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Abstract

Electrons are apt to make trapsition through the quantum dot by absorbing
photons. We model our quantum dot with double static delta-profile barriers, and we
study sideband asymmetry features through the quantum dot. We then propose
one-photon approximation which gives concrete physical pictures for the main
transport process, and successfully depicts this phenomenon of asymmetric sidebands.
We also study quantum transport under different configurations. Quantum transport
characteristics are much different for electrons incident from the opposite sides of the
system in barrier-well configuration. Then we demonstrate transport characteristics
under dual-frequency modulation and the pumped current. Shifting of resonance

states under time-dependent modulation is also studied within our work.
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Chapter 1
Introduction

In mesoscopic physics, time-dependent quantum transport has been an active
field in recent years. These studies focus on coherent inelastic scattering. Electrons in
mesoscopic regime possess a sufficient long phase-coherent length compared to the
dimension of the structure we study, thus phase become of much important to the
transport properties in this regime. Among the structures being studied, quantum point
contact (QPC) is the most popular one for its simplicity. Many other devices such as
“electron waveguide”, “quantum dot”...etc. are based on this structure.

QPCs can be formed by applying negative bias on the split metal gates that are
fabricated the top of a GaAs-AlLiGaj.. hetrostructure, and its width can be controlled
by the biasing electrode. Due to the fabrication technologies, nearly perfect
two-dimensional electron gas (2DEQG) of sufficient long phase-coherent length is
formed in the hetrostructure, making possible the measurement of experiments.

Study of transport properties in mesoscopic scale is first proposed by Landauer
[1-3], and then Biittiker gave a more general formulism based on Landauer’s theory
[4-6]. Landauer- Biittiker formulation successfully explained quite a number of results
of mesoscopic experiments. Landauer- Biittiker formulism thus becomes one of the
most important theories in mesoscopic physics.

Adiabatic quantum pumping (AQP) also attracts much attention in recent years.
The idea was firstly proposed by Thouless [7], and then Niu [8] proposed several
one-dimensional time-dependent potentials for adiabatic quantum pumping. In AQP,
finite amount of net charges are transferred through the unbiased system in each cycle

of the deformation parameters. Subsequently, Brouwer [9] derived a terse analytical



formulation of AQP. Furthermore, Switkes et al. [10] successfully conducted an
experiment in confirmation of AQP. They introduce a phase difference into the two
metal gates with ac voltage biasing the open quantum dot.

Beyond adiabatic regime, the importance of nonadiabatic quantum charge
pumping has been pointed out. C.S.Tang and C.S. Chu [11] proposed a
scattering-matrix method in calculation of nonadiabatic quantum charge pumping
under time-dependent modulation. In addition, S.W. Chung et al. [12] proposed a new
configuration, finger-gate array (FGA), to achieve quantum charge pumping (QCP). A
pair of FGAs with finite number of finger-gates is set on the top of a narrow channel.
The pair of FGAs is ac biased with a phase difference between each other.

In the beginning, we tried an alternative approach for QCP in a narrow channel.
We apply dual-frequency barriers’in a narrow channel beyond adiabatic regime to
destroy the translational invariance.for occurrence of quantum charge pumping, and
we also study sideband characteristics—of-a,quantum dot under dual-frequency
modulation. We set up our quantum-.dot by a pair of delta-profile barriers in a
one-dimensional narrow channel where the channel, as shown in Fig.1, is acquired by
a negatively biased narrow constriction. QCP will be achieved whenever translational

invariance is destroyed.

Double-barrier

Fig.1. Sketch of the model of our quantum dot.



QCP was achieved by dual-dual frequency modulation, and we also discovered
yet another interesting feature of a quantum dot in mono-frequency
modulation-sideband asymmetry. Sideband band channels open when ac voltages are
applied on the quantum dot, and we find that sideband channels higher than the
resonance state are asymmetric to those lower than the resonance state. We might
intuitively consider sideband channels to be symmetric for electrons may have the
same photon absorption and emission probability, but the asymmetric sideband
features give rise to the implication that electrons are more likely to make transition
through the quantum dot by absorbing photons than by emitting photons within the
scattering process. We then study sideband asymmetry features in our work as well.

We utilized one-sideband approximation method [13] and then we proposed
one-photon approximation (OPA) for studying.sideband asymmetry. When the
amplitude of applied ac potential is.not strongs or when the confining double-barrier is
comparatively strong, one-sideband tapproximation gives good numerical results of
transport properties. OPA also gives. good-fiumerical results compared to exact
numerical calculation even when the oscillation amplitudes are strong. Thus, we
obtain a clear physical picture for the causes of sideband asymmetry. It is worthy to
note that one-sideband approximation can be multi-photon processes, within the
energy regime E —-hQ < E < E+hQ . However, OPA only allows electrons to absorb
or emit a single photon once within the scattering region.

In this work, we give the formulation for exact numerical calculation and
derivation of OPA in Ch. 2, and then we give sideband asymmetry characteristics and
comparison of OPA with exact numerical calculation in Ch. 3. We also study sideband
features of different configurations in Ch. 3. In Ch. 4, we present sideband features of
a quantum dot under dual-frequency modulations. Resonance states in the quantum

dot are found to shift when ac voltage is applied in a quantum dot; hence we

3



demonstrate shifting of resonance levels under time-dependent modulation in Ch. 5.
Ch. 6 gives the pumped current of dual-frequency modulating quantum dot and
mono-frequency modulating barrier-well configuration system. A few unresolved yet

interesting results are collected in Ch. 7. Finally, Ch. 8 presents a conclusion.



Chapter 2
Formulation

We start the formulation with time-dependent mode matching approach. For
analytical solution, we then do one-sideband approximation, and finally we give the
one-photon approximation approach. Schematic sketch of our system is given in Fig.
2.1.

We do the numerical calculations by time-dependent mode matching approach.
From the numerical results given in Ch. 3, we found an interesting sideband
feature-sideband asymmetry. This contradicts our intuitive prediction. As known from
Fermi’s golden rule, electrons have the same probability of absorbing or emitting a
photon.

In order to further study the causes.of.-sideband asymmetry, we simplify our
cases to the regime where one-sideband approximation is sufficient to dominate. It’s
an inspiration that sideband asymmetry sill exists in such regime.

Finally, to get a clearer physical picture, we further propose the one-photon
approximation approach. This comes directly after the simplification of the analytical
results from one-sideband approximation. Comparisons of exact numerical calculation

with one-photon approximation are given in Sec. 3.5.
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Fig. 2.1. Sketch of the time-dependent model we study.

2.1 Time-dependent Mode Matching Approach

In the system we study, we haveithe Hamiltonian

h 0 0’ a a
H= [8x2 +ayz]+V15(X+5)+V25(x—5)+Vc(y), (2.1)

_2m*

where electrons transport in x-direction; and-they-direction is confined by a parabolic

potential.
'k
Furthermore, with the units of energy E*=FE,= 5 i =9meV ,
m
hk; 1 : .
frequency Q*=—"=13.6THz , and length a*:k— =79.6A, the dimensionless
m

F

Hamiltonian becomes

2 2
0 +a—1+K5<x+§)+V25(x—§)+n<y), 22)

H=-]—
[6x2 oy’

where,
V=V, 6 +V, cosCt,
V,=V,+V,,cos(Q,t+9),
Q, = NQ, (N is any integer),

V.(n=oy".



