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Abstract

In this thesis, we investigate'the spin.relaxation time in quantum dot
embedded into quantum wire. The spin relaxation time due to the
electron-phonon interaction is studied. We calculate spin relaxation time
by Fermi golden rule. Different effects such as the magnetic field, the
quantum dot size, and the temperature on the spin relaxation time are

studied.
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Chapter 1

Introduction

Quantum dot is a small conductive region in semiconductor structures. The size of
the guantum dots can be controlled by gate voltage [1] [20]. Quantum dot can be
defined as a solid-state structure capable of confining the electrons. [2][26]Quantum
information indicated that can the state of an electron spin 1/2 can be encode quantum
information in a semiconductor quantum dot. [3]..However, information processing is
intrinsically limited by the spin-lifetime. For-a single-spin, one distinguishes between
two characteristic decay times T, andT,, where T, is the spin-relaxation time and
T, is the spin decoherence time. The relaxation of an excited spin state in a magnetic
field into the thermal equilibrium is associated with the spin-relaxation timeT,. The
spin decoherence time T, is related to the loss of phase coherence of a single spin
that is prepared in a superposition of its eigenstates. [4] Experimentally, T,
measurements of a single spin in quantum dot are highly desirable because T, is the
limiting time scale for the coherent spin manipulation [4]. Spontaneous emission is
one of the fundamental concepts of quantum mechanics that can be traced back to the

early work of Albert Einstein. [3]JAn excited state of a single atom decays



exponentially due to the coupling to phonon. If the quantum dot with discrete bare

levels is coupled to external degree of freedom, these levels will acquire a finite

widthT". [4][21][22] The properties of electron-spins confined in semiconductor

guantum dot are essential to the proposed qubits in quantum computers. The study of

spin relaxation in quantum dot is implemented with the search for solid state qubits in

quantum information. It needs to obtain longer spin coherence time so that quantum

information can be stored and manipulated without losses. [5-9].

Spin-orbit interaction in semiconductors is essential in spin relaxation processes

because phonons alone do not flipsspins. Spin relaxation in quantum dots can arise

from acoustic phonon-assisted spin flips~at fow temperatures.[5][20][25] The

dominant factors on the spin relaxation processes dare the dot size, temperature, and

magnetic field . Low temperature relaxation rates are found to be small and to depend

strongly on the size and temperature of the dot, and is also dependent on the magnetic

field applied on the dot. [1][10-13]

Recently, an increasing interest in the spin properties of nanostructure has been

found. In this work, we calculate the relaxation time of spin flip due to the spin-orbit

coupling induced spin-flip electron-phonon scattering at very low temperatures, where

the dominant electron-phonon scattering arises from the deformation potential[14].

The study of spin relaxation time is usually by the perturbation theory where the
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spin-orbit coupling is treated as a perturbation in the Hilbert space spanned
by H,which does not include the spin-orbit coupling [2][15-16].We investigate the
spin relaxation time(SRT) of GaAs quantum dot confined by parabolic confining
potentials and is embedden in a rectangular quantum wire. Our system is solved by
exactly diagonalizing the total Hamiltonian. We then calculate the SRT due to the
scattering with the acoustic phonons by Fermi golden rule after the energy levels and
wave functions are obtained from the exact diagonalization [17-19] [30]. In this thesis,
we study the effects of the magnetic field, the temperature, and the quantum wire

width (thickness) on the SRT. [31-40]
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Chapter 2
Formulation

2.1 quantum dot

Consider a system consisting of an electron in a cylindrical quantum dot acted by
an external magnetic field, the quantum dot is embedded in a rectangular waveguide
(quantum wire) and is interacted with acoustic phonon inside the quantum wire.

The Hamiltonian of the system is:

H=H, + th + He—ph (2.1.1)
where He = Hgy + Hg (2.1.2)
Ho is the electron Hamiltonian without the spin-orbit coupling (Dresshauls

effect)and can be expressed as :

2

_ P
Ho = e +Vc(r) + Hg (2.1.3)
. e —
The first term of H, is the kinetic energy operator ie p = —1AV + c_A ,
o= 1
with A=§(er).
hZ

The second term is the confining potential Ve(r) = hw, = mdz where d

is the effective diameter and M™ s the electron effective mass. The third term

1
Hg ZEgUBBGZ is the Zeeman energy, where gis the g-factor (here we will

12



consider a GaAs quantum dot, thus g =-0.44), u, =% is the Bohr magneton, and

o, isthe z component of Pauli matrix.

z

The SO interactionH_, is comprised of the two parts (Dresshauls and Rashba
terms). The Rashba (Electric field) and Dresshauls (Strain field ) SO Hamiltonians
may be written as

H,=a (-P,o, + P,o,) +B(o,p, — P,0,) (2.1.4)
By (2.1.4), the second term is neglected because strain field ( Dresshaulus
term )is only considered, Hs, can be simplified as
Hyo = a(-Pyoy + I:’yay) (2.1.5)
1 (0]
,in whicha = acwz(g) . 0 =215 Al-eV.,

Hy contained in eq.(2.1.1) can be expressias (Appendix C.1)and we only consider

the acoustic phonon.
. 1
H.,, =ho,(a;a, +§) (2.1.6)

, Where hwq is the acoustic phonon energy, aqTand Qg are the creation and
annilhilation operator for acoustic phonon.

The electron-phonon interaction between the electron in quantum dot and the

acoustic phonon in quantum wire can be expressed as (Appendix C.2)

He = D M (@', +2,)e"" (2.1.7)
q

with M, being the scattering matrix form.

