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摘要 

 

電子穿透在一維窄通道裡面受到時變電場影響的量子點時，喜好藉由吸收光

子到達量子點的共振態，並且藉由此共振態穿透量子點。在這個研究裡面，我們

利用兩個不隨時間變化的靜態位能障來模擬我們的量子點，並且提出了單-光子

的方法來計算 sideband 的不對稱性。單-光子的方法精確的估算了電子在窄通道

裡對量子點的穿透，並且我們從這個方法得到了清楚的物理圖像，也因此了解

sideband 不對稱的由來。我們也在窄通道裡面也嘗試了不同的物理結構。不同的

結構左右兩邊的電子對系統的穿透有很大的差異性。另外，我們探討量子點在雙

頻率的電場調變之下，電子對它所產生的穿透特性。我們並且注意到量子點的共

振能階會因為時變電場偏壓的影響而產生漂移的現象，我們也因此模擬了幾個不

同情況的量子點，探討共振能階漂移的現象。最後我們計算了系統在時變電場的

調變之下所產生的淨電流。 
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Abstract 

Electrons are apt to make transition through the quantum dot by absorbing 

photons. We model our quantum dot with double static delta-profile barriers, and we 

study sideband asymmetry features through the quantum dot. We then propose 

one-photon approximation which gives concrete physical pictures for the main 

transport process, and successfully depicts this phenomenon of asymmetric sidebands. 

We also study quantum transport under different configurations. Quantum transport 

characteristics are much different for electrons incident from the opposite sides of the 

system in barrier-well configuration. Then we demonstrate transport characteristics 

under dual-frequency modulation and the pumped current. Shifting of resonance 

states under time-dependent modulation is also studied within our work. 
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Chapter 1 
Introduction 

 

In mesoscopic physics, time-dependent quantum transport has been an active 

field in recent years. These studies focus on coherent inelastic scattering. Electrons in 

mesoscopic regime possess a sufficient long phase-coherent length compared to the 

dimension of the structure we study, thus phase become of much important to the 

transport properties in this regime. Among the structures being studied, quantum point 

contact (QPC) is the most popular one for its simplicity. Many other devices such as 

“electron waveguide”, “quantum dot”…etc. are based on this structure.  

QPCs can be formed by applying negative bias on the split metal gates that are 

fabricated the top of a GaAs-AlxGa1-x hetrostructure, and its width can be controlled 

by the biasing electrode. Due to the fabrication technologies, nearly perfect 

two-dimensional electron gas (2DEG) of sufficient long phase-coherent length is 

formed in the hetrostructure, making possible the measurement of experiments.  

Study of transport properties in mesoscopic scale is first proposed by Landauer 

[1-3], and then Büttiker gave a more general formulism based on Landauer’s theory 

[4-6]. Landauer- Büttiker formulation successfully explained quite a number of results 

of mesoscopic experiments. Landauer- Büttiker formulism thus becomes one of the 

most important theories in mesoscopic physics. 

Adiabatic quantum pumping (AQP) also attracts much attention in recent years. 

The idea was firstly proposed by Thouless [7], and then Niu [8] proposed several 

one-dimensional time-dependent potentials for adiabatic quantum pumping. In AQP, 

finite amount of net charges are transferred through the unbiased system in each cycle 

of the deformation parameters. Subsequently, Brouwer [9] derived a terse analytical 
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formulation of AQP. Furthermore, Switkes et al. [10] successfully conducted an 

experiment in confirmation of AQP. They introduce a phase difference into the two 

metal gates with ac voltage biasing the open quantum dot. 

Beyond adiabatic regime, the importance of nonadiabatic quantum charge 

pumping has been pointed out. C.S.Tang and C.S. Chu [11] proposed a 

scattering-matrix method in calculation of nonadiabatic quantum charge pumping 

under time-dependent modulation. In addition, S.W. Chung et al. [12] proposed a new 

configuration, finger-gate array (FGA), to achieve quantum charge pumping (QCP). A 

pair of FGAs with finite number of finger-gates is set on the top of a narrow channel. 

The pair of FGAs is ac biased with a phase difference between each other. 

In the beginning, we tried an alternative approach for QCP in a narrow channel. 

We apply dual-frequency barriers in a narrow channel beyond adiabatic regime to 

destroy the translational invariance for occurrence of quantum charge pumping, and 

we also study sideband characteristics of a quantum dot under dual-frequency 

modulation. We set up our quantum dot by a pair of delta-profile barriers in a 

one-dimensional narrow channel where the channel, as shown in Fig.1, is acquired by 

a negatively biased narrow constriction. QCP will be achieved whenever translational 

invariance is destroyed. 

Double-barrier 

2DEG 2DEG 

 

Fig.1. Sketch of the model of our quantum dot. 
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QCP was achieved by dual-dual frequency modulation, and we also discovered 

yet another interesting feature of a quantum dot in mono-frequency 

modulation-sideband asymmetry. Sideband band channels open when ac voltages are 

applied on the quantum dot, and we find that sideband channels higher than the 

resonance state are asymmetric to those lower than the resonance state. We might 

intuitively consider sideband channels to be symmetric for electrons may have the 

same photon absorption and emission probability, but the asymmetric sideband 

features give rise to the implication that electrons are more likely to make transition 

through the quantum dot by absorbing photons than by emitting photons within the 

scattering process. We then study sideband asymmetry features in our work as well. 

We utilized one-sideband approximation method [13] and then we proposed 

one-photon approximation (OPA) for studying sideband asymmetry. When the 

amplitude of applied ac potential is not strong, or when the confining double-barrier is 

comparatively strong, one-sideband approximation gives good numerical results of 

transport properties. OPA also gives good numerical results compared to exact 

numerical calculation even when the oscillation amplitudes are strong. Thus, we 

obtain a clear physical picture for the causes of sideband asymmetry. It is worthy to 

note that one-sideband approximation can be multi-photon processes, within the 

energy regime E E E− Ω < < + Ω . However, OPA only allows electrons to absorb 

or emit a single photon once within the scattering region. 

In this work, we give the formulation for exact numerical calculation and 

derivation of OPA in Ch. 2, and then we give sideband asymmetry characteristics and 

comparison of OPA with exact numerical calculation in Ch. 3. We also study sideband 

features of different configurations in Ch. 3. In Ch. 4, we present sideband features of 

a quantum dot under dual-frequency modulations. Resonance states in the quantum 

dot are found to shift when ac voltage is applied in a quantum dot; hence we 
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demonstrate shifting of resonance levels under time-dependent modulation in Ch. 5. 

Ch. 6 gives the pumped current of dual-frequency modulating quantum dot and 

mono-frequency modulating barrier-well configuration system. A few unresolved yet 

interesting results are collected in Ch. 7. Finally, Ch. 8 presents a conclusion. 
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Chapter 2 
Formulation 

 
We start the formulation with time-dependent mode matching approach. For 

analytical solution, we then do one-sideband approximation, and finally we give the 

one-photon approximation approach. Schematic sketch of our system is given in Fig. 

2.1. 

We do the numerical calculations by time-dependent mode matching approach. 

From the numerical results given in Ch. 3, we found an interesting sideband 

feature-sideband asymmetry. This contradicts our intuitive prediction. As known from 

Fermi’s golden rule, electrons have the same probability of absorbing or emitting a 

photon. 

In order to further study the causes of sideband asymmetry, we simplify our 

cases to the regime where one-sideband approximation is sufficient to dominate. It’s 

an inspiration that sideband asymmetry sill exists in such regime. 

