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Microcontrollers are widely used on simple systems; thus, how to keep them oper-

ating with high robustness and low power consumption are the two most important issues. 
It is widely known that asynchronous circuit is the best solution to address these two is-
sues at the same time. However, it’s not very easy to realize asynchronous circuit and cer-
tainly very hard to model processors with asynchronous pipeline. That’s why most proc-
essors are implemented with synchronous circuit. There are several ways to model 
asynchronous pipeline. The most famous of all is the micropipeline; in addition, most 
micropipeline based asynchronous systems are implemented with single-rail bundled- 
delay model. However, we implemented our 8-bit microprocessor core for asynchronous 
microcontrollers with an alternative – the Muller pipeline. We implemented our micro-
processor core with dual-rail quasi-delay-insensitive model with Verilog gate-level de-
sign. The instruction set for the target microprocessor core is compatible with PIC18. The 
correctness was verified with ModelSim software, and the gate-level design was synthe-
sized into Altera Cyclone FPGA. In fact, the model we used in this paper can be applied 
to implement other simple microprocessor core without much difficulty.   
 
Keywords: asynchronous circuit, microcontroller, micropipeline, dual-rail, Muller pipe-
line, quasi-delay-insensitive  
 
 

1. INTRODUCTION 
 

It is widely known that synchronous circuits have some problems that have to be 
carefully dealt with such as clock skew problem, difficulty in clock distribution, worse 
case performance, not modular, sensitive to variations in physical parameters (tempera-
ture, voltage, and process), synchronization failure, and noise (EMI). All these problems 
derive from the “clock” signal [1]! As the VLSI based systems become larger, more 
complex, and work with higher clock rate, these problems also become more serious than 
ever before. However, because of several complex historical and practical reasons, al-
most all systems today are still implemented with fixed clock period based design. While 
synchronous design may introduce lots of problems with systems growing up larger and 
larger, asynchronous design may overcome these problems via avoiding the use of clock 
signal. Furthermore, how to accomplish IP reuse easier becomes one of the most impor-
tant issues for SoC design. Asynchronous circuits may be one of the best solutions to 
address this issue. Without the influence of the “clock” signal, asynchronous circuits 
make software OOP style design for hardware design possible. All things that the de-
signers need to know are the handshaking protocol interface [1]. It also makes each de-
signed component or IP more reusable. With growing up mobile device and embedded 
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system markets, all these issues need to be seriously considered. Thus, it’s time to im-
plement these systems with asynchronous circuits.  

Microcontrollers are widely used on a variety of different simple systems. Most of 
these systems do not need very complex processor core. Instead of very complex proc-
essor core, most of them needs processor core with some other special requirements such 
as adaptation to operating variations, low power consumption, and low EMI. Asynchro-
nous circuits naturally meet these requirements. That’s why we focus on designing proc-
essor core for microcontrollers with asynchronous circuits. 8051, AVR, and MicroChip 
PIC family microcontrollers are all popular 8-bit microcontrollers for embedded systems. 
There are several asynchronous 8051 compatible microprocessor implemented [2, 3]. 
However, because of its CISC nature, it’s not very easy to implement it with pipeline 
directly. Thus, in this paper, we implemented our microprocessor core with PIC18 in-
struction set with quasi-delay-insensitive model. Though we implemented our processor 
core with PIC18 instruction set, we hope that our research could still be a generic model 
to implement such processor core for these simple microcontrollers. 

2. RELATED WORKS 

Asynchronous circuits have been studied since early 1950’s; however, synchronous 
circuits have still dominated the mainstream of digital circuit design. Recently, some 
academic and commercial research shows that it’s worth to implement real-life systems 
with asynchronous circuits. But, because of lack of tools and standardization of imple-
mentation and design models, there is still not much research on it and just limited com-
mercial applications.  