13



The wavefunction of the electron in quantum dot|«y) ( i.e. the state function

of the Hamiltonian He in the Hilbert Space)can be constractedfrom the

eigenfunction functions |n I U) of H, without spin-orbital interaction as

Y1) = > CaisIn10) (2.1.8)

nlo

here Ho |nlo) = Ey, |nlo) with

il a’n! I (a ) (2,2
Inlo) =R e""x, = [m](ar) exp(——5—)Lh/(a’r?) (2.1.9)

En, = hQ@2n +1 + 1) — hwgl + oEg (2.1.10)

In equations (2.1.9) and (2.1.10) n=0,1,2,... , | = 0,+1,+2,43,.. are quantum
numbers.

Substituting (2.1.8)into  Hg | i) =4 {¥y) ..inprinciple, we can determine C!

nlo 1

the eigenenergy , 5 ,and eigenfunctions,—¥r)-= Y_Cni» [N | o), of the total electron

nlg

system He can be obtained.

In order to obtain the expansion coefficients C/,, the Hamiltonian is expressed

in the form of matrix, and the suitable transformation will be used to make the

problem as a finite matrix equation. The matrix form of theSchrE)dinger equation
H|a) = E|a) describing the interacting system may be written as
Hy .. Hy (& &

(2.1.12)
H

nl nn n n

In Eq(2.2.12), the matrix elements are H,, = (m|H |n)

14



The matrix equation (2.2.12) may be rewritten

N
> [H,, —Ed,Ja, =0, m=1,2,...N (2.1.13)

n-1

which has a nontrivial solution if the characteristic determinant vanishes. The secular

equation becomes

H, -E
For example, consider 12 states are involved in the expansion of (2.1.8).i.e

lw.)=> Cy.|n1 o)=C|1)+C,|2)+C,|3)+C,|4)+Cq|5) + C|6) +.....+ C,, [12) (2.1.14)
nlo

Substitute into the Schrodinger eq.

He [U1)=7¢ [¢)) (2.1.15)

gl |V/L>=(Ho + Hso)|V/L>:ZI:CnIogI |n ' O->

N
2.1.16
zcnla nlo nla +zCn|0' <n I O-‘H |n| O-> Cn|05n|0' ( )
nle nl'c’ nle nl'c’
,or
EUHLL) UHa[2)  (UHL[8)  {UH.[4) {UHo[5)  (1[Hy[6)- Copt Coot
(2[Ho|)  E+(2[Ho[2) (2Ha[3)  (2[Ha[4)  (2Ha[8)  (2[H.][6) Con. Coot
<3‘Hso‘l> <3‘Hso‘2> E3+<3‘Hso‘3> <3‘Hso‘4> <3‘Hso‘5> <3‘Hso‘6> Con _ C(m
7€|
(4HaD  (4[Ho[2)  (4[H.[3)  E+(4[Hg|4) (4[H.[5)  (4]H.]6) Cout Cout
GlHa|D)  (BHa[2)  ([HL[3)  (B[Ho|4)  Es+(5|H.[5)  (5]H.[6) Coxn Cor
OHLD  (6[HL[2)  (lHI3) (B8 (H.IS)  Ec(eHL[8). \Con)  (Con

In cylindrical coordinates, when the dot lateral size (¥ ) is sufficiently larger than
the dot height (z,),Hs, and its matrix elements can be expressed as

H,(,0) = af— |(—cos¢> +%( S'p”‘/’)) o+ |(—3|n¢> +a_¢( cos¢))oy}  (2.1.16)

15



—ol'D?

n,n"l,

(n),o|Hg |16 = i22y,a8,.,,5, [0 x D,

I'toc¥o,~0"

v +D ] (21.17)

n,n"LI"
The originally spin-conserving electron-phonon scattering has been used in

to D3

nn'Ll"

deriving Eq.(2.1.7) to cause spin relaxation. D} in Eq.(2.1.17) are given

n,n'LI"

in detail in the section of results and discussion.

Practical calculation |%1) is expanded in terms of some lowest-energy levels

of H,i.e[0,0,1),/0,04),0,L1),[0,14),[0,-11),|0,~L{) +....as basis functions in

the perturbation method.

For the spin-orbit coupling H__ , mixing occurs for opposite spins:

so?

(n1,o|Hgln'1'0") = (n,1|Hgln", 1')6

o—c"

—ol'D?

n,nYll" n.n'l,

=i2zy.ad,,,0,  [oxD;

I'toc¥o,~0"

D] (2.1.18)

After substituting the Pauli"matrix, eg.(2:1.5) in cylindrical coordinate can be
expanded as :

0 0 €’) .o
Hso(p,¢)=a{[_iei¢ ]( i(— )a_¢ ﬁ p)+[ei¢ 0}(—15)}

(2.1.19)
Therefore,
<n,I‘HSO|n',I'>50'0.:a<n,l|[ i exp(—ig)(~ |(—)a—+—Bp)+exp( i) (— |—)}| ')
¢ 2n
(2.1.20)
After integration over the angular part, we get the relation |I -1 | =1.

