma mem to port() Write up to 65536 words from a memory buffer into a FIFO using specified

DMA channel
dma copy mem() Copies up to 65536 words between internal memory and external memory

using specified DMA channel channel

Fig. 3.5: Code for using DMA through FIFOLink (from [32]).

buffer “dest.” This function utilizes the specified DMA channel to perform the move. If

“block” is true, the function waits until the move is completed before processing; other-

wise execution continues immediately after the DMA operation starts. We give an exam-

ple of using DMA through FIFOLink buffer with full level in Fig. 3.5. More details will

be discussed in chapter 4.

29



Fig. 3.6: Transmission mechanism in the existing simulator (from [32]).

3.4.3 Transmission Mechanism [32]

Fig. 3.6 shows the transmission mechanism of the existing simulator [32]. When we ini-

tialize the DSP, the SNR, initial value of scrambling codes and channel case will be set in

the controller PC and downloaded to CPU0. We use FIFOLink single mode transmission

to transmit the information to the modulator in CPU1. The input to modulator from the

last board is received using FIFOPort almost full mode. We pass the output to the next

processor after finishing one slot. The FIFOLink can transmit 512 × 32 bits of integer

per time in full condition. During the process, a stop signal will be transmitted through

all processors. The stop command is given by the first processor or the host PC. We use

single word mode to pass the signal in FIFO.
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Table 3.4: Unlucky Style

noise.h & channel.c data.h & modulation.c CCS MPO
1 short noisereal[298801]={...}; unsigned short input[330]={...}; Can Can

short noiseim[298801]={...}; index=count*10; Run Not
j=(slot*10240+...)%298801; j=(input[330+count]...; Order Begin

2 short noisereal[11]={...}; unsigned short input[330]={...}; Can Can
short noiseim[11]={...}; index=count*10; Run Not
j=(slot*10240+...)%11; j=(input[330+count]...; Finish

3.5 Coding Style

In this section, for multiprocessor programs synchronizing execution smoothly in CCS

and MPO, we compare two coding styles, which is sensitive to array declaration.

3.5.1 Unlucky Style

In the existing simulator, we found an unlucky coding style as shown in Table 3.4. This

unlucky style is to declare array of many elements with assigned value. It exists in two

header (.h) files, one is noise.h and another is data.h. As introduced previously, the ex-

isting simulator stores 298801 complex-valued noise data in the noise.h file. In addition,

there are 330 elements of data stored in data.h for modulation code. However, it is unlucky

to run MPO smoothly or CCS without order.

3.5.2 Lucky Style

As shown in Table 3.5, we found a lucky style, which is to declare array of many elements

without assigned value , or array of less elements with assigned value. It is lucky to run

MPO smoothly. However, it maybe changes largely the implementation of the existing

simulator. In next section, we find out a solution without changing coding.
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Table 3.5: Lucky Style

noise.h & channel.c data.h & modulation.c CCS MPO
3 short noisereal[11]={...}; unsigned short input[33]={...}; Can Can

short noiseim[11]={...}; index=count*1; Run Run
j=(slot*10240+...)%11; j=(input[3+count]...;

4 short noisereal[298801]; unsigned short input[330]; Can Can
short noiseim[298801]; index=count*10; Run Run
j=(slot*10240+...)%298801; j=(input[330+count]...;

3.6 Tools Compatibility

Besides the coding style in previous section, we get a solution in this section ending for

synchronizing execution. Before this, we are suffering from tools compatibility.

3.6.1 Two Issues in MPO and CCS

There are two issues related to Quatro6x platform. One is for MPO, another for CCS.

Fig. 3.7 shows the issue 1 in MPO. Its .OUT or .MPO file could not run by UniTer-

minal only, it seems sensitive to 2 factors: one is .cinit to DRAM or SDRAM, another is

array size less or more than 500.

Fig. 3.8 shows the issue 2 in CCS. It repeated “TP>> internal error: bad type:

TYPE::type qualified()” during compile phase in newer version environment CCS2.0.

However, the internal error exist, but zero error during compiling phase.

We email the two issues to vendors. However, vendor II suggests us migrate platform

to new version. Refer to the appendix for details.

3.6.2 Migration to the New Version

As discussed previously, our application still encountered the two issues on the old ver-

sion platform. When we tried to migrate to new version CCS2.2, or several different

combinations of TI and II toolsets, many additional compile errors or link errors often

happened. It also happened for the vendor’s example program of board-level TEST, and
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Fig. 3.7: A simple code suffering from issue 1 in MPO.
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Fig. 3.8: A simple code suffering from issue 2 in CCS.
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even for a very simple code such as summation from 1 to 100.

The above problem is sensitive to version combinations. After trying various combi-

nations, we got a trouble-free combination without errors as shown above. The combina-

tion is II 2.97 installation CD and TI’s CCS2.1 with patch from CCS2.0. On this platform,

the program can run smoothly through CCS or MPO, that is, our multi-DSP application

can run smoothly without a specifying the startup order through CCS, and the task of

synchronizing execution through MPO can also run smoothly.

Therefore, we do migration to the specified platform without issues of tool compati-

bility. The memory amount may be not large enough to allocate both platform and appli-

cation. Hence one should take care of memory allocation in linker command file to avoid

the problem that memory can not be allocated.
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Chapter 4

Efficient Multiprocessing on Quatro6x

4.1 Overview

In general, when a system is partitioned to n processors, we hope to get n times the speed

compared to using one processor. However, In fact, it is not so simple. For example,

the three individual parts (channel, modulation, and matched filter) in the existing imple-

mentation can be run in real-time in about 7.5, 10.2, and 8.3 ms per frame, respectively,

but the actual run time is about 20 ms per frame after we connect three main parts and

download them to Quatro6x DSP board [32]. Why did the run time increase after they are

connected? In the early part of this chapter, we profile unexpected the time-consumption

to identify the actual performance. Then, in the latter part of the chapter, we point out that

how care must be taken to apply double buffering scheme.

4.2 Structure of DSP Partition

Tsai [32] implement the sequential-10240 structure in the existing simulator. In this

section, we discuss with several structures of DSP partition, such as parallel structure,

sequential-512 and pipelining-512. Then, we devote to implement pipelining-512 struc-

ture.
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Fig. 4.1: Interpolated fitering system with the cascade of pulse shaping filter, channel, and
matched filter.

4.2.1 Parallel Structure

In this subsection, we discuss with parallel structure using polyphase technique. However,

we let go this thinking for keep flexibility and lack of enough FIFOPorts.

Polyphase with three functional blocks?

As described in chapter 2, Figures 2.5 and 2.6 depicts 4-polyphase implementation of the

pulse shaping filter. Similarly, let us consider four functional blocks as shown in Fig. 4.1.

As shown in Fig. 4.2, the question is: can we combine pulse shaping filter with the follow-

ing channel model and matched filter into one block and apply the polyphase technique?

The basic idea is correct, but it loses some flexibility. If we do this, we cannot get the

output signal at the output of each functional block. For example, we cannot get the over-

sampled, transmit-filtered signal since we have combined these three functional blocks

together. Particularly, if we combine all filters into one block, then we lose the flexibility

of simulating different kinds of channels, especially time-varying channels. Since trans-

mitter and receiver filters belong to the transmitter and the receiver, respectively, they will

have to be implemented separately in practical real systems, anyway. Therefore, we keep

the separation of these functional blocks.

Quatro6x DSPs parallel interconnection?

In previously existing implementation, we put the pulse shaping filter, the channel model,

and the matched filter in three different DSPs and connect them in series. If four DSPs

by parallel connection and each DSP included channel model, pulse shaping filter, and
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Fig. 4.2: Polyphase technique applied to the cascade of pulse shaping filter, channel, and
matched filter.

matched filter. Then, the latency maybe almost vanish because no functional block across

interprocessor. However, the scheduling may be a problem. We are not sure whether

parallel interconnection will be better or not, maybe need to check the computational

complexity to see if it is possible. However, due to only three FIFOPorts exist for four

DSPs on Quatro6x board, that is, DSP0 have no FIFOPort, so we let go the parallel

connection thinking.

4.2.2 Sequential Structure

In this subsection, we discuss with sequential structure, which use blocking mode DMA.

Blocking mode DMA

As discussed in chapter 3, the DMA functions we use are

dma mem to port(int channel, int* src, int* dest, int count, int block),

dma port to mem(int channel, int* src, int* dest, int count, int block),

dma copy mem(int channel, int* src, int* dest, int count, int block).
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If “block” is true, the function waits until the move is completed before processing, which

is called the blocking mode DMA.

Sequential-10240 structure

In the previous implementation, Tsai [32] employ sequential-10240 structure to processes

a slot of information each time. It is data amount of 10240 samples per slot. As discussed

previously, the FIFOLink buffer size is up to 512 samples. In the sequential-10240 struc-

ture, the channel model processor repeat blocking mode DMA 20 times through FIFO

to get one slot of input, then compute, and then repeat blocking mode DMA 20 times

through FIFO to output the result. However, the latency is big.

Sequential-512 structure

If we process 512 samples each time, then we hope that we can cut the latency down to

1/20. In addition, we also reduce memory usage. In the sequential-512 structure, each

time the channel model processor use blocking mode DMA to input 512 samples through

FIFO, then compute, and then use blocking mode DMA to output 512 samples through

FIFO.

4.2.3 Pipelining Structure

We propose a pipelining structure, which use non-blocking mode DMA and double buffer.

Partial idea of the structure is from ’C6x pipeline operation [40] and software pipelining

[43], [39].

Terms of pipelining

There are three basic terms common to software pipelining: prolog, loop kernel, and

epilog. The first stage, prolog, contains instructions to build the second-stage loop cycle,

and the epilog stage contains instructions to finish all loop iterations [8]. In our pipelining-

512 structure, we want to pipeline a FIFO-buffered block size of 512 samples. Besides
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this size is different to the instruction cycle of software pipelining, the terms prolog, loop

kernel, and epilog are still available. We give a comparison in Table 4.1.

Non-blocking mode DMA

As discussed previously, the DMA transfer function we use are

dma mem to port(int channel, int* src, int* dest, int count, int block),

dma port to mem(int channel, int* src, int* dest, int count, int block),

dma copy mem(int channel, int* src, int* dest, int count, int block).

If ”block” is false, then program execution continues immediately after the DMA op-

eration starts, which is belonging to the non-blocking mode. There is a while-loop to

check the dma done status inside DMA transfer function. The dma done command re-

ports DMA operation done ready or not yet, which returns true if DMA channel available.

