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AN INTEGRAL-EQUATION APPROACH 
FOR DEFAULTABLE BOND PRICES WITH 
APPLICATION TO CREDIT SPREADS 

YU-TING CHEN,* National Chiao Tung University 

CHENG-FEW LEE,** Rutgers University and National Chiao Tung University 

YUAN-CHUNG SHEU,*** National Chiao Tung University 

Abstract 

We study defaultable bond prices in the Black-Cox model with jumps in the asset value. 

The jump-size distribution is arbitrary, and following Longstaff and Schwartz (1995) and 
Zhou (2001) we assume that, if default occurs, the recovery at maturity depends on the 

'severity of default'. Under this general setting, the vehicle for our analysis is an integral 

equation. With the aid of this, we prove some properties of the bond price which are 

consistent numerically and empirically with earlier works. In particular, the limiting 
credit spread as time to maturity tends to 0 is nonzero. As a byproduct, we show that the 

integral equation implies an infinite-series expansion for the bond price. 

Keywords: Jump diffusion; default barrier; bond price; credit spread 

2000 Mathematics Subject Classification: Primary 60J25; 60J75; 60G44 

1. Introduction 

Our goal is to study the price of a defaultable bond issued by a given firm. For simplicity, we 
assume that the bond is a zero-coupon bond with one dollar face value and time to maturity T. 
First we consider an extension of the Merton model due to Black and Cox [3]. The asset value 

process V of the firm, under the risk-neutral measure, follows the dynamic 

dVt = (r -a)Vtdt + crVtdWt. 

Here, a is the payout rate of the firm, r > 0 is the risk-free interest rate, the square of a > 0 
is the instantaneous volatility of the return on the firm's asset, and W is a standard Brownian 

motion. To allow the possibility that default may occur at any time before maturity, Black and 
Cox assumed the existence of a default boundary: 

Kt = K0eKt, 0<t<T, (1.1) 

where k e R. (We note that Longstaff and Schwartz [8] considered a constant boundary.) The 
default time is then defined by 

t(T) = inf{0 < t < T; Vt < Kt] (1.2) 
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72 Y.-T. CHEN ETAL. 

with the convention that inf 0 = +00. The recovery at maturity is min(V7\ 1) if there is no 

default up to time T. However, if there is default, that is, the boundary is hit before or at the 

maturity, bond holders take over the firm and own the remaining value of the firm, that is, Ktct) 
The bond price under this setting can be easily calculated because of the analytic tractability of 
Brownian motions. For details, see [6, Section 2.6]. 

To take into account empirical phenomena such as the asymmetric leptokurtic feature of the 
distribution of asset returns, we assume throughout this paper that, under a given risk-neutral 
measure P, the value V of the firm follows the dynamic 

r /Nt M 
dV, = Vt- r dt + a dWt + dl 

]T Ut - Xvt 
J 

, (1.3) 

where TV = (Nt) is a Poisson process with intensity X and {c7/} is a sequence of independent 
random variables with distribution supported on (? 1, 0) U (0, 00) which has mean v. The three 
elements W, N, and {?/,} are independent. If there is default, as in [8] and [11], we assume 

that the payoff is offset by a function of the 'severity of default'. Furthermore, for simplicity, 
we assume, as in [11], that the payment is always made at the time to maturity. In other words, 
the payoff of the zero-coupon bond at time T is given by 

i(T(r)>r) + 
[i-^(iog(^^)) 

i(T(7)<r). (1.4) 

(We can think of \l/(\ogx) as the sume of bankruptcy costs and others.) Set Xt = \og(Vt/Kt). 
Then it follows from (1.4) that the no-arbitrage price of the bond is given by 

D(Vb, T) = e"rr - e~rT Ex[^(Xr{T)) l(r(T) < T)] = c~rT - e^Qc, T\ (1.5) 

where x = log(Vb/#o), r(t) = inf{0 < s < t; Xs < 0}, and 

<t>(y, 0 = 
Eymxm) l(r(0 < t)l (1.6) 

Here, Ey denotes the expectation conditioned on Xo = y under the risk-neutral measure P. The 

notation Py is similarly defined. To study the bond price in (1.5), we will focus on the function 

$ from now on. 