16



We have three terms:

© 271
Dl o [ [ &L (@r)e (€) - B- (L, (or*)e"*rrdg
00

(2.1.21)
H @ L (@ r)e i) —i—2 ¢(L‘ (@’r)e"*)rdrdg
(2.1.22)
D2 I] €L, (ar )e"¢(iei¢)(—ig)(l_'n'.(azrz)e"'¢)rdrd¢
(2.1.23)
12 states
\o,o,T},\o,o,i},\0,1,T>,\0,1,¢>,\o,-1,¢>,\o,—1,¢>, ............... \1,—1,¢> as basis

functions are used in the perturbation method. The wave function of the lowest two
states of H, are given by

eB
+ 2
=(r[0,0,1) ~inay, —21¢(r|0,0,{) (2.1.24)
Eo,—l,T - Eo,o,i
1+ e82
= (r[0,0.4)~inay, —21%(r|0,0,1) (2.1.25)
EO,l,T - Eo,cw
eB ? eB ?
: 1+ 2ha’ : 1+ 2ha’
AE=2E, +ihay, —"%— (B, —E,,,) - lihay, — (Boir = Eoor)
E E 0,-1,T E0,0,¢
(2.1.26)

17



2.2 acoustic phonon

The elasticity equation can be written as (shown as Appendix B)

2
‘ZT‘ZJ — VU + (52 —S))V(V-u) 2.2.1)

, where u is the displacement vector, and s,and s, are the speeds of longitudinal
and transverse acoustic waves. For GaAs, s =4.78x10°cm/s ands, =3.35x 10°cm/s
in the [001] direction. We assume,that the width. of the wire (rectangular rod) is 2d
and the thickness of the wire iS 2a, as shawn in“Figure 1. The acoustic mode with
rectangular rod have been examined experimentally (Morse, 1948) and theoretically

(Morse, 1949, 1950). The normal components of the stress tensors must vanish, the

boundary conditions for quantum wires are T, =T, = T, =0 at x= * g,
and T, =T =T, =0aty=+d.

In our work, the eigenmodes for acoustic vibrations defined by Eq.(2.2.1) is first
obtained. By following Morse’s(1950) assumption of separation of variable, the

elasticity equation is decomposed by assuming the modes being decomposed into

thickness modes and width modes. The solutions can be expressed in the form:

18



For thickness modes, the displacements are

ut = Au, (7, x)cos(hy)e” (2.2.2)
uy = AV, (7, x)sin(hy)e” (2.2.3)
u' = Av, (7, x)cos(hy)e” (2.2.4)

For width modes, the displacements are

uy = Au, (7, y)sin(hy)e” (2.2.5)
uy = Av, (7, y)cos(hy)e” (2.2.6)
u;’ = Av, (7,z)cos(hy)e” ™ (2.2.7)

, Where y is the z-directed longitudinal-phonon wave vector along the length of the
wire.

To complete the solutions( the dispersion relation for acoustic phonon), we need
to find u, (7,%),u, (7, Y) % (7. Y) Vo Gy (7. X) ,W,, (7, y) . They are found from

the secular equations

Ut(}/, X) ut(%x)

D, | Vi(7,Y) |=-a| v (7.Y) (2.2.8)
Wt(]/,X) Wt(]/, X)

and D, [VW (. y)] - [VW (7, y)J (229
v, (7,Y) v, (7,Y)

for thickness and width modes, Eq.(2.2.8),(2.2.9) respectively. Here @, is the
frequency of the n-th phonon branch for phonon longitudinal wave vectory. The

matrix operators (thickness D, and width D,, ) are given by

19



2 82 2 h2 2 h 2 a2 a H 2 a2 8

SL 67_51 (h*+y7) (S-S )a_X iy (s, -s; )5_X
D = -h(sz-sz)i szi—s 7> —s?h? -iyh(s? -s?) (2.2.10)
t L *~t ax 8X L L *t =

iy(s® -32)i iyh(s? -s?) s i -s2h? —s2y?)

- ox - b ox?

, and

st0,, —siy® iy(st-s7)o,
D, =| "> 7 ( ) (2.2.12)

iy(st —s})0, s;0, —S¥

We solve the one-dimensional eigenvalue problems (2.2.8) and(2.2.9), and use the
numerical finite difference scheme. The approximate separation-of-variables solution
given by Morse is used for the compressional wave (thickness) modes in the case

where h=h,=h, and the dilatational wave «width )modes in the case

where g=q,=q, .The dispersion-relations-for (thickness mode) are :

u = (Asing,x + Bsing,x) - cos(hy), (2.2.12)
V= [qﬁAcosqlx+Ccosqzxj-sin(hy), (2.2.13)
1
W= |[ q7 Acosq,X +— (qu +hC)cosq,x }cos(hy) : (2.2.14)
1 Y

2 2
, Where ¢/ +h’ =y HCEJ 1}, o +h=y° !(CE} 1],
| t

p is the mass density and q,, g, the longitudinal and transverse wave-vector

components. They are related to the Lame’ constants Aand u

20



C, = /M (2.2.15)
o

c = |— (2.2.16)

The boundary conditions for quantum wiresare T, =T =T, =0atx=ta.

2h sing,a hsing,a q,sing,a A
-(y*+h*-g%)cosq,a 29,0, cosqg,a 0 B|=0 (2.2.17)
2(h*+y*) sing,a (7*+h*-q3)sing,a 0 c

The dispersion relation for q, = 0is given by the expression from the condition that

2 2
tanga _ 4q21q2(f; 7 2 (2.2.18)
tanga  (h*+7°-0q;)

We first calculated thickness mode (yh=h,=h,)

0, =C 7  +h? + 0] =¢/yf +hi+q; (2.2.19)

tang,a 40,0, (h2 + 72)
, and Y 2 22
tang,a (h*+y°-q;)

(2.2.20)
It is necessary to use a numerical approach to solve Egs. (2.2.19) and (2.2.20) to
find w,, . However, it is useful to make use of an analytical analysis initially in order
to identify different branches and understand their general behavior. The solutions
yield the dispersion relations @, versus y .(Figurel2-15). In Figure.(12-13),we show
the dispersion relations of thickness and width modes for GaAs quantum wire with
width =130nm and thickness=260nm, and for quantum wire width=100nm and

thickness =200nm.
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2.3 electron-phonon interaction

The interaction between the quantum dot and the acoustic phonon can be expressed as
('shown as 2.3.5)
H, =Y M@, +a,)e"" (2.3.1)
q

The electron-phonon interactions employed in semiconductors have different
types of interactions: deformation potential coupling to acoustical phonons,
piezoelectric coupling to acoustical phonons, and polar coupling to optical phonons.