If we use non-blocking mode, this while-loop skips in DMA support library. We could put

the while-loop of checking dma done outside DMA transfer function. Then, we insert the

code of a wanted pipelining-512 looping unit between non-blocking call DMA transfer

function and while-looping check DMA completion status.

Pipelining-512 structure

As shown in Fig. 4.3 and Table 4.2, there are five operations used for the channel simula-

tor, including

1. dma copy mem move in real part noise from external memory without FIFO,

2. dma copy memmove in imaginary part noise from external memory without FIFO,

3. dma port to mem move in nth-512 Fout via FIFO from modulator,

4. CPU compute (n− 1)th-512 Fout according channel model to form Path, and

5. dma mem to port move out (n− 2)th-512 Path via FIFO to matched filter.
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Fig. 4.3: Operations of one computing and four movement used for the channel simulator.

We assign four independent DMA channels for the above four kinds of DMA transfer,

respectively. Based on non-blocking DMA, we apply dual buffers for Fout and Path,

respectively. That is, LF , RF , LP , and RP as shown in Table 4.2. One buffer used for

computing while another buffer used for moving data. However, we pay attention to a

matter of double buffering in the latter part of this chapter.

Table 4.1: Pipelining Structure, Software Pipelining and ’C6x Pipeline Operation
Our Pipeline-512 Structure Software Pipeline and ’C6x Pipeline

Cycle Block-based 512 samples Clock-based instructions
Device Multiprocessors of three DSPs Eight functional units of CPU core
Stage Prolog, loop, and epilog Prolog, loop, and epilog
Phase Move in, computing, and move out. Fetch, decode, and execute.
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Table 4.2: Scheduling Table of Our Pipelining-512 Structure
Block Move In Fout Channel CPU Processing Move Out Path
Cycle from Modulator Fout to form Path to Matched Filter

1 1st-512 @LF No operation No operation
2 2nd-512 @RF 1st-512 @LF → LP No operation
3 3rd-512 @LF 2nd-512 @RF → RP 1st-512 @LP
· · · · · · · · · · · ·
n nth-512 @LF (n− 1)th-512 @ RF → RP (n− 2)th-512 @LP
· · · · · · · · · · · ·
10 10th-512 @RF 9th-512 @LF → LP 8th-512 @RP
11 No operation 10th-512 @RF → RP 9th-512 @LP
12 No operation No operation 10th-512 @RP

4.3 Actual Speed Observation

We insert the uclock commands into the DSP program to observe actual run-time in detail.

It is helpful to find out the unexpected time-consumption.

4.3.1 Observation on Single DSP Chip

As shown in Table 4.3, we observe only one individual program on a single processor

DSP0, respectively. However, only first processor DSP0 is available to the uclock com-

mand. There are many different versions programs belong to the channel, the modulation,

the receiver programs, respectively. One of key information exists in the table, that is, the

scramble code generation takes around 29 ms per run, and belongs to overhead but not

looping part. Zoom in the subroutine; we see that some if-else statements inside the

for-loop of many times looping. It may why this routine is so time-consuming.

4.3.2 Observation of Overall Connection Speed

Table 4.4 shows the overall speed after three DSP programs (channel, modulation, and

receiver) are connected. There are many different versions programs belong to the differ-

ent structures, such as sequential and pipelining. We are interested the time-consumption

per slot because it is belonging to looping part. In 3GPP standard, a frame of 15 slots
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Table 4.3: Observation on Single DSP

ms @ cpu0 Channel Modulate scramble 33-tap 9-tap Remark
TEST SPEED 14.255 48.03 29.282 8.719 1frame/run

(ms/frame) (14.255) (10.685) +8.063 (8.719) case3
DEMO 16.269 51.379 28.445 237.325 17.458 2frame/run

(ms/frame) (8.134) (11.467) (118.662) (8.729)
MULTIUSER 9250 51.307 17.458 noise by

(ms/frame) log, cos
SYSTEM 16.268 249.359 29.3 17.458 2frame/run
(ms/frame) (8.134) (112.03) (8.729)

SINGE USER 16.27 51.398 22.384 237.325 17.458 20s/200run
(ms/frame) (8.135) (11.467) +6.073 (118.662) (8.729) with Rake

CHANGING 15.037 54.19 ' 29 237.351 17.458 251,92,75
(ms/frame) (7.519) (' 12.6) (118.676) (8.729) in Table 4.4
Table 2.6 (6.67∼ (10.24) (8.346)

11.72)

Table 4.4: Observation on Overall Connection Speed
Modulation / Channel Receiver Run Scramble Slot

pipelining-512 33-tap sequential-512 251 ms 28.9 ms 7421 us
sequential-10240 9-tap sequential-512 110 ms 30.5 ms 2637 us

pipelining-512 9-tap sequential-512 92 ms 29.9 ms 2096 us
pipelining-512 9-tap pipelining-512 75 ms 29.9 ms 1521 us
pipelining-512 9-tap pipelining-512 64 ms 29.9 ms 1170 us

(no many uclock)

has 10 ms length. As discussed previously, for FIFO size up to 512 samples, we need

move 512 samples 20 times for a slot data. It means that a real-time criterion is about

666 µs per slot, that is, 33 µs per 512 samples. However, the better speed is about 1 ms

per slot, which is about 1.5 times the criterion. We zoom in actual speed in the following

subsections, respectively.

4.3.3 Observation by Changing Segments of Program

This subsection presents observations by changing segments of the channel program.
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Fig. 4.4: Case A0 program segment.

(A0) When run channel program with modulation and 9-tap receiver together

As shown in Fig. 4.4, the measured time difference between t5 and t6 is about 21 µs. Is it

from the first for-loop computing-time itself or not?

The channel model program performs complex multiplications to input data and chan-

nel coefficient. If single path, then for each point, we need four real multiplications where

two are for real part and two for imaginary part. The TMS320C6701 DSP chip of 167

MHz has two units to perform multiplication and six units for addition. Therefore, one

multiplication requires on the average of 6 ns and 3 ns, depending on the utilization of the

two multipliers.
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Fig. 4.5: Case A1 program segment.

The 21 µs between t6 and t7 is reasonable for the second for-loop computing time.

In the second-loop of 497 points, for both two paths, we need 4 × 497 × 2 = 3976

multiplications. If 6 ns for a multiplication, then 3976 × 6 = 23856 ns, it is near 21 µs.

Similarly, the 1 µs between t7 and t8 is reasonable for third for-loop of 15 points to

compute the second single path each point, we need 4× 15× 1× 6 = 360 ns, it is smaller

than 1 µs resolution of uclock command.

Therefore, the first for-loop of 15 points should take about 1 µs, but not measured 21

µs, to compute first single path each point. Where does this 21 µs between t5 and t6 come

from?
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(A1) When the first and second for-loop are removed

In this A1 case as shown in Fig. 4.5, we remove the first for-loop, the second for-loop,

t5 and t6 measurement, but still keep the third for-loop in program. Therefore, the time

difference between t7 and t8 become 20 µs, but not keep 1 µs as before. Thinking about

the 21 µs between t5 and t6 in the previous case A0, and the 20 µs between t7 and t8 in

this current case A1, it hints that the strange time appears around just next command after

of the dma port to mem(0,......,0) of non-blocking.

(A2) When dma port to mem is changed to blocking mode

As shown in Fig. 4.6, we modified to case A2 from case A1, only changed to blocking

mode in dma port to mem. Then time difference between t4 and t7 become to 21 µs in

case A2 from 2 µs in case A1, also time difference between t7 and t8 become to 1 µs

in case A2 from 20 µs in case A1. It hints that the strange time such as 20 µs in case

A1 is correlated to dma port to mem of non-blocking mode. Moreover, we know that

dma port to mem of blocking mode take about 21 µs to move 512 32-bit integer data

through bursting FIFO buffer.

(A3) When dma mem to port is changed to blocking mode

As shown in Fig. 4.7, case A3 is modified from case A2; the dma mem to port between t2

and t3 is changed to use blocking mode. Then time difference between t2 and t3 is 19 µs,

also time difference between t4 and t7 is 21 µs. We know again that dma mem to port or

dma port to mem of blocking mode takes around 20 µs to move 512 32-bit integer data

through bursting FIFO.

(A4) When both the first and the second for-loops are recovered

As shown in Fig. 4.8, case A4 is modified from case A3; both the first for-loop of

prolog 15 points and the second for-loop of looping 497 points are recovered. Then

blocking mode dma mem to port takes 18 µs between t2 and t3, and blocking mode
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Fig. 4.6: Case A2 program segment.

dma port to mem takes 21 µs between t4 and t5. The 21 µs between t6 and t7 is rea-

sonable for the second for-loop to compute two paths of 497 points. Note that the time

difference between t5 and t6 is 2 µs after blocking mode DMA in the case A4, but not

still 21 µs after non-blocking mode DMA in case A0.

4.3.4 Observation by Removing Data Transfer Commands

As shown in Table 4.5, from case B0 toward B5, we observe time-consumption by re-

moving gradually the commands used for data transfer.

(B0) When running channel program with modulation and 9-tap receiver together

The actual run time is about 63.73 ms per run after we connect the three main parts of

channel, modulation, and 9-tap receiver, and download them to Quatro6x DSP board.
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Fig. 4.7: Case A3 program segment.

(B1) When commands starting with “while(!(get fifo link status” are removed

In case B1, we remove commands starting with “while(!(get fifo link status.” Only single

DSP of channel program is run. Then the run time reduces to 31.24 ms from 63.73 per

run. It is surprising that handshaking waits around 30 ms for scramble code generation to

be ready. However, there still exists a strange 20 µs between t5 and t6 after non-blocking

mode DMA.

(B2) When the “dma port to mem” commands are removed

In case B2, we remove the “dma port to mem” commands from case B1. Only single

DSP of channel program run. Then the run time reduces to 27.91 from 31.24 ms per run.

Moreover, we observe the time difference between t5 and t6 becomes 2 µs in current case

B2 from previous case B1. Excitingly, the strange time-consumption almost vanish in the

first for-loop between t5 and t6, that is, it reduces 18 µs largely since the non-blocking
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Fig. 4.8: Case A4 program segment.
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mode dma port to mem commands are removed. It is a close hint to find why the first-

loop takes a strange 20 µs but not reasonable 1 µs.

(B3) When the “dma mem to port” commands are removed

In case B3, we remove the “dma mem to port” commands from case B2. Only single

DSP of channel program is run. Then the run time reduces to 18.66 ms from 27.91 per

run. Moreover, we observe the time difference between t3 and t4 becomes 1 µs in current

case B3 from 16 µs in previous case B2. The reduced 15 µs is correlated to that 600 times

of commands in non-blocking mode dma mem to port are removed.