In the literature, 1 
? 

\/r is termed as the recovery rate. It is worth noting that in empirical 
studies, even for the same class of bond issues, the realized recovery rate differs significantly 
over different time periods and different firms. See [1] and [4]. By taking xj/ to be a function 

of the form a ? bey, Zhou [11] provided a Monte Carlo simulation scheme to compute several 

characteristics of the bond price. Zhou [11] found within the results that, by manipulating the 

parameters, various shapes of credit spreads, default probabilities, and other properties formerly 
observed in empirical studies can be recovered. Among the significant results is the possibility 
to exhibit nonzero spread for small time to maturity. (Diffusion models for risky bond pricing 
have been criticized for years because of the failure to capture this phenomenon.) Besides the 

framework of the Black-Cox model, Hilberink and Rogers [5] considered the Leland model, 

which is a generalization of the Black-Cox model. See [7]. In this case, in addition to a 

recovery structure which is slightly different from the aforementioned one, there are coupons 

paid continuously up to the default time. In [5] the authors generalized the Leland model by 

assuming that the logarithm of the firm's asset value is an independent sum of a Brownian motion 

with drift and a downward-jump compound Poisson process. Although there is no closed-form 
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Bond prices with jump risk 73 

solution for the bond price, they obtained its Fourier transform. They also observed in their 

numerical results that the limiting credit spread, as the time to maturity tends to 0, is positive 
and gave a proof of this result. 

In this paper, instead of seeking the closed-form solution for the bond price, we study several 

aspects of the bond with the help of an integral equation satisfied by the function O in (1.6). The 

elements of the integral equation have forms which allows further analysis. (See Theorem 2.2, 

below.) Using these elements, we study some analytic properties of the bond price. In particular, 
under mild conditions on the jump distribution and the function ifr, we show in Theorem 3.1 

that the credit spread has a strictly positive lower bound as the time to maturity tends to 0. It 

is interesting to compare our results with those obtained in [5] and [11], where in both articles 

only some specific jump distributions and recoveries were considered. As another application 
of the integral equation, we give an infinite-series expansion for the bond price. (Note that in 

Merton [9] where 1 + Uj is lognormal, the price of the risky zero-coupon bond is an infinite 

series for which each summand takes the form of a Black-Scholes European option price. See 
Theorem 9.3.1 of [2].) 

The paper is organized as follows. In Section 2 we derive an integral equation from a 

decomposition of the event that default occurs. Based on the results in Section 2, in Section 3 
we study some analytic properties of the bond price and investigate the asymptotic behavior of 
its credit spread as the time to maturity tends to 0. In Appendix A we give an infinite-series 

expansion for the bond price. 

2. An integral equation for $ 

We begin with the unique (up to indistinguishability) solution to (1.3), which is given by 

Vt = V0 exp 
j (r 

- ~a2 - 
kv^t 

+ a Wt 
J J~](l + Uj). 

Recall that X = \og(V/K). For the diffusion part of X, we set fi = r ? 
^a2 

? Xv ? k and 

Xct 
= /it + a Wt for all t e R+. For the jump part of X, we set Yn = 

? 
log(l + Un) and 

Zt = E^Li Yn- Then 

Xt = X0 + Xct 
- 

Zt for all t e R+, (2.1) 

where X0 = \og(V0/K0). 
For any x e R, write x = x/a. Let denote the kth epoch time of the compound Poisson 

process Z with interarrival time Sk, that is, Jk = X^=i Sj- Furthermore, if G\,..., Gn are 
random variables on R, we write Fcu...,gn for their joint distribution. We preserve F for the 
distribution of Y\. 

Now, write 

[r(T) <T] = AUBUCUD, (2.2) 

where 

A = [t(T) <T<J\] (no jump up to maturity and default is caused by diffusion), 
B = [r(T) < J\ <T] (jump occurs up to maturity and default occurs before J\), 
C = [r(T) 

? 
J\ <T] (jump occurs up to maturity and default occurs at J\), 

D = [J\ < r(T) < T] (jump occurs up to maturity and default occurs after J\). 
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74 Y.-T. CHEN ETAL. 