Finally, to get a clearer physical picture, we further propose the one-photon 

approximation approach. This comes directly after the simplification of the analytical 

results from one-sideband approximation. Comparisons of exact numerical calculation 

with one-photon approximation are given in Sec. 3.5. 
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Vs1+Vd1cosΩ1t Vs2+Vd2cos(Ω2t +φ) 

a  
Fig. 2.1. Sketch of the time-dependent model we study. 

2.1 Time-dependent Mode Matching Approach 
 

In the system we study, we have the Hamiltonian 
2 2

1 22 2[ ] ( ) ( )
2 * 2 2 c

a aH V x V x
m x y

δ δ∂ ∂
= − + + + + − +

∂ ∂
( )V y ,               (2.1) 

where electrons transport in x-direction, and the y-direction is confined by a parabolic 

potential. 

Furthermore, with the units of energy
2 2

* 9
2 *

F
F

kE E
m

= = = meV , 

frequency
2

* 13.6THz
*
Fk

m
=Ω = , and length 1*

F

a =79.6Å, the dimensionless 

Hamiltonian becomes 

k
=

2 2

1 22 2[ ] ( ) ( )
2 2 c
a aH V x V x

x y
δ δ∂ ∂

= − + + + + − +
∂ ∂

( )V y ,                   (2.2) 

where, 

1 1 1 1coss dV V V t= + Ω , 

( )2 2 2 2coss dV V V t φ= + Ω + , 

2 NΩ = Ω1 (N is any integer), 

2 2( )c yV y yω= . 
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The total wave function can thus be expressed of the form 

( , ) ( ) ( , )n n
n

r t y x tψ φ ψ= ∑ ,                                       (2.3) 

where n is the subband index. 

For the wavefunction incident from the left in the n-th mode with total energy Ε, 

we define the kinetic energy nµ  along transport direction, and n E nµ ε= − ,where 

( )2 1n n yε ω= +  is the eigen energy due to the parabolic confining potential.  

Then the wavefunction in transport direction becomes 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0                      , 
2

( , )    ,
2

                                             , 
2

n n n n

n n n n

n n

ik x i t ik m x i m t
n

m

ik m x i m t ik m x i m t
n n n

m m

ik m x i m t
n

m

ae e r m e e x

ax t A m e e B m e e x

at m e e x

µ µ

µ µ

µ

ψ

− − −

− − −

−

−⎧ + <⎪
⎪
⎪= +⎨
⎪
⎪

>⎪
⎩

∑

∑ ∑

∑

<     (2.4) 

where ( )( )n nk m mµ=  and 1( )n nm mµ µ= + Ω . 

In order to calculate the energy dependence of conductance G, we start to match 

the boundary conditions at x=−a/2. Continuous of ψn gives 

( ) ( ) ( )
1 1

0 ( )
2 2 2( ) ( ) ( )n n n n
a a aik ik m ik m ik mim t im t im t

n n n
m m m

e r m e e A m e e B m e e
− −− Ω − Ω − Ω+ = +∑ ∑ ∑ 12

a

, 

and the boundary condition for ψn’ gives 

( ) ( )

1

1 1

0
2

( ) ( ) ( )
2 2

( ) ( ) ( 1) ( 1)12 2

( ) ( )
2 2

1

0

( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( )
2

1 ( ) ( )

n

n n n

n n

n n

aik

n

a aik m ik m ik m im t
n n n n n n

m

a aik m ik m i m t i m td
n n

m

a aik m ik m

s n n
m

k e

r m k m e A m k m e B m k m e e

VA m e B m e e e
i

V A m e B m e
i

−

− − Ω

− − − Ω − + Ω

−

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

∑

∑

1

0

im te− Ω

=

∑

2
a

. 

Then we match the boundary conditions at x=a/2. Continuous of ψn gives  

( ) ( ) ( ) ( ) ( ) ( )
1 12 2n n

a aik m ik m ik mim t im t im t
n n n

m m m
A m e e B m e e t m e e

−− Ω − Ω − Ω+ =∑ ∑ ∑ 12n
a

, 
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and continuous of ψn’ gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

1 1

1

2 2

22 2

2 2
2

1
2

1

0

n n n

n n

n n

a aik m ik m ik m im t
n n n n n n

m

a aik m ik m i m N t i m N ti id
n n

m

a aik m ik m im t
s n n

m

A m k m e B m k m e t m k m e e

VA m e B m e e e e e
i

V A m e B m e e
i

φ φ

− − Ω

− − − Ω − + Ω −

− − Ω

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
=

∑

∑

∑

2
a

. 

Thus we have the following equations 

( ) ( ) ( )
2 2 2

,0 ( ) ( ) ( )n n n
a a aik ik m ik m ik m

m n n ne r m e A m e B m eδ
− −

+ = + 2n
a

,                (2.5) 

 

( )
2 2

,0

( ) ( )
2 2

( ) ( )1 2 2

( ') ( ')1 2 2
', 1

( ')1 2
', 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 ( ') ( ')
2

1 ( ')
2

n n

n n

n n

n n

n

a aik ik m

m n n n

a aik m ik m

n n n n

a aik m ik ms
n n

a aik m ik md
m m n n

aik md
m m n

k e r m k m e

A m k m e B m k m e

V A m e B m e
i

V A m e B m e
i

V A m e
i

δ

δ

δ

−

−

−

−

+

−

−

−

− +

⎛ ⎞
+ +⎜ ⎟

⎝
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

+

⎠

( ')
2( ')

0

n
aik m

nB m e
⎛ ⎞

+⎜ ⎟
⎝ ⎠

=

,                       (2.6) 

( ) ( ) ( )
2 2( ) ( ) ( )n n
a aik m ik m ik m

n n nA m e B m e t m e
−

+ = 2n
a

,                         (2.7) 

and 

( ) ( ) ( )
2 2

( ) ( )2 2 2

( ') ( ')2 2 2
',

( ')2 2
',

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 ( ') ( ')
2

1 ( ') ( ')
2

n n

n n

n n

n

a aik p ik m ik m

n n n n n n

a aik m ik ms
n n

a aik m ik mid
m m N n n

aik mid
m m N n n

A m k m e B m k m e t m k m e

V A m e B m e
i

V e A m e B m e
i

V e A m e B m e
i

φ

φ

δ

δ

−

−

−

+

−
−

− −

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
⎛ ⎞

+ +⎜
⎝ ⎠

+ +

2n
a

⎟

( ')
2

0

n
aik m−⎛ ⎞

⎜ ⎟
⎝ ⎠

=

            (2.8) 
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Hence, for the purpose of numerical calculation, we are able to set up the matrix 

equation 

1 11 12

2 21 22

n

n

AC M M
BC M M

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.                                       (2.9) 

 

Coefficients of An(m) and Bn(m) can be solved by Eq. (2.9). Equation (2.5) and (2.7) 

gives 

( )( )( ) 2
,0

( )

( ) ( ) ( )

( ) ( ) ( )

n n
n

n

ai k k mik m a
n n n p

ik m a
n n n

r m A m e B m e

t m A m B m e

δ
− +−

−

= + −

= +
.                     (2.10) 

Thus, we can set up the matrix equation 

11 12 1

21 22 2

n n

n n

r AP P D
t BP P D

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢

⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎤
+ ⎥

⎦
                                   (2.11) 

for the numerical calculations of rn(m) and tn(m). Details for the set-up of these 

matrices will be given in Appendix A. Hence, the transmission and reflection 

coefficient can be solved. Similarly, for electrons incident from the right of the system, 

and  can be solved in the same way. Finally, we can calculate the 

transmission probability of each sideband channel by the equation 

( )nt m ( )nr m

2( )( ) ( )
(0)

n
n

n

k mT m t m
k

= n ,                                         (2.12) 

and total current transmission by  

( ) ( )n
n m

T E T m→ = ∑∑ .                                          (2.13) 

Similarly, for electrons incident from the right, 

2( )( ) ( )
(0)

n
n n

n

k mT m t m
k

= , 

and                                                             (2.14) 

( ) ( )n
n m

T E T m← = ∑∑ .                                          (2.15) 

 9



Total transmission current would be given by the equation 

( ) ( )
0

2 fEeI dE T E T E
h → ←= − −⎡⎣∫ ⎤⎦ ,                               (2.16) 

where Ef denotes the Fermi-energy. 

