第三章 矽晶片背面掃瞄之考量與討論

3-1. 简介

在第二章前半部,我們已經介紹了基本的掃瞄架設,並在實驗上得 到良好的矽晶片正面成像。但實際上正面結構無助於對晶片真正電路的 檢測,故接下來不對正面成像多做討論。而在第二章後半部裡,我們則 透過計算及模擬軟體的輔助下,確認了各元件的架設位置、角度等。然 而在實際掃瞄過程中,則有更多因素需要考慮。因此在本章節裡,我們 要進一步針對實驗過程中所遭遇的各種困難提出來,並加以討論分析。

首先,我們針對晶片矽基板對成像的干擾進行分析。一般而言,顯 微鏡所用之蓋玻片為厚度 0.18 mm 之玻璃薄片,但對矽晶片背面掃瞄而 言,則如同有一層 0.4 至 0.7mm 厚,且折射係數極大之蓋玻片阻礙了電 路結構成像。其阻礙機制包括介質界面反射、基板內部的全反射,以及 物鏡工作距離不足等問題。為了解決這些問題,我們利用傳統的介質耦 合的方式來改進。而接下來後半部,我們將考量各種雜訊對掃瞄訊號的 干擾。一般而言,背面掃瞄的訊號極小,故我們提出幾種可能影響成像 之雜訊,並且設法找出有效且簡單的改良方法以降低雜訊干擾。而最 後,我們會將經過改良的掃瞄系統應用在熱影像偵測上,以驗證光學掃 瞄系統在矽晶片缺陷檢測上的可行性。 3-2. 油鏡(Oil Lens)分析

一般而言,油鏡的功能主要有三點:

增加顯微鏡之數值孔徑以提高解析度

● 降低界面反射

● 增加物鏡有效工作距離

其中數值孔徑主要是針對傳統顯微鏡成像的改良,其關係式為:

$$NA = n'\sin\theta \quad , \tag{3-1}$$

式中,n'為物鏡與樣品之間的介質折射係數; θ為對焦時,反射訊號可 入射物鏡之最大半張角。

由於增加數值孔徑主要是改良顯微鏡成像時的解析度,與掃瞄系統 無直接關係,故接下來我們僅針對界面反射及工作距離來加以討論。

3-2-1. 降低界面反射

當一束光照射到不同透光介質界面時,部分光能會發生鏡面反射而 降低透射比例。對垂直入射光而言,以玻璃與空氣為例,其反射率公式 如下[1]:

$$R_{ga} = \frac{(n_{glass} - n_{air})^2}{(n_{glass} + n_{air})^2}$$
(3-2)

其中玻璃(Borosilicate, BK7) 折射係數為 1.52, 空氣為 1, 則可得到光強度的反射比例為:

 $R_{ga} = 0.04258$

若以對數形式表示,則可寫成:

 $RL(dB) = -10 \log_{10} (R) = 13.71 \, dB$,

其中 RL稱為反射損失(Return Loss),單位分貝。由上述定義可知,若反 射損失的值愈大,光反射比例就愈小。

對矽晶片掃瞄而言,我們的界面反射主要來自於矽與空氣界面,若 將(3-2)式中的n_{elass} 以矽(n_{si} = 3.42)取代,可得到:

R = 0.2997

或

RL(dB) = 5.23dB,

我們發現, 矽與空氣間的反射損失值很小,這意味著對於矽晶片掃 瞄而言, 光的表面反射的干擾對訊號是不可忽略。除此之外, 在做光探 針掃瞄時, 由於光的入射角有微量不同, 但這些微量的角度偏差便會造 部分反射訊號會掺入界面反射光, 部分訊號則無(如圖 3-1 所示)。而這 樣的情形將會大幅抬升訊號之最大值, 進而降低影像的對比值。

由圖 3-1(a)可知,雖然界面反射訊號可置入阻隔物隔除,但掃瞄過 程中,界面反射與結構訊號相當靠近且同時擺動,因此我們很難以靜態 阻隔物將界面反射完全隔除。因此,在無法有效排除界面反射的情況 下,我們可利用折射係數耦合油(Refractive Index Matching Oil)降低界面 反射的干擾。