Note that {A, B, C, D] is a partition of [r(T) < T]. With these events defined, we set 
Ga(x, T) = 

Ex[\lr(XT(T))', A], and similarly for Gg, Gc, and Go- Before stating our results, 
we recall some facts about the joint distribution of the Brownian motion with drift and its maxi 
mum process for the convenience of readers. For details and proofs, see [10, pp. 113-115]. 

Theorem 2.1. Let a e R and T > 0, let W(t\ot) = at + W(t), and let M(T; a) = 

maxo<f<r W(t; a). Then the joint density of M(T\ a) and W(T\ a) is given by 

fM(T\a),W(T-,a)(m, w) 

2(2m ? w) \ 1 7 1 7) - 
txpiaw-a T-(2m 

? 
w) }, w < m,m > 0, = TV277T Fl 2 2TK Y (2.3) 

0, otherwise. 

Therefore, the density of M(T,a) is given by 

, x |-7i=expj-^(m-ar)4-2ae^^f"m~arY m > 0, 
0, otherwise, 

(2.4) 

and 

(m 
? aT\ ( ?m ? aT\ 

M[-?? -e2c*m<AM-?? , m > 0, ?[M(T;a)<m] = < \ Vf J \ Vf J 
~ 

(2.5) 
0, m<0. 

//ere is the cumulative distribution function of the standard normal distribution. 

Proposition 2.1. We have the following representations ofG a, Gb, and Gq' 

G,<*. D = 
*(0).-^(jyf (^^1) .^-Mi.^zit"!)), 

(2.6) 

(2.7) 

Gc(x,T)= dFA(t) dF(y) dwx/f(w - y)H(x,w,t), (2.8) 
Jo Jo Jo 

where 

//(jc, w, t)=g(x-w + p,t\ to1) 
- 

e~2/iig(jt + w-fit; to2) (2.9) 

and 

^:e2) = 
7^exp{"^| 

Proo/ Note that ̂/{Xx(j)) 
= \/r(0) on A and 5. By the independence of {Wt; r e R+} and 

7i, we obtain 

GA(x,T) =P[T < 7i]^(0)P|minjc + ^5 + a^ <0 
Ls<T J 

= P[r < J\W(0) plmax ?x ? 
[is 

? 
oWs > ol 

= P[7 < 7iW(0) P[max -/Is + Ws > il, L5<r J 
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Bond prices with jump risk 75 

where the last equality follows from the symmetry of standard Brownian motion. By (2.5), we 

have 

pj^max-jls 
+ Ws > 

xj 
= 1 - 

pjmax 
-jls + Ws < Jc 

j 

This completes the proof of (2.6). 

We now turn to the proof of (2.7). Again by the independence of {Wt; t e r+} and J\ and 
the symmetry of standard Brownian motion, we obtain 

GB(x,T) = iKO) Pfminx + /jls + aWs < 0, h < 
t] LS<J] J 

= \/r(0) 
j P^min 

x + fis + a Ws < 0j dF7l (f) 

= 
lK0)jf p[max-?j 

+ > 
jc]dFy,(0. 

Replacing 7 by r in (2.10), we obtain (2.7). 

Finally, from the independence of {Wt; t e r+}, Y\, and J\, 

Gc(x, T) = 
j 

dFA (t) e[^(jc 
+ Xct - Yx) l(minjc 

+ Xcs > 0, x + Xct -Yx< o)] 
= 

fT dFJx(t) Jo 
x 
J dF(y)e[V(* 

+ Xfc - y) l(jmin 
jc + Xcs > 0, jc + Xct - y < o)j, 

(2.11) 

where in the last line we used the fact that P[mins<f x + Xcs > 0, jc + Xct 
? 

y < 0] = 0 for 

y < 0. Also, observe that, using the symmetry of standard Brownian motion, 

e|V 
(* + Xct 

- y) 
*( 

n jc + Xcs > 0, jc + Xct 
- y < 

o)] 
= 

e|V(* 
- tf(-?r + Wt) - y) 

l(max-A* 
+ w5 < jc, jc - (-fit + W,) - y < 

o) j. 