The total wave function can thus be expressed of the form

v(F.0 = 6,0, x0, (2:3)

where 7 is the subband index.

For the wavefunction incident from the left in the n-th mode with total energy £,

we define the kinetic energy x along transport direction, and u, = E—¢&, ,where

g, = (2n + 1) w, 1s the eigen energy due to the parabolic confining potential.

Then the wavefunction in transport direction becomes

0)x _W —lk mx —ly( )
+Zn ,x<7

a
< @9

l//n(x,t): ZA zk (m)x —l/l m)t +ZB —zk (m)x —1/4(
(m)x it () a
S

where &, (m)=./u, (m) and g, (m)=p:+m.

In order to calculate the energy idependence of conductance G, we start to match

the boundary conditions at x=—a/2. Continuous of y;, gives

B ey ( ) — ” —1n ’ 7
2 +Zr (m)el " 20 imQ,t ZA (m)e ze imQt +ZB (m)e anlt ,
m

m

and the boundary condition for ;" gives

ik, (0)2
k,(0)e

€

2

ik, (m)& ik, (M2 o
(V (m)k, (mye" "2 +An(m)kn(m)€ * = B,(m)k,(m)e 2} |

12[14” (m)eii "y +B (m ) jV;l (e —i(m-1)Qt +e—i(m+1)glz)

k, (m)> ik, (my% ) _.
+—.VSIZ(A,,<m>e’ "2+ B (m)e }
m

1

~.

[S—

=0
Then we match the boundary conditions at x=a/2. Continuous of y;, gives

zk .
2 —imQt K ( —thl —imQt
E An e + E B E t 2e ,



and continuous of ¥, gives

Z(AAm)kn(m)e”‘"‘"”z—Bn<m>k,,<m>e‘”‘"‘"”

2 —t,(m)k,(m) ¢ ] e "

+IZ[ Z+B (M)e”‘n(m);JQ(e im=N)xt id | o l(m+N)Qltefi¢)

=0
Thus we have the following equations

al

., ik, (m)% —ik, (m )% ik, (m)g
5m’oe 2471 (me =4 (m)e + B (m)e , (2.5)

. a

—1k”5 ikn(’71)%
5m,0kne _rn (m)kn (m)e

—ik, (m)< ikm )
—A4,(m)k,(m)e 2+ B, (m)k(m)e "2

V —ik, (m)2 ik ()
+ l‘fl (An (m)e 2+ B (m)e 2

§ (2.6)
T T [An (me "B Wy (’"”ZJ

l

ag
i 2

=0

(A (m )e f(m + B (m ')eik"(m')zJ

ik, (m)< —ik, (m)2 ik, (m)<
A,(m)e >+ B, (m)e =t,(me * (2.7)

and
ik, (p)= —ik, ()% ik, (m)~
A,(m)k,(m)e = > =B, (m)k,(m)e >—t,(mk,(m)e  *
e [An (me" "2 + B, (m)e_ik"(m)zj
l
1 Véz S, (An mYe "2+ B (mYe " (’""2] (2.8)

1 de ik, (m)< _jkn(mv)ﬁ
7¢ n 2
w2l gs [ 4, B e

l

=0



Hence, for the purpose of numerical calculation, we are able to set up the matrix

2 21 22 n

Coefficients of 4,(m) and B,(m) can be solved by Eq. (2.9). Equation (2.5) and (2.7)
gives

i(ky +k, (m))

r,(m)=A,(m)e”™"™" + B, (m)-5,,
t (m)=A (m)+ B, (m)e ™™

(2.10)

Thus, we can set up the matrix equation

R R
_ ; 2.11)
tn 1)21 ])22 Bn DZ

for the numerical calculations=of.#,(m) and-#,(m).-Details for the set-up of these
matrices will be given in Appendix -As-Hence, the transmission and reflection

coefficient can be solved. Similarly,for.electrons incident from the right of the system,

f,(m)and 7 (m) can be solved in the same way. Finally, we can calculate the

transmission probability of each sideband channel by the equation

T 2.12
. (m) = k (0) (2.12)
and total current transmission by
=>>'T.(m). (2.13)
Similarly, for electrons incident from the right,
T,(m) =
. (m) = k X 0)
and (2.14)
=S S (m). (2.15)



Total transmission current would be given by the equation
1=-221" ae[1,(E)-T_(E)] (2.16)
h 0 - “«— 4 :

where Erdenotes the Fermi-energy.

2.2 One-Sideband Approximation

When the confining barrier is strong, or the oscillating amplitude is
comparatively weak, we presume that electrons are only able to make transition
through the first sideband. From Fig. 3.6 and 3.7, we can see that one-sideband
approximation gives appropriate result. Furthermore, features of sideband asymmetry
still exist.

In order to get a clearer physical picture, analytical expressions are necessary.
One-sideband approximation here is done’in preparation of one-photon approximation
of the next section. Thus, we'start with an’electron scattering with a single

time-dependent barrier.

Consider a time-dependent potential V, =V, +Vd(cos Qt+¢) applied at x=0.

We then define r, (u) and #, (u) as the reflection and transmission coefficients of

the electron with kinetic energy u incident from the left of the barrier; the superscript

I specifies the interface (barrier) we’re dealing with, and the subscript m is the

sideband channel index. Respectively, 7'

m

(#) and 7, (u) are the reflection and

transmission coefficients of the electron incident from the right.

10



Total wave function of the electron incident from the left

e[k(O)xe—i,u(O)t + i ]/;111 (lu)e—ik(m)xe—iy(m)t X< 0
w(x,t)= . : (2.19)
Z t’i (ﬂ)eik(m)xe—i,u(m)t ,X > 0
m=-1

where u is the kinetic energy along transport direction, and

1 (m)=pmQ2,

In order to derive the analytical expressions for the reflection and transmission
coefficients, we then have to conduct the time-dependent mode matching. Continuous
of v gives

iu(1) iu(0

Ut (u)e “+1 (u)e 4y 1(,u)e (-
_t (,U)e iu(l +t (,u)e ip(0 +t (,u)e ip(=1)
and continuous of y’ gives
ik (()) e o _ i|:k (1) r11 (ﬂ)e~w(1)t ( )ro (u)e O k( )’:11 (ﬂ)ef[/.t(fl)t]
_i|:k(l)tll (’u)eﬂ'ﬂ(l)t + k(())té (lu)e—iu(o)t +k(—1)tf1(y)eﬂl(71)t:|
L1 (e i (e Ot (e
+% e [ 1 (e ™™ 1 (uye ™ 1! (e M) |
e [ e ™ i e ! (e ]
=0

1 1 1

Hence, n'(u),ry (1).r!(2).t) (2).t5(2), and ¢!, () can be solved analytically.
Analytical expressions for these coefficients are given in appendix B. For electrons
incident from the right, 7 (x)=r'(u),and 7' ()=t (w).