(B4) When the “dma copy mem” and “dma copy” commands are removed

In case B4, we remove the “dma copy mem” and “dma copy” commands from case B3.

Only single DSP of channel program is run. Then the run time reduces to 14.03 ms from

18.66 per run.

(B5) When commands starting with “while(!dma done” are removed

In case B5, we remove commands starting with “while(!dma done” from case B4. Only

single DSP of channel program is run. Then the run time reduces to 13.8 ms from 14.03

per run. The 13.8 ms is reasonable for the computing time without DMA or FIFO related

command, that is, we need 13.8 ms for 600 times of 512-integer data each. In other

words, it is about 23 µs per each 512-integer data; it is consistent with computing time

of 512 points (Refer to analysis in case A0; the 23 µs should be consisting of 1 µs of the

15-points prolog, 21 µs of the 497-points looping, and 1 µs of the 15-points epilog).

4.3.5 Observation on the Sequential-10240 Structure

As discussed previously, the existing simulator simulator employ sequential-10240 struc-

ture. As shown in Tables 4.6, 4.7, and 4.8, we zoom in the time-consumption per slot, per

512 move-in and move-out 512 samples, respectively.
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Table 4.5: Observation on Case B Type of Removing Data Transfer Commands
Case B0 B1 B2 B3 B4 B5

ms per run 63.72 31.24 27.91 18.66 14.03 13.8
t3-t2 (µs) 2 2 1 1 1
t4-t3 (µs) 17 16 1 2 1
t5-t4 (µs) 2 1 1 1 1
t6-t5 (µs) 20 2 2 2 2
t7-t6 (µs) 21 21 21 20 21
t8-t7 (µs) 1 1 1 2 1

Table 4.6: Observation on the Sequential-10240 Structure per Slot
Slot Index Move-in 10240 Computing 10240 Move-out 10240

[0] 31279 ∼ 31308 µs 1161 µs 735 ∼ 759 µs
[1]∼[29] 738 ∼ 762 µs 1161 µs 735 ∼ 761 µs
Remark Table 4.7 include noise move Table 4.8

As observed previously, the scramble code generation is time-time-consuming about

29 ms on single modulation processor. As shown in Table 4.6, we see that it is to result in

about 30 ms handshaking wait at the first slot only.

The sequential-10240 structure does blocking-mode DMA movement continues 20

times via FIFO buffer of 512 samples size. Each DMA movement execute after FIFO

status handshaking ready. In order to double check the handshaking behavior, we insert

an accumulated adder inside the while-loop to count how many times the while-loop to

be testing. Here, we use the “add” as units meaning one testing happens per “add”.

As shown in Tables 4.7 and 4.8, we observe only 1st-512 movement has no handshak-

ing wait almost, which means that the period of a slot is enough to get FIFO status ready.

Nevertheless, the other movement per 512 samples exist wait about 0.6 µs/add, which

means that the period between sequential movements 512-samples is not enough to get

FIFO status ready. The handshaking wait is a looping cost.
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Table 4.7: Observation on the Sequential-10240 Structure per Move-in 512
Index per 512 Handshaking Wait Time While-looping Times Move-in 512

[0] 1 µs count 0 times add. 22 µs
[1]∼[19] 16 ∼ 17 µs count 26 ∼ 27 times add. 21 ∼ 22 us

Table 4.8: Observation on the Sequential-10240 Structure per Move-out 512
Index per 512 Handshaking Wait Time While-looping Times Move-out 512

[0] 2 us count 0 times add. 18 us
[1]∼[19] 19 ∼ 20 us count 32 ∼ 33 times add. 18 ∼ 19 us

4.3.6 Observation on the Pipelining-512 Structure

As discussed previously, in the subsection of the observation of overall connection speed,

there are 251, 92, 75 ms per run, respectively, as shown in Table 4.4. Among these

three kinds of versions, the 251 ms version is using 33-tap receiver, the others is using

9-tap receiver. All these three versions employ pipelining-512 structure for channel and

modulator. In this subsection, we pay attention to profile these three versions.

Table 4.9 is a summary table, where rich information hint unexpected time-consumption.

There are five tables zoom in this table, including Tables 4.10, 4.11, 4.12, 4.13, and 4.14,

where Tables 4.10 and 4.11 are expanded from tm14 and tm35, respectively, which are

belonging to the looping-512 kernel. Table 4.12 shows while-loop behavior of FIFO hand-

shaking between channel and receiver. Table 4.13 shows while-loop behavior of FIFO

handshaking between modulator and channel. Table 4.14 shows the while-loop behavior

for checking dma done.

As shown in Table 4.9, there are eight columns. The most right column shows the

corresponding piecewise part in the pipelining-512 channel program. The middle six

columns used for the three versions of 251, 92, and 75 ms, where two columns per version:

one for 1st slot, another for other 29 slots. The most left column used for index stating

with tm including tm1 to tm43. The rows between tm1 and tm43 is processing one slot:

half slot between tm1 and tm22, another half slot between tm23 and tm43.
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We summarizes several observations listed as below.

Normal verse strange while-looping wait time per “add”

As discussed previously, we use uclock command to profile time-consumption, and we

insert an accumulated adder inside the while-loop to count how many times the while-

loop to be testing. Here, we the “add” as units meaning one testing happens per “add”.

The data starting with the “/” means that the data is belonging to ”how many times while-

loop” in “add” unit; otherwise, it is time-consumption in µs unit. We check many data of

“µs/add” form. In general, it is ranging between 0.4 and 0.6 µs/add for normal case. That

is, a while-loop test takes about 0.5 µs one times in average. However, it is not reasonable

for enough long time µs per zero count “add”. For example, such as 17/0 (or 35/0) hints

that it is impossible to take 17 (or 35) µs but do nothing for a while-loop test. But, such

as 1/0 (or 2/0) is usually normal due to µs resolution of ”uclock” command.

Scramble code generation and 1st slot handshaking wait

As shown in tm4 with “/add”, there are 28973 /70846, 29958 /70867, and 29951 /70854

for 251, 92, 75 ms versions, respectively. It is about 0.4 µs/add, that is, it is belonging to

the while-looping wait time itself. As observed previously, the scramble code generation

takes around 30 ms. We know that it results in the first slot handshaking wait only.

Long-time while-loop of “/0 add” is usually after commands starting with ”dma”

For example, the while-loop of the 35/0 in row tm4/add is after the “dma copy mem”,

the while-loop of the 20/0 in row tm6 is after the “dma port to mem”. Similarly, the 34/0

in tm26 and 20/0 in tm28 as shown in Table 4.9; The 17/0 in at4 and at12 in Table 4.10

and 4.11.

Fast DSP wait slow DSP for FIFO handshaking status

As shown in Table 4.12, there are long waiting time for 251065 µs version due to 33-

tap receiver. For 91815 µs version, it almost vanish except for at10[3]. It is because this
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version use 9-tap receiver but still sequential structure. Therefore, it also vanish for 75031

µs because the 9-tap receiver changed to pipelining.

4.4 Zoom in DMA Library

After observation previously, we know that there is correlation between some unex-

pected time-consumption and the DMA transfer commands. In this section, we pay at-

tention to see II support library, including “dma mem to port”, “dma port to mem”, and

“dma copy mem”.

As shown in Fig. 4.9, the source code of these three functions are almost same. A

key difference is the different setting values located at the “dma→control.primary”. The

primary control register controls the main operation of the DMA and contains 16-bit fields

[12]. Refer to [41] for the bit-field description. The bit 5 to 4 are “SRC DIR” field, used

for source address modification after element transfers. The bit 7 to 6 are “DST DIR”

field, used for destination address modification after element transfers. The bit 24 is

“PRI” field, used for priority mode of DMA versus CPU: PRI=0 for CPU priority, and

PRI=1 for DMA priority [41].

As shown in Fig. 4.9, these three DMA functions set 1 at the PRI. That is, DMA

priority is higher than CPU. In other words, CPU maybe waits for DMA done ready. It is

a more close hint for our finding the unexpected time-consumption.

4.5 Double Buffering Technique

Double buffering is a method of using dual buffers to achieve efficient one-way data

transmission between two processors or between a processor and a peripheral device.

Each buffer is a block of storage through which data transmit from one processor or

device to the other. The receiving processor reads the transmitted data from one buffer

while the sending processor simultaneously prepares the data for the next transmission in

the alternate buffer [35].
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Table 4.9: Observation on the Pipelining-512 Channel