Now, applying the formula of the joint distribution of W(a; t) and M(a; t) with a = ?/i, we 
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76 Y.-T. CHEN ET AL. 

obtain, for all r, y > 0, 

e[VC* 
- 

cr(-jlt + Wt) - y) l(max -/Is + < Jc, x - (-jit + Wt) - y < 
o)] 

= I dw I dmxj/(x 
- aw - 

y) \{m <x,x ? w ? y<0) J Jw+ 

2(2m-w) [ a 1 a2 1 91 x --=? exp -fiw 
- 

-iilt 
- 

?(2m - 
w)2 \ t^2nt [ 2 2t J 

= 
j 

dw\lr(x ? aw ? 
y)expj 

? jlw ? 
^/x2/ J 

r A 2(2m-w) \ 1 9) x / dm- exp<-(2m 
- 

w) \ Jw+ tjhzl I 2C J 
= 
j 

dw\J/(x ? aw ? 
y)exp|? 

jlw ? ^fr2t J 
x / am? -exp{-m \ 
J\w\ tsFbu I 2t J 

= 
j 

dw\fr(x ? aw ? 
y)expj 

? p.w ? 
^?2'j 1 / } w2\ } (2x-w)2\\ 

x^rpr*rexp(??]) 
Note that (2x 

- 
w)2 + Itfiw + jl2t2 - (2x 

- 
(it 

- 
w)2 + 4x(it. Therefore, 

j 
dwxlr(x ? aw ? 

;y)expj 
? jlw ? 

^?2* J \ ( \ w2\ \ {2x-w)2\\ 

= 
j 

dw\/r(x ? aw ? y) 

-*iH-^}--a'H-SL^}) ry 
= / dw\l/(w 

? 
y) 

= 
/ ^r(iy 

- 
y)[g(jc 

- w + [it\ to1) 
- 

~lx^g(x + w - /xt; fa2)] du;. 

This gives (2.8). 

To calculate Go, we use the strong Markov property of the process X. 

Proposition 2.2. We have 

Gd(jc, T) = 
EAlp 4>(X7l, T - A)] = Ld>(jc, T). 
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Bond prices with jump risk 77 

Here, D = [J\ < T, inf^yj Xs > 0], the integral operator L is defined by 

pt 
r 

poo 

Lf(xj) = 
/ dFh(s) / dF(y) / dwf(w-y,t-s)H(x,w,s) (2.12) 
JO J Jy+ 

for any nonnegative Borel measurable function f on and H is defined in (2.9). 

Proof. Note that D e 3rjx, Therefore, by the strong Markov property we have 

GD(x, T) = EAExHd MXt(T)) Ur(T) < T) | = EAI3 *(Xji>T 
- Ji)l 

Recall that Y\ = 
? 

log(l + U\). Therefore, by the independence of J\, Y\, and {Wt; t > 0), 
we obtain 

GD(x, T) = 
E[l(ji 

< T, minx + Xcs > 0, x + XcJx 
- Yx > 

0) 

x <$>(x + XcJx 
? 

Y\,T 
? 

7j)j 

= 
j 

dFj.it) 
j dF(y)E^l(minx 

+ Xcs > 0, x + Xct - y > 0) 

x <t>(x + xc -y, 
r-o]. 

Let us calculate the integrand. Using the symmetry of Brownian motions, we obtain 

E[l(minx 
+ Xcs > 0, x + Xct 

- y > 
o)<D(x 

+ Xct 
? y,T 

? 
*)] 

= 
E^l(max 

-x - 
/is + aWs < 0, -x - 

[it + aWt + y < 
0) 

x 0>(x + fit 
- 

crWt 
- 

y, T - 

f)] 
= 

E^max 
-x - 

jls + Ws < 0, -x - 
?f + Wt + y < 

0) 

x 0(x 
- 

a(-/a + Wt) 
- 

y, T - 

0]. 