- (0) 王和英母巫被之汉羽布 制俯視圖。
- (a)物鏡、空氣及矽基板反射示意圖。
 若加入耦合油滴,則圖中物鏡與空
 氣之反射光則能被消除。

- (a) (油鏡)光入射矽基板之反射光點,由左至右分別為表面反射、內部結構反射,以及 CCD 鏡頭反射。
- (b) (油鏡)顯微鏡模式觀察到之 表面及內部結構反射光點。

圖 3-2 不同反射光點之比較

圖 3-3 三層介質界面之反、透射示意圖

接下來我們計算多層介質的界面反射情況為何。圖 3-3 為三層介質 (玻璃、空氣及矽基板)的界面的多重反、透射示意圖,其中R_{ga},T_{ga}分別 為玻璃與空氣的反射與透射比例; R_{as},T_{as}為空氣與矽基板的反射與透 射比例;而α為 1064nm 波長的紅外光在室溫時於夾層介質的衰減係 數,在空氣中其值約為0 cm⁻¹。故由圖 3-3,我們可求得乾物鏡時的總 反射比例為:

$$R_{ga} + T_{ga}^{2} R_{as} e^{-2\alpha d} + T_{ga}^{2} R_{as}^{2} R_{ga} e^{-4\alpha d} + T_{ga}^{2} R_{as}^{3} R_{ga}^{2} e^{-6\alpha d} + \cdots$$

$$= R_{ga} + T_{ga}^{2} R_{as} e^{-2\alpha d} (1 + R_{as} R_{ga} e^{-2\alpha d} + R_{as}^{2} R_{ga}^{2} e^{-4\alpha d} + \cdots)$$

$$= R_{ga} + T_{ga}^{2} R_{as} e^{-2\alpha d} \frac{1}{1 - R_{as} R_{ga} e^{-2\alpha d}}$$
(3-3)

假設入射角度很小,故 R_{ga} , T_{ga} , R_{as} , T_{as} 皆以垂直入射計算之,則:

$$R_{ga} = \frac{(n_{glass} - n_{air})^2}{(n_{glass} + n_{air})^2},$$

$$T_{ga} = (1 - \frac{n_{glass} - n_{air}}{n_{glass} + n_{air}})^2,$$

$$R_{as} = \frac{(n_{air} - n_{silicon})^2}{(n_{air} + n_{silicon})^2},$$

$$T_{as} = (1 - \frac{n_{air} - n_{silicon}}{n_{air} + n_{silicon}})^2,$$

其中 n_{air} =1, n_{silicon} =3.42, n_{glass} =1.52, α=0 cm⁻¹, d=0.05 cm。故可得總 反射率為 0.163。若以油滴取代空氣層,其折射係數約 1.52, α=0.01 cm⁻¹。由於油滴與物鏡折射係數相同,可完全耦合,故僅剩下油層與矽 基板的反射,於是代入(3-3)式後可求得反射率為 0.094,其值幾乎僅為 乾物鏡的一半,故介質耦合可有效提升 RL 值。如圖 3-4 所示為加入油 滴前後的 0.18μm 製程晶片背面掃瞄圖像,其油鏡不但解析度較高,則 界面反射的干擾也較不明顯。

(a) 乾物鏡,部分區域因反射(b) 油鏡,其結構對比清晰強度太大而降低圖像對比。

圖 3-4 加入油滴前後,界面反射對成像影響差異

3-2-2. 油鏡與工作距離

耦合油滴會影響的另一個成像參數是物鏡的工作距離(Working Distance)。工作距離的定義為在空氣中,物鏡端點至聚焦點間的距離, 但假若在這段距離內有任何折射係數大於1的介質出現,則工作距離會 因此延伸。已知矽基板本身是一種厚且折射係數高的介質,至於這樣的 介質是否足夠使得工作距離延伸至我們所要觀測之結構?以及加入油 滴後,對矽基板深度探測有何影響?這些都是我們這一節所要討論的主 題。