 

2.2 One-Sideband Approximation 
 

When the confining barrier is strong, or the oscillating amplitude is 

comparatively weak, we presume that electrons are only able to make transition 

through the first sideband. From Fig. 3.6 and 3.7, we can see that one-sideband 

approximation gives appropriate result. Furthermore, features of sideband asymmetry 

still exist. 

In order to get a clearer physical picture, analytical expressions are necessary. 

One-sideband approximation here is done in preparation of one-photon approximation 

of the next section. Thus, we start with an electron scattering with a single 

time-dependent barrier.  

Consider a time-dependent potential ( )cosI s dV V V t φ= + Ω +  applied at x=0. 

We then define ( ) ( ) and I I
m mr tµ µ  as the reflection and transmission coefficients of 

the electron with kinetic energy µ incident from the left of the barrier; the superscript 

I specifies the interface (barrier) we’re dealing with, and the subscript m is the 

sideband channel index. Respectively, ( ) ( ) and I I
m mr tµ µ  are the reflection and 

transmission coefficients of the electron incident from the right. 
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Total wave function of the electron incident from the left 

( ) ( )
1

0 0 ( ) ( )

1

1
( ) ( )

1

( )   , 0
( , )

          ( )               , 0

ik x i t I ik m x i m t
m

m

I ik m x i m t
m

m

e e r e e x
x t

t e e x

µ µ

µ

µ
ψ

µ

− − −

=−

−

=−

⎧
+ <⎪⎪= ⎨

⎪ >
⎪⎩

∑

∑
,               (2.19) 

where µ is the kinetic energy along transport direction, and 

µ (m)=µ+mΩ, 

( ) ( )k m mµ= . 

In order to derive the analytical expressions for the reflection and transmission 

coefficients, we then have to conduct the time-dependent mode matching. Continuous 

of ψ  gives 

( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 0
1 0 1

1 0 1
1 0 1

( ) ( ) ( )

( ) ( ) ( )

i t i t i t iI I I

i t i t i tI I I

e r e r e r e

t e t e t e

µ µ µ

µ µ µ

µ µ µ

µ µ µ

− − −
−

− − − −
−

+ + +

= + +

1 tµ− −

, 

and continuous of ψ’ gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 1 0
1 0 1

1 0 1
1 0 1

1 0 1
1 0 1

0 1
1 0 1

0 1 ( ) 0 ( ) 1 ( )

1 ( ) 0 ( ) 1 ( )

( ) ( ) ( )

( ) ( )
2

i t i t i t i tI I I

i t i t i tI I I

i t i t i tI I I
s

i t i ti I I Id

ik e i k r e k r e k r e

i k t e k t e k t e

V t e t e t e

V e t e t e t

µ µ µ

µ µ µ

µ µ µ

µ µφ

µ µ µ

µ µ µ

µ µ µ

µ µ

− − −
−

− − − −
−

− − − −
−

− − −
−

⎡ ⎤− + + −⎣ ⎦
⎡ ⎤− + + −⎣ ⎦

⎡ ⎤+ + +⎣ ⎦

+ + + ( )

1µ− −

( ) ( ) ( )

2

2 1 0
1 0 1

( )

( ) ( ) ( )
2
0

i t

i t i t i ti I I Id

e

V e t e t e t e

µ

µ µ µφ

µ

µ µ µ

− −

− − −−
−

⎡ ⎤
⎣ ⎦

⎡ ⎤+ + +⎣ ⎦

=

  .  

Hence, ( ) ( ) ( ) ( ) ( ) ( )1 0 1 1 0 1, , , , ,  and I I I I I Ir r r t t tµ µ µ µ µ µ− −  can be solved analytically. 

Analytical expressions for these coefficients are given in appendix B. For electrons 

incident from the right, ( ) ( )I I
m mr rµ µ= , and ( ) ( )I I

m mt tµ µ= . 

When the potential is applied at interface II (x =a), the corresponding reflection 

and transmission coefficients are given in the following equations 
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[ ]

[ ]

( ) (0)

( ) (0)

( ) ( )

( ) ( )

i k m k aII I
m m

i k m k aII I
m m

r r e

t t e

µ µ

µ µ

+

− −

⎧ =⎪
⎨

=⎪⎩
, 

and 

[ ]

[ ]

( ) (0)

( ) (0)

( ) ( )

( ) ( )

i k m k aII I
m m

i k m k aII I
m m

r r e

t t e

µ µ

µ µ

− +

−

⎧ =⎪
⎨

=⎪⎩
. 

Under one-sideband approximation, total transmission would be 

( )
1

1
( )n

n m
T E T m→

=−

= ∑ ∑                                          (2.20) 

( )
1

1
( )n

n m
T E T m←

=−

= ∑ ∑ .                                         (2.21) 

 

2.3 One-Photon Approximation 
 

It is worthy to note that one-sideband approximation can be multi-photon 

processes, while one-photon approximation only allows electrons to absorb or emit a 

single photon within the scattering process. 

In order to acquire a concrete physical picture, we propose the one-photon 

approximation approach. This comes from the simplification of one-sideband 

approximation. In Sec. 2.2, we get the analytical expressions of reflection and 

transmission coefficients of both interface I and II.  Vd
2 in the denominators of the 

coefficients can be further expanded into series with (Vd
2)n terms involved. This 

simply implies that electrons encounter multiple-photon process when scattering with 

the potentials. 

Therefore, for our consideration of one-photon approximation, we omit Vd
2 terms 

in the denominators or numerators of the coefficients. Hence, the coefficients are 

related to Vd only, which means that electrons interact with the potential “once.” 

Finally, we deal the transmission of electrons through the double-barrier with 
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multiple-scattering process between interface I and II. 

After reducing and simplification, the transmission and reflection coefficients 

become of interface I become 

( ) ( )
( ) ( )1

0
2 0 2 1

i
dI

s s

ik V e
t

k iV iV k

φ

µ
−−

=
+ +⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦

,                              (2.22) 

( ) ( )
( )0

2 0
2 0

I

s

k
t

k iV
µ =

+⎡ ⎤⎣ ⎦
,                                         (2.23) 

( ) ( )
( ) ( )1

0
2 0 2 1

i
dI

s s

ik V e
t

k iV iV k

φ

µ−

−
=

+ + −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦
,                            (2.24) 

( ) ( )
( ) ( )1

0
2 0 2 1

i
dI

s s

ik V e
r

k iV iV k

φ

µ
−−

=
+ +⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦

,                              (2.25) 

( ) ( )0  
2 0

I s

s

iVr
k iV

µ −
=

+⎡ ⎤⎣ ⎦
,                                       (2.26) 

( ) ( )
( ) ( )1

0
2 0 2 1

i
dI

s s

ik V e
r

k iV iV k

φ

µ−

−
=

+ + −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦
,                            (2.27) 

and ( ) ( )I I
m mr rµ µ= , and ( ) ( )I I

m mt tµ µ= . 