Using Theorem 2.1 with a = ?/2, we obtain 

E^l(max 
-x - 

jls + Ws < 0, -x - 
/if + W, + y < 

0) 

x d>(x 
- a (-[it + Wt)-y,T 

- 

f)] 

dif / duO(x 
? aw ? 

y,T 
? 

t) 
-00 

2(2v-iu) [ . 1 .2 1 ?1 x -1=- exp -/zu; 
- 

-// r - ? 
(2v 

- 
z)z 

ty/lnt [ 2 2t J 
r^-^ f . 1.9 1 = / dw;0(x 

? aw ? 
y, T ? t) expj 

? 
\xw-[i t 

J-00 I 2 

[* 2(2v - w) f (2v -z)2\A x / 
- 

exp{-\ dv. 
Jw+ ty/ljtt \ 2t J 
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Similar to the calculation of Gc, we have 

dw$>(x 
? aw ? 

y,T 
? 

t) 
expj 

?jlw 
? 

-jl2t \ 

[* 2(2v - w) \ (2v ~z)2\ x / 
- 

exp{-\ dv 
Jw+ tV2^i I 2t J 

/(x-y)Ax 

<t>(x 
- aw - 

y,T 
- 

t)[g(w + jit; t) 
- 

g(w + tjl- 2x; 0e"2/H] dw 
-oo 

/ OO 
= 

/ <&(w 
- 

y, T - t)[g(w 
- x - fit; ta2) 

- 
g(w + x - /xr; ta2)e~2^x] dw, 

Jy+ 

where we used the change of variable x ? a w \-+ w in the last equation. This completes the 

proof. 

Theorem 2.2. For every bounded measurable ty, the function O defined in (1.6) satisfies the 
integral equation 

d>(jc, T) = G(x, T) + L<b(x, T). (2.13) 

Here, the integral operator L is defined by (2.12), G = Ga + Gb + Gc, cind Ga, Gb, and 
Gc are given as in (2.6), (2.7), and (2.8), respectively. 

Remark. The decomposition of O into Ga, Gb, Gc, and Go is actually quite intuitive. 
Assume that the interest rate is 0. Consider a financial security with time to maturity T which 

pays \lr(XT(j)) at time r(T) < T. Assume that Ex is the 'right' measure under which we can 
calculate prices. Then the time-0 price of such security is <!>. We now decompose this security 
into four securities by classifying the possible causes of the payment \ls(XT(T))' 

We track the sample path of X up to time T and see whether a jump has occurred. If there is 
no jump, namely, T < J\, then the cause of the payment must be diffusion. Namely, XT (j) = 0. 
The time-0 price of this type of payment is given by G^. Suppose the contrary, that is, J\ < T. 
We further classify the possible causes of the payment. If r(T) < J\ then the cause must be 
diffusion again. The time-0 price of this type of payment is given by Gb- If t(T) = J\ then 
the cause of the payment is a jump and the time-0 price of this type of payment is Gc- Now, 
the remaining possibility is J\ < z(T) < T. At time J\, from the renewal property of X, the 

security can be seen as a 4new' security almost the same as the old one except that the time to 

maturity is T ? J\. The time-0 price of this 'new' security is Go 

In Appendix A we will further extend the above classification of causes of the payment 
\jr(XT{T)) to obtain an infinite-series expansion of the bond price. 

3. Analytic properties of bond prices 

To fix ideas, we adopt, from [6, Section 2.2.1] and [9], the following definition of yield 
spreads and credit spreads. 

Definition 3.1. For the bond price defined in (1.5), the promised yield for maturity T is given by 
^(Vb, T) = (l/T)log(l/D(Vb, T)) and the credit spread for maturity T is given by s (V0, T) = 

y(V0,T)-r. 