µs 251ms slot 92ms slot 75ms slot corresponding piecewise part
/add [0] [1∼29] [0] [1∼29] [0] [1∼29] in the pipelining-512 channel
tm1 1 1 1 1 1 1 j=(slot*10240)%298801
tm2 1 1 1 1 1 1 dma copy mem(2,*,*,2560,0)
tm3 34 34 35 34 35 34 dma copy mem(3,*,*,2560,0)
tm4 28973 35 29958 35 29951 34 while(!(get fifo link status(1...
/add /70846 /0 /70867 /0 /70854 /0 /how many times while-loop
tm5 2 2 2 2 2 2 dma port to mem(0,*,*,512,0)
tm6 20 /0 20 /0 20 /0 20 /0 20 /0 20 /0 while(!(dma done(0)&&...(3)...
tm7 17 /36 17 /36 17 /36 17 /36 16 /36 17 /36 while(!(get fifo link status(1...
tm8 2 2 1 2 2 1 dma port to mem(0,*,*,512,0)
tm9 20 20 21 20 20 21 for(i=0;i<15;i++){...}
tm10 19 19 18 19 19 18 for(i=15;i<308;i++){...}
tm11 9 9 9 9 9 9 for(i=308;i<512;i++){...}
tm12 1 1 2 1 1 2 for(i=512;i<527;i++){...}
tm13 1 /0 1 /0 1 /0 1 /0 1 /0 1 /0 while(!dma done(0))...
tm14 2052 2894 1035 1112 536 536 for(p=3;p<=10;p=p+2){...}
tm15 313 313 1 1 1 2 while(!(get fifo link status(2...
/add /749 /749 /0 /0 /0 /0 /how many times while-loop
tm16 2 2 2 2 2 1 dma mem to port(1,*,*,512,0)
tm17 17 17 18 17 17 18 for(i=512;i<527;i++){...}
tm18 21 21 20 21 21 20 for(i=527;i<1024;i++){...}
tm19 1 1 1 1 1 1 for(i=1024;i<1039;i++){...}
tm20 1 /0 1 /0 2 /2 2 /2 1 /2 2 /2 while(!dma done(1))...
tm21 336 336 1 1 2 1 while(!(get fifo link status(2...
/add /805 /805 /0 /0 /0 /0 /how many times while-loop
tm22 2 2 2 2 2 2 dma mem to port(1,*,*,512,0)
tm23 17 17 17 17 16 17 j=(slot*10240+5120)%298801
tm24 1 1 1 1 2 1 dma copy mem(2,*,*,2560,0)
tm25 35 35 35 35 34 34 dma copy mem(3,*,*,2560,0)
tm26 34 /0 34 /0 34 /0 34 /0 34 /0 34 /0 while(!(get fifo link status(1...
tm27 2 2 1 2 2 2 dma port to mem(0,*,*,512,0)
tm28 20 /0 20 /0 21 /0 20 /0 21 /0 21 /0 while(!(dma done(0)&&...(3)...
tm29 16 /35 16 /35 16 /35 16 /35 16 /35 16 /35 while(!(get fifo link status(1...
tm30 2 2 2 1 2 2 dma port to mem(0,*,*,512,0)
tm31 20 20 20 21 20 20 for(i=0;i<15;i++){...}
tm32 21 20 21 20 20 21 for(i=15;i<512;i++){...}
tm33 1 2 1 2 2 1 for(i=512;i<527;i++){...}
tm34 1 /0 1 /0 1 /0 1 /0 1 /0 1 /0 while(!dma done(0))...
tm35 2815 2815 535 536 536 536 for(p=13;p<=20;p=p+2){...}
tm36 299 299 1 1 2 1 while(!(get fifo link status(2...
/add /714 /714 /0 /0 /0 /0 /how many times while-loop
tm37 2 2 2 2 2 2 dma mem to port(1,*,*,512,0)
tm38 17 17 17 17 17 17 for(i=512;i<527;i++){...}
tm39 20 20 20 20 20 21 for(i=527;i<1024;i++){...}
tm40 1 1 2 2 1 1 for(i=1024;i<1039;i++){...}
tm41 1 /0 1 /0 1 /0 1 /0 2 /0 2 /0 while(!dma done(1))...
tm42 321 322 1 1 1 1 while(!(get fifo link status(2...
/add /770 /770 /0 /0 /0 /0 /how many times while-loop
tm43 18 18 18 18 18 18 dma mem to port(1,*,*,512,1)
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Table 4.10: Observation on the Pipelining-512 Channel tm14

µs 2894 2894 2894 1112 1112 536 corresponding piecewise part in
/add [3] [5] [7,9] [3] [5,7,9] [3,5,7,9] Table 4.9 tm14: 2894,1112,536
at1 2 2 1 2 2 1 for(p=3;p<=10,p=p+2){
at2 176 1 313 1 1 1 while(!(get fifo link status(2...
/add /418 /0 /748 /0 /0 /0 /how many times while-loop
at3 2 2 1 2 2 2 dma mem to port(1,*,*,512,0)
at4 17 /0 17 /0 17 /0 17 /0 17 /0 17 /0 while(!(get fifo link status(1...
at5 1 1 2 1 2 2 dma port to mem(0,*,*,512,0)
at6 21 21 20 20 20 20 for(i=512;i<527;i++){...}
at7 20 20 21 21 20 20 for(i=527;i<1024;i++){...}
at8 2 2 1 1 2 1 for(i=1024;i<1039;i++){...}
at9 1 /0 1 /0 1 /0 2 /0 2 /0 2 /0 while(!(dma done(0)&&...(1)...
at10 668 277 314 579 1 2 while(!(get fifo link status(2...
/add /1603 /659 /751 /1391 /0 /0 /how many times while-loop
at11 2 2 1 2 2 2 dma mem to port(1,*,*,512,0)
at12 17 /0 16 /0 17 /0 17 /0 17 /0 17 /0 while(!(get fifo link status(1...
at13 2 2 2 1 2 2 dma port to mem(0,*,*,512,0)
at14 20 20 20 22 20 20 for(i=0;i<15;i++){...}
at15 21 21 20 20 20 20 for(i=15;i<512;i++){...}
at16 1 1 2 2 2 1 for(i=512;i<527;i++){...}
at17 1 /0 2 /0 1 /0 1 /0 1 /0 1 /0 while(!(dma done(0)&&...(1)...

Table 4.11: Observation on the Pipelining-512 Channel tm35

µs 2815 2815 535 536 corresponding piecewise part in
/add [13] [15,17,19] [13,15,17,19] [13,15,17,19] Table 4.9 tm35: 2815,535,536
at1 1 1 1 1 for(p=13;p<=20,p=p+2){
at2 205 299 1 2 while(!(get fifo link status(2...
/add /487 /714 /0 /0 /how many times while-loop
at3 2 1 2 2 dma mem to port(1,*,*,512,0)
at4 16 /0 17 /0 17 /0 17 /0 while(!(get fifo link status(1...
at5 2 2 2 2 dma port to mem(0,*,*,512,0)
at6 21 20 20 20 for(i=512;i<527;i++){...}
at7 20 21 20 20 for(i=527;i<1024;i++){...}
at8 2 1 2 2 for(i=1024;i<1039;i++){...}
at9 1 /0 2 /0 1 /0 2 /0 while(!(dma done(0)&&...(1)...
at10 300 299 2 1 while(!(get fifo link status(2...
/add /717 /715 /0 /0 /how many times while-loop
at11 2 2 2 2 dma mem to port(1,*,*,512,0)
at12 17 /0 17 /0 17 /0 17 /0 while(!(get fifo link status(1...
at13 1 1 2 2 dma port to mem(0,*,*,512,0)
at14 21 21 20 20 for(i=0;i<15;i++){...}
at15 20 20 21 20 for(i=15;i<512;i++){...}
at16 2 1 1 1 for(i=512;i<527;i++){...}
at17 1 /0 2 /0 2 /0 2 /0 while(!(dma done(0)&&...(1)...

56



Table 4.12: Observation on the “while(!(get fifo link status(2)&Tx FIFO EMPTY))”
µs / add 251065 µs 91815 µs 75031 µs
tm15[0∼29] 314 / 749 1 / 0 1 / 0
tm21[0∼29] 336 / 805 1 / 0 1 / 0
tm36[0∼29] 299 / 714 1 / 0 1 / 0
tm42[0∼29] 322 / 770 1 / 0 1 / 0
at2[3] 176 / 418 1 / 0 1 / 0
at2[5] 1 / 0 1 / 0 1 / 0
at2[7,9] 313 / 748 1 / 0 1 / 0
at2[13] 205 / 487 1 / 0 1 / 0
at2[15,17,19] 299 / 714 1 / 0 2 / 0
at10[3] 668 / 1603 579 / 1392 2 / 0
at10[5] 277 / 659 1 / 0 2 / 0
at10[7,9] 314 / 751 1 / 0 2 / 0
at10[13,15,17,19] 300 / 716 2 / 0 1 / 0

Table 4.13: Observation on the “while(!(get fifo link status(1)&Rx FIFO FULL))”
µs / add 251065 µs 91815 µs 75031 µs
tm4[0] 28973 / 70846 29958 / 70867 29951 / 70854
tm4[1∼29] 35 / 0 35 / 0 34 / 0
tm7[0∼29] 17 / 36 17 / 36 17 / 36
tm26[0∼29] 34 / 0 34 / 0 34 / 0
tm29[0∼29] 16 / 35 16 / 35 16 / 35
at4[3,5,7,9,13,15,17,19] 17 / 0 17 / 0 17 / 0
at12[3,5,7,9,13,15,17,19] 17 / 0 17 / 0 17 / 0

Table 4.14: Observation on Commands Starting with “while!(dma done”
µs / add 251065 µs 91815 µs 75031 µs
tm6[0∼29] 20 / 0 20 / 0 20 / 0
tm13[0∼29] 1 / 0 1 / 0 1 / 0
tm20[0∼29] 1 / 0 2 / 2 2 / 2
tm28[0∼29] 20 / 0 20 / 0 21 / 0
tm34[0∼29] 1 / 0 1 / 0 1 / 0
tm41[0∼29] 1 / 0 1 / 0 2 / 0
at9[3,5,7,9,13,15,17,19] 1 / 0 2 / 0 2 / 0
at17[3,5,7,9,13,15,17,19] 2 / 0 1 / 0 1 / 0
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Fig. 4.9: Zoom in II supported DMA library.
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4.5.1 Data Transfer Flow

Much description given in this subsection is taken from [34] and [36]. This subsection

describes the data transfer flow through FIFO using two blocks.

Much high-speed data converters cannot be connected directly to a digital signal pro-

cessor (DSP). The required transfer rates would tie up to most of the DSP’s I/O bandwidth

(refer to [36] for bandwidth calculation). A FIFO is one of solutions for this problem be-

cause it can buffer a large block of data, and the DSP can read data from the FIFO in a

burst mode. This is more efficient compared to single reads for every sampled value.

Depending on the application, there are numerous possibilities for software control. In

most applications, different data blocks are used; one or more blocks for CPU to work on,

and other blocks that are used for the data transfer between the EDMA/DMA controller

and the FIFOs.

It is possible for the TMS320C6x DSP to read in one data block from the FIFO and

to write out another block in the same time frame. In this case, the DMA would auto-

matically switch between the two transfer channels. But, this causes delays every time

the EMIF switches from input to output mode. Therefore, for best performance, only one

block transfer (read or write) should be active.

Debugging a DSP system with FIFOs is not an easy work, especially if DSP is halted

for emulation. Fig. 4.10 shows an example of a simple data-transfer method for an appli-

cation in which the ADC and DAC run at the same clock speed. Only two data blocks are

used in this example, data block A and data block B [34].

4.5.2 Memory Constraints

Much description given in this subsection is taken from [8] and [44]. This subsection de-

scribes a key point for so-called “different data blocks” to avoid performance degradation.

As shown in Fig. 4.11 [44], internal memory is arranged through various banks of

memory so that loads and stores can occur simultaneously. Since each bank of memory is
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Fig. 4.10: Software flow in a simple application (from [34]).
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single-ported, only one access to each bank is performed per cycle. Two memory accesses

per cycle can be performed if they do not access the same bank of memory. If multiple

accesses are performed to the same bank of memory (within the same space), the pipeline

will stall. This causes additional cycles for execution to complete [8].

The 64 Kbytes of data memory of the ’C6x is organized into two blocks of 32 Kbytes:

the TMS320C6701 have eight banks per block, and the TMS320C6201 have four banks

per block [44]. Therefore, in order to upgrade performance, we need to set separate

memory blocks between CPU and DMA, and separate memory banks between CPU 2

sides (side A and B).