首先我們將物鏡的聚光路徑簡化成一三角形(如圖 3-5 所示),其中D 為有效入射孔徑, f為等效焦距, θ為空氣中的聚焦張角, 而w是物鏡 的工作距離。我們將簡化後的物鏡圖形分別引入乾物鏡與油鏡的聚焦示 意圖中(如圖 3-6 及 3-7 所示),並計算加入耦合油滴後對聚焦位置的影響。

圖 3-5 物鏡簡化示意圖

圖 3-6 工作距離與額外介質的影響

在圖 3-6 中, θ 及 θ'分别是聚焦半張角在空氣及介質中的值; α 為光 照在基板表面上之半寬長; S 為基板表面到原本聚焦點的距離; S'為光 探針深入基板內的距離。由圖中可得知加入基板後的等效工作距離為 w-S+S',由於S'≥S,故其值不小於原工作距離。但要特別注意的是, 第一,由工作距離的定義可知, S 必不大於原本之工作距離w;第二, 聚焦的重點不在於工作距離的長短,而是能深入基板的深度S'為何。故 接下來我們要求出S'與各個參數間的關係式。

首先由幾何關係得到:

$$S' = \frac{a}{tan\theta'} = \frac{S \cdot tan\theta}{tan\theta'}$$

其中 θ =tan⁻¹[D/2f],且由斯涅耳定理可得 θ '=sin⁻¹[sin θ/n],代入上式後:

$$S' = \frac{SD}{2f \cdot tan\theta'}$$
$$= \frac{SD}{2f \cdot tan[sin^{-1}[\frac{sin\theta}{n}]]}$$
$$= \frac{SD}{2f \cdot tan[sin^{-1}[\frac{sin[tan^{-1}[D/2f]]}{n}]]}$$

定義新參數*S*"為物鏡端點與基板距離,則*S*"=w-S。將*S*"代入上式後可得到:

$$S' = \frac{(w-S'')D}{2f \cdot tan[sin^{-1}[\frac{sin[tan^{-1}[D/2f]]}{n}]]}$$
(3-4)

由(3-4)式發現, S'值與S成正比關係,其餘皆為物鏡與基板性質。 而S又受限於原工作距離,因此將實際規格(如表 3-1)代入式中後可得 S'=4.21S=0.547-4.21S",且S $\leq w$,故得 $S' \leq 0.547$ mm,即聚焦深度最大不 超過 547 μ m,此值發生於物鏡與基板完全貼靠一起時,矽晶片基板而 言,尺寸約在 300 至 700 μ m,因此對較厚基板的晶片會難以成像。

倍率	焦 距	有效入射孔	工作距離(mm)	基板折	耦合油折
	(mm)	徑(mm)		射係數	射係數
60X	3.0	4.5	0.13	3.42	1.52

表 3-1 物鏡規格與材料折射係數

接下來我們討論加入耦合油滴後的情形,如圖 3-7 所示,其中我們 重新定義幾個參數, a 是光照在油層上的半寬長,即物鏡的出射孔徑半 徑; a'為光照在矽基板上的半寬長; S 為油層表面到原本聚焦點的距離, 即原工作距離w。S'為光探針深入基板內的距離; S"是油層厚度;油滴 的折射係數為n。,而矽基板為n。。

由圖中可看出等效工作距離 S"+S',而S'與S"之間的關係可由以下 推導得到:

由幾何關係可知

$$S' = \frac{a'}{tan\theta''}$$
,

其中 $a' = a - S'' \cdot tan\theta'S = S \cdot tan\theta - S'' \cdot tan\theta'$,故 $S' == \frac{S \cdot tan\theta - S'' \cdot tan\theta'}{tan\theta''}_{\circ}$ (3-5) 其中S = w, $\theta = \tan^{-1}[D/2f]$, $\theta' = \sin^{-1}[\sin\theta/n_{\circ}]$, 且 $\theta'' = \sin^{-1}[\sin\theta/n_{s}]$, 代入 (3-5)式後得到:

$$S' = \frac{w \cdot \frac{D}{2f} - S'' \cdot tan[sin^{-1}[sin\theta/n_0]]}{tan[sin^{-1}[sin\theta/n_s]]}$$
$$= \frac{w \cdot \frac{D}{2f} - S'' \cdot tan[sin^{-1}[\frac{sin[tan^{-1}[D/2f]]}{n_0}]]}{tan[sin^{-1}[\frac{sin[tan^{-1}[D/2f]]}{n_s}]]}$$
(3-6)