Note that, in Definition 3.1, 1 is the face value of the bond, and it follows immediately from 
the definition that D(Vq, T) exp{y(V0, T)T] = 1. 
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Bond prices with jump risk 79 

Lemma 3.1. For all x > 0 and y > 0, the junction 

t h> 
e|V(jc 

+ Xct 
- y) 

ljnunjc 
+ Xcs > 0, x + Xct 

- y < 
o)] 

(3.1) 

w continuous on (0, oo). 

Protf/ Recall that in the proof of Proposition 2.1 we have 

e[V(* 
+ *,c 

~ 30 
1( 

nx + > 0, x + x,c 
- j < 

o)] 
= / \l/(w 

? 
y)H(x,w,t)dw, 

Jo 

where // is given by (2.9). From this, it follows easily that the function in (3.1) is continuous. 
This completes the proof. 

Lemma 3.2. Assume that x > 0. Then 

lim ? ?\minx + tis+ aWs < ol = 0. (3.2) 7-^0+ dT ls<T J 

A/so, /or <?// n g N, w ftave 

P^minx 
+ fit + crWs < 

o] 
= o(r") <w T 0 + . (3.3) 

Proo/ Firstly, we prove (3.2). By the symmetry of standard Brownian motion we have 

P minx + fis + aWs < 0 = P max-as + aWs > x \ = P max ?us + Ws > x . 
U<r J U<r J U<r J 

Note that x > 0. Therefore, by (2.5) we have 

-*+*.>->]- ) 
+ 
-2M^> 

which converges to 0 as T -> 0+. Recall that g(x; a2) = 1 /(yjlna2) exp{-x2/2a2}. We 
have 

= 
-<-7r-; 

1 
j-f 

. ?-2/ii (-x + HT t\JTji-(-x + jiT)T-l'2/2 + 
8{ Vf ''J T 

1/ (-(x + PlT) \jXT-x fx + jlT \p,T+x\ 

= g(*+flT-i\-L. 

=^exp{4(^+^)2}7^ 
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Observe that, for all T > 0, 

for some constant C > 0 independent of T > 0. This implies that (3.2) holds. 

We prove (3.3). Let n e N. Then, by FHopital's rule, 

P[miny<7'x + fis + oWs < 0] 
lim 

r-?o+ Tn 

(d/dT)P[mms<Tx + iis + aWs < 0] < lim -= ~ 
r-+o+ nTn~l 

^r^Cexp{-^}nr(J1)+3/2 
= 0. 

This completes the proof. 

Recall that D(Vo, T) is the bond price defined in (1.5) and that we set x = \og(Vo/Ko). 

Proposition 3.1. We have the following analytic properties of bond prices. 

(a) For each T > 0, limv0-*oo D(V0, T) = e~rT. 

(b) For each V0 e (K0, oo), limr^0+ Pjc[r(r) < T] = 0. 

Proof We prove (a) first. Since the function i/r is bounded, by (1.5) and (1.6), it suffices to 

show that lirrijc^oo P*[r(r) < T] = 0. Now since X = (Xt) is cadlag (right continuous with 

left limits), it is clear that, for fixed 7\ r(7\ jc) = inf {0 < t < T; x + Xct 
- 

Zt < 0} -> oo as 

jc t oo. This implies that lim^oo P*[r(7) < T] = 0. 

Next, consider (b). Write 

Pxlr(T) <T] = PX[A] + PX[B UCUDl (3.4) 

where {A, B, C, D} is the partition of [r(T) < T] in (2.2). For the second term on the right 
hand side of (3.4), we have 

PAB U C U D] = Px[t(T) < T, J\ < T] < P[J\ <T] = l- e~XT -> 0, T -> 0 + . 

On the other hand, note that 

PAA] = PAr(T) < T < J\] = P[T < 
y,]p[minjc+c.s+crWrJ 

< ol. 