Similarly, as in Sec. 2.2, coefficients of interface II can be obtained by the following 

equations 

[ ]

[ ]

( ) (0)

( ) (0)

( ) ( )

( ) ( )

i k m k aII I
m m

i k m k aII I
m m

r r e

t t e

µ µ

µ µ

+

− −

⎧ =⎪
⎨

=⎪⎩
, 

and 

[ ]

[ ]

( ) (0)

( ) (0)

( ) ( )

( ) ( )

i k m k aII I
m m

i k m k aII I
m m

r r e

t t e

µ µ

µ µ

− +

−

⎧ =⎪
⎨

=⎪⎩
. 

 

We then define t1(µ) the transmission coefficient of electrons making transition 

through the system by means of absorbing a photon. Furthermore, t1(µ) can be further 
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separated into four processes: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1, , ,I II I IIt t t t t t r t r ,µ µ µ µ= + + + µ

)

                      (2.28) 

 

The definition of each process in Eq. (2.28) is given by 

( 1 ,It t µ -transmission absorption at interface I, 

( )1 ,IIt t µ -transmission absorption at interface II, 

( 1 ,It r )µ -reflection absorption at interface I, and 

( 1 ,IIt r )µ -reflection absorption at interface II. 

We can express each of the four processes as a sum of infinite series: 

( ) ( ) ( ) ( ) ( )1 1 0 0 0
0

,
nI I II I II

n

t t t r r tµ µ µ µ µ
∞

=

⎡ ⎤= + Ω + Ω⎣ ⎦∑ + Ω  

( ) ( ) ( ) ( ) ( )1 0 0 0 1
0

,
nII I II I II

n

t t t r r tµ µ µ µ
∞

=

⎡ ⎤= ⎣ ⎦∑ µ

+ Ω + Ω

+ Ω + Ω

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0 0 0 1 0 0 0
0 0

,
n mI I II I II I II I II

m n
t r t r r r r r r tµ µ µ µ µ µ µ µ µ

∞ ∞

= =

⎡ ⎤ ⎡ ⎤= + Ω⎣ ⎦ ⎣ ⎦∑∑

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0 0 1 0 0 0 0
0 0

,
n mII I II I II I II I II

m n

t r t r r r r r r tµ µ µ µ µ µ µ µ µ
∞ ∞

= =

⎡ ⎤ ⎡ ⎤= + Ω + Ω⎣ ⎦ ⎣ ⎦∑∑

Fig. 2.2 to 2.5 depict the physical picture of the four processes above. 

 

 

Fig. 2.2. Schematic sketch of ( )1 ,It t µ . Electrons absorb a photon at interface I, and 

then encounter multiple scattering process before transmitting through interface II. 

I II 
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Fig. 2.3. Schematic sketch of ( )1 ,IIt t µ . Electrons tunnel through interface I and 

encounter multiple scattering process between in interface I and II, and then make 

transition through interface II by transmission absorption. 

 

 

 

 

Fig. 2.4. Schematic sketch of ( 1 ,It r )µ . Electrons tunnel through interface I and have 

multiple scattering process between interface I and II. Then they absorb a photon by 

reflection absorption at interface I, and then they make transition through interface II 

after the multiple scattering process at the resonance state. 

 

 

I II 

I II 
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Fig. 2.5. Schematic sketch of ( 1 ,IIt r )µ . Electrons tunnel through interface I, having a 

multiple scattering process, and then absorb a photon by reflection absorption at 

interface II. Finally, they make transition through interface II after the multiple 

scattering process at the resonance state. 

 

 

Similarly, we can define t-1(µ) the transmission coefficient of electrons making 

transition through the system by emitting a single photon: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1, , ,I II I IIt t t t t t r t r ,µ µ µ µ− − − − −= + + + µ

)

.                    (2.29) 

 

The definition of each term in Eq. (2.29) is given as 

( 1,
It t µ− -transmission emission at interface I, 

( 1,
IIt t )µ− -transmission emission at interface II, 

( 1,
It r )µ− -reflection emission at interface I, and 

( 1 ,IIt r )µ− -reflection emission at interface II. 

 

 

 

I II 
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Expressed with sum of infinite series, the four processes become 

( ) ( ) ( ) ( ) (1 1 0 0 0
0

,
nI I II I II

n

t t t r r tµ µ µ µ µ
∞

− −
=

⎡ ⎤= − Ω − Ω⎣ ⎦∑ )− Ω , 

( ) ( ) ( ) ( ) ( )1 0 0 0 1
0

,
nII I II I II

n

t t t r r tµ µ µ µ
∞

− −
=

⎡ ⎤= ⎣ ⎦∑ µ

− Ω − Ω

− Ω − Ω

, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0 0 0 1 0 0 0
0 0

,
n mI I II I II I II I II

m n
t r t r r r r r r tµ µ µ µ µ µ µ µ µ

∞ ∞

− −
= =

⎡ ⎤ ⎡ ⎤= − Ω⎣ ⎦ ⎣ ⎦∑∑  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0 0 1 0 0 0 0
0 0

,
n mII I II I II I II I II

m n

t r t r r r r r r tµ µ µ µ µ µ µ µ µ
∞ ∞

− −
= =

⎡ ⎤ ⎡ ⎤= − Ω − Ω⎣ ⎦ ⎣ ⎦∑∑

Fig. 2.6 to 2.9 give the physical picture of the four processes above. 

 

 

 

 

Fig. 2.6. Schematic sketch of ( )1,
It t µ− . Electrons emit a photon at interface I by 

transmission emission, and make transition through the system after the multiple 

scattering process between interface I and II. 

 

 

 

 

I II 
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Fig. 2.7. Schematic sketch of ( 1,
IIt t )µ− . Electrons tunnel through interface I and have 

multiple scattering process between interface I and II. Then they make transition 

through interface II by transmission emission. 

 

 

 

 

 

Fig. 2.8. Schematic sketch of ( )1,
It r µ− . Electrons tunnel through interface I, having 

multiple scattering process. Then they emit a photon by reflection emission at 

interface I. Finally, they transmit through interface II after the multiple scattering 

process at the resonance state. 

 

 

I II 

I II 
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Fig. 2.9. Schematic sketch of ( )1 ,IIt r µ− . Electrons tunnel through interface I, having 

multiple scattering process. Then they emit a photon by reflection emission at 

interface II. Finally, they transmit through interface II after the multiple scattering 

process at the resonance state. 

 

Analytical expressions for the 8 processes of Fig. 2.2 to 2.9 will be given in detail in 

Appendix B.  

 

 

 

Under one-photon approximation, the total transmission, 

( ) ( ) ( ) ( ) ( ) ( )
( )

2

1 1 1 1 1

1
, , , ,

0
I II I II k

T t t t t t r t r
k

µ µ µ µ µ= + + +                 (2.30) 

( ) ( ) ( ) ( ) ( ) ( )
( )

2

1 1 1 1 1

1
, , , ,

0
I II I II k

T t t t t t r t r
k

µ µ µ µ µ− − − − −

−
= + + +               (2.31) 

 

We go through one-sideband approximation to one-photon approximation. Thus, 

we are able to compare numerical results of one-sideband approximation and 

one-photon approximation with direct numerical result. The complete comparisons 

are given in Ch. 3.  