同樣,將表 3-1 代入上式後可得 S'=0.547-2.448S",與(3-4)式做比較 可發現,其最大聚焦深度依然是 547µm,對厚基板探測沒有改善,但對 500µm 左右的基板而言,由於式子中 S"前的係數縮小約兩倍,故物鏡與 基板間可容忍的間距亦倍增。

由以上討論可得知,雖然耦合油滴對在基板聚焦深度沒有明顯的好 處,但降低表面反射的優點已足以提升成像品質及解析度。至於要真正 解決基板厚度的問題,我們可利用工作距離較長之特殊物鏡來取代傳統 物鏡。圖 3-8 至 3-9 中是一系列背面成像的結果。

(a) 即時成像

(b)訊號歸一化

圖 3-8 矽晶片背面即時成像與歸一化成像比較

圖 3-9 60X 物鏡掃瞄成像結果。延著箭頭為縮小掃瞄間距得到的連續 放大圖。右圖則為加入油滴後再利用數位影像處理的結果。

3-3. 雜訊分析

在這一節我們要討論雜訊對成像的影響,並利用訊噪比 (signal-to-noise ratio, SNR or S/N)來比較不同掃瞄條件下雜訊對成像品 質的影響。理論上,光探針的尺寸愈小,則解析度愈好;光入射功率愈 強,訊噪比愈強,則影像對比也愈高。但由於本實驗利用光虹限制入光 束大小,因此較小的探針必然伴隨較小的入射強度(~mW),其 S/N 值也 會下降。故在接下來的分析裡,我們將循序討論幾種雜訊對成像訊噪比 的影響,並設法針對不同的雜訊提出改進的方式。

● 背景雜訊

- 輸入雷射光源的準位浮動
- 偵測器雜訊

一般偵測器所能捕捉到訊號為功率,在經電路系統後轉換後則以電 壓形式表示,此稱為偵測器的反應力(Responsivity),其單位為 V/W。在 本實驗裡我們所使用的偵測器為光二極體,其反應力設定為<u>1</u>0V/W。

現在假設偵測器偵測到的電壓訊號為V_a,雜訊為V_n,則訊噪比可表 示為:

 $S/N = 20\log_{10}(\frac{V_s}{V_s})$

為對訊噪比的值有更具體的概念,我們以兩個例子加以說明。假設 有一訊號源V_s=10mV,噪音源V_n=1mV。由於兩者相差 10 倍,直覺看來 成像品質受雜訊的干擾很小,則此時的訊噪比為:

 $S/N = 20 \log 10(10.0) = 20.0 \, dB$

因此當 S/N 值大於 20 時,其雜訊可忽略不計。

但當訊號太過微弱,使得訊號僅略大於雜訊電壓,例如V_s/V_n=1.30,則 此時訊噪比為:

 $S/N = 20 \log 10(1.30) = 2.28 \, dB$

我們將上述值定義為可容忍訊噪比之極限,這意味當訊噪比愈接近此值 時,則影像也愈難辨析。

此外,要增加訊噪比的方法有:增加光與樣品之間反應(如提高入射 光功率)、降低雜訊,以及加強偵測器之光感度。而其中最直接的方法便 是提高入射光功率,但是如果能量太強,不但伴隨著較大之掃瞄光點, 且光在基板內造成大量散射反而會引入不必要的雜訊。故由實驗中發 現,當輸入強度之電壓訊號為 0.5mV (光功率:5mW)時,在晶片背面掃 瞄成像上可得到最佳品質。