The deformation-potential interaction“arises from local changes in the crystal’s
energy bands arising from the lattice distortion created by a phonon.

The deformation-potential interaction, introduced by Bardeen and Shockley, is
one of the most important interactions in modern semiconductor devices and it has its
origin in the displacements caused by phonons. Thus the phonon displacement
field zz produces a local change in the band energy, the energy associated with the
change is known as the deformation potential and it represents one of the major
scattering mechanics in non-polar semiconductors.

The acoustic phonon in the quantum dot is now considered to interact with the

magnetic field. And the deformation-potential (due to strain field) interacting with

22



acoustic phonon at a certain wave vector y, can be rewritten in terms of the
Hamiltonian He_p (shown as Eq. (2.3.5) and Eq.(3.315))
H,, =D,V-u(r), (2.3.2)

, where D, is a deformation-potential coupling constant. The acoustic phonons in
rectangular quantum wires composed of rectangular rod (infinite length in the
z-direction with an x-directed height 2a and a width 2d in the y-direction) are shown
in Figure 1.

The displacement of acoustic phonon mode is u(x,y,z)=(u,,v,,w,). In the case
of quantum wire, the quantizationsof the acoustic phonons will be performed (as

shown in Eq. (3.3.16))

u(r) = Y. [c,s (7) + o (CTUCX, Y, )07 (2.3.3)

y,n,m

, where u, =u(x, y)e”*®,
Vl — V(X, y)ei;/(zfct) ’

W, = w(x, y)e e,

Substituted Eq.(2.3.3) into Eq.(2.3.2), the deformation potential Eq.(2.3.2) can be

rewritten as

Hq =Dy 3 (Con (1) + 6l (7)) % (2—5 +%+ iyw)e” (23.4)

mny

t o .
, Where Caﬁ and Caﬁ are annihilation and creation operators.

23



ou

x = A(k, cosk x + Ak, cosk,x) cos(qy) (2.3.5)
ov q?
— = A(——cosk; x + & cosk, x) cos(qy) (2.3.6)
oy Ky
2
iyw = -A(—Vk—cos kX + (K, 4 + g&) cos k, ) cos(qy) (2.3.7)
1
ou ov .
—+—+iyw
ox oy
o ®, h? sink,a
=(=%)cos(k,x) cos(h y) + ——(—cosk x +h L_cosk,x)cos(h
(Clzkl) (k;x)cos(hy) ok, (k1 K, sink,a o )cos(hy)
(2.3.8)

We estimate the carrier-acoustic phonon rate, it is necessary to evaluate the matrix

element of the deformation-potential interaction. The matrix element is given by

MEE): Y cgl,.1,0<cn;,.z,_a.><n2,lz

Nl by ,o—0'

(a—qu@H;/W)e”Z |n1,ll
oxX oy

—_ 2 H
- > Chie (C*nlvlz‘a.)<n2 A, (?7—) cos(q,x) cos(h y)+ a; (L cosg,x +h mcos k,x) cos(hy)|n,, |1>
Ny h.nly.0-0' m cl ql ZCI q2 ql sin an

(2.3.9)

An electron is in the initial state|n,,1,);with.energy | ) and a spin polarization can

be scattered by the phonon into another state‘nzvlz> with energy‘gf >and the opposite

spin polarization. For electric-phonon scattering caused by the deformation potential,
2

‘M (Ef,Ei)‘ :Kf ‘ Hefp|i>‘ with H, is the matrix for the electron-deformation

potential.

Since M, will be included in the energy-conserving, and the electron- phonon

interacting system is solved by Fermi golden rule. The summation is taken over all

acoustic-phonon modes. Spin relaxation rate is from an electron with an energy

state E; to an energy state E,' by emitting a phonon of wave vector » and energy
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w, isgiven by (Eq.2.3.9)

The summation is taken over all acoustic-phonon modes.

2

r., = %’Tidy\M(Ef',Ei)\ S(E, —E, +ho)

i—>f

(2.3.10)

, in which

ME,Ef=] X ci.Cl. ,,)<n|

10l ,0,-0"

2

nk.a
k A cosk,X) cos(hy)|n,, I1>

(== ’)cos(kix)cos(hy)+ zk (E cosk, X + h

(2.3.11)

o(r-— r) 5(r—r) (2.3.12)

5(gf — & _a)qﬂ) =

In the above equation, we change the integration over all possible final states and

the energy conservation 6 function by summating over all zeros of the function

f(r)=¢, —&-ha,

Oy = CL\/]/Z +h? +k’ =ct\/;/2 +h? +k2

o(r-— r) 5(r—r) (2.3.13)

5(gf — & _a)qﬂ) =

f(r)=0 = o, =¢ —&=c\y’ +h*+k
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ok,

‘ ( ) - t'7_ct§

|r - or

Jr2+h*+k?
5r-x) . sr-x)
ok

2
_Ct }/_CtﬁT
2

I +h? +k?

o(e; —¢& _a)q/i) =

1
- 'V—CLaT
1

\/rlz +h* +k/

2

L :27” T dy‘M(Efl’Ei)‘ 6(E; —E + 1)