I II 
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Although one-photon approximation approach gives good numerical calculations 

compared to exact numerical results, yet we do not understand the formation of 

sideband asymmetry. Hence, we examine each term contributing to total transmission 

current. 

From Eq. (2.30), ( ) ( ) ( ) ( ) ( ) ( )
( )

2

1 1 1 1 1

1
, , , ,

0
I II I II k

T t t t t t r t r
k

µ µ µ µ µ= + + + , and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1 1 1 1

2 2 2 2

1 1 1 1

* *

1 1 1 1 1 1

* *

1 1 1 1 1 1

, , , ,

, , , ,

2Re , , 2Re , , 2Re , ,

2Re , , 2Re , , 2Re ,

I II I II

I II I II

I II I I I II

II I II II I I

t t t t t r t r

t t t t t r t r

t t t t t t t r t t t r

t t t r t t t r t r t r

µ µ µ µ

µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ

+ + +

= + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ( )*

,I µ⎡ ⎤
⎢ ⎥⎣ ⎦

. 

 

 

From Eq. (2.31), ( ) ( ) ( ) ( ) ( ) ( )
( )

2

1 1 1 1 1

1
, , , ,

0
I II I II k

T t t t t t r t r
k

µ µ µ µ µ− − − − −

−
= + + + , and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1 1 1

2 2 2 2

1 1 1 1

* *

1 1 1 1 1 1

* *

1 1 1 1

, , , ,

, , , ,

2Re , , 2Re , , 2Re , ,

2Re , , 2Re , ,

I II I II

I II I II

I II I I I II

II I II II

t t t t t r t r

t t t t t r t r

t t t t t t t r t t t r

t t t r t t t r

µ µ µ µ

µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ

− − − −

− − − −

− − − − − −

− − − −

+ + +

= + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡+ +⎢ ⎥ ⎢⎣ ⎦ ⎣ ( ) ( )*

1 12Re , ,I IIt r t rµ µ− −
⎤ ⎡+ ⎤
⎥ ⎢ ⎥⎦ ⎣ ⎦

. 

We can see from Fig. 3.12 that ( ) ( )
( )

2

1

1
,

0
I k

t t
k

µ  contributes the most in total 

current transmission of 1rε − Ω channel (εr denotes the resonance energy), whereas 

( ) ( )
( )

2

1

1
,

0
I k

t t
k

µ−

−
 contributes the most of 1rε + Ω channel.  
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For interference terms of T1(µ) and T-1(µ), we see from Fig. 3.14 and 3.15 that 

( ) ( ) ( )
( )

*

1 1

1
2Re , ,

0
I I k

t t t r
k

µ µ⎡ ⎤
⎢ ⎥⎣ ⎦

 and ( ) ( ) ( )
( )1 1

1
2Re , ,

0
I II k

t t t r
k

µ µ⎡⎣ ⎤⎦  have the most 

contribution to 1rε − Ω  channel, while ( ) ( ) ( )
( )

*

1 1

1
2Re , ,

0
I I k

t t t r
k

µ µ− −

−⎡ ⎤
⎢ ⎥⎣ ⎦

 and 

( ) ( ) ( )
( )1 1

1
2Re , ,

0
I II k

t t t r
k

µ µ− −

−⎡⎣ ⎤⎦  have the most (negative) effect on 1rε + Ω channel. 

Further discussions of these interference terms are given in Appendix C. 
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Chapter 3 
A Study on the Sideband Asymmetry 

in Time-modulated Transport 
 

We found the asymmetric feature of photon sidebands under double-barrier 

configuration by mono-frequency modulation. This strongly aroused our interests, and 

hence, we did one-photon approximation, as in Sec. 2.3, to get the physical picture 

and more understanding of the formation of sideband asymmetry. Contribution of 

each term in one-photon approximation is given in Sec. 3.4 in this chapter. 

In addition, sideband asymmetry features under different static-barrier 

configurations are different. Results of sideband features under different configuration 

are also given in this chapter including double-barrier, double-well, and barrier-well 

configurations. Electrons tend to absorb or emit photons under specific conditions. 

Within in this chapter, oscillation frequencies and amplitudes of both barriers are set 

to be the same. 

Transmission under one-sideband approximation is given in Sec. 3.4, in proving 

of the validity of one-photon approximation, because one-photon approximation is 

derived from one-sideband approximation. 

Resonance states are found to shift when barriers are time-dependent, and the 

detail discussions will be presented in Ch. 5. We also found some interesting result 

under strong oscillation conditions, and when resonance level is close to subband 

bottom. Numerical results of these results are given in Ch. 7.  
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3.1 Double-barrier 
 

In this section, we find the feature of sideband asymmetry under double-barrier 
configuration. We can see asymmetric sideband features both in Fig. 3.1 and 3.2, and 
Fig. 3.2 exhibits more sidebands channels due to stronger oscillation amplitude. In Fig. 
3.3, we introduce a phase difference-π into the system, and sideband features are 
much more balanced.  
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Fig. 3.1. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2.5, and 

Ω2=Ω1=0.0084. Dotted line is the resonance state of double-barrier of Vs1=Vs2=3. 

Electrons are more probable to make transition through the resonance state by 

absorbing photons. Resonance state shifts towards lower energy level. Discussion of 

level-shifting will be given in Ch. 5. 
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Fig. 3.2. Transmission as a function for µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, and 

Ω2=Ω1=0.0084. Sideband features are not as strong when oscillation amplitudes are 

weakened comparing to Fig. 3.1. 
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Fig. 3.3. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, 

Ω2=Ω1=0.0084, and φ=π. As shown in the figure, asymmetry features will be more 

balanced when we introduce a phase difference between the barriers. 
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3.2 Double-well  
 

After doing double-barrier configuration, we are curious whether the asymmetry 
features still exists in double-well configuration. Consequently, we find yet another 
interesting feature. Asymmetric sideband features still exist, but electrons tend to emit 
photons rather than absorb photons. 
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Fig. 3.4. Transmission as a function of µ for a=15, Vs1=Vs2=-3, Vd1=Vd2=2, and 
Ω2=Ω1=0.0084. Electrons are more probable to make transition through resonance 
state by emitting photons. 

 

As shown in Fig. 3.2 and 3.4, sideband features are much different under 

different configurations. We have to note that we study the small oscillation amplitude 

regime in this chapter (Vd  < Vs). Results of strong oscillation are given in Ch. 7. 
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3.3 Barrier-well 
 

We do barrier-well configuration after doing double-barrier and double-well 

configurations.  As shown in Fig. 3.5, T→ and T← show different sideband 

characteristics in this case. From Fig. 3.2, we can see that when an electron scatters 

with time-dependent barriers, it is more likely to absorb photons and make transition 

through the resonance state; on the other hand, from Fig. 3.4, we see that if an 

electron scatters with time-dependent wells, it tends to make transition by emitting 

photons. In Fig. 3.5, due to the barrier-well configuration, we find that electrons 

incident from the left tend to make transition by absorbing photons, while electrons 

incident from the right are more likely to make transition by emitting photons. 