3-3-1. 背景雜訊

背景雜訊為實驗時未加任何訊號時所得到的訊號,通常為熱擾動與 環境電磁波干擾的結果。為了確定這樣的背景雜訊是否對成像有太大影響,我們紀錄實驗室裡雜訊與時間的關係如圖 3-10 所示:

圖 3-10 雜訊記錄圖

上圖為 69 個隨時間採得的數據紀錄圖。但實際上在統計時,我們 是利用程式取得 160000 個採樣數據之最大、最小及平均值,其分別為 $0.184 \text{mV} \times 0.042 \text{mV}$ 以及 0.1185 mV。則雜訊之方均根值可由(3-7)式求 得。 $V_{n,rms} = \sqrt{\sum_{n=1}^{N} (V_n - V_{average})^2}$ (3-7)

其中V_n為第n個量測到的值,N為採樣數量 160000,V_{average} 為平均值 0.1185mV,故最後求得的雜訊方均根值為V_{n.ms} = 0.0166mV。

接下來我們用同樣的方法求出三種不同掃瞄圖片之最大、最小、平 均,以及訊號方均根值,其值列表 3-2。而每組資料皆由 160000 個數據 所求得(因為每張圖片為 400×400 像素)。要注意一點是,表中訊號V_{d,rms}本 身就包含了雜訊,即真正訊號V_s ≃V_{d,rms} -V_{n,rms},故訊噪比要修正為:

$$SNR = 20Log \frac{V_{d,rms} - V_{n,rms}}{V_{n,rms}} = 20Log (\frac{V_{d,rms}}{V_{n,rms}} - 1)$$
 (3-7)

	入射光強	反射訊號	反射訊號	反射訊號	訊號方均根
	度(mV)	最大值	最小值	最小值	$V_{\rm c}$ (mV)
		$V_{\rm max}({ m mV})$	V_{\min} (mV)	V (mV	d,rms (m)
				' average (III '	
)	
晶片正面掃瞄	12.337	11.4375	2.875	4.322	4.833
(12mmX12mm)					
(0.18µm 製程晶	0.483	0.352	0.221	0.274	0.098
片)背面掃瞄					
(0.3mmX0.3mm)					
(0.09µm 製程晶	0.480	0.410	0.368	0.377	0.049
片)背面掃瞄					
(0.3mmX0.3mm)					
	1		1		

表 3-2 不同晶片掃瞄訊號

當 $V_{d,ms} \ge 10 V_{d,ms}$ 時,則對數中的1可忽略。

接下來由(3-7)式,我們可求得表 3-2 中三種不同掃瞄資料之訊噪 比。其中晶片正面掃瞄訊號浮動量極大,訊噪比約 49.25,故得到的成 像相當清晰(如圖 3-11(a));0.18µm 製程晶片背面掃瞄之訊噪比約 13.81, 成像品質尚可接受(如圖 3-11(b));而 0.09µm 製程之晶片背面掃瞄,由 於結構緊密且起伏小,故訊號浮動量小,其訊噪比也僅有 5.81 (如圖 3-11(c))。以上計算的結果與我們觀察到的掃瞄圖片情況大致吻合,但其 中 0.09µm 製程晶片因訊號值太小,故還有其它雜訊干擾必須考慮。

圖 3-11 表 3-2 中所採用的圖片

另外,還有一種背景雜訊僅發生在做顯微鏡觀察時。由於雷射同調 性極佳,一般無法做為照明光源,因此在光路中會加入振動擴散片(Light shaping diffuser, LSD)做為破壞同調性及均勻光源之用,其規格與原理可 參照文獻[2]。

擴散片是利用製程方式在透明基板上隨機成長尺寸約 100µm 的不 規則顆粒結構,於是當光束經過擴散片後就如同有一圖像入射物鏡,在 照射到晶片結構上後則形成了另一種背景雜訊。圖 3-12 為平行光入射擴 散片後進入物鏡示意圖。圖 3-10 中的擴散片發散角為5°,而S 為擴散片 與物鏡組距離,M 為經過擴散片後光束放大倍數,則由等比例式:

$$\tan 20^{\circ} = \frac{d/2}{X} = \frac{Md/2}{X+S}$$
(3-8)