When the potential is applied at interface I/ (x =a), the corresponding reflection

and transmission coefficients are given in the following equations

11



I’H (,U) _ 7’1 (ﬂ)ei[k(n1)+k(0)]a
1 (1) = ¢ (lu)e—i[k(m)—k(O)]a >

and

";11 (ILI) — r[ (#)efi[k(m)+k(0)]a
l711 (,U) _ tl (lu)ei[k(m)—k(O)]a '

Under one-sideband approximation, total transmission would be

T,(E)=). Z T (m) (2.20)
T_(E)=Y, Z T .(m). (2.21)

2.30ne-Photon Approximation

It is worthy to note that one-sideband appreximation can be multi-photon
processes, while one-photon approximation-enly allows electrons to absorb or emit a
single photon within the scattering process.

In order to acquire a concrete physical picture, we propose the one-photon
approximation approach. This comes from the simplification of one-sideband
approximation. In Sec. 2.2, we get the analytical expressions of reflection and
transmission coefficients of both interface 7 and II. V.7 in the denominators of the
coefficients can be further expanded into series with (VA" terms involved. This
simply implies that electrons encounter multiple-photon process when scattering with
the potentials.

Therefore, for our consideration of one-photon approximation, we omit ¥,* terms
in the denominators or numerators of the coefficients. Hence, the coefficients are
related to V; only, which means that electrons interact with the potential “once.”

Finally, we deal the transmission of electrons through the double-barrier with

12



multiple-scattering process between interface / and /1.
After reducing and simplification, the transmission and reflection coefficients

become of interface / become

4~ Taaren T 0] @2
i (u)= % (2.23)
)~ e T 22
(R T e -
rol(ﬂ):m , (2.26)
PP 0

“[2k(0)+ v, [iVix 2k(=0) ]

and 7, (u)=r, (@), and 7, (u)=1,(x).

Similarly, as in Sec. 2.2, coefficients of interface // can be obtained by the following

equations

r][ (ﬂ) — rl (ﬂ)el[k(m)Jrk(O)]a
£ 1) = £ ( 1) o LEm=k(©)]a ’

and

F () = rl(ﬂ)e—i[k(m)+k(0)]a
i (1) = ¢! (Iu)ei[k(m)—k(o)]a ’

We then define #(x) the transmission coefficient of electrons making transition

through the system by means of absorbing a photon. Furthermore, #,(x) can be further

13



separated into four processes:

f(p)=t(t p)+e (6 )+t (7 )+ 2 (R ) (2.28)

The definition of each process in Eq. (2.28) is given by

t(tll , u) -transmission absorption at interface 7,
t(tl” , y) -transmission absorption at interface /1,
t(fl’ , ,u) -reflection absorption at interface /, and

t(rl” , ,u) -reflection absorption at interface /1.

We can express each of the four processes as a sum of infinite series:

o ()| 7" ()7 () Jt ()
t(7' u)= igté ()" ()| 3 ) P O TR ! (u+ Q)7 (14 Q) [ 1) (1 +Q)
() =t () [ ()7 ()] " () (a+ Q[ (w4 Q) (u+ Q) 8] (u+2)

Fig. 2.2 to 2.5 depict the physical picture of the four processes above.

v

v

Fig. 2.2. Schematic sketch of t(tll , ,u). Electrons absorb a photon at interface /, and

then encounter multiple scattering process before transmitting through interface /1.

14



v

é

Fig. 2.3. Schematic sketch of t(tl” , ,u). Electrons tunnel through interface / and

encounter multiple scattering process between in interface / and /I, and then make

transition through interface // by transmission absorption.

v

Fig. 2.4. Schematic sketch of t(z’ll , y). Electrons tunnel through interface 7 and have

multiple scattering process between interface / and /. Then they absorb a photon by
reflection absorption at interface /, and then they make transition through interface /7

after the multiple scattering process at the resonance state.
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@,,

Fig. 2.5. Schematic sketch of t(rl”, ,u). Electrons tunnel through interface /, having a

multiple scattering process, and then absorb a photon by reflection absorption at
interface /1. Finally, they make transition through interface I/ after the multiple

scattering process at the resonance state.

Similarly, we can define z.;(x) the transmission coefficient of electrons making

transition through the system by emitting a single photon:

ey () =(thom)+ (28 ) ¥(ES 1)+ (0. (2.29)

The definition of each term in Eq. (2.29) is given as

t(tf . ,u) -transmission emission at interface /,
t(tfll , ,u) -transmission emission at interface /1,
t(ffl , u) -reflection emission at interface /, and

t(rff , u) -reflection emission at interface /7.

16



Expressed with sum of infinite series, the four processes become

(1) = 2 () (- (=] 1} (402,

() =200 ()0 ()7 (40)] (),

(7o) =330 (1) ()7 () ()] 7 () (= )7 (1-9)] 4 (u-02)
() = Y ()[R ()7 ()] P4 ()7 (=) [ (= Q)7 (1-9)] ¢ (u=02)

Fig. 2.6 to 2.9 give the physical picture of the four processes above.

<—v

v

Fig. 2.6. Schematic sketch of t(tfl,y). Electrons emit a photon at interface / by

transmission emission, and make transition through the system after the multiple

scattering process between interface / and /1.
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—

v

Fig. 2.7. Schematic sketch of t(tf’l, ,u) . Electrons tunnel through interface / and have

multiple scattering process between interface / and /1. Then they make transition

through interface /I by transmission emission.

v
@

v

Fig. 2.8. Schematic sketch of t(F_] - ,u). Electrons tunnel through interface I, having

multiple scattering process. Then they emit a photon by reflection emission at
interface /. Finally, they transmit through interface /I after the multiple scattering

process at the resonance state.

18



|

Fig. 2.9. Schematic sketch of t(r_’f , ,u). Electrons tunnel through interface /, having

multiple scattering process. Then they emit a photon by reflection emission at
interface //. Finally, they transmit through interface /I after the multiple scattering

process at the resonance state.

Analytical expressions for the 8 processes of Fig. 2.2 to 2.9 will be given in detail in

Appendix B.

Under one-photon approximation, the total transmission,

7 (k) =t se) () o (7 ) () (2:30)

(
k(0)

. 2 k(-1
T,l(ﬂ)=\t(tfl,u)+t(tf’l,u)+t(d,u)+t(rff,u)\ % (2.31)
We go through one-sideband approximation to one-photon approximation. Thus,
we are able to compare numerical results of one-sideband approximation and

one-photon approximation with direct numerical result. The complete comparisons

are given in Ch. 3.
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Although one-photon approximation approach gives good numerical calculations
compared to exact numerical results, yet we do not understand the formation of
sideband asymmetry. Hence, we examine each term contributing to total transmission

current.

k(1)
k(0)

From Eq. (2.30), T (u) =‘t(tll’ﬂ)+t(tlﬂaﬂ)Jrt(fllaﬂ)ﬂ(”lﬂ,y)r and

(o) e (a ) e (5 )+ (" )

o (LG e T e e

caRe[o(t/ o) (i ) |-2Re[ (] e (7o) [ 2Re (e a)e(i" )]
caRe[1(u o (7o) |+ 2Re[o(a! e (") | 2Re[ (7)o ()

From Eq. (2.31), T ‘tt ,u)+t( 1,u)+z‘( 1,u)+t( 1 u)‘

‘t(tfl,,u)+t( o)+t (7 )+t

(
=(‘t(t11,,u‘ +‘t tjfl,y)‘ +‘t(?ll,ﬂ)‘2+‘t(r11[aﬂ)r)

_+_
NS}
=
o
1
—
=
N—
—_
=
1
+
NS}
=
o
~
—
~
L=
S
N—
~
—
N
Ly
=
SN—
1
+
S}
)
o
1
o~
—
Al
_~
v
N—
o~
—
N
Ly
=
N—
1

| Lo k) |
We can see from Fig. 3.12 that ‘t(tl , ,u)‘ — - contributes the most in total

k(0)

current transmission of ¢, —€ channel (& denotes the resonance energy), whereas

‘t(tfl, u)r k(_l) contributes the most of ¢+, channel.

k(0)
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For interference terms of 71(x) and 7.;(x), we see from Fig. 3.14 and 3.15 that

2Re[t(tf,,u)t(ﬁ’,,u)*}% and 2Re[t(t11,/,z)t(rl”,y)]— have the most

N—"

)

contribution to & -, channel, while 2Re[t (tfl’ﬂ)t(’;-ll"u )*:ikk((_()l) and

2Re[t(tf1, ,u)t(r_’f , y)]% have the most (negative) effect on &, +Q, channel.