The so-called “different data blocks” need to be arranged into to separate memory

blocks. For example, in the linker command file (.cmd) of the existing simulator and

other structures observed previously, we assign both dual buffers located into the “.my”

memory space. It is an improper assignment for double buffering. It answers why the un-

expected time-consumption happens. Therefore, we split “.my” into “.my0” and “.my1”

for different 32-Kbytes blocks separately. Then, after we apply correctly dual buffers into

“.my0” and “.my1”, respectively, the pipelining between CPU and DMA reach really.

4.5.3 DMA Channels

In previous subsection, we reach pipelining between CPU and DMA after corrected mem-

ory arrangement for dual buffers. There are four independent DMA channels for TI DSP

chip ’C6201 or ’C6701. Furthermore, in this subsection, we want to pipeline these four

channels. However, only one timing-sharing DMA bus exists. A simple code and ven-

dor’s email reply show that these DMA channels could not move data simultaneously. We

explain the simple code as below, and append the email in the appendix.

After zoom in II’s library of dma port to mem, dma mem to port, and dma copy mem,

we understand they use the same transfer mechanism, just different sources and destina-

tions. The dma port to mem and dma mem to port do DMA transfer via FIFO buffer be-
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Fig. 4.11: ’C6x data memory controller interconnect to memory banks (from [44]).

62



Fig. 4.12: A simple code showing that DMA channels could not move data simultane-
ously.
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tween two processors. On the other hand, dma copy mem does DMA movement directly

from external to internal memory on single processor. In other words, dma copy mem

does not need to go through FIFO buffer. Here, we want to avoid FIFO that may confuse

our observation; we just want to check DMA to see if we set two channels at two separate

memory blocks, then whether DMA channels move at the same time or not. Therefore,

it is simpler to observe DMA by dma copy mem in the simple code on single processor

than dma port to mem or dma mem to port between processors.

In the source code of dma copy mem, there is a while loop in the last line to monitor

whether dma done is ready or not. If we set 1 for blocking, then this while loop blocks

next command until DMA is done, which is the sequential running style. If we set 0

for non-blocking, then it skips the blocking of dma done-related while loop to execute

immediately next command. If resource confliction does not happen, then it is possible

to pipeline by insert some code between non-blocking dma copy mem and dma done-

related while loop.

In the simple code, we set 1 for blocking in the first and second dma copy mem,

so it is about 28 µs to move by DMA channel 0 and 1 respectively. So, we set 0 for

non-blocking in the third and fourth dma copy mem. Then we know that channel 1 does

DMA move sequentially after channel 0. Even separate memory blocks are set for two

channels respectively, the simple code shows that DMA channels could not move data

simultaneously.

For the third dma copy mem, the 1 µs between t2 and t3 is due to non-blocking mode.

DMA start movement after informing CPU, and then CPU proceeds immediately to the

next command. Note that both the DMA channel 0 movements is on-going and CPU

is running. The 28 µs between t3 and t4 means that the fourth dma copy mem delays

this 28 µs to execute DMA channel 1 after the DMA channel 0 movement from third

dma copy mem until around t4. The 0 µs between t4 and t5 means that CPU finishes the

initial setting of wtest fast and the DMA is ongoing in background until finish. Both the
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Table 4.15: Improved Actual Performance

Modulation Matched Run Time Memory
& Channel Filter per Slot Amount

Original Version Sequential-10240 9-tap 2637 µs 10240
(the Existing Simulator) (a slot each time) Sequential-512 (3.96x666) samples

Proposal Version Pipelining-512 9-tap 1170 µs 1024
(Run on the Quatro67) Pipelining-512 (1.75x666) samples

Proposal Version Pipelining-512 9-tap 940 µs 1024
(Run on the Quatro62) Pipelining-512 (1.41x666) samples

wtest still zero after finish and the 27 µs between t5 and t6 means that this 27 µs primarily

comes from this while loop stalling for about 27 µs until DMA channel 1 is done.

4.6 Summary

In a system of multiprocessors, DSP program development may become very complex.

Because we not only need to code program for individual DSPs respectively, but also need

to consider data transmission and handshaking among closely coupling multiprocessors.

Unexpected behaviors arose in the actual performance of our initial multiprocessor im-

plementation. Two key factors resulted in the extra run time; one is waiting for FIFO

handshaking status to get ready, and the other is waiting for conflicting DSP resources

to be released, such as same memory bank bus or only one DMA bus. Double buffering

scheme could efficiently achieve that one block memory is used in computing while an-

other block is used for data move by one time-sharing DMA bus. As shown in Table 4.15,

the actual run time per slot became 940 µs, which improved about 86.1% toward 666 µs

of real-time criterion from 2637 µs of original version. In addition, the memory used

amount reduced about 90%, to compare original 10240 samples with proposal dual 512

samples.
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Chapter 5

Fixed-Point Arithmetic on TMS320C62

5.1 Overview

This chapter is concerned with identifying efficient digital algorithms for the generation

of elementary functions including sine, cosine, natural logarithm and square-rooting, with

a goal towards their suitability for fixed-point DSP implementation, to serve as the genera-

tion of channel coefficients and Gaussian noise discussed in chapter 2. The problem arises

because we want to port our channel simulator to fixed-point DSP board, but these four el-

ementary functions, in fixed-point arithmetic, are not available yet in TI TMS320C6x or II

Quatro6x library. We consider using CORDIC (COordinate Rotation DIgital Computer)

and CCM (Convergence Computation Method) algorithms to effect these four elementary

functions in integer arithmetic on a fixed-point TI DSP TMS320C6201.

5.2 Methods of Channel Model Generation

The existing simulator [32] almost finishes fixed-point implementation, except generation

of channel coefficients and Gaussian noise, for lack of efficient fixed-point library. In this

section, we discuss briefly several methods for channel coefficients and noise generation.

5.2.1 Fading Channel Coefficients

Tsai [32] point out the performance of the fading channel is not so good because the pro-

grams have to call mathematic functions to generate channel coefficients. Therefore, we
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need to employ efficient cosine and sine functions for improving fading channel perfor-

mance.

A number of different models have been proposed for the simulation of Rayleigh fad-

ing channels over the past decades. Generally, these models can be classified as either

being statistical or deterministic [22]. One is Doppler filtering complex Gaussian vari-

ables [14]; another is Jakes’ model or its modification. The classical Jakes’ model is

a deterministic method to approximate fading channel, which has been widely used for

about three decades because of its simplicity. However, the signal generated by the classi-

cal Jakes’ simulator is not wide-sense stationary (WSS). Pop and Beaulieu [30] proposed

a WSS simulator by introducing random phase shifts in the low-frequency oscillators to

remove the stationary problem, but some problems with higher-order statistics remain. A

WSS Jakes’ model with more correct statistical properties proposed by Zheng and Xiao

in [48] reintroduces the randomness to the path gain, the Doppler frequency, and the ini-

tial phase of the sinusoids. In [47], the authors analyze the statistical properties of the

improved Jakes’ simulator proposed by Li and Huang [22], which can generate multiple

independent Rayleigh faders easily but need random phases. The point is that the Jakes’

model requires efficient sine and cosine functions, besides, the other methods above also

require an efficient random number generation.

5.2.2 Gaussian Random Number

Gaussian random number generators are employed to simulate the fading phenomena and

additive white Gaussian noise of the radio channel. High speed Gaussian random number

generators are most important components for the real-time channel simulation of the

CDMA systems, because of channel’s wideband nature [5].

In general, two kinds of methods used to compute Gaussian noise. One is via the

central limit theorem; another is the Box-Muller method or the polar method. The Box-

Muller method generates Gaussian noise by mapping two uniform distribution random
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sequences using four elementary functions including sine, cosine, logarithm, and square

rooting [21]. The polar method does the same mapping operation in alternative formula

form without sine and cosine functions [31]. The central limit theorem requires enough

samples size to form Gaussian distribution. A technique of the probability density con-

version (PDC) before addition [5] omit some of the input random numbers and adders.

The sum-of-12 method [20] compromises 12 samples between speed and accuracy.

5.3 Introduction to CORDIC and CCM

In this section, we describe the basic theory of CORDIC (COordinate Rotation DIgital

Computer) and CCM (Convergence Computation Method). They are both iterative tech-

niques, which are alike in some way. The generalized convergence computation method

[4] generalizes Chen’s CCM [10] to multidimensional quantities, resulting in a unified

algorithm for elementary function generation of which CORDIC and CCM are special

cases.

5.3.1 The CORDIC Method

The following introduction to CORDIC is largely taken from [6], [17], [27], [28], [29],

[25], and [16]. CORDIC is an iterative algorithm invented by Volder [45] and refined by

Walther [46]. As shown in Table 5.1, the functions that can be evaluated using CORDIC

are trigonometric functions (sin, cos, tan), inverse trigonometric functions (sin−1, cos−1,

tan−1), hyperbolic functions (sinh, cosh, tanh), inverse hyperbolic functions (sinh−1,

cosh−1, tanh−1), exponent, natural logarithm, square-rooting, multiplication, division,

and vector magnitude. The CORDIC algorithm has found a wide range of applications.

Weighted sum of rotation angles

The basic concept of the CORDIC computation is to decompose the desired rotation angle

into the weighted sum of a set of predefined elementary rotation angles such that the

rotation through each of them can be accomplished with simple shift-and-add operations.
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Table 5.1: Summary of Generalized CORDIC Algorithms [27]
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The angle of rotation θ is approximated by the sum of the N elementary rotations as

θ '
N−1
∑

i=0

die(i),

where N is the number of rotations, e(i) is the predefined elementary rotation angle of the

ith rotation, and di is a sequence of ±1s which determines the direction of the remaining

angle.

Unified CORDIC iteration equations

Walther [46] summarizes the algorithm using a set of unified CORDIC iteration equations

as
[

x(i + 1)
y(i+ 1)

]

=

[

1 −µdi2
−S(µ,i)

di2
−S(µ,i) 1

] [

x(i)
y(i)

]

,

z(i + 1) = z(i) − die(µ, i),

where x(i) and y(i) are the x and y components of the interested vector, z(i) is the residue

rotation angle, and the constants µ, di, e(µ, i), and S(µ, i) depend on the specific compu-

tation being performed, as explained below.

Coordinate system parameter

The coordinate system parameter µ is either 1, 0, or −1 corresponds to, respectively,

the rotation operation in a circular coordinate system, a linear coordinate system, and a

hyperbolic coordinate system. µ = 1 is used for trigonometric and inverse trigonometric

fuctions, µ = 0 is used for multiplication and division, and µ = −1 is used for hyperbolic,

inverse hyperbolic, expontential and logarithmic functions, as well as square roots.