可得放大倍數

$$M = 1 + \frac{S}{X} = 1 + \frac{S}{d/(2\tan(5^\circ))} = 1 + 0.728\frac{S}{d}$$
(3-9)

我們將(3-9)式中的S與d分別以5cm及0.2cm取代,可得M=18。 則圖像在經過物鏡後,顆粒縮小尺寸約可由1.22λf/Md求得,其中 λ=1064nm,f=3mm,d=100μm,故最後可求得擴散片造成平均雜訊 尺寸約0.1μm。這對一般晶片次微米結構而言已是不可忽略的干擾,因 此在實驗過程中,我們幾乎無法利用顯微鏡觀察0.09μm 製程晶片的結 構,故僅能藉由掃瞄系統的重組下,則可得到大致的影像(如圖3-11(c)、 圖3-13,及圖3-17所示)。

圖 3-12 散射片作用機制

3-3-2. 輸入雷射光源之準位浮動

雷射光源本身存有穩定性問題,這個的問題只對掃瞄系統產生影響。因為在掃瞄成像所花費的時間較長,故雷射準位隨時間變動的情形 會清楚紀綠在圖片不同位置上,這也是為什麼部分背面圖像上會有不均 勻之粗細線條產生。 在討論雷射準位浮動的影響以前,我們先將部分所需的雷射規格列 於表 3-3 中。由表格中可發現,隨著雷射開啟時間增長,雷射穩定性愈 差,而這樣的干擾對不同晶片的成像也會有不同等級的影響。

波長 (nm)	輸出功率(mW)	穩定性		雜訊(rms, 10Hz-1MHz)
1064	250	>2 hr	<1%	< 0.5%
		>24 hr	<2%	

表 3-3 雷射品質與穩定性

以表 3-2 中的晶片掃瞄為例,我們將訊號浮動範圍以灰階模式表示 出來(即八位元圖像),即訊號從最大值到最小值總共被畫分成 256 個等 級,每單位灰階值所代表的訊號解析度為Δ=(V_{min}-V_{max})/2⁸ mV。意即當 訊號變化大於Δ時,灰階會偏移一階。

通常 1、2 階的變化肉眼無法辨視出來,但當準位偏移量所對應的 階數太大,使得與真正訊號相比已不可忽略時,則的灰階偏移之干擾則 會顯現出來,如圖 3-13 所示。

圖 3-13 訊號準位浮動示意圖

其造成的最大灰階誤差值ε可以表示為:

$$\varepsilon = \left[\frac{訊號平均値×準位浮動百分比}{ {\rm 灰階解析度}} \right] = \left| \frac{V_{average} \times 2\% \times 2^8}{V_{max} - V_{min}} \right|$$
(3-10)

於是將表 3-2 中的掃瞄數據代入(3-10)式後,可得到以下表格。

	反射訊號	反射訊號	反射訊號平均	灰階解析度	灰階差值
	最大值	最小值	店V (mV)	Δ (mV)	$\mathcal{E}($ 階 $)$
	$V_{\rm max}({ m mV})$	V_{\min} (mV)	但 V _{average} (III V)		
前面掃瞄	11.4375	2.875	4.322	0.03345	2
(12mmX12mm)					
(0.18µm 製程晶	0.352	0.221	0.274	0.000512	10
片)背面掃瞄					
(0.3mmX0.3mm)		A STATE	A.P.A.		
(0.09µm 製程晶	0.410	0.368	0.377	0.000164	45
片)背 面 掃 瞄		E E S	A A		
(0.3mmX0.3mm)					

表 3-4 準位浮動對不同晶片之灰階影響

由上表的灰階物差值可知, 三張掃瞄圖片的因準位變動所造成的灰 階變動分別是 0.78%、3.9%及 17.58%。由此可知, 0.09µm 製程晶片成 像所受到的影響最大, 如圖 3-14 所示。對於這樣的干擾, 我們提出以下 三點解決方法。第一可利用回授電路穩定雷射的電源供應器, 但需額外 的電路系統。第二是額外加裝一分光鏡及偵測器, 以紀錄輸入光源之強 度, 並對該時間點的訊號做歸一化(Normalization)。第三則是利用數位 影像的方式消除背景浮動, 雖然可免除儀器上變動, 但也需要較複雜的 演算流程。