Further discussions of these interference terms are given in Appendix C.
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Chapter 3
A Study on the Sideband Asymmetry
In Time-modulated Transport

We found the asymmetric feature of photon sidebands under double-barrier
configuration by mono-frequency modulation. This strongly aroused our interests, and
hence, we did one-photon approximation, as in Sec. 2.3, to get the physical picture
and more understanding of the formation of sideband asymmetry. Contribution of
each term in one-photon approximation is given in Sec. 3.4 in this chapter.

In addition, sideband asymmetry, . features under different static-barrier
configurations are different. Results of sideband features under different configuration
are also given in this chapter including double-barrier, double-well, and barrier-well
configurations. Electrons tend to absorb or-emit photons under specific conditions.
Within in this chapter, oscillation frequencies and amplitudes of both barriers are set
to be the same.

Transmission under one-sideband approximation is given in Sec. 3.4, in proving
of the validity of one-photon approximation, because one-photon approximation is
derived from one-sideband approximation.

Resonance states are found to shift when barriers are time-dependent, and the
detail discussions will be presented in Ch. 5. We also found some interesting result
under strong oscillation conditions, and when resonance level is close to subband

bottom. Numerical results of these results are given in Ch. 7.
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Transmission

3.1 Double-barrier

In this section, we find the feature of sideband asymmetry under double-barrier
configuration. We can see asymmetric sideband features both in Fig. 3.1 and 3.2, and
Fig. 3.2 exhibits more sidebands channels due to stronger oscillation amplitude. In Fig.
3.3, we introduce a phase difference-r into the system, and sideband features are
much more balanced.

T
—
——
SN
G
!

0.8

0.4

Fig. 3.1. Transmission as a function of y for a=15, Va=Vu=3, Va=Vx=2.5, and
0Q,=0,=0.0084. Dotted line is the resonance state of double-barrier of Vi=V,=3.
Electrons are more probable to make transition through the resonance state by
absorbing photons. Resonance state shifts towards lower energy level. Discussion of

level-shifting will be given in Ch. 5.
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0.8

0 ‘ A ‘ ‘
2 3 4 5 6 7 8
Wo,

Fig. 3.2. Transmission as a function for u for a=15, V=Vy=3, Vai=Vp=2, and

2,=0,=0.0084. Sideband features are not as strong when oscillation amplitudes are

weakened comparing to Fig. 3.1.
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0.8

Fig. 3.3. Transmission as a function of u for a=15, Vi=Vy=3, Va=Vp=2,
2,=02,=0.0084, and ¢=7. As shown in the figure, asymmetry features will be more

balanced when we introduce a phase difference between the barriers.
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3.2 Double-well

After doing double-barrier configuration, we are curious whether the asymmetry
features still exists in double-well configuration. Consequently, we find yet another
interesting feature. Asymmetric sideband features still exist, but electrons tend to emit

photons rather than absorb photons.

0.8

0.6 W ]

0.4

0.2

Fig. 3.4. Transmission as a function of u for a=15, Vy=Vy=-3, Vai=Vx=2, and
(2,=0,=0.0084. Electrons are more probable to make transition through resonance
state by emitting photons.

As shown in Fig. 3.2 and 3.4, sideband features are much different under
different configurations. We have to note that we study the small oscillation amplitude

regime in this chapter (V; < V;). Results of strong oscillation are given in Ch. 7.
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3.3 Barrier-well

We do barrier-well configuration after doing double-barrier and double-well
configurations. ~As shown in Fig. 3.5, 7, and 7. show different sideband
characteristics in this case. From Fig. 3.2, we can see that when an electron scatters
with time-dependent barriers, it is more likely to absorb photons and make transition
through the resonance state; on the other hand, from Fig. 3.4, we see that if an
electron scatters with time-dependent wells, it tends to make transition by emitting
photons. In Fig. 3.5, due to the barrier-well configuration, we find that electrons
incident from the left tend to make transition by absorbing photons, while electrons

incident from the right are more likely to make transition by emitting photons.

0.8

0.4} -

Fig. 3.5. Transmission as a function of u for a=15, V=3, Vyo=-3, Va=Vp=2, and

(2,=0,=0.0084.
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3.4 One-sideband Approximation

In Fig. 3.6 and 3.7, we see that numerical calculation under one-sideband
approximation is better when oscillation amplitudes are smaller. Approximations in
both Fig. 3.5 and 3.7 are good. As mentioned in Ch. 2, we advance our one-photon
approximation under conditions where one-sideband approximation gives good
numerical results. Sidepband channels specified by arrows in Fig. 3.6 and 3.7 are the

ones we will study in Sec. 3.5.

—— 1sideband approx. .] I‘

0.8 .. exact numerical

0.4} -

0.2- ' .

o
. . A
6

5 7 8

Fig. 3.6. Transmission as a function of u for a=15, Va=Vyu=3, Va=Vp=2, and
2,=0,=0.0084. Solid line is the calculation under one-sideband approximation, and

dashed-line is the exact numerical calculation.

28



Transmission

—— 1sideband approx.
08 — exact numerical .] I‘ |
06| | |
0.4 f
0.2 l l .
0 ‘ ‘ N J K ~ ‘
1 2 3 4 5 6 4 8
We,

Fig. 3.7. Transmission as a function of u for a=15, Vi=Vyu=3, Va=Vp=1, and
2,=0,=0.0084. Solid line represents the numerical results under one-sideband

approximation.
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3.5 One-photon Approximation

Formulation of one-photon approximation is given in Sec. 2.3. In this subsection,
we demonstrate the result of one-photon approximation of double-barrier
configuration. The causes of sideband asymmetry are clearer by one-photon
approximation. Fig. 3.8 and 3.9 gives one-photon approximation without phase
difference, while Fig. 3.10 and 3.11 gives one-photon approximation with phase

difference 7. Fig. 3.12 to 3.15 are the analysis of Fig. 3.9.

0.2

_— T1 1 photon approx.
_____ T_l 1 photon approx.

0.15'

0.05¢

Fig. 3.8. Transmission as a function of u for a=15, Vy=Vy=3, Va=Vp=2, and

0O,=0,=0.0084. Dotted line indicates the exact numerical calculation.
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—— T, 1 photon approx.
1
0.06| T_1 1 photon approx.
1
0.04+ :
0.02 !
0 .................. I - w J A\ —'Jkn ”I‘\A_

0 1 2 3 4 5 6 7

Fig. 3.9. Transmission as a function of u for a=15, Vg=Vyx=3, Vai=Vap=1, and

0,=0,=0.0084. Dotted line indicates the exact numerical calculation.
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0.2

S T1 1 photon approx.
_____ T,1 photon approx.