 

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

µ/Ω1

T
→

T
←

 

Tr
an

sm
is

si
on

 

Fig. 3.5. Transmission as a function of µ  for a=15, Vs1=3, Vs2=-3, Vd1=Vd2=2, and 

Ω2=Ω1=0.0084. 
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3.4 One-sideband Approximation 
 

In Fig. 3.6 and 3.7, we see that numerical calculation under one-sideband 

approximation is better when oscillation amplitudes are smaller. Approximations in 

both Fig. 3.5 and 3.7 are good. As mentioned in Ch. 2, we advance our one-photon 

approximation under conditions where one-sideband approximation gives good 

numerical results. Sidepband channels specified by arrows in Fig. 3.6 and 3.7 are the 

ones we will study in Sec. 3.5. 
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Fig. 3.6. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, and 

Ω2=Ω1=0.0084. Solid line is the calculation under one-sideband approximation, and 

dashed-line is the exact numerical calculation. 
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Fig. 3.7. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=1, and 

Ω2=Ω1=0.0084. Solid line represents the numerical results under one-sideband 

approximation.  
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3.5 One-photon Approximation 
 

Formulation of one-photon approximation is given in Sec. 2.3. In this subsection, 

we demonstrate the result of one-photon approximation of double-barrier 

configuration. The causes of sideband asymmetry are clearer by one-photon 

approximation. Fig. 3.8 and 3.9 gives one-photon approximation without phase 

difference, while Fig. 3.10 and 3.11 gives one-photon approximation with phase 

difference π. Fig. 3.12 to 3.15 are the analysis of Fig. 3.9. 
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Fig. 3.8. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, and 
Ω2=Ω1=0.0084. Dotted line indicates the exact numerical calculation. 
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Fig. 3.9. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=1, and 
Ω2=Ω1=0.0084. Dotted line indicates the exact numerical calculation. 
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Fig. 3.10. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, 
Ω2=Ω1=0.0084, and φ=π. Dotted line indicates the exact numerical calculation. 
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Fig. 3.11. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=1, 
Ω2=Ω1=0.0084, and φ=π. Dotted line indicates the exact numerical calculation.  
 

From Fig. 3.8 and 3.10, we see that one-photon approximation gives good 

numerical calculation in explaining the asymmetry of sidebands even though the 

oscillation amplitude is strong, such as Vd=2. Thus, the validity of one-photon 

approximation is not just limited in small oscillation regime.  

 
 
 
 

 33



 
 

The following figures are the contribution of each term of T1 and T-1 in 
one-photon approximation. We can see from Fig. 3.14 and 3.15 that the interference 
terms of Fig. 3.14 and 3.15 contribute different parities to transmission at the specific 
sideband channels where we’re interested in. 
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Fig. 3.12. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=1, and 
Ω2=Ω1=0.0084. Curves in this figure are the transmission contributions of 

( ) ( ) ( ) ( )1 1 1 1, ,  , ,  , ,  and ,I II I IIt t t t t r t rµ µ µ µ . 
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Fig. 3.13. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=1, and 
Ω2=Ω1=0.0084. Curves in this figure are the transmission contributions of 

( ) ( ) ( ) ( )1 1 1 1, ,  , ,  , ,  and ,I II I IIt t t t t r t rµ µ µ− − − − µ . 
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Fig. 3.14. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=1, and 

Ω2=Ω1=0.0084. The six curves in this figure are the interference terms of the four 

processes defined in Sec. 2.3. We have six interference terms from 

( ) ( ) ( ) ( )1 1 1 1, ,  , ,  , ,  and ,I II I IIt t t t t r t rµ µ µ µ . 
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Fig. 3.15. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=1, and 

Ω2=Ω1=0.0084. The six curves in this figure are the interference terms of the four 

processes defined in Sec. 2.3. Same as Fig. 3.14, we have six interference terms from 

( ) ( ) ( ) ( )1 1 1 1, ,  , ,  , ,  and ,I II I IIt t t t t r t rµ µ µ− − − − µ . 

 

We are able to conclude from Fig. 3.12 to 3.15 that the cause of sideband 

asymmetry comes mainly from interference terms. 
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Chapter 4 
A Study on the Dual-frequency 
Modulation in Time-modulated 

Transport 
 

In this chapter, we mainly study sideband characteristics under dual-frequency 

modulation on double-barrier configurations because sideband features are notable in 

existence of resonance state. We start with single time-dependent oscillating barrier in 

Sec. 4.1, and then the dual-frequency double time-dependent oscillating barriers in 

Sec. 4.2. Formulations for numerical calculation are derived in Sec. 2.1. Electrons 

incident from opposite sides of the system exhibit different sideband characteristics. 

We also compare sideband features of different ratio of Ω2/Ω1. Same as that in Ch. 3, 

we study the regime where Vd < Vs. Strong oscillation modulations are given in Ch. 7. 

Quantum charge pumping can be achieved by introducing a phase difference in 

to a pair of time-dependent oscillating potentials. We try an alternative way of 

dual-frequency modulation to achieved quantum charge pumping effect. Result of net 

pumped current will be given in Ch. 6. 

 

4.1 One Oscillating Barrier on Top of a Static 

Double Barrier 
 

In this section, we consider single oscillating barrier in each case, that is, either 

Vd1cosΩ1t or Vd2cosΩ2t is applied at one time. From Fig 4.1 and 4.2, we can see that 
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T→ and T← exhibit different sideband characteristics in each case. In Fig. 4.1, T→ 

shows notable n-Ω1 sideband features while T← possesses more notable n-Ω2 

sideband features. We also see the shifting of resonance states and this will be further 

discussed in Ch. 5. 
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Fig. 4.1. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=2, Vd2=0, 

and Ω1=Ω0=0.0084.  Electrons incident from the left exhibit stronger sideband 

features than electrons incident from the right. Dotted line depicts the resonance state 

without time-dependent potentials.  
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Fig. 4.2. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=0, Vd2=2, 

and Ω2=2Ω0=0.0168.  Electrons incident from the right exhibit stronger sideband 

features than electrons incident from the left. 

 

From Fig. 4.1 and 4.2, we can see that electrons exhibit weak sideband features if 

they scatter are screened by a static barrier before interacting with a time-dependent 

potential. 
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4.2 Two Oscillating Barriers on Top of a Static 

Double Barrier 
 

In this subsection, we study the time-dependent transport phenomena when both 

Vd1cosΩ1t and Vd2cosΩ2t are applied to the system. Electrons incident from both sides 

of the system interact with the time-dependent potentials, but still, T→ and T← exhibit 

much different sideband characteristics. 
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Fig. 4.3. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, 

Ω1=0.0084, and Ω2=2Ω1=0.0168.   

 

Electrons incident from the left of the system scatter with oscillating barrier of 

frequency Ω1 first, thus they have more notable n-Ω1 sideband features. Conversely, 

electrons incident from the right of the barrier exhibit stronger n-Ω2 sideband features. 
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4.3 Cases of Different Dual Frequency Pairs 
 

Both of the oscillating barriers are turned on under dual-frequency modulation. 

In this subsection, we set Ω2=3Ω1 in Fig. 4.4, and Ω2=4Ω1 in Fig. 4.5. Still, as in Sec. 

4.2, electrons incident from the left possess more notable n-Ω1 sideband features, 

whereas electrons incident from the right possess notable n-Ω2 sideband features. 
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Fig. 4.4. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, 

Ω1=0.0084, and Ω2=3Ω1=0.0252. 
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Fig. 4.5. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, 

Ω1=0.0084, and Ω2=4Ω1=0.0336. 
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Chapter 5 
A Study on the Level Shifting in 

Time-modulated Transport 
 

In this chapter, we demonstrate the resonance levels of several different 

conditions. Shifting of these states would be clearer under the numerical 

demonstrations in this section. We mentioned shifting of resonance states in Ch. 3 and 

Ch. 4, and we can further conclude that resonance states will shift under 

time-dependent modulations by the numerical results. 