Modes of operations

In the algorithm equations, an auxiliary variable z(i) serves the purpose of accumulating

the step angles and determining the sign of the next step rotation. The rotations of the

CORDIC algorithm are usually carried out in two modes, called rotation and vectoring.

70



In the rotation mode, which is also known as the forward rotation mode, the input

vector is rotated by a given angle θ, the angle accumulator z(i) is initialized with the

rotation angle and rotation at each iteration is aimed at making the angle accumulator

converge towards zero. The objective is to compute the final coordinate.

In the vectoring mode, which is also known as the Y -reduction mode, or the backward

rotation mode, the desired angle θ is not given. The input vector is rotated to the x-axis

through whatever angle is necessary to align the result vector with the x-axis. The result

is a rotation angle and the scaled magnitude of the original vector.

Rotation direction parameter

The rotation direction parameter di requires only a comparison. It is one of the following

two signum functions:

di =







sgn(z(i)), for z(i) → 0 in rotation mode,

−sgn(x(i)y(i)), for y(i) → 0 in vectoring mode,

where sgn(x) = +1 for x ≥ 0 and sgn(x) = −1 for x < 0. The elementary rotations can

be positive or negative depending on the direction of rotation, denoted by di ∈ {−1, 1}.

Elementary rotation angle

The ith elementary rotation angle e(µ, i), which is extended from e(i), is given by con-

stants stored in a lookup table which depend on the value of µ. It is an acrtangent, a power

of two, or a hyperbolic arctangent, for µ = 1, 0, or −1 correspondingly:

e(µ, i) =
1√
µ

tan−1[
√
µ2−S(µ,i)] =























tan−1 2−S(1,i), µ = 1,

2−S(0,i), µ→ 0,

tanh−1 2−S(−1,i), µ = −1.

Scale factor

The norm of a vector [ x y ]t in these three coordinate systems are defined as
√

x2 + µy2.

For µ = 0, the rotation has a unity gain, so no scaling operation is needed. For µ 6= 0, the
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rotation changes the norm of the vector. The scale factor Kµ(N) is given by

Kµ(N) =
N−1
∏

i=0

√

1 + µd2
i 2

−2S(µ,i) =







∏N−1
i=0

√
1 + 4−i ≡ K, µ = 1,

∏N−1
i=0

√
1 − 4−S(−1,i) ≡ K ′, µ = −1,

where K is an expansion factor and K ′ is a shrinkage factor. For N > 4, K ≈ 1.64676

and K ′ ≈ 0.82816. The factor Kµ(N) is dependent on the total number of iterations N ,

the shift sequence S(µ, i) and a function of di. Once a shift sequence S(µ, i) is decided

and fixed with di ∈ {−1, 1}, Kµ(N) is constant which can be pre-calculated. For ap-

plications where unity-gain rotation is required, normalization using a multiplication by

1/Kµ(N) imposes a computation overhead. As long as the total count of rotations N

is fixed, making the norm of initial coordinate exactly a constant 1/Kµ(N), the rotation

produces the unscaled operation for final coordinate.

Shift sequence

S(µ, i) is a non-decreasing integer shift sequence which is usually determined in advance.

The shift sequence determines the magnitude of scaling factor Kµ(N), as well as the con-

vergence of the CORDIC iteration. For µ = 1 or 0, {S(µ, i) = i, 0 ≤ i ≤ N−1}. For hy-

perbolic CORDIC iterations with µ = −1, ensuring convergence is a bit more tricky, since

whereas tan−1(2−(i+1)) ≥ 0.5 tan−1(2−i), the corresponding relation for tanh, namely,

tanh−1(2−(i+1)) ≥ 0.5 tanh−1(2−i), does not hold in general [27]. It has been shown [46]

that it is sufficient to repeat those iterations whose index i = 4, 13, 40, · · · , j, 3j+1, · · ·. It

is also an available shift sequence to repeat i = 4, 7, 11, 14, 16, 18, · · · for approximating

hyperbolic arguments [29].

Convergence range

The CORDIC equations impose a limited domain upon the arguments for the evaluated

mathematical functions. That is, the given rotation angle θ must not exceed the conver-

gence range of the iteration, θmax, which is given by the sum of all rotation angles plus
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the final angle as

θ ≤
N−1
∑

i=0

e(µ, i) + e(µ,N − 1) ≡ θmax '























1.7433 (99.9◦), µ = 1,

1, µ = 0,

1.1182, µ = −1.

CORDIC can evaluate ex only for x-values between 0.0 and 1.2364, and ln(x) only for

x-values between 1.0 and 9.5149. Expanding the range of convergence of CORDIC is

discussed in [16].

Precision

CORDIC is a digit-by-digit computation algorithm. It has the characteristic of linear

convergence. That is, if we want to obtain n bit precision, then we need n iterations.

Unified CORDIC summary

Table 5.1 provides a summary of CORDIC. It also contains formulas for indirectly com-

puting some other functions. For example, the tan function can be computed by first

computing sin and cos and then perform a division, perhaps through another set of linear

CORDIC iterations [27].

5.3.2 Convergence Computation Method

The following introduction to CCM is largely taken from [4], [9], and [15]. The con-

vergence computation method (CCM) developed by Chen [10] is an algorithm that suc-

cessively converges to the desired results. CCM computes exponential, logarithmic, and

inverse square root functions, which are not directly available in the CORDIC algorithm.

Suppose that we wish to evaluate a function

z0 = f(x)x=x0 = f(x0).

We introduce an auxiliary variable y to form the convergence function F (x, y) that satis-

fies the following three properties:
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Fig. 5.1: A geometric interpretation of CCM (from [4]).

1. There exists a known initial value y = y0 such that z0 = F (x0, y0).

2. There exists a convenient transformation of (xk, yk) into (xk+1, yk+1) such that

F (xk+1, yk+1) is invariant for all k ≥ 0.

3. A known destination value, xw, is reached through the sequence of x-transformations

such that the resulting y-transformations convergence to yw = F (xw, yw) = z0.

The transformation rule involves selecting a pair of functions ϕ and ψ such that






xk+1 = ϕ(xk, yk),

yk+1 = ψ(xk, yk).

Fig. 5.1 provides a a geometric interpretation of CCM. The function F (x, y) is con-

strained to lie in the plane z = z0 of a three-dimensional cube which has a vertex at

P0 = (x0, y0, z0). The invariance of F (x, y) implies that at each iteration, the point
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Pk = (xk, yk, zk) lies on the curve F (x, y), i.e.,

z0 = F (x0, y0) = F (xk, yk) = · · · = F (xw, yw) = yw.

Furthermore, the curve F (x, y) must pass through the point Q = (xw, yw, z0) as a conse-

quence of the third condition.

The CCM can be readily understood by an example. Consider the computation of the

exponential function f(x) = wex. Define the convergence function to be F (x, y) = yex

with initial value y0 = w and destination xw = 0. We see that z0 = F (x0, y0) as is

required by condition 1. Next choose the transformations:






xk+1 = ϕ(xk, yk) = xk − ln ak,

yk+1 = ψ(xk, yk) = ykak.

Now F (x, y) is clearly invariant since

F (xk+1, yk+1) = akyke
xk−lnak = yke

xk = F (xk, yk).

Finally, when x→ 0,
∑

ln ak → x0, and thus

yw → y0

∏

ak = w
∏

ak = wex
0.

The CCM algorithms for exponential and logarithm are as follows [15].

1. Exponential (0 ≤ x < ln 2) :

z0 = wex0 = y0e
x0

= (y0a0)e
x0−lna0 = y1e

x1 = · · ·

= yne
µ ' yn + ynµ

Initialization: y0 = w

Function: F (x, y) = yex

Transformation: xk+1 = xk − ln ak and yk+1 = ykak

Termination: xn = µ and z0 ' yn + ynµ

Sequence: ak = 1 + 2−m

where m is the leading-1 bit position of the xk value.
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2. Logarithm (1/2 ≤ x <1) :

z0 = w + ln x0 = y0 + ln x0

= (y0 − ln a0) + ln x0a0 = y1 + ln x1 = · · ·

= yn + ln(1 − µ) ' yn − µ

Initialization: y0 = w

Function: F (x, y) = y + ln x

Transformation: xk+1 = xkak and yk+1 = yk − ln ak

Termination: 1 − xn = µ and z0 ' yn − µ

Sequence: ak = 1 + 2−m

where m is the leading-1 bit position of the 1 − xk value.

The choice of ak affects the algorithm convergence. Chen advocates ak = 1 + 2−m

which guarantees convergence, where the quantity m is elaborated in [10]. Furthermore,

the multiplications by ak can be replaced by shift-and-add kernels. In fact, x approaches

xw, but not exactly equal to xw. That is, xn = xw ± µ, where µ→ 0 but µ 6= 0. We need

k iterations to obtain k-bit precision.

5.4 Function Evaluation in Integer Arithmetic

For evaluation of sine, cosine, square-rooting and natural logarithm, we apply CORDIC

and CCM algorithms in integer arithmetic on a fixed-point TI DSP TMS320C6201. This

section presents the program development with aid of example.

5.4.1 Cosine and Sine by CORDIC

We follow CORDIC to develop a fixed-point program for calculation of sine and cosine.

CORDIC example for sine and cosine

Table 5.2 shows all the details of the simultaneous calculation of cos(70◦) and sin(70◦).

Each row of the table shows the values of z, x, y, and di at the end of a computation cycle.
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Table 5.2: CORDIC Example for sin(70◦) and cos(70◦) [29]
i z x y di e(i)

0 70.00000000 0.60725294 0.00000000 1 45.00000000
1 25.00000000 0.60725294 0.60725294 1 26.56505118
2 -1.56505118 0.30362647 0.91087940 -1 14.03624347
3 12.47119229 0.53134632 0.83497279 1 7.12501635
4 5.34617594 0.42697472 0.90139108 1 3.57633437
5 1.76984157 0.37063778 0.92807700 1 1.78991061
· · · · · · · · · · · · · · · · · ·
15 -0.00264619 0.34197674 0.93970842 -1 0.00174853
16 -0.00089767 0.34200542 0.93969798 NA NA

Each row of the table is produced by looking back at the previous row. Once the sign of

di is set by the sign of the old value of z, all else follows. Except for e(i), each row of the

table replaces the previous row in the calculator memory [29].