By (3.3) we obtain 

lim P^[A] < lim p[minjc + cs + oWs < ol = 0. 
r-?o+ r^o+ U<r J 

Combining these results with (3.4), we have (b). The proof is then complete. 
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Theorem 3.1. Assume that ̂ is continuous and that 0 < \jr < 1. Then, for each Vo e (Ko, oo), 

A / xjf(x-y)dF(y) <liminfs(V0, T) < lim sups(V0, T) <X / f(x-y)dF(y). 
Jy>x 7^0+ 7^0+ Jy>x 

(3.5) 

In particular, 

(a) if \jr > 0 and P|Yi > jc] > 0, we Ziave a strictly positive credit spread for zero maturity; 

(b) ifis(0) = 0 or F is continuous at x, then we have the following asymptotic behavior of 
the credit spread: 

lim s(V0,T) = X 
[ xlf(x-y)dF(y). 
Jy>x 

Proof First, we prove the lower bound in (3.5). Since 0 < ifr < 1, we have 1 > 3>(x, T) > 

Gc(jc, T). Note that 0(jc, T) -* 0 as T -* 0+ by Proposition 3.1(b). Therefore, 

ri / err \ 
lim inf s(Vb? T) = lim inf ? log!-??? 

- r 
r^o+ r^o+[r &\1 

- 0(jc, 7)/ 

= lim inf ? log(- I 
r^o+ T B\l -d>(jc,7)/ 

> lim inf ? loef- |. - 
r_0+ 7 B\l-Gc(x,T)J 

Note that, by Proposition 3.1(b), 0(jc, T) -> 0as7 -> 0+. Hence, we obtain 0 < Gc(x, T) < 

<I>(jc,7)->0as7-> 0-f. By the mean value theorem we obtain 

r f1! ( 1 r . ,SGc(x,T)/dT . f3GC, _ _ 
hminf 

? 
logl-???? 

> hminf-????? = hminf ?? 
(x, T). (3.6) r^o+ 7 B\l -Gc(x,T)J 

~ 
r^o+ 1 - GCU, 7) r^o+ 37 

By (2.8), Lemma 3.1, and the fundamental theorem of calculus, we obtain 

x 
J dF(y)E[ir(x 

+ XcT-y)l(minx + Xcs > 0, x + XCT - y < o)]. 
(3.7) 

Since is continuous and 0 < f < 1, we obtain 

liminf S(V0, r) > lim inf ^(jc, T) > k [ fix- y)dF(y). /- 0+ t-^0+ 01 
Jy>x 

This proves the lower bound in (3.5). 
Next, we show the upper bound in (3.5). By the definition of the function G, there exists a 

function loft such that t i-> /(f) is continuous on (0, 1], lim^o+ lit) = 0, and 

sup G(y,t) < /(f). 
ye[x/2,3x/2] 

This content downloaded from 140.113.38.11 on Wed, 30 Apr 2014 11:27:44 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


82 Y.-T. CHEN ET AL. 

(See also (2.6), (2.7), and (2.11).) By Proposition 2.2, 

LG(x, T) < /(r)Ae-X(7"-'> dt + 
j* P*[0jnf 

? Xs e (0, oo) \ 
|j, yj]^' 

dt. 

(3.8) 

By Lemma A. 1, 

L2<&{x, T)<\- e~kT - XTe~kT. (3.9) 

An iteration of (2.13) gives 

<t>(jc, T) = G(x, T) + LG(x, T) + L2<t>(x, T) 

< G(x, T)+ [ IiOXe-W-0 dt 
Jo 

(3.10) 

where the last inequality follows from (3.8) and (3.9). Observe that among the terms in (3.10), 

^- [ I(t)Xc-k(T-') dt = /(DA. - X f I(t)ke-*T-') dt -? 0, T 0+, 
oT Jo Jo 

and 

= PX\ inf Xs e (0,oo) \ | J, ̂ 1 Wx:r -+ 0, 7^0 + . (3.11) 
Lo<5<r [2 2 JJ 

In (3.11) we used the fact that t h> info<5<r X5 is almost surely continuous at each T > 0 by 
the quasi-left continuity of X. In addition, as T -> 0, 9Ga(*, T)/3T 0 by Lemma 3.2 and 

9G# (jc, T)/dT 
? 0. With an argument similar to (3.6), we deduce, from (3.10) and the above 

estimates for the derivatives, that 

9GC Z1 
hmsup$(Vb, 7) < hmsup?? (x, T) < k / i/r(.x 

- 
y) dF(y), 

r-?o+ 7-->o+ ?l 
Jy>x 

where the last equality follows from (3.7). We have obtained the upper bound in (3.5). This 

completes the proof. 