In the beginning of this section, we start with the formation of resonance states 

within symmetric static double barriers, and asymmetric static double barriers. Then, 

to see how the states shift, we modulate the barriers with time-dependent potentials 

including single-oscillation, and double-oscillation.  

 

5.1 Static Symmetric Double Barriers 
 

Resonance states are formed within in double-barrier configurations. These 

resonance levels, which correspond to longer life time, will be sharper and narrower if 

the confining potentials are strong. On contrary, resonance levels will be broader if 

the confining potentials are weak. Fig. 5.1 demonstrates resonance states of static 

double-barrier configuration with different confining amplitude. 
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Fig. 5.1. Transmission as a function of µ for a=15, and Vs1=Vs2=V. 
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5.2 Static Asymmetric Double Barriers 
 

We set up asymmetric double barriers to see how resonance states are apt to shift. 

In Fig. 5.2, we see that resonance states shift towards higher energy levels when δV is 

positive. Contrarily, resonance states shift towards lover energy levels if δV is 

negative. We also find that the peak value of resonance state in asymmetric double 

barriers will not achieve 1.  
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Fig. 5.2 . Transmission as a function of µ for a=15, Vs1=3, Vs2=V+δV. 
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5.3 Oscillating Barriers on Top of a Static Double 

Barrier 
When applying time-dependent potentials, the magnitude of the confining barrier 

will change periodically. Therefore, resonance levels will also shift with time, but the 

overall effect (after time averaging) of the shift is towards lower-energy end. This can 

be referred back to Fig. 5.2. The degree of shifting towards lower energy is greater 

than that of shifting towards higher energy, making the overall effect shift to the left. 

Fig. 5.3 and 5.4 demonstrate shifting of resonance state under time-dependent 

modulation. The amount of shifting will be enhanced, as shown in Fig. 5.4, when both 

of the barriers are time-dependent. 
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Fig. 5.3. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=2, Vd2=0, and 

Ω1=0.0084. Dotted line represents the resonance state of the quantum dot without 

time-dependent potentials. 

 47



 

 

 

 

 

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

µ/Ω1  

Tr
an

sm
is

si
on

 

Fig. 5.4. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, and 

Ω1=Ω2=0.0084. Dotted line represents the resonance state of the quantum dot without 

time-dependent potentials. When both the barriers are time-dependent, the amount of 

shifting is greater than that of Fig. 5.3. 
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Fig. 5.5. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2.5, and 

Ω1=Ω2=0.0084. 

 

Comparing Fig. 5.5 to Fig. 5.4, we can see that the amount of shifting of 

resonance state is also enhanced when the oscillation amplitude is stronger. 
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Chapter 6 
Pumped Current 

 
In Sec. 3.3, we see that T and → T←  are much different under barrier-well 

configuration. Asymmetry of T and → T←  is also shown in dual-frequency 

modulation. We calculated the pumped current of barrier-well configuration of same 

frequency modulation, and dual-frequency modulation, single oscillation of 

double-barrier configuration. In this chapter, we calculate the right-going transmission 

current by the equation 

( ) ( )
0

2 FEeI dE T E T E
h → ←= − −⎡⎣∫ ⎤⎦ .                                 (6.1) 

 

6.1 Barrier-well Configuration 
 

Dependence of pumped current and transmission in barrier-configuration is 

given in Fig. 6.1. As shown in Fig. 6.1(a), pumped current is always negative within 

the energy range we calculate. This corresponds to the transmission feature in Fig. 

6.1(b). T→ is greater than T← in the energy scale µ <εr ( εr is the resonance energy), 

hence the pumped current is negative by the definition in Eq. (6.1). The minimum 

value of the pumped current occurs at about at µ=εr. When coming to the energy scale 

µ >εr, T← is greater than T→, thus electrons in this energy scale transport in the 

different direction, contributing positive current by the current definition given in Eq. 

(6.1). Therefore, pumped current starts to increase from the minimum value. 
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Fig. 6.1. (a) Pumped current for a=15, Vs1=3, Vs2=-3, Vd1=Vd2=2, 

and Ω2=Ω1=0.0084. (b) Transmission of the same parameters in (a). 

6.2 Dual-frequency Modulation 
From Fig. 6.2 (a), we can see that the pumped current has a plateau between 

µ=3Ω1 and µ=3.5Ω1. This is because current contribution of sideband channel 

εr−2Ω1 is positive, and both T→ and T← are almost zero within this scale. The similar 

effect also occurs between µ=6 Ω1 and µ=6.5 Ω1. 
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Fig. 6.2. (a) Pumped current for a=15, Vs1=Vs2=3, Vd1=Vd2=2, Ω1=0.0084, and 

Ω2=2Ω1=0.0168. (b) Transmission of the same parameters in (a). 

6.3 One Oscillating Barrier on Top of a Static 

Double Barrier 

As shown in Fig. 6.3, the pumped current has a plateau between µ=2.5Ω0 and 

µ=4.8Ω0 because current contribution of sideband channel εr−2Ω0 is positive, and 
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both T→ and T← are almost zero within this scale. 
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Fig. 6.3. (a) Pumped current for a=15, Vs1=Vs2=3, Vd1=0, Vd2=2, 

and Ω2=2Ω0=0.0168. (b) Transmission of the same parameters in (a). 
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Chapter 7 
Unresolved Results 

 
As mentioned in Ch. 3, we find an interesting feature when sidebands are near the 

subband bottom. As shown in Sec. 7.1, the relative magnitude of the sidepeaks next to 

the resonance state may reverse. In addition, quantum transport characteristics will be 

much different if the oscillation amplitude is greater than the static barrier. 

Finally, we give the numerical result of oscillation frequency Ω< ∆εn (∆εn is the 

subband level spacing), where it is a complete different regime. Round time of 

electrons scattering between the barriers are much shorter than the oscillation 

frequency. 

 

7.1 Near Subband Bottom Regime 

From Fig. 7.1 and 7.2, oscillation frequency Ω1=Ω2=0.0084, the distance of two 

static barriers varies from 21 to 24 causing the resonance states and the sidebands, 

which we’re interested in, move toward subband bottom. As shown in the figures, the 

relative strength of the two side peaks changes when the left sidepeak is 

approximately at energy of 1Ω1. Fig. 7.3 and 7.4 are the transmission of frequency 

Ω1=Ω2=0.042. Fig. 7.5 to 7.7 demonstrate another oscillation frequency of 

Ω1=Ω2=0.0672. 
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Fig. 7.1. Transmission as a function of µ for Vs1=Vs2=3, Vd1=Vd2=2, 

Ω1=Ω2=0.0084 under a=21, and a=22. 
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Fig. 7.2. Transmission as a function of µ for Vs1=Vs2=3, Vd1=Vd2=2, 

Ω1=Ω2=0.0084 under a=23, and a=24. 
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Fig. 7.3. Transmission of Vs1=Vs2=3, Vd1=Vd2=2, Ω1=Ω2=0.042 under a=19, and a=20. 
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Fig. 7.4. Transmission of Vs1=Vs2=3, Vd1=Vd2=2, Ω1=Ω2=0.042 under a=21, and a=22. 
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Fig. 7.5. Transmission as a function of µ for Vs1=Vs2=3, Vd1=Vd2=2, Ω1=Ω2=0.0672, 

and a=15 to 17. 
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7.2 Strong Oscillation 
 

In Fig. 7.6 and 7.7, we find that resonance states shift towards higher energy 

levels when one of the oscillation amplitude is greater than that of the static barriers. 

In addition, for an electron that scatters with the strong oscillation potential first, its 

resonance transmission peak decreases rapidly. This feature is depicted by the 

dashed-line in Fig. 7.6 and 7.7. As to Fig. 7.8, under mono-frequency modulation, 

both of the oscillation amplitudes are strong, resonance peak shrinks to a small value. 
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Fig. 7.6. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=2, Vd2=4, 

Ω1=Ω2=0.0084. Dotted line is the resonance state of double static barriers. 
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Fig. 7.7. Transmission as a function of µ a=15, Vs1=Vs2=3, Vd1=2, Vd2=4, 

Ω1=0.0084, Ω2=2Ω1=0.0168. Dotted line is the resonance state of double static 

barriers. 
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Fig. 7.8. Transmission as a function of µ  a=15, Vs1=Vs2=3, Vd1=Vd2=4, Ω1=Ω2=0.0084. 

Dotted line is the resonance state of double static barriers. 

 

7.3 Small Ω regime 
In this subsection, we give the numerical results of a completely different regime, 

where oscillation frequency Ω< ∆εn ( ∆εn is the subband level spacing). Oscillation 

frequency in Fig. 7.9 and Fig. 7.10 are Ω1=Ω2=0.0014 and Ω1=Ω2=0.0028. 
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Fig. 7.9. Transmission as a function of µ for a=15, Vs1=Vs2=3, Vd1=Vd2=2, 

Ω1=Ω2=0.0014. 
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Fig. 7.10. Transmission as a function of µ  for a=15, Vs1=Vs2=3, Vd1=Vd2=2, 

Ω1=Ω2=0.0028. 
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Chapter 8 
Discussion and Future Research 

 
It is an interesting feature to see characteristics of sideband asymmetry because 

many of us may, at the first time, intuitively take electrons to have the same 

probability of absorbing or emitting photons. For now, we can be sure that the 

electrons tend to absorb or emit photons under specific configurations, and the 

asymmetric sideband channels can be balanced when we introduce a phase difference 

into the system. Even electrons incident from the opposite sides of the system may 

exhibit different tendency of absorbing or emitting photons. 

Under double-barrier configuration, it is now clear from one-photon 

approximation that the cause of asymmetric sidebands comes mainly from the 

interference terms. This approximation gives still good results even if the oscillation 

amplitudes are strong, that is, when higher-order sideband channels appear. We may 

conclude that of the two sideband channels we study, the most important interaction 

process is 1st-order interaction. 

In dual-frequency modulation, we see that electrons have more effective 

interaction with the time-dependent potential they meet first. T→ and T← are different 

due to the fact that spatial-invariance is destroyed under dual-frequency modulation. 

Net pumped current can be achieved one translational-invariance is destroyed.  

There are still features we like to understand. We are interested in the mechanism 

which reverses the relative strength of transmission for the sideband channels we 

study, and also the reasons why resonance transmission shrinks to a small value under 

strong oscillation conditions.  
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Appendix A 
 

Set-up of Matrix Equations for 
Time-dependent Mode Matching 

 
In this section, we give in detail the set-up of matrix equations given in Sec. 2.1. 

We program our numerical calculation program on the basis of these matrix equations. 
After matching the boundary conditions in Sec. 2.1, we have Eq. (2.5) to (2.8). 

Eq. (2.5)×kn(m) + Eq. (2.6) gives 
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and Eq. (2.7)×kn(m) ﹣Eq. (2.8) gives 
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In calculation of An(m) and Bn(m), we set up the matrix equation 

1 11 12

2 21 22

C M M A
C M M B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 

in Eq. (2.9). 
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 When we consider 2M+1 sidebands, l=M… 0…－M, and m=M… 0…－M. Matrix 

elements in Eq. (2.9) will be 
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From Eq. (2.10), we have 
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We then set up the matrix equation as 
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in calculation of rn(m) and tn(m). Again, for l=M… 0…－M, and m=M… 0…－M, 

matrix elements in the above equation will be 
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In calculation for T←, and  can be solved in the similar way of setting up the 

matrix equations. 

nt nr
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Appendix B 
 

Analytical Expressions for One-photon 
Approximation 

 
In this section, we give the analytical expression of reflection and transmission 

coefficients in one-sideband approximation. After matching the boundary conditions 
of a single oscillating barrier applied at x=0, we have 

( ) ( )1 1  I Ir tµ µ=                                               (B.1) 
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After solving the above equations, we have 
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We specially note that within Eq. (B.5) to (B.12), Vd
2 in the denominator can be 

expanded into series of (Vd
2)n. Hence, we omit this term in each denominator of the 

coefficients for one-photon approximation. Vd
2 in Eq. (B.11) is omitted as well. 

After doing the simplification, we have 
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As mentioned in Ch. 2, reflection and transmission coefficients of a barrier located at 
interface II (x=a) will be 
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Thus, in Sec. 2.3, the 8 processes of one-photon approximation will be 
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Appendix C 
 

Analysis of Interference Terms of 
One-photon Approximation 

 
In this section, we do some analysis of interference terms of Eq. (2.30) and (2.31) 

in Ch. 2. Eq. (2.30) gives 
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and Eq. (2.31) gives 
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In addition, 
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We know from Fig. 3.14 and 3.15 that ( ) ( ) ( )
( )

*

1 1

1
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0
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µ µ⎡ ⎤
⎢ ⎥⎣ ⎦

, and 

 70



( ) ( ) ( )
( )1 1

1
2Re , ,

0
I II k

t t t r
k

µ µ⎡⎣ ⎤⎦  have the most effect on 1rε − Ω  channel, while 
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(negative) effect on 1rε + Ω channel. We then do the analysis of these four 
interference terms. Acquiring the analytical expression for reflection and transmission 
coefficients in appendix B, we have 
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We do the analysis of the common factor, 
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of (C.1) and (C.3). Define 
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After expansion and simplification, we have 
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With 2  and sak aVβ κ≡ ≡ , Re[F *] can be modified as 
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For Vs=3 and a=15, numerical plot of Eq. (C.7) is given in Fig. C.1. 
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βHπL

 

Fig. C.1. κ =aVs=45. Green line is , blue one is *Re[ ]F ( ),df β κ , and red one is 

( ),nf β κ . =0 when β=1.9153π, and this is the condition where resonance 

state is. 

*Re[ ]F

 

The lowest resonance state of double static barriers is β=2π when Vs→∞.  

Thus, we start to look for the conditions where ( ), 0nf β κ = . 
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Thus, 
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We then try to find of the first-order correction term of fn(β,κ). Since the lowest 

resonance level is β～2π. We start our approximation from β0=2π. Setting 

0 2n nβ β β π= + ∆ = + ∆β

)n

, then we have 
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Then we start to examine the first-order correction for β where fd(β) has its minimum 

value. Given that 
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For 0 2d dβ β β π= + ∆ = + ∆β , and let ( )' ,df β κ 0= , we have 
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Under numerical calculation, we have 

∆βn =−0.2725π, 

∆βd =−0.2676π, and 

2π −∆βn ～ 2π −∆βd ～1.9153π. 

Hence, Thus, ( ),nf β κ  changes sign almost exactly when ( ,df )β κ  is at its 

minimum value. Leading factors of Eq. (C.1) to (C.4) are always positive. This is the 

main reason for different parity of contribution to total current transmission. 
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