(a) 雷射浮動紀錄圖
 (b) 雷射浮動 0.09μm 製
 程晶片之成像影響

圖 3-14 雷射準位浮動對影像的影響。

3-3-3. 偵測器雜訊

一般偵測器在讀取訊號時電子系統本身亦會產生雜訊,這些雜訊的 干擾對一些需要高度精準如光子偵測器而言相當重要。雖然大部分的雜 訊分析都是針對 CCD 來討論,但由於 CCD 在本實驗中僅為輔助觀察的 工具,因此我們僅概要說明其雜訊性質。一般的電路雜訊分為偵測雜訊 (Detection Noise),其中包含讀取雜訊(Readout Noise)、影像頻道雜訊 (Video Channel Noise)以及黑暗雜訊(Dark Noise)等。我們列表簡單說明 這些雜訊的原因及影響程度。

	原因	影響
讀取雜訊	頻寬、反應速率、偵測器敏感度。	較大,其造成因素與電路設
		計有關,其改良方式有限。
頻道雜訊	傳輸接面阻抗、電磁波干擾。	通常影響極小,與各儀器接
		面情形有闢。
暗雜訊	熱效應及元件偏壓之漏電流。	通常可忽略,但當電阻性元
		件愈多,則影響則浮現出來。

表 3-5 偵測雜訊之種類與形成原因

接下來我們介紹本系統主要的偵測器雜訊源—電阻。由於掃瞄系統 主要偵測器是以光二極體及類比數位轉換器(Analog-to-Digital Converter, ADC)組合而成,其中前者為電流輸出,後者為電壓輸入,故兩者間需 以電阻做轉阻之用。然而考量到由光二極體輸入的電流訊號通常小,我 們會加入大電阻(~MΩ)使輸入 ADC 之電壓訊號變大,因此,我們也要 特別討論這樣的大電阻對成像的影響有多大。

一般當溫度大於絕對零度時,電子會在電阻中隨機移動,並以隨機 電壓形式顯示出來,此稱為電壓雜訊。在無任何電源輸入下,經歷一小 段時間(μS)之電壓雜訊平均值通常為零,但其方均根值則不,故這也意 味著電阻會產生雜訊功率而影響轉阻之線性關係[3]。根據普蘭克黑體幅 射理論可推導出雜訊電壓的方均根值為:

$$V_{n,rms} = \sqrt{\frac{4hfBR}{e^{hf/kT} - 1}}$$
(3-10)

其中

- h: 普蘭克常數(J-s)。
- k: 波茲曼常數 (J/K)。
- T: 凱氏溫度(K)。
- B: 輸入系統頻寬(Hz 或 1/sec)。

f: 操作中心頻率 (Hz)。

R: 電阻值(Ω)。

其中,由於我們採用的是研華公司出產的十六位元 PCI-1716 類比數 位轉換卡,其頻寬為 250k/sec,而系統的中心操作頻率f不詳。但由於 普蘭克常數遠小於波茲曼常數,故除非f是微波以上之波段,否則我們 一律視hf « kT 。因此將分母一階近似後可得到:

 $e^{hf/kT} - 1 \simeq hf/kT$

則(3-10)式可簡化為

$$V_{n,rms} = \sqrt{4kTBR} \tag{3-11}$$

再將 3-11 式代入訊噪比的定義中,可得到:

$$SNR = 20Log_{10} \frac{v_s}{\sqrt{4kTBR}}$$
(3-12)

現在我們以表 3-4 中 0.18µm 製程晶片背面掃瞄為例,假設室溫為 300 K,平均訊號為 0.098mV,則代入(3-12)式後可得訊噪比與電阻的關 係如圖 3-15 所示。