0.15+

Fig. 3.10. Transmission as a function of u for a=15, Vg=Vyx=3, Va=Vip=2,

(2,=02,=0.0084, and ¢=r. Dotted line indicates the exact numerical calculation.
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0.06/ | — T, 1 photon approx. |
..... T_, 1 photon approx.

0.04: -

0.02/ ] -

S
_———
PR

¢a = <

o
NS

Fig. 3.11. Transmission as a function of u for a=15, Vy=Vyx=3, Va=Vap=1,
2,=02;=0.0084, and ¢=r. Dotted line indicates the exact numerical calculation.

From Fig. 3.8 and 3.10, we see that one-photon approximation gives good
numerical calculation in explaining the asymmetry of sidebands even though the
oscillation amplitude is strong, such as V,/=2. Thus, the validity of one-photon

approximation is not just limited in small oscillation regime.
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The following figures are the contribution of each term of 77 and 7. in
one-photon approximation. We can see from Fig. 3.14 and 3.15 that the interference
terms of Fig. 3.14 and 3.15 contribute different parities to transmission at the specific

sideband channels where we’re interested in.

0-03 1 — i fyao)
_ (2, ") K(1)/K(O)

B} (10| *(1)/(O),
S 0.02 -l ) K1)/KO)
Z _
g |
= |

0.01 |

OOO 2 | N | : | J_JLL AAi . 1 N 1

Fig. 3.12. Transmission as a function of u for a=15, Vy=Vy=3, Va=Vp=1, and

2,=02,=0.0084. Curves in this figure are the transmission contributions of

t(t)u), t(t ), t(7' p), and t(5", ).
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Fig. 3.13. Transmission as a function of u for a=15, Vy=Vyx=3, Va=Vp=1, and
2,=02,=0.0084. Curves in this figure are the transmission contributions of

t(tfl,u), t(tfll,y), t(ffl,y), andt(rf{,y).
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-0.008 0o
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w/Q

1
Fig. 3.14. Transmission as a function of u for a=15, Vy=Vy=3, Va=Vp=1, and
2,=0,=0.0084. The six curves in this figure are the interference terms of the four

processes defined in Sec. 2.3. We have six interference terms from

t(t)u), t(t ), t(7 p), and t(5", ).
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Fig. 3.15. Transmission as a function of u for a=15, Vy=Vy=3, Va=Vp=1, and
2,=0,=0.0084. The six curves in this figure are the interference terms of the four

processes defined in Sec. 2.3. Same as Fig. 3.14, we have six interference terms from

t(tfl,,u), t(tf’l,,u), t(;’_ll,,u), andt(r_]f,,u).

We are able to conclude from Fig. 3.12 to 3.15 that the cause of sideband

asymmetry comes mainly from interference terms.
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Chapter 4
A Study on the Dual-frequency
Modulation in Time-modulated
Transport

In this chapter, we mainly study sideband characteristics under dual-frequency
modulation on double-barrier configurations because sideband features are notable in
existence of resonance state. We start with single time-dependent oscillating barrier in
Sec. 4.1, and then the dual-frequency double time-dependent oscillating barriers in
Sec. 4.2. Formulations for numerical' caleulation are derived in Sec. 2.1. Electrons
incident from opposite sides ofthe system-exhibit different sideband characteristics.
We also compare sideband features of different ratio-of Q,/Q;. Same as that in Ch. 3,
we study the regime where V; < V. Strong oscillation modulations are given in Ch. 7.

Quantum charge pumping can be achieved by introducing a phase difference in
to a pair of time-dependent oscillating potentials. We try an alternative way of
dual-frequency modulation to achieved quantum charge pumping effect. Result of net

pumped current will be given in Ch. 6.

4.1 One Oscillating Barrier on Top of a Static

Double Barrier

In this section, we consider single oscillating barrier in each case, that is, either

Vaicos€t or VppcosQyt is applied at one time. From Fig 4.1 and 4.2, we can see that
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T_, and T— exhibit different sideband characteristics in each case. In Fig. 4.1, 7T_,
shows notable n-Q; sideband features while 7. possesses more notable n-Q,
sideband features. We also see the shifting of resonance states and this will be further

discussed in Ch. 5.

0.8/ ‘I I g _} |

0.6 -

0.4} -

0.2 |

(e I ./\.....-—J-.\h J L‘*m-—-A.. ......

0 2
WO,

Fig. 4.1. Transmission as a function of x for a=15, V=Vy=3, Vui=2, V=0,

and Q,=0=0.0084. FElectrons incident from the left exhibit stronger sideband
features than electrons incident from the right. Dotted line depicts the resonance state

without time-dependent potentials.
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|
0.8 I I _} |

Fig. 4.2. Transmission as a function of x for a=15, V=Vy=3, Vui=0, V=2,
and Q,=20,=0.0168. Electrons incident from the right exhibit stronger sideband

features than electrons incident from the left.

From Fig. 4.1 and 4.2, we can see that electrons exhibit weak sideband features if

they scatter are screened by a static barrier before interacting with a time-dependent

potential.
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4.2 Two Oscillating Barriers on Top of a Static

Double Barrier

In this subsection, we study the time-dependent transport phenomena when both
VaicosQit and VpcosCt are applied to the system. Electrons incident from both sides
of the system interact with the time-dependent potentials, but still, 7_, and 7' exhibit

much different sideband characteristics.

1
s | S

0.6/ ]* ]

0.4} -

Fig. 4.3. Transmission as a function of u for a=15, Vi=Vy=3, Va=Vap=2,

,=0.0084, and 2,=20,=0.0168.

Electrons incident from the left of the system scatter with oscillating barrier of
frequency Q) first, thus they have more notable n-Q; sideband features. Conversely,

electrons incident from the right of the barrier exhibit stronger n-Q, sideband features.
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4.3 Cases of Different Dual Frequency Pairs

Both of the oscillating barriers are turned on under dual-frequency modulation.

In this subsection, we set €,=3Q); in Fig. 4.4, and (2,=4Q, in Fig. 4.5. Still, as in Sec.

4.2, electrons incident from the left possess more notable n-Q; sideband features,

whereas electrons incident from the right possess notable n-(, sideband features.

Transmission
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Fig. 4.4. Transmission as a function of u for a=15, Vy=Vyu=3, Va=Vp=2,

,=0.0084, and 0,=3€2,=0.0252.
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Fig. 4.5. Transmission as a function of x for a=15, Vg=Vo=3, Va=Vn=2,

0,=0.0084, and €2,=4€2;=0.0336.
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Chapter 5
A Study on the Level Shifting In
Time-modulated Transport

In this chapter, we demonstrate the resonance levels of several different
conditions. Shifting of these states would be clearer under the numerical
demonstrations in this section. We mentioned shifting of resonance states in Ch. 3 and
Ch. 4, and we can further conclude that resonance states will shift under
time-dependent modulations by the numerical results.