The spin relaxation time ¢ can therefore be determined by

1
- = Z fi zri—n
i f

r

in which fis the Bose-Einstein occupation number f, = —

acoustic phonon.
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Chapter 3

Results and Discussion

Fig.4 shows the electron energy levels in quantum dot without spin-orbit term under a
magnetic field. We calculate thatEn, = AQ(2n +1 + 1) — fiwgl + oEg, where
=\/m , g :%,EB =%g,uBB. Energy levels for quantum dot with an
effective diameter d=20 nm and d=40nm spin orbit coupling is not considered at
least 12-levels [0,0,%), |0,0,4)y [0, {0, ¥ [0.-11), [0-1)....... , are
included. The quantum dot energy level-for d=40 and:d=20 ratio is 0.8 with B < 1T.
We calculated He %) =g |) 7} the eigenenergy &l of the total electron
systemH, . The calculated spectrum of GaAs quantum dot as a function of the
magnetic field B with n=+1,1=0,+1, and o0=+1.As shown in Figs.5-7 the
simulations are presented for the cylindrical quantum dots, for radius of 20nm, 20nm,
40nm, and 60nm, respectively. The GaAs quantum dot is used, thus the effective mass
is taken as 0.067m, .
Fig.8 shows the corresponding energy splitting AE versus the magnetic field for

guantum dot with radius 60nm. We gradually increase the number of basis function

when the energy is converged to 0.15% precision. In order to converge the lowest 2
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levels, the quantum dot d=60 has to use 12 basis functions.
In Fig.9 The crossing levels occur at 0.45T, 0.67T, 1.1T, 1.8T, and 4.02T for quantum
dot diameters d=60nm, d=50nm,d=40nm,d=30nm,d=20nm.
The eigenvalue problem of Egs (2.2.10), (2.2.11), and (2.2.17) can be solved. A major
feature of the confined modes is the quantization of the phonon wave in x and y
directions. Figs.10-11 show the dispersion relation for the seven lowest different

thickness modes and width modes. The thickness mode ( h=h,=h,) is calculated from

the following three equations

0y =C 7 +h + 08 @, =01t hi+q; (3.1.1)

tang,a _ 4q,q, (h%+ 7%) (3.1.2)

and =
tanga  (h’+y°=0; )

There are 4 parameters in this three equations. By keeping «,, ory. One can use a
numerical approach to solve the three equations in (2.2.19) and (2.2.20). The
dispersion relation for thickness phonon, for a rectangular wire with
130nmx260nm  100nm x 200nm,respectively. We found the phonon mode with

thickness with 1 mode and width with 2 mode as AE and phonon coupling numbers.

We can calculate the strength of the electric-phonon scattering matrix M(E;"E,).
In Fig.12 We present the y, which is the spin-orbit coupling strength

H,, ( Dresselhaus coupling )and is the key to understand the spin flip. That is due to
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the fact that the spin-orbit coupling H,, is proportional (%).

In Fig13, we investigate the magnetic field dependence of the SRT for different radius
of the quantum dot at two different temperatures. For larger temperature, the spin
relaxation time becomes much larger due to the stronger electron-phonon scattering
and the wider range of energy space the electron occupies. The magnetic field
dependence of the spin relaxation time for different quantum dot diameter is shown in
Fig.13. It is seen that the SRT decreases rapidly with the magnetic field at each dot
size. This is because the magnetic field helps to increase the spin-flip. From the
Figure, it can be understood that forslargest dot, more energy levels are involved in the
spin-flip scattering and hence sharply reduce the SRT:

Fig.14 shows the spin relaxation rate gets farger with the increase of the temperature.
Moreover, the increase of the temperature comes the phonon number Ny to become
larger. This enhances the electron-phonon scattering and leads to a larger transition
probability.

In Fig.15 we find the spin relaxation time is decreased with the magnetic field. This
can be understood from the fact that the energy splitting AE increases with the
applied magnetic field B and energy splitting required to couple with the phonon
mode is increased.

In Figs. 16(a)(b) The spin relaxation time (SRT) of electrons due to the spin-orbit
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coupling induces spin-flip electron-phonon scattering at low temperature, where the

dominant electron-phonon scattering arises from the deformation potential. Smaller

wire width corresponds to larger spin-orbit coupling, therefore, yields as smaller SRT.

For larger wire width, more subbands are involved and hence increases an opposite

tendency of spin flip i.e a shorter SRT with the increase of the wire width and

thickness.
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Chapter 4

Conclusions

In this work, we obtained the solutions for the spin relaxation time from exact
diagonalization of Hamiltonian to explore its dependence on different magnetic field,
temperature, quantum dot, and different width and thickness of the quantum wires.
We found that SRT decreases with the applied magnetic field. This can be understood
from the fact that the energy splitting AE increases:with the applied magnetic field B
and more the phonon modes are “required to be coupled. Therefore, the
electron-phonon scattering probability is-larger. The SRT decreases rapidly with the
magnetic field at each dot size and temperature. We found that the SRT becomes
smaller with the increase of the temperature. The features can be understood by noting
that the increase of the temperature will make the phonon numberﬂ to be larger.
This enhances the electron-phonon scattering and leads to the larger transition
probability.

As the quantum dot is confined in quantum wire, it is necessary to study the width
dependence of quantum wire of the SRT. Smaller wire width and thickness correspond

to larger spin-orbit coupling and therefore smaller SRT. For larger wire width, more
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subbands are involved and hence increase an opposite tendency for a shorter SRT with

the increase of the wire width and thickness.