Without clock signal, asynchronous circuits rely on handshaking protocols to make 
sure the correctness of the circuit operations. The protocols can be divided into control 
signaling and data encoding. Fig. 1 shows the 4-phase handshaking protocol. In this pro-
tocol, only the rising edge is the valid active transition; thus it’s a level signaling or re-
turn-to-zero protocol. On the contrary, in the 2-phase handshaking protocol, the falling 
and rising edge of request and acknowledge are active signals; thus it’s a transition sig-
naling or non-return-to-zero protocol. However, it makes the control very complex and 
hard to implement. Fig. 2 shows the 2-phase handshaking protocol. Except control sig-
naling, there are also choices for how to encode data (data signaling protocol). The Bun-
dled Data or called Single Rail refers to separate request and acknowledge wires that 
bundles the data signals with them. Thus total n + 2 wires are required to send n-bit data. 
Fig. 3 shows the bundled-data model. Except bundled-data model, there are data encod-
ing methods for DI circuits. However, because of implementation issue, dual-rail encod-
ing is the most popular used DI data encoding scheme. To represent 1-bit data in dual- 
rail encoding method, two physical wires are used. For example, a valid data, D is repre-
sented by two physical data wires, d.0 and d.1. The following equation shows this en-
coding scheme. (1) D = 0; (d.0, d.1) = (0, 1) (2) D = 1; (d.0, d.1) = (1, 0). In particular, 
(0, 0) represents a space which allows us to identify consecutive 0’s or 1’s. (1, 1) state is 
not used. Data transferring starts from the (0, 0) state (called “null” or “empty” data). If a 
state is changed from (d.0, d.1) = (0, 0) to (0, l)/(1, 0), which notices the arrival of valid 
data ‘0/l’. Thus total 2 × n wires are needed to transfer n-bit data. Fig. 4 shows the dual- 
rail model [1]. 
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Fig. 1. The 4-phase protocol.                    Fig. 3. Bundled-data signaling model. 

   
Fig. 2. The 2-phase protocol.                  Fig. 4. Dual-rail data signaling model. 

 
David Muller proposed his famous Muller C-element and Muller pipeline (aka Mul-

ler distributor) in 1959 [4, 5]. A Muller pipeline is a naturally simple and elegant hand-
shaking control model. The simplest form of Muller pipeline mainly consists of C-ele- 
ments and inverters. Fig. 5 shows the schematic symbol and truth table of a two-input 
C-element. If both inputs are high or low, the output will be high or low; otherwise, the 
previous value is kept. Fig. 6 shows the original Muller pipeline model. To understand 
its behavior, let’s consider the ith C-element Ci. In the initial state, all C-elements are 
initialized to 0. The handshaking may be initialized. The ith C-element Ci can propagate 
a 1 from its previous stage the (i − 1)th C-element only if the next stage C-element (Ci+1) 
is 0. Thus, the signal can be propagated one stage to one stage. It should be notice that 
the original single-rail model is based on bundled-data model; thus the request signal 
must be propagated via a matching delay as shown is Fig. 6. In fact, the matching issue 
should be carefully handled on all bundled-data model. The pipeline model can also be 
constructed as 4-phase dual-rail model as shown in Fig. 7 [6]. The model can be consid-
ered as two Muller pipelines connected in parallel with a common acknowledge signal in 
per stage. The detailed behavior described in section 3.1. 

  
Fig. 5. The muller C-element: symbol & truth table. 
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Fig. 6. The Muller pipeline. 

 
Fig. 7. A three-stage 1-bit wide 4-phase dual-rail pipeline. 

 
Except the Muller pipeline, there are also several models were proposed. The most 

important of all is the micropipeline which was described by Ivan E. Sutherland is his 
famous Turing Award “Micropipelines” lecture in 1989 [7]. The approach is based on a 
two-phase bundled-data model with micropipeline as backbone control circuit. As the 
most well-known asynchronous circuit design model, lots of different asynchronous sys-
tems have been implemented based on it. It can be used to implement many kinds of dif-
ferent pipelined systems, even processors. For example, the NSR processor is a very sim-
ple 16-bit micropipeline based microprocessor with very simple RISC instructions (less 
than 20 instructions) [8]. In addition, the most famous of all is the Amulet series proces-
sors [9-12]. These processors are ARM compatible processors implemented with micro-
pipeline architecture.  