In the beginning of this section, we,start with the formation of resonance states
within symmetric static double barriers, and asymmetric static double barriers. Then,
to see how the states shift, we-modulate the barriers with time-dependent potentials

including single-oscillation, and"double-oscillation:

5.1 Static Symmetric Double Barriers

Resonance states are formed within in double-barrier configurations. These
resonance levels, which correspond to longer life time, will be sharper and narrower if
the confining potentials are strong. On contrary, resonance levels will be broader if
the confining potentials are weak. Fig. 5.1 demonstrates resonance states of static

double-barrier configuration with different confining amplitude.
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Fig. 5.1. Transmission as a function of x for a=15, and V§,;
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5.2 Static Asymmetric Double Barriers

We set up asymmetric double barriers to see how resonance states are apt to shift.
In Fig. 5.2, we see that resonance states shift towards higher energy levels when oV is
positive. Contrarily, resonance states shift towards lover energy levels if oV is
negative. We also find that the peak value of resonance state in asymmetric double

barriers will not achieve 1.

1

— 8V=0
04 & T 6V=-2
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Fig. 5.2 . Transmission as a function of x for a=15, V=3, Vx=V+0V.
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5.3 Oscillating Barriers on Top of a Static Double

Barrier

When applying time-dependent potentials, the magnitude of the confining barrier
will change periodically. Therefore, resonance levels will also shift with time, but the
overall effect (after time averaging) of the shift is towards lower-energy end. This can
be referred back to Fig. 5.2. The degree of shifting towards lower energy is greater
than that of shifting towards higher energy, making the overall effect shift to the left.

Fig. 5.3 and 5.4 demonstrate shifting of resonance state under time-dependent
modulation. The amount of shifting will be enhanced, as shown in Fig. 5.4, when both

of the barriers are time-dependent.
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Fig. 5.3. Transmission as a function of u for a=15, Vg=Vy=3, Vai=2, V=0, and
2;=0.0084. Dotted line represents the resonance state of the quantum dot without

time-dependent potentials.
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Fig. 5.4. Transmission as a function of u for a=15, Vi=Vy=3, Va=Vyp=2, and
2,=0,=0.0084. Dotted line represents the resonance state of the quantum dot without
time-dependent potentials. When both the barriers are time-dependent, the amount of

shifting is greater than that of Fig. 5.3.
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Fig. 5.5. Transmission as a function of y for a=15, Vg=Vy=3, Va=Vp=2.5, and

€21=02,=0.0084.

Comparing Fig. 5.5 to Fig. 5.4, we can see that the amount of shifting of

resonance state is also enhanced when the oscillation amplitude is stronger.
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Chapter 6
Pumped Current

In Sec. 3.3, we see that 7 and 7, are much different under barrier-well
configuration. Asymmetry of 7, and 7, 1is also shown in dual-frequency
modulation. We calculated the pumped current of barrier-well configuration of same
frequency modulation, and dual-frequency modulation, single oscillation of
double-barrier configuration. In this chapter, we calculate the right-going transmission

current by the equation

1=—%j0” dE[T,(E)-T_(E)]. 6.1)

6.1 Barrier-well Configuration

Dependence of pumped current and transmission in barrier-configuration is
given in Fig. 6.1. As shown in Fig. 6.1(a), pumped current is always negative within
the energy range we calculate. This corresponds to the transmission feature in Fig.
6.1(b). T, is greater than 7 in the energy scale u<g, ( & is the resonance energy),
hence the pumped current is negative by the definition in Eq. (6.1). The minimum
value of the pumped current occurs at about at x=¢.. When coming to the energy scale
u>&, T is greater than 7, thus electrons in this energy scale transport in the
different direction, contributing positive current by the current definition given in Eq.

(6.1). Therefore, pumped current starts to increase from the minimum value.
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Fig. 6.1. (a) Pumped current for a=15, V=3, Vo=-3, Vai=Vp=2,

and (2,=02,=0.0084. (b) Transmission of the same parameters in (a).

6.2 Dual-frequency Modulation

From Fig. 6.2 (a), we can see that the pumped current has a plateau between
1=3Q; and £=3.5Q;. This is because current contribution of sideband channel
&—2Q; is positive, and both 7, and 7' are almost zero within this scale. The similar

effect also occurs between =6 Q; and 1=6.5 Q.
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Fig. 6.2. (a) Pumped current for a=15, Vi=Vo=3, Va=Vp=2, ,=0.0084, and

2,=20,=0.0168. (b) Transmission of the same parameters in (a).

6.3 One Oscillating Barrier on Top of a Static

Double Barrier

As shown in Fig. 6.3, the pumped current has a plateau between z=2.5C) and

1=4.80) because current contribution of sideband channel &-2€)is positive, and
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both 7_, and T are almost zero within this scale.
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Fig. 63. (a) Pumped current for a=15, Vy=Vo=3, Va=0, Vp=2,

and Q,=20,=0.0168. (b) Transmission of the same parameters in (a).

53



Chapter 7
Unresolved Results

As mentioned in Ch. 3, we find an interesting feature when sidebands are near the
subband bottom. As shown in Sec. 7.1, the relative magnitude of the sidepeaks next to
the resonance state may reverse. In addition, quantum transport characteristics will be
much different if the oscillation amplitude is greater than the static barrier.

Finally, we give the numerical result of oscillation frequency Q< Ag, (Ag, is the
subband level spacing), where it is a complete different regime. Round time of
electrons scattering between the barriers are much shorter than the oscillation

frequency.

7.1 Near Subband Bottem Regime

From Fig. 7.1 and 7.2, oscillation frequency 2,=(2,=0.0084, the distance of two
static barriers varies from 21 to 24 causing the resonance states and the sidebands,
which we’re interested in, move toward subband bottom. As shown in the figures, the
relative strength of the two side peaks changes when the left sidepeak is
approximately at energy of 1Q;. Fig. 7.3 and 7.4 are the transmission of frequency
Q=0,=0.042. Fig. 7.5 to 7.7 demonstrate another oscillation frequency of

21=0Q,=0.0672.
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Fig. 7.1. Transmission as a . function ‘of u for Vg=Veo=3, Va=Vp=2,

0Q,=0,=0.0084 under a=21, and‘a=22.
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Fig. 7.2. Transmission as a function of wu for Vg=Veo=3, Va=Vp=2,

0Q,=0,=0.0084 under a=23, and a=24.
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Fig. 7.3. Transmission of Vi =V=3, Vai=Vp=2; Q1=0,=0.042 under a=19, and a=20.
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Fig. 7.4. Transmission of Vi =V=3, Vai=Vx=2, Q1=0,=0.042 under a=21, and a=22.

56



T

0.8 a=15

0.6

T

0.4

T

T

0.2

0.0
0.8

T

0.6

T

0.4

T

T

0.2

0.0
0.8

T

T

0.6

0.4

T

0.2

T

0.0

72,9}

Fig. 7.5. Transmission as a function of u for V=Vy=3, Vai=Va=2, Q1=(2=0.0672,
and a=15to 17.
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7.2 Strong Oscillation

In Fig. 7.6 and 7.7, we find that resonance states shift towards higher energy
levels when one of the oscillation amplitude is greater than that of the static barriers.
In addition, for an electron that scatters with the strong oscillation potential first, its
resonance transmission peak decreases rapidly. This feature is depicted by the
dashed-line in Fig. 7.6 and 7.7. As to Fig. 7.8, under mono-frequency modulation,

both of the oscillation amplitudes are strong, resonance peak shrinks to a small value.