We found that the SRT decreases with the magnetic field. SRT decreases with the

diameter of the quantum dot, but increases with the width (thickness) of the quantum

wire. With high temperature, SRT becomes longer due to the stronger electron-phonon

scattering and the wide-range of energy level the electron occupies.
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Appendix A

The Hamiltonian of an electron in external magnetic field derived from a vector
potential can be written as:

H, = (p+2ay Imwp?
2m c 2

(A.1.1)

2
To expand the term of( p +3Aj , we found that P does not in general commute
c

with the vector potential A, which is a function of the coordinates. Therefore, the

Hamiltonian can be expressed as

A.1l.2
2m c’ ( )

According to the rule

P-g(r)-g(r)-P=-invg(r)

(A.1.3)
of the momentum operator with any function of the coordinates, we get
P.-A-A-P=—inv-A (A.1.4)
Theterm P - A can be calculated by analogy with
P-Aly)=-in(V - A)|y)-irA-V]y)
_ . N (A.1.5)
=—in(V-A)|ly )+ A-Ply)

We see that, whenever V- A=0 is valid (the Coulomb gauge), A-P is equal
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2 2

e e e e
(p+—Aj =p’+—p-A+—A-p+— A

c c c c

2, o8 e’

From the theory of classical electromagnetism, the vector potential corresponding

to a uniform magnetic field may be written as

U R,
A= E(B xT) (A.1.7)

The equation —ih%h//) =H, |) with the Hamiltonian Eq(A.1.1) is a generalization
of equation to the case where a magnetic field is.applied. On the other hands, since

K:%(ExF) , we have

Z-ﬁ:%(ExF)-ﬁ:%E-(Fxﬁ):%E-L (A.1.8)

H=2P +1m*a)§p2+ © B+t - (A.19)
2m 2 2mc 2mc

after the relation (axb)e(cxd) = (a-c)(bed) — (a«d)(b-c) is used, then

e? A e? e?
A (Bxp)=—"[Be(rx(Bx A.1.10
o Bme? (Bx p) a2 [Be(rx(Bx p))] ( )

For a particle having a spin with intrinsic magnetic moment x, the quantum
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mechanical operator is proportional to the spin operator §, and can be written as

i= 18 (A.1.11)

The intrinsic magnetic moment of the particle interacts directly with the magnetic
field. The correct expression for the Hamiltonian is obtained by including an extra
term - B corresponding to the energy of the magnetic moment 4 in the field B.

Eq. (A.1.7) now becomes

2 2
2 2 € €

p 1 . ) 2 e
H= ~+—Mma,p°+——B-L+——B +——S.B A.1.12
2m~ 2 p 2m'c 8m’c? r 2m'c ( )

For an electron in a quantum dot with finite confined potential and an external

magnetic field along z axis, the time-independent SchrSdinger equation of the

electron is:
{ P’ +1m*a)2p2+  B.L+ e B?p® + : S+B}w)=El|w)
2m- 2 2m'c 8m’c? 2m’c
(A.1.13)
In cylindrical coordinate, the operators P and p’ are:
I Op yoXol'/ 0z
2 2
_and P’ _jp2 (li(pi) +i28_2+8_2) (A.1.15)
pop  Op p O0p° 01

so Eq (A.1.7) becomes:
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2 2 H
Ly L Ly g, Y Dy ey (ALL6)
2m pap op  p~0p° 01 2 op 8

The equation can be solved by setting

lw)=|nle)=R(p)-@(p)-&£(2) 7, (A.1.17)

, wWhereR,®,¢&, y_are functions to be determined. For the boundary conditions
£(d)=¢£(—d) =0, we can obtain

&(2) = Acos(g—g z) = Acos(k - z) (A.1.18)

And, for ¢ component, the single .valuescondition of the wave function ®(¢)
requires:

D(p) =e" | =0,21 £2,43,........ (A.1.19)

we obtain Eq.(A.1.11)

I |2 h2k2 h m

Dividing Eq(A.1.17) by ®(¢)- &(z) ,multiplying it b

21,2

£=E—h
2m

, We get

/5 m
2mp? - -y, ——wﬁpz}ﬂp) =0 (A.1.21)

2m
¢(p) ——¢(p) { 5 3

, Where ¢(p) represents the radial part of the electron wave function inside the

guantum dot.
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We obtain eigenenergy for the quantum dot

En, = Q@20 +1 + 1) — hwgl + oEg (A.1.22)

,where Q=\/&} +®} =Ze_B*1EB =%gﬂBB
m

2
Define the magnetic length, |, = /h—; and substitute x :%into(A.l.ZZ)the term
e

B

becomes

2 d? 2d 2m 75 m
%QW) +|—2&¢(X) +?{g “2mg? — 5 —Ea)ﬁpz}zﬁ(x) =0(A.1.23)
B B

2

Multiplying Eq. (A.1.20)by = I , We get

/8 R/ m
T = —Ea)ﬁpz}zﬁ(x) =0 (A.1.24)

,02 d2 m|2
A 4 7 H(X )+—¢(X) {

Then the equation above can-be written as

¢(X)+—¢(X) {___m—pz__w'* —%wﬁpz}é(x) =0 (A.1.25)

Now, it is necessary to examine the behaviors of the solution ¢(x) of Eqg.
(A.1.22) at the origin and infinity in order to know if they are well behaved. We
require the wave function to be finite everywhere. Dividing Eq. (A.2.22) by X, we get

d’ 1d NS
Wqﬁ(x)+;d—x¢(x) -= ( _E)_4x2 $(x)=0 (A.1.26)

(I) when x approaches zero, Eq.( A.2.23) can be reduced to

¢() ——¢( )— ¢(X) 0 (A.1.27)
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By setting ¢(x) =x"> a X" (A.1.28)

n=0

And substituting Eq. (A.1.25) into Eq. (A.1.24), we get

n=0

e 2
Z{(n +r)(n+r-2ax""? +(n+r)ax""? —Izanx””ﬂ =0 (A.1.29)

The coefficients of polynomials should equal to zero to satisfy Eq. (A.1.25), that is,
|2
(n+r)(n+r—1)+(n+r)—Z:O (A.1.30)
i il

Finally, we get n+r = =+ So that, X" equal to x2 or x 2. Here

!

5
il U]

| =0,+£1,£2,43,....Since x 2diverges as x.approaches zero, #(x)~ x? is chosen for

the case as x approaches zero.