CORDIC program for sine and cosine

As shown in Fig. 5.2, the program is presented in circular CORDIC rototation mode. It

has been scaled by a factor, such as 223 or other choices, to use only integers for sine

and cosine evaluation in fixed-point format. The sine of the desired angle is now present

in the variable y and the cosine of the desired angle is in the variable x. We assume a

16-step system, which will yield 16 bits of accuracy. We set a constant 5094007 at initial

x to omit the post-multiplication at final coordinate. This constant is pre-calculated by

1/K with 223 scale, where K =
∏N−1

i=0

√
1 + 4−i ' 1.646760258 for N = 16. We also

assume that tan−1(2−i) have been calculated with scaling operation before run time and

stored at a 16 entry lookup table. In Fig. 5.2, we use radian unit with 223 scale to setup

the table, so we call the cordic routine by corresponding scaled radian unit. If we want to

call the routine in degree unit directly, just change content in the elementary angle table

e[16], and the desired angle theta by corresponding scaled degree value. Moreover, here

we also call TI’s cos and sin library of floating-point format for comparison later.
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Fig. 5.2: CORDIC program for sine and cosine.
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5.4.2 Square Root and Logarithm by CORDIC

We follow the hyperbolic CORDIC vectoring mode to develop a fixed-point program for

evaluation of square root and natural logarithm.

CORDIC example for square root and natural logarithm

Table 5.3 shows the computation of tanh−1(1/3), which is initialized by setting z(0)=0,

x(0)=3, and y(0)=1. As y is driven toward 0, z is driven toward the answer of inverse

hyperbolic tangent. The di=±1 is chosen so that dix(i) and y(i) have opposite signs. This

drives y(i) toward 0. In the process, z(i) is driven toward tanh−1(y(0)/x(0)).

Our interest in the values of inverse hyperbolic tangent stems from its connection with

natural logarithms:

ln(w) = 2 tanh−1

∣

∣

∣

∣

w − 1

w + 1

∣

∣

∣

∣

.

In particular, the calculation above shows that 2 tanh−1(1/3) = 2z(24) = 0.69315262, a

good approximation to ln(2)=0.69314718. . .. This is how CORDIC evaluates logarithms.

The significance of the terminal value x(24) = 2.34231665 is K ′ times the initial

value of
√

x(0)2 − y(0)2, where K ′ =
∏N−1

i=0

√
1 − 4−S(−1,i) ' 0.8281 for N = 24. This

is because the N -step folding process always magnifies the length of the initial segment

by a shrinkage factor of K ′. It is not hard to verify that by using the hyperbolic identities

as

x(i + 1)2 − y(i+ 1)2 =
x(i)2 − y(i)2

[cosh−1(e(−1, i))]2
.

In other words,
√

32 − 12 =
√

x(0)2 − y(0)2 = x(24)/K ′ ' 2.34231665/0.8281. This

is in fact how CORDIC evaluates square roots, as a byproduct of the calculation of inverse

hyperbolic tangents.

If the inverse hyperbolic tangent algorithm is applied to the seed values x(0) = w+1/4

and y(0) = w − 1/4. Then
√
w = x(N)/K ′ , because x(0)2 − y(0)2 = w. In constrast to

many of the other evaluations of elementary functions, it is interesting that this application

of CORDIC does require a postmultiplication by 1/K ′ to complete [29].
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Table 5.3: CORDIC Example for tanh−1(1/3) [29]
i z x y di S(−1, i) e(−1, i)

0 0.00000000 3.00000000 1.00000000 -1 1 0.54930614
1 0.54930614 2.50000000 -0.50000000 1 2 0.25541281
2 0.29389333 2.37500000 0.12500000 -1 3 0.12565721
3 0.41955055 2.35937500 -0.17187500 1 4 0.06258157
4 0.35696898 2.34863281 -0.02441406 1 4 0.06258157
5 0.29438740 2.34710693 0.12237549 -1 5 0.03126018
6 0.32564758 2.34328270 0.04902840 -1 6 0.01562627
7 0.34127385 2.34251663 0.01241460 -1 7 0.00781266
8 0.34908651 2.34241964 -0.00588631 1 7 0.00781266
9 · · · · · · · · · · · · 8 0.00390627

10 · · · · · · · · · · · · 9 0.00195315
11 · · · · · · · · · · · · 10 0.00097656
12 0.34615669 2.34231751 0.00097652 -1 11 0.00048828
13 0.34664497 2.34231703 -0.00016719 1 11 0.00048828
14 · · · · · · · · · · · · 12 0.00024414
15 0.34640083 2.34231671 0.00040466 -1 13 0.00012207
16 0.34652290 2.34231666 0.00011873 -1 14 0.00006104
17 0.34658393 2.34231665 -0.00002423 1 14 0.00006104
18 · · · · · · · · · · · · 15 0.00003052
19 · · · · · · · · · · · · 16 0.00001526
20 · · · · · · · · · · · · 16 0.00001526
21 · · · · · · · · · · · · 17 0.00000763
22 · · · · · · · · · · · · 18 0.00000381
23 0.34657249 2.34231665 0.00000258 -1 18 0.00000381
24 0.34657631 2.34231665 -0.00000636 NA NA NA
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Table 5.4: CCM Example for Logarithm in Floating-Point [15]
x 1 − x [bin.] m ak ln(ak) y

0.785 0. 001· · · 3 1 + 2−3 0.117783 0
0.883125 0. 0001· · · 4 1 + 2−4 0.060625 -0.117783
0.938320 0. 0000 1· · · 5 1 + 2−5 0.030772 -0.178408
0.967643 0. 0000 1· · · 5 1 + 2−5 0.030772 -0.209180
0.997882 0. 0000 0000 1· · · 9 1 + 2−9 0.001951 -0.239951
0.999831 0. 0000 0000 1· · · 13 1 + 2−13 0.000122 -0.241902
0.999953 0. 0000 0000 0000 001· · · 15 1 + 2−15 0.000031 -0.242024
0.999983 0. 0000 0000 0000 0001· · · 16 1 + 2−16 0.000015 -0.242055
0.999999 NA NA NA NA -0.242070

CORDIC program for square root and natural logarithm

As shown in Fig. 5.3, the program is presented in hyperbolic CORDIC vectoring mode.

It has been scaled by a factor, such as 223 or other choices, to use only integers for inverse

hyperbolic tangent evaluation of fixed-point format. Here we assume a 24-step system,

which will yield 24 bits of accuracy. The natural logarithm of desired input w is presented

in the variable x. The square root of desired w is formed with scaling in the variable y.

This scaling is to do post-multiplication at final x by factor of 1/(2K ′), where 1/K ′ '

1.20753406 is the product of hyperbolic cosine for 24 step, and the 2 combined with

this factor is due to
√

(w + 1)2 − (w − 1)2 = 2
√
w for more compatible input pair of

x = w−1 and y = w+1. Moreover, the tanh−1(2−S(−1,i)) have been calculated with 223

scaling before run time and stored at a 24 entry lookup table. Note that the shift sequence

S(−1, i) is not the same as iteration index i; it is necessary to repeat at some iterations for

convergence.

5.4.3 Natural Logarithm by CCM

We follow the convergence computing method to develop a fixed-point program for eval-

uation of natural logarithm.
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Fig. 5.3: CORDIC program for square root and natural logarithm.
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Table 5.5: CCM Example for Logarithm in Fixed-Point
X Xb m Xm T (m) Y

51446 149090 3 6431 7719 0
57877 7659 4 3617 3973 -7719
61494 4042 5 1922 2017 -11692
63416 2120 5 1982 2017 -13709
65398 138 9 128 128 -15726
65526 10 13 8 8 -15854
65534 2 15 2 2 -15862
65536 NA NA NA NA -15864

CCM example for logarithm calculation

Table 5.4 shows the computation of ln(0.785), which is initialized by setting x0 = 0.785,

and y0 = 0. As x is driven toward 1, y is driven the answer of natural logarithm. The

transformation rule involves xk+1 = xkak and yk+1 = yk − ln ak, where ln(ak) is a pre-

calculated look-up table, ak = 1+2−m, and m is the leading-1 bit position of the (1−xk)

value shown in Table 5.4.

CCM program and example for logarithm in fixed-point

Table 5.5 shows the computation of ln(0.785) in 16-bit fixed-point format, which is ini-

tialized by setting X = 0.785 × 216 = 51446, and Y = 0. As X is driven toward 216,

Y is driven the answer of natural logarithm with 216 scale. The 216-scaling (1 − xk) is

216 − X , which is defined as Xb to find the leading-1 position m for ak =1+2−m. The

transformation rule of yk+1 = yk − ln(ak) with 216 scale is

Yk+1 = Yk − T (m),

where T (m) ≡ 216 × ln(ak) is a pre-calculated look-up table. For the transformation rule

of Xk+1 = Xkak, the multiplications by ak can be replaced by shift-and-add kernels as

Xk+1 = Xkak = Xk(1 + 2−m) = Xk + 2−mXk = Xk +Xm,
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Fig. 5.4: CCM program for natural logarithm.
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Table 5.6: DSP Speed of CORDIC/CCM in Fixed-Point vs. TI Floating-Point Library

whereXm ≡ 2−mXk is belonging to shift operation. As shown in Fig. 5.4, the subroutine

ccmln is presented in CCM algorithm for natural logarithm in 16-bit fixed-point format.

Moreover, here we also call TI’s log library of floating-point format for comparison later.

5.5 Evaluation Results and Discussion

As developed in previous section, we apply CORDIC and CCM algorithms for function

evaluation of in integer arithmetic. In this section, we show their evaluation performance

on TI DSP chip with comparison to TI library. Then, we briefly discuss with potential

optimization or variation in function evaluation.

5.5.1 DSP Performance of Function Evaluation

Table 5.6 shows DSP Speed of CORDIC and CCM in fixed-point arithmetic in compar-

ison with TI support library. As discussed previously, we apply CORDIC algorithm for

function evaluation of sine, cosine, natural logarithm and square rooting, and use CCM

algorithm as an aid in computation of natural logarithm. However, these four elemen-

tary functions provided by TI support library are belonging to floating-point format. It is

time-consuming to run floating-point format on fixed-point device. Our developed fixed-

point routine avoids the extra time. For example, TI floating-point sin and cos take more

than two 16 µs respectively on a TI’s fixed-point DSP TMS320C6201, but our CORDIC

routine takes one 3 µs to finish the simultaneous calculation of both cosine and sine of

16-bit precision. Similar case also happens for evaluation of natural logarithm and square
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rooting. Therefore, it is possible to port our channel simulator on II’s fixed-point DSP

board Quatro62. Furthermore, these elementary functions are helpful for the generation

of channel model.

5.5.2 Discussion on Variations and Optimization

Our fixed-point CORDIC/CCM library is efficient enough to compare with TI floating-

point library. It provides one of efficient generation as porting to the fixed-point device.