圖 3-15 室溫下, 訊噪比與電阻關係曲線圖

故從圖 3-15 的曲線關係得知,就本實驗而言,即使電阻值高達 1MΩ 以上,但其雜訊干擾仍可忽略不計。不過要注意的是,當電流訊號過小 以至於所採用的電阻大於 20MΩ時,則我們可參考文獻[4]中的偏壓或電 路配置方式以降低電阻雜訊的干擾。

現在我們將經過介質耦合、雜訊改良及數位影像處理過的掃瞄圖像 與顯微鏡成像做一個比較。圖 3-16 及圖 3-17 分別為掃瞄與顯微鏡得到 的成像,其中掃瞄系統已利用經過介質耦合及數位處理過,其解析度與 訊噪比都比顯微鏡成像要來得高。

(a) 掃瞄圖片。
 (b) 顯微鏡圖片,雜訊主要來自於擴散片。
 圖 3-16 同樣 60X 物鏡下掃瞄與顯微鏡背面成像結果(0.18µm 製程)。

20X Objective Scan

60X Objective Micrograph

(a) 掃瞄圖片
 (b) 顯微鏡圖片,為圖(a)之虛線處
 圖 3-17 兩種不同物鏡背面成像成果。掃瞄所使用的物鏡倍率

為顯微鏡的三分之一倍,但解析度幾乎相同。

3-4 熱影像

在本章最後一節,我們將掃瞄系統應用在矽晶片溫度變化的觀察 上。本實驗所使用的光源為 1064nm 的近紅外光,其光子能量處於矽能 階的吸收邊緣(光子:1.17eV;能階:1.12eV)。故當矽基板溫度上升時,矽 能階下降,則光子會被價電帶電子大量吸收而有訊號損失,這樣的效應 稱為能階吸收(Band-to-Band Absorption)[5],其吸收比例與溫度關係由文 獻[6]可得。因此,利用這樣的特性,我們可以間接透過光吸收的結果得 到晶片之熱影像。以 0.09μm 製程晶片為實驗樣品,在完全相同的掃瞄 條件下,我們各別取得晶片加入電源前後的掃瞄圖像。其中輸入電壓為 3 伏特,輸入電阻為 27.5 KΩ,輸入電流 0.109mA,加熱接點的尺寸約 100μm,掃瞄時間為 2 小時,則掃瞄結果如圖 3-18 所示。

(a) 未加偏壓前之背面掃瞄圖像

(b) 加入偏壓後的背面掃瞄圖像

很明顯我們發現,加入偏壓前後的影像強度、對比都有顯著改變, 故這樣的現象能應用在電路缺陷檢測上。一般製程過程中,電路的錯誤 常是因不預期的接點短路所造成,而這種短路所造成的大電流會使在該 點產生局部性升溫,使得照射在該區域之光子被大量吸收而呈現暗點。 雖然理論上這樣的機制可用於來缺陷檢測上,但從圖 3-17 中可發現,我 們無法看出特定的發熱區域,這是由於我們用金屬接點加偏壓的方式模 擬缺陷,其發熱面積大而不集中,故在長時間掃瞄下,只能觀測到熱在 大面積上擴散的結果,這樣的問題在實際電路缺陷中應可獲得改善。

參考文獻:

[1] Frank J. Pedrotti, Leno S. Pedrotti," Introduction to Optics," Prentice Hall, pp.396, 1992.

[2] "Light Shaping Diffuser," Physical Optics Co., 2003. (<u>http://www.poc.com/lsd/default.asp</u>)

[3] Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meryer, "Analysis and Design of Analog Integrated Circuits," Wiley, 4th ed., pp. 1211-14, 2001.

[4] "A primer on Photodiode Technology," Centrovision. Co. ,2003. (http://science.unitn.it/~semicon/pavesi/tech2.pdf)

[5] Qianwang Chen, Y Zhang, Y T Qian, "Carrier band-to-band recombination in Mn-passiveated porous silicon," Journal of Physics: Condens. Matter Vol.13, pp. 5377-5385, 2001.

[6] 陳俊誌,「單矽晶片光學性質及其應用在積體電路檢測之研究」,國

立交通大學,碩士論文,民國 92 年。