(1) As x approaches infinity, Eq.(A.1.23) can be written as

d? 1
Wﬂx) _Wﬂx) =0 (A.1.31)

Setting ¢(x) =e™ and substituting it into Eq. (A.1.23), we can obtain the

relations: m? —% =0 (A.1.32)

So, we get m:i%, and ¢(x) ~e ™2 org(x) ~e*'?. As x approaches infinity, e*’?

-x/2

will diverge, so we choose ¢(x) ~ e as X approached infinity.

Now we may set the solution of Eq. (A.1.24) to be

#(x)=e7'%-x2 - X(x) (A.1.33)

Substituting Eq. (A.1.24) into Eq. (A.1.25) and simplifying the resulted equation, we
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get

dx’ o, 2

2
3 x +[|I|+1—x]ix +[ id —I+|I|+1}X:O (A.1.34)
X dx h

We compare the equation with the confluent hypergeometric function:

d2
dp?

B F+[;(—ﬁ]diﬂF—/1F=O (A.1.39)

, Wwhere F =,F (4, x,/) is the confluent hypergeometric function. The solution of

X(x) is satisfied by the confluent hypergeometric function, we have

I +Hp+1
X ()= F (| £ el JI[+1%)
hao, 2 (A.1.36)
=, Rl +1%)
, Where
I+]1]+1
/1:—[ e _Vfi[+ } (A.1.37)
ho, 2
, and may be determined by the boundary condition.
Therefore we obtain
I _
y=Ae"?x2 (Al +1x)-e" -cos(;—gz) (A.1.38)

where A is the normalized constant. Eq.( A.1.22) can be rewritten as

ma,

\0,7) = Ag mnr 14
v(p 0,2) ( o

22 E a1+ 1, 0% 52y g cos(E
p) ll(’|| ’th) (2d)

(A.1.39)

,F(a,c,z) becomes a polynomial function, when suitably normalized, is a Laguerre
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polynomial. Specifically, one usually writes

L (2) =W/F(a +1)-, F(-na+17) (A.1.40)
We obtain

a?n! (ar)?

Inlo)=Rye"’x, = [m](@r)I exp(— T)L‘rlm‘(@zrz)

(A.1.41)
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Appendix B

Definition of stress and strain:

The intensity of the force, the force per unit area, is defined to be the stress. Let the

components of AF along x, y, z axes be AF, AF, ,AF,. Stress components are

defined as
. AF
AA—0 AA .
AF
N Y
5 = lim A ©12
. AF
7, = lim — (B.1.3)
AA—0 AA .

, Where o, is the normal stress and z,,, 7, are the shear stresses.

Normal stress is the intensity of a force perpendicular to a cut curve while the shear
stress is parallel to the plane of the element.

There are three normal stresses o, , o, , o, where the axis along which is the normal to
the cut plane. There are also six shear stresses z,,,7,,,7,,, 7, , Tu s Tx, » Where the first

subscript denotes the axis perpendicular to the plane on which the stress acts and the

second provides the direction of the stress. For example, the shear stress z,, acts on a

plane normal to the y axis and in a direction parallel to the x axis.
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In matrix form, the stress components appear as

o) T T

X Xy Xz
[T] = Tw Oy Ty
Tox sz o,

The matrix of stress is called a stress tensor.

Definition of strain:

(B.1.4)

The strain can be defined in terms of normal and shear strains. Normal strain is

defined as the change in length per unit length of a line segment in the direction under

consideration. Shear strain is defined as the tangent of the change in angle of a right

angle in a member undergoing deformation.

Ifu, v, w are three displacement.components at a point in a body for the X, y,z

directions of coordinate axes in Figure 2;:small'strains are related to the displacements

through the geometric relationships.

S:L:Sxx:a_lu
OX
ov
82=Syy=a—y
83: zz:a_a)
0z
1 0w OJv
S,=S, =S, ==(—+—
4 yz zy 2(8y aZ)
SSZsz:Szlea_lu—i_a_a)
2 07 OX
.-, =5, ~ L,

WO 2 0y ox
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(B.1.6)

(B.1.7)

(B.1.8)

(B.1.9)

(B.1.10)



Let u(x) be the elastic displacement at x along the axis of the one-dimensional
structure, and u(x) describes the uniform longitudinal displacement of the element dx .
In the elastic model the dynamics of phonon cavity , dx, is described in terms of
Newton’ laws. It follows from Hooke’s law that

T=Y-S , (B.1.11)

where Y is a Young’s modulus. The force equation describing the dynamics of the

element dx of density p(x)is given by Newton’s law;

5(X) Adx azlg(tz(,t) ~ [T¥ )~ 9] A, (B.1.12)
, Where p(x)Adx is the mass associated with the'index dx and % :
By Hooke’s law

T(x+dx)—T(x):(%)dx:(Yg—)S()dx:(Yg—j::)dx (B.1.13)

and it follows that

o’u ,p(x), 0%
( Y )&2

vl (B.1.14)

stress and strains independent of variable.