However, it is not efficient enough with comparisons to DSP instructions of single cy-

cle style. Therefore, we need optimization or variation methods for speedup function

evaluation to serve as efficient generation of channel model.

There are several methods for evaluating elementary and other functions. For exam-

ple, in the book of computer arithmetic [27], two chapters are devoted to square-rooting

methods and table lookup, respectively; and two chapters to CORDIC, other convergence

methods, and approximation [21]. However, many methods require conditional break in

the loop. Unfortunately, the branching operation is not friendly for DSP resources. Be-

sides seeking efficient algorithms, we are considering to optimize coding styles, such as

loop unrolling, software pipelining, intrinsic operators or assembly language and so on

[43], [39], [37]. For example, we should not have any if-else condition statements in

the loop, otherwise, the loop is not software pipelined. Similar case happens in a time-

consuming routine of scramble code generation in the existing simulator.
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Chapter 6

Conclusion

The DSP is a programmable tool to achieve different functionalities. We wanted to im-

prove the previously developed wireless channel simulation system consisting of three

interconnected DSPs. We found ways of making the existing system work better.

Firstly, multiprocessor programs without specifying the start-up order could not run

smoothly. We pointed out unlucky style and tools compatibility, and then did migration

to a specified new platform. Therefore, the start-up problems went away.

Secondly, real-time performance degraded on the three connected DSPs. In order to

reduce latency, we proposed the pipelining-512 structure employing non-blocking mode

DMA and double buffering. We observed actual execution speed and pointed out time-

consuming factors, including waiting for conflicting resources or FIFO handshaking.

Then, for applying double buffering correctly, we paid attention to an improper mem-

ory management. Therefore, the three DSPs could efficiently achieve that one block used

for computing while another block used for moving by a timing-sharing DMA.

Thirdly, fixed-point generation of channel coefficients was not available yet. However,

vendor supported sine, cosine, logarithm, and square root functions belong to floating-

point. Applying CORDIC and CCM algorithms, we evaluated these four functions in

integer arithmetic, to serve as the generation of channel coefficients and Gaussian noise.

In conclusion, for efficient simulating wireless channel on multiprocessor platform,

we sought out several methods to improve hardware and software efficiently.
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Appendix A

Things to Note in DSP Implementation

This appendix is concerned with the Quator6x (Q6x) platform housing TMS320C6x

(’C6x) devices. It is important to take care of memory management again in DSP Imple-

mentation. Besides tools compatibility, unlucky coding styles usually involve the linker

command file (.cmd), memory map (.map), or header file (.h). All with all embedded

systems, the command file is indispensable for real time application [12].

A.1 Emails Concerning Two Problems in Using MPO and
CCS

“We face two issues that it’s happening in environment of II Q6x or TI DSP tools. There

are four kinds of environment as shown in row 1 to 2 of Table A.1. Old environment by II

2.75 or 2.70 CD with CCS1.2, and new environment by CCS2.0 and II 2.97 or 2.87 CD

in a clean PC of Win2000SP2. Any user application run by two methods: one is run *.out

in CCS conjunction with UniTerminal, another is *.out or *.mpo by UniTerminal without

CCS.

We already use Q6x example and simple summation to check setting of the four en-

vironments as shown in row 15 to 16 of Table A.1. My major application train includes

channel, modulation, and filter receiver as shown in row 9 to 11 of the Table. However, my

application runs OK in CCS1.2 environment, but it face two issues in other environment.

For the issue 1, its .OUT or .MPO file could NOT run by UniTerminal without CCS1.2.
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After some analysis, it seems sensitive to 2 factors: one is .cinit to DRAM or SDRAM,

another is array size less or more than 500. As shown in row 6 to 7 of Table A.1, problem

repeated clearly during .cinit session. However, it’s OK for SDRAM as shown in row

3-both side and row 6-left side of the Table. Also see remark1 in Fig. 3.7.

For the issue 2, it repeated internal error during compile phase in CCS2.0 environ-

ment. As shown in log file of my application, that is TP>> internal error: bad type:

TYPE::type qualified(). As we known, many internal error of other kinds listed at bug

list in Website of TI. However, internal error exist but 0 error during compiling, and then

1 error during linking due to no *.asm file generated. Also see remark2 in Fig. 3.8.

To demo issue as similar as possible, some zip files attached in this email. As shown

in row 2 to 7 of Table A.1, the 5 simple codes provided to demo issue 1 of MPO or .cinit.

As shown in row 12 to 14 of the Table, we also provide other 3 simple codes to demo

issue 2 of bad type internal error. Finally, we need my original application run smoothly

in the four environments. Hope this information will speed up your solution feedback as

soon as possible.”

Reply from TI teacher George Hsieh

“I’ve forward the question to product information center, but they’ve responsed with a

message saying that this problem has never occurred in their FAQ record. I would say,

if possible, I’ll probably grab the libraries from you, just to test build the project on my

machine, if the lib is not an issue for you. OK?”

Reply from techsprt@innovative-dsp.com

“You will have problems running in all the environments. Code Composer Studio has

changed a lot over time. Version 2 of the studio is completely different and version 2.2

is different again. the Latest version on our web site has everything for version 2.2 of

C.C.S. this will compile with no errors. You are facing two different approaches to com-

piler features. On compiler will take a ”volatile struct” and the other will not. We had to
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Table A.1: Summary of Two Issues in MPO and CCS
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Fig. A.1: The volatile structure needs to be changed.

go in and change to each individual element to be volatile. you need to settle on one envi-

ronment and use that. Even the Make files are different with different switches. Libraries

are different from the versions. I have done what you have asked but it is a tedious effort

to maintain. II does not support this approach although I can be of some help in parts of

the upgrades. To convert for the new Code Composer Studio from older source code the

volatile structure needs to be changed (as shown in Fig. A.1).

Two Issues Related to Quatro6x Still Remain

“After volatile struct changed to new method (Timer in ii c6x.h,and Peripheral in Pe-

riph.h). Issue1 still exist in CCS1.2 of II2.70 or 2.75. Issue2 still exist in CCS2.0 of

II2.97 or 2.85. Do you actually run the isssu1 demo program of CHA501 in your CCS1.2

of II2.70 or 2.75? Also run the isssu2 demo program of BAD A in your CCS2.0 of II2.97

or 2.85? And actually run OK for the two issue demo program of in your newest CCS2.2

of newest II CD version? Do the above two violate struct change really hit the issues or

not yet? Could you continue to teach me how to do?”
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Reply from techsprt@innovative-dsp.com

“I need more specifics. No I have not looked at the project to update it. I have however

done this before on other projects. You should just download the new toolset and discard

the old ones. Update your code to the latest and then you will not have to worry about

this. The libraries might have to be recompiled to insure all of the compiler issues are met.

I did do that also with the new compiler. This may not be necessary. I do not remember

now as this was a while ago. Run a find for all the possible volatile struct in your include

files to see if there are others.

No the issue of the older toolset will always be there if you try to compile it on the

Newer Code Composers. The new toolset has already been updated for the newer releases

of Code Composer Studio. This is now aimed at version 2.2 of C.C.S. the latest version

is on the WEB and can be downloaded by you after you register your computer.”

A.2 Emails Concerning Four DMA Channels and One
DMA Bus

“I’m a NCTU student using Quatro6x DSP board. Now, there are problems about DMA

channels.

• Background:

There are four DMA channels at TMS320C6x01 DSP. There are four TMS320C6x01

on Quatro6x Board. TI’s on-chip memory: two blocks, four banks each. II’s

dma copy mem, dma port to mem, and dma mem to port used for data movement.

• Goal:

We want to pipeline the five actions: one computing under background of four

DMA channels moving data simultaneously.

• Status:

Up to now, it is OK to pipeline one CPU and one DMA using double buffering at
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separate block. However, it is NG to pipeline one CPU and four DMA background

movements simultaneously.

• Problem:

1) Could the four DMA channels move data simultaneously, or not?

2) If yes, how to do? Need to set data at separate bank?

3) Set by Data alignment or Structure for interleave LSB address?

4) If no, why could not? Limit from only one DMA controller having only one

DMA bus?

5) Any suggestion for my goal in Q6x board?”

Reply from techsprt@innovative-dsp.com

“I do not fully understand your problem. There are four DMA channels on each processor

of the Q6x. Each processor is responsible for there own DMAs. DMA uses the same data

bus as the processor so this is a time shared operation. If you have multiple DMA running

they also time share the bus. The DMA when complete calls a DMA interrupt so you can

use this to set flags and/or reset the DMA for new addresses. You can use the DMA with

any of TI or II setup routines. If you have special needs then use the TI functions and if

they have what you need then you will not have to build your own. At any time you can

set the DMA for any special needs of data flow. We just give you the most common in the

libraries. DSP0 does use one of the DMA channels for the BusMaster and this should not

be changed unless you are not Busmastering data to or from the host.”

Reply from TI teacher George Hsieh

“DMA in ’C6x01 has only one controller and one 32-bit bus. Access priorities are fixed

for each channel. Although you can pre-configure 4 different memory access configu-

ration through 4 channels, only the highest priority channel can use the bus if started

simultaneously, once this channel completes, the next highest priority channel would be-

gin, and so on. If double buffer works for you, with a little modification, you can make
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it as many buffer you want. Try to increase the frame count, and allocate more buffers as

required, use frame and element index mechanism to direct the input to 4 different buffers,

this can be done with only ONE channel of DMA. For details, please refer to the C6000

peripheral reference guide (SPRU190). It’s difficult to use DMA to move data in to/out

from another DSP without a share memory. But simply for this case, I guess 3 channel

will do, theoretically.”

Reply from support@ti.com

“Thank you for contacting Texas Instruments Technical Support. Your email has been

received and a case number 35347272 has been assigned to your inquiry. Regarding your

query, it is not possible to have 4 DMA channels move data simultaneously. There is only

one 32-bit DMA bus to the data access controller of C6201 which is the limitation. Please

refer to figure 1-1 of SPRU577. Note that the 4 DMA channels have fixed priorities with

channel 0 having highest priority and channel 3 having lowest priority. For more details on

this please refer to section 2.7 of DMA Reference Guide - SPRU577. For your application,

you can use Split-channel operation as described in section 2.6 of SPRU577. Also CPU

and DMA has separate buses for memory and hence they can have simultaneous access.

Also refer to the following: Chapter 3 of SPRU577 TMS320C620x/TMS3206701 DMA

and CPU: Data Access Performance - SPRA614A Hope this helps. Please get back to us

if you have any further questions.”
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