There are also some different models proposed for asynchronous processor design. 
Some try to modify the original “micropipeline” architecture. For example, a new control 
circuit for micropipeline was proposed by Choy et al. [13] and “Micronets” architecture 
tries to decentralize the control to the functional units [14]. Furthermore, there have been 
still several famous asynchronous processor implementation models proposed. Takashi 
Nanya et al. showed their QDI 8-bit microprocessor model called “TITAC” which uses 
Martin’s Q-element as control circuitry [15]. TITAC2 was proposed to show a new delay 
model called scalable-delay-insensitive (SDI) [16]. The delay model modified original 
DI or QDI unbounded gate and wire delay to bounded relative delay ratio between any 
two components. There are also some works that try to model processor with asynchro-
nous circuits. Martin et al. in Caltech have already shown three generations of different 
asynchronous processor model [17]. Chen et al. showed an asynchronous RISC proces-
sor model in 2002 [18]. In addition, there are also several asynchronous superscalar 
processor models proposed, for example the Kin architecture [19], Hades project [20], 
and the most famous of all the counter flow pipeline (CFPP) [21]. However, all these 
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superscalar models are not very easy to implement or just not realized ideas, and cer-
tainly not very suitable to be implemented for cores for simple microcontrollers. 

3. NCTUAC18 

There have been several asynchronous FIFO pipeline models proposed. However, 
most of them are based on bundled-data model, especially micropipeline or related mod-
els. But it is widely known that the DI circuit has the highest robustness and reliability. 
Moreover, almost all the research focuses on the original FIFO model, not to real system 
implementation. Thus, in this paper, we tried to implement a real microcontroller with 
QDI models. We implemented our asynchronous microprocessor core with 4-phase dual- 
rail pipeline model as shown in Fig. 7. However, because it’s too hard to realize real DI 
circuits, we selected the QDI model to implement our asynchronous microprocessor core. 
In this section, the detailed implementation will be described. 
 
3.1 The 4-Phase Dual-Rail Pipeline Model 
 

The NCTUAC18 was implemented with 4-phase dual-rail pipeline model. Fig. 7 
shows a 3-stage 1-bit wide 4-phase dual-rail pipeline model with completion detection 
[6]. An N-bit pipeline can be constructed via connecting N such pipelines in parallel with 
corresponding N-bit completion detector. Because of dual-rail nature, the behavior of 
four-phase dual-rail pipeline in Fig. 7 is very simple. Once the pair of C-element in one 
pipeline stage receives the empty (null) codeword {d.t, d.f} = {0,0}, it stores the empty 
code word and sends the acknowledge signal ‘0’ out to its previous stage; otherwise, 
once the pair of C-element receives any one of the two valid codewords {d.t, d.f} = {0, 1} 
or {1, 0}, it stores the valid codeword and sends the acknowledge signal ‘0’ out to its 
previous stage. Fig. 8 shows how the data items (D#) can pass through in a 4-stage 
4-phase dual-rail pipeline. At time 0, all pipeline stages are initialized to null state and 
the first data item D0 are prepared to enter the pipeline. Then, at time T1, the first data 
item D0 with valid codeword enters the first stage and then the acknowledge signal can 
be generated to notify its left side environment to prepare for the next null codeword. At 
time T2, the data item D0 enters the second pipeline stage and the acknowledge signal is 
generated to inform the first stage to accept the null codeword. Then, the null codeword 
can enter the first pipeline stage. With 4-phase dual-rail protocol, the first data item D0 

 
Fig. 8. Abstract view of data flow passing through 4-phase dual-rail pipeline. 



CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU 

 

548 

 

can pass through the 4-stage pipeline at time T5. It clearly shows that any two pipeline 
stages with valid state are separated by a stage with null (N) state. We solved the data 
hazard problem in our pipeline design with this characteristic. 
 
3.2 The NCTUAC18 Pipeline Model 
 

The NCTUAC18 pipeline is based on the four-phase dual-rail pipeline model. It 
makes the NCTUAC18 is a core with high modularity, robustness, and reliability. The 
system block diagram of NCTUAC18 is showed in Fig. 9. Because of Muller pipeline 
model nature, the utilization of our 4-stage pipeline is 50%. Though it’s not too hard to 
improve it to 100% via adding extra pipeline latches for each stage, we still implemented 
the original 50% model. There are several reasons for this selection. The first, with this 
50% pipeline model, the OF stage and EX/WB stage cannot be executed simultaneously 
and thus data hazard problem can be easily resolved without very complex design. Sec-
ond, this is just a microprocessor core for simple microcontroller, and thus simple pipe-
line model can reduce extra costs coming from extra pipeline latches and very complex 
control circuits. Finally, with this simple pipeline model, the QDI constraints can be eas-
ily kept in real processor design. 

 
Fig. 9. NCTUAC18 system block diagram. 

 
In order to reduce memory access time, we implemented the most frequently PIC18 

registers – PC (Program Counter), BSR (Bank Select Register), WREG (