T, =T,

T, =T,

T, =T,

T, = Tyz = sz , the form by six-element.
Te =T, =T,

Te =T,, =T,
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T S, Cu Cp Gy Cy Cis Cyg
T S, Cu Cp Gy Gy Cys Cy
[T]= T, | [S]z S [C]= Csi Cp Cyy Gy Cy5 Gy
T, S, Cu Cp Cpy Cpy Cps Cye (B.1.15)
Ty Ss Csy
1 Ts | S Ce1

For the zincblende crystals, the stress-strain relation is the most general form, the
matrix C; is of the form (the zincblende crystal have only three independent elastic

constants,c,,,C,,,C,, )

A+2u A A 000

CiCpnCh 0 0 0 ES)

C Cc Cc 0 0 0 A A+2u 4 0 0 O

C12 Cll C23 O 0 O 2{ i l 0 O 0

52 o12 o11 c.o o |7 ° ) 0 w400

44 5 3 0 0 u 0| (BL16)

0o 0 0 0C, O 0 0 00 0 u

0 0 0 0 0 C,
There are two constants A and # necessary to define the C;;
By [T]=[C][s] (B.117)
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T = AS +S,, +S,,)+2uS,,
Tyy = ﬁ'(Sxx +Syy +SZZ ) + Zlusyy
T, =AS +S,, +S,)+2uS,,
j Tyz = lLlSyZ (8118)

TZX = luszx

TXy = Il'lsxy

2
xdirector: 1,9 0T _ O'm

x oy a U

: . 0T, oT, oT, o
= 4y director : + + = 5
ox oy oz ot

: . OT, oT, 0T, o’w
z director : + + =p—=
ox oy oz ot

azlu _ aTxx + aTYx + 6Tz
ot*  ox  sey, e
ov  OT,, =0Ty woly OA 5 _ i
=2 g + =1+ w)—+uv elastic-wave equation
PoE " ox Ty L TG TV A |

: o*w  oT, @F, 0T oA
z director : —— e W T () V2
PoE " ox oy e T G Y

x director : p L =(/1+y)2—A+,uV2,u
X

= <y director :

In general:

82:”:1 _ aTaﬂ

where £ is the density of a semiconductor and T, is the stress tensor.

Then the stress tensor is

T3=AS,,0,5+2uS,, (B.1.20)

aa ™~ af

,Where Aand H are elastic moduli, or Lame’ constant, and J,, is Kronecker delta
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For an isotropic medium, Eq.(B.1.19) cab be rewritten in vector form as

0% u

Tza = 'V, +(s2- st ) grad div(w, ) (B.1.21)
where s> =£ and 2 _Areu
p P

are the velocities of the LA and the TA waves in bulk semiconductors
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Appendix C.1

The Hamiltonian describing the harmonic oscillator associated with a phonon

mode of wavevectorq is

P? 1
H, =ﬁ+5ma)§y§ (C.1.1)

, where m is the mass of the oscillator , @

, 1S frequency of the phonon, g, is the

displacement associated with it, and p, is kinetic momentum.

Introducing the operators, a, and a, ,and

8, = |, L |1 (C.1.2)

"I\ 20 T 2amay .
mo, [ 1

al = |ty i | , c13

T\ M 2rma, (€13
mo, . 1 ma, . 1

818, = (| pty — i |——— P )|ty +i [—— Cc14

o= W 0 2ama, N 2n 4 2ma, (€14

Here the commutator [, p,]= 1, P, — Py, =i comes from the properties of the

quantum mechanical operators .

Thus phonon energy is:

1 1
—4+-m =hw,(aa += C.15
o M4 a, ( 2) ( )
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Appendix C.2

It will be convenient to express the normal-mode phonon displacement x,in

terms of the phonon creation and annihilation operators.

Uy = (a, +a;) (C.2.1)

q
Moreover, each incoming or outgoing phonon will be associated with a unit

polarization vector, these unit polarization vectors will be denoted by éq,j for

incoming waves and by € ; for outgoing waves.

u(r) = /2ma) (a,€" & taze € )

TZ > / (@t a8 = ¥ (g™ (C2.2)

, Where g is summed over all wavevectors in the Brillouin zone and N is the number of

unit cells in the sample.

The interaction between the quantum dot and the acoustic phonon can be

expressed as

_ t iq-
=Y M (a', +a,)e"" (C.2.3)
q
For long wavelengths we can treat the one-dimensional chain and the strain

becomes a derivative.

The longitudinal strain is
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e(z) :(Z—/;:— qsin(gz — w,t) (C.2.4)

Qpa

a

The deformation potential energy can be calculated as through the strain.

e(z)=—- 2h Esin(gz — o,t) =i h S(e — e )
Qpa, 20pa,

This is the form of the perturbing potential caused by the phonon to be used in

H, , =

[1]

(C.2.5)

Fermi’s golden rule.
The piezoelectric interaction occurs in all polar crystal lacking an inversion
symmetry. In rectangular coordinates, the polarization created by the piezoelectric

interaction in cubic crystals, including zincblende crystals, may be written as

3 6,u oW op  Ov
=L@ 20, Lo UNIRIRLE, 0, c29

, Where e,, is the piezoelectric coupling constant and the factors multiplying e,

are the components of the strain tensor that contribute to the piezoelectric polarization

in a zincblende crystal.
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Fig.1 The cylindrical-shaped quantum dot in an applied magnetic field.
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Fig.3 A rectangular rod of infinite length in z-direction with a height 2a in
x-direction and a width 2d in the y-direction.
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Fig.6 Energy levels for quantum dot with an effective diameter d=30 nm d=40nm,
respectively with including Dresshauls effective interaction.
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Fig.7 Energy levels for quantum dot with an effective diameter d=50 nm  d=60nm
respectively with including Dresshauls effective interaction.
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Fig.8 For d=60nm, 12 and 24 basis functions are included in order to obtain a
convergence of the lowest 2 levels and ensure the 0.15% precision with 24 basis

functions.
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Fig.12 Magnitude effect of Dresshausls interaction for a quantum dot embedded in a
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Fig.13 The spin relaxation rate versus magnetic field with the size of the quantum dot
in a range of d=20~ d=60nm at temperature T=10K and 4K.
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Fig.14 The spin relaxation rate versus magnetic field for various temperatures
T=10K ~T=4K- T=2K and the size of the quantum dot are kept at d=20 ~ d=40nm.
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Fig.16 (a) The SRT versus the width of the quantum wire in different quantum dot
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