0.8 Sl

Fig. 7.6. Transmission as a function of x for a=15, Vi=Vu=3, Va=2, V=4,

0Q,=0,=0.0084. Dotted line is the resonance state of double static barriers.
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Fig. 7.7. Transmission as a function of u a=15, Vy=Vyo=3, Va=2, V=4,
0,=0.0084, 2,=20,=0.0168. Dotted line is the resonance state of double static

barriers.
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0.6 |

Fig. 7.8. Transmission as a function‘of u.a=15; Vi1=V=3, Vai=Vir=4, Q1=0,=0.0084.

Dotted line is the resonance state of double static barriers.

7.3 Small Q regime

In this subsection, we give the numerical results of a completely different regime,
where oscillation frequency Q< Ag, ( Ag, is the subband level spacing). Oscillation

frequency in Fig. 7.9 and Fig. 7.10 are Q;=0,=0.0014 and 2,=0Q,=0.0028.

60



0.4

0.3

o

@)

g7

.g 027

a .

=

S

= 0.1

0

0

0,

100

120

Fig. 7.9. Transmission as a .function’jof u for a=15, Va=Vy=3, Va=Va=2,
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Fig. 7.10. Transmission as a function of u for a=15, Vi=Vo=3, Va=Va=2,

21=(2,=0.0028.
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Chapter 8
Discussion and Future Research

It is an interesting feature to see characteristics of sideband asymmetry because
many of us may, at the first time, intuitively take electrons to have the same
probability of absorbing or emitting photons. For now, we can be sure that the
electrons tend to absorb or emit photons under specific configurations, and the
asymmetric sideband channels can be balanced when we introduce a phase difference
into the system. Even electrons incident from the opposite sides of the system may
exhibit different tendency of absorbing or emitting photons.

Under double-barrier configuration, 1t 1is now clear from one-photon
approximation that the cause=-of.asymmetric sidebands comes mainly from the
interference terms. This approximation gives.still good results even if the oscillation
amplitudes are strong, that is, when higher-order sideband channels appear. We may
conclude that of the two sideband channels we study, the most important interaction
process is 1%-order interaction.

In dual-frequency modulation, we see that electrons have more effective
interaction with the time-dependent potential they meet first. 77, and 7. are different
due to the fact that spatial-invariance is destroyed under dual-frequency modulation.
Net pumped current can be achieved one translational-invariance is destroyed.

There are still features we like to understand. We are interested in the mechanism
which reverses the relative strength of transmission for the sideband channels we
study, and also the reasons why resonance transmission shrinks to a small value under

strong oscillation conditions.
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Appendix A

Set-up of Matrix Equations for
Time-dependent Mode Matching

In this section, we give in detail the set-up of matrix equations given in Sec. 2.1.
We program our numerical calculation program on the basis of these matrix equations.

After matching the boundary conditions in Sec. 2.1, we have Eq. (2.5) to (2.8).
Eq. (2.5)xk,(m) + Eq. (2.6) gives

ik, 2 —ik, (m)2
5%0 (kn +k, (m)) e =24 (m)k, (m)e 2

. ik (m)% ik (m)
+iV, (An (m)e  ?+B (m)e *? j
- ; a , \, (A1)
1 =ik, (m+l)— —ik, (m=1)—
+§le [An(m+1)e 2+ 4 (m—-1e 2)

i k, (m+1)& ik, (m=1)%
+5le[Bn(m+l)e >+ B (m-1e ZJ

and Eq. (2.7)xk.(m) - Eq. (2.8) gives

0=2B8 (mk (me "
) ik, (m)< —ik, (m)&
+ZI/S2 (An(m)e 2 +Bn(m)e ZJ

i i ik”(m+N)% i ikn(m—N)%
+5Vd2 A, (m+N)e’e +A,(m—N)e e (A.2)

i i# —ik, (m+N )2 i —ik, (m-N)<
+=V,,| B,(m+N)e’e 2+B (m—N)ee 2
2

In calculation of 4,(m) and B,(m), we set up the matrix equation

in Eq. (2.9).
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When we consider 2M+1 sidebands, /=M... 0...—M, and m=M... 0... —M. Matrix

elements in Eq. (2.9) will be

M, =6, [(2/@, (m)+iV, )e”‘"(’")z}

+5],m—1 E

+§l m—N Wie[¢e_ik’1(m)2:| s
’ i 2
iV, ke
+é},rn+N _% ¢e 2:|
0
¢ = 2kne_ik15 J
0
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(A.4)

(A.5)

(A.6)

(A.7)



C,=|0]. (A.8)

From Eq. (2.10), we have

. —i(k,+k, (m))<
1 (m) = 4, (m)e™ ™+ B ()=, "
t (m)=A4,(m)+ B, (m)e """

We then set up the matrix equation as

rn Pll RZ An D]
= -
tn F)2l f)22 Bn D2
in calculation of r,(m) and #,(m). Again, for /=M... 0...—M, and m=M... 0... —M,

matrix elements in the above equation’will be

_ _ —ik,(m)a
Pll - P22 - é‘l,me b

P12_le:]s
0

D1= _eik1a ,
0

D, = 0.

In calculation for 7., 7 and 7 can be solved in the similar way of setting up the

matrix equations.
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Appendix B

Analytical Expressions for One-photon
Approximation

In this section, we give the analytical expression of reflection and transmission
coefficients in one-sideband approximation. After matching the boundary conditions

of a single oscillating barrier applied at x=0, we have

()= (1) (B.1)
L (1) =1 (1) B2)
i (u) =t (1) (B.3)
ik ()] ()4 (1) ]+ G 2ot - 0 (B4)
ik (0)[ 1= (p2) =15 (1) |+ Vit (ﬂ)+%[€i¢ff (u)+e !, (1) ]=0 (B.5)
ik (=1)[ 7 ()4 () ]+ Vil () + 228 (1) =0 (B.6)

After solving the above equations, we have

~2ik (0)Vd iV, +2k(-1)]e™

"= 3Tk (0 +zV][zV+2k O], + 2k ()]« 7 k(e k()]

o (0)[V, +2k(=1) ][V, +2k(1) ]

t°(”)_2[2k +zV][zVs+2k D[V, +2k (1) [+ V7 [V, +k(=1)+ k(1) ] oo

. ~2ik (0)Vd [ iV, +2k(1) | B9

=Sk y e T, 2k (), = 2k (e 2 [k () k(]
—2ik (0)Vd I:lV +2k (- ]e (B.10)

() =330 +zV][zV+2k ][V, + 2k ()] + V2 [, + k(1) + k(1))
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=24V, [ iV, + 2k (=1) [ iV, + 2k (1) |-V [ iV, +k(=1)+ k(1) ]
2[ 2k (0)+iV, ][ iV, +2k (=1) |[iV, + 2k (1) [+ V7 [ iV, +k(-1)+ k(1) ]

rol(u): (B.11)
~2ik (0)Vd[ iV, +2k(1) |&*
2[ 2k (0)+iV, ][ iV, +2k(-1) ][V, +2k(1 ]+V2[1V +k(-1)+k(1)]

r(u)=

(B.12)

We specially note that within Eq. (B.5) to (B.12), ¥, in the denominator can be
expanded into series of ( V)". Hence, we omit this term in each denominator of the
coefficients for one-photon approximation. ¥, in Eq. (B.11) is omitted as well.