Remark. It is worth noting that Hilberink and Rogers [5] proved a similar result for the credit 

spread in the Leland model. Instead of considering the case where X has two-sided jumps, 

only downward jumps were allowed in the definition of X. 

Appendix A. An infinite-series expansion for the bond price 

Recall the definition of the operator L in Proposition 2.2. Theorem 2.2 states that we can 

write <J> as 

4>(x, t) = G(jc, t) + L<D(jc, t) for all (jc, t) e R2 . (A.l) 
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After rc-fold iteration of (A. 1), we have 

n 

<D(jc, t) = J2 LkG(x, t) + Ln+1(D(x, 0, (A.2) 
k=0 

where L?f 
= f and Lk+l f = L(Lkf). On the other hand, by the definition of L, 

L/(jc, t) = 
Ex[f(Xh 

J-J{) < f, 
Jnf 

Xs > 
o)]. 

(See Proposition 2.2.) The probabilistic interpretation of Lnf,n > 2, is given by the following 
lemma. 

Lemma A.l. Let f be a nonnegative measurable function defined on R+. Then, for any n e N, 

Lnf(x,t) = Ex\f(Xjn,t 
- 

Jn)\(jn <t, 
inf Xs >0)1 (A.3) 

L \ 0<s<Jn /J 

Moreover, for any T e (0, oo) and any n > 1, 

sup Ln/(^,0<ll/llooy;e-^i--^. (jt,0 R+x[0,ri m>? 
m! 

Proo/ The proof proceeds by induction. We already have the case in which n ? 1 by the 

definition of L. Assume that, for n = k, the conclusion of the lemma holds. Then, for n = k +1, 

Lk+lf(x, t) = Ex[Lkf{XJx, 
t - /,) 

l(/i 
< t, 

Qinf 
Xs > 

o)] 
= 

Ex\ex \f(XJk, 
v - Jk) l(jk < v, inf Xs > 0)]\ L 1 L \ 0<s<Jk / J\v=t ? J\ 

xl(7^Si1?^>0)]' 
where we have applied the case of (A.3) for n = k in the last line. On the other hand, by the 

strong Markov property of X we have 

Ex\f(XJk+l,t 
- 

4+i) < t, inf Xs > 0)1 

= 
Ex\Ex\f(XJk+l, 

t - Jk+X) l(jk+i < t, inf Xs > 0) I Jv,l 

x \{jx < t, inf Xs > 0)] \ 0<s<J] /J 

= 
Ex\Exj.\f(Xjk,v-Jk)l(jk<v, inf X5>0)1| L 'L \ 0<s<Jk 

' 
J\v?t-J\ 

x < t, inf Xs > (Al. 

Hence, we have proved that (A.3) holds for n = k + 1. By the induction hypothesis we have 

proved the first part of the lemma. 
The second part of the lemma now follows immediately from the nonnegativity of / and the 

fact that Jn is a sum of n independent exponential random variables with mean 1 /X. The proof 
is now complete. 
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From this, we obtain from (A.2) that, for every bounded xjs, 

3>(jt, T) = \mA LkG(x, T) + L"+1 <D(jt, T) \ = LkG(x, T). (A.4) 
V=0 

' 
k=0 

Write x = log(Vb/^o)? By (1.5) we obtain the following infinite-series expansion for the bond 
price. 

Theorem A.l. For any bounded function ty, the bond price D(Vo, T) in(1.5) has the following 
expansion: 

d(v0, t) = c~rT - e~rT 
f; lmG(\og(J?y t), 

(A.5) 

where G = Ga + Gb + Gc, cind Ga, Gb, and Gc are given as in (2.6), (2.7), and (2.8), 
respectively. Moreover, the series converges uniformly in (\og(Vo/Ko), T) e R+ x [0, T*]for 
any T* e (0, oo). 
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