After doing the simplification, we have

JORETOR S =T (31
rgw):% (8.1
A (B19
(RO ey o
7y (1) =W (B.17)
)= e @19

[2k(0)+iV, [ iV, +2k(-1)]

As mentioned in Ch. 2, reflection and transmission coefficients of a barrier located at
interface /1 (x=a) will be

r11 (’u) — I”I (ﬂ)ei[k(m)Jrk(O)]a
£ (1) =1, (e HOHO¥

Thus, in Sec. 2.3, the 8 processes of one-photon approximation will be

A V) A VAR B A V) A V)
t(tl’”)_1—ro "(u+ Q)i (u+Q) 1[r0’(y+Q)]2ei2’“(')”

(B.19)
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(B.20)

(B.21)

Ju—
[
[
o\.q
—

"
~
O\N
—

"
~
I

(B.22)
to (1) (1) (pa+ Q) (1 +Q) ML
1— [rol (,U - Q):IZ o2
1— [rol (lu):l2 o' 2H(0)a

! £ (1)t (1-Q) (1)t (1-Q)
1t 1) = —— — - — B.23
) o DR (-0 1t (a- )T "

(@) (k) () (e B0k (B24)

o d W (]
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(B.25)
ty (ﬂ) a (ﬂ) r (u)té (ﬂ - Q)eﬂk(O)a
1- [’”01 (1— Q)T 2N

1— [r01 (,u)T i2K(0)a

(B.26)
0 () (u)r (u-Q) 1 (u—0) Ok
1— [rol (,U . Q)]Z o 2D

T e
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Appendix C

Analysis of Interference Terms of
One-photon Approximation

In this section, we do some analysis of interference terms of Eq. (2.30) and (2.31)
in Ch. 2. Eq. (2.30) gives

=)o) D

and Eq. (2.31) gives

k(-1)

) = (o) e Essabnalon )
In addition,
(il o) a (il ) o (7 ) +
= (e e ) e
caRe[1{tf e (¢ 0] [ 2Re] ol s)e( ) [ 2Relo(e i)oo' )]
caRe[1(t o () [+ 2Re[ (e s ) [ 2Re[ ()i ) |

and

(e o) e () o (Pt o ()

(L T

#2Re[ (¢ ) (e ) |+ 2Re[o(e! ) (7o) [ 2Re[e(el ()]
st st

+2Re[t(tf’l,y)t(17_[1,y '

=
S
SN—"
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2Re[t(tll,y)t(rl”,u)}l]§L(l))) have the most effect on & —Q, channel, while

2Re[t(tll,u)t(f1“ﬂ)*}kk((_ol)) and 2Re[t(t11,y)t(r1f,u)}%_ol)) have the most

(negative) effect on & +Q, channel. We then do the analysis of these four
interference terms. Acquiring the analytical expression for reflection and transmission

coefficients in appendix B, we have

2Re[t(tl’,ﬂ)f(71[’ﬂﬂ

2 -, (C.1)
o twof AOZ BN (0]
‘1 (u+Q) ‘ iV, +2k(0) |lV +2k (1) L=n" (u) )
2Re[t(t1’,u)t(n”,ﬂ)*}
: : s (C2)
| o) e .. [ st )
1-rf (ur ) 0 ‘|1V + 2k () 72 2k (u)f L= (u) 7 (w)
2Re[t(tfl,u)t(i7fl,y)*]
: 2 s (C3)
| ln(e-9) AONG ke (MJ
1-rf (u-0) ez-zku)ar iV, + 2k (0) |17, + 2k (1) =1 (1)
and
2Re[t(tfl,u)t(rf1',y)*}
. (C.4)

| k-9 k() ¥ crel [l () )
2L1 H(u-Q) ™ ‘|1V+2k (0 [v, + 2k (-1)f : (l—ro”(ﬂ)%’(u)J

We do the analysis of the common factor,

o it )|

of (C.1) and (C.3). Define
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_ (n' () ~2ik (0) V™"
I=r ()i (1) [2k(0)+iv, T [1—:»0’ (1) eiZk(O)"} '

After expansion and simplification, we have

2V k| 4K’ sin 2ak V] sin 2ak — 4KV, cos 2ak |
Re[F"] ‘ : :

With g =2ak and k =aV_, Re[F "] can be modified as

Kﬂ[(ﬂz—xz)sinﬂ—bcﬂcosﬂ] _fn(ﬂa’f)
[21{2 (1—cos B)+24°k* (1+cos ) +4px’ sinﬂ+ﬁ4} - £ (B.x)

For V=3 and a=15, numerical plot of Eq. (C.7) is given in Fig. C.1.

N b~ O

-2 \

1.8 1.85 1.9 1.95 2

B 2V (1-cos2ak) +8k*V? (1+ cos 2ak )+ 8kV sin 2ak +16k*

(C.5)

(C.6)

(C.7)

Fig. C.1. k=aV=45. Green line is Re[F ], blue oneis f,(,x), and red one is

A ( 5, /c) . Re[F"]=0 when 3=1.9153 7, and this is the condition where resonance

state is.

The lowest resonance state of double static barriers is /=21 when Vy—oo.

Thus, we start to look for the conditions where f, (8,x)=0.
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f,,(ﬂ,K)z(ﬂz —Kz)sinﬂ—ZKﬂCOSﬂZO
2% (C.8)

2 2
—K

=tan f =

Thus,

Re[F']1=0
= f,(f.x)=0
2xf3

2 2
- K

=tan f =

We then try to find of the first-order correction term of f,( /3, ). Since the lowest
resonance level is f~2n. We start our approximation from f=2mn. Setting
B=p5,+AB =27+ApB,, then we have
YAV:RSE
[(ﬁoz +28,A8, )(sin B, +cos B AB, )=k (sin B+ cos B,AB, ) -2k (B, + AB, )(cos B, —sin S,AB, )}
=[8; sin 3, & sin B, — 23,5 08 By | A, €08 By [ By — > — 2 )+ sin B, (28, + 25, )

Thus,

forfn( ,K)=O
=>AB, =—; 2’8‘;’(
By —k =2k

Then we start to examine the first-order correction for  where f;(f) has its minimum

value. Given that

fi(B.x)=2x*(1-cos B)+2B°k* (1+cos B)+4p«’ sin B+ B*, then we have
fi(B.x)=2x"sin B+4 x> (1+cos ) -2k’ sin f+4x’ sin f+4 5K’ cos B+45.
For f=p8,+AB,=2x+Ap,, andlet f',(B,x)=0, we have

[1(B.x) =26 AB, +4(B, +AB, )k -2=26 (B +28,AB, ) AB, + 45 +125A8, =0

28 +4K7 B, + 2K B,
K'+68 +4x’ — K’ B + 4K’

=>AB, =—
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Under numerical calculation, we have
AB,=—0.27257,
AS;=—0.2676 7, and

27 -AB, ~ 27x-AP;~19153x
Hence, Thus, f,(f,x) changes sign almost exactly when f,(f,x) is at its

minimum value. Leading factors of Eq. (C.1) to (C.4) are always positive. This is the

main reason for different parity of contribution to total current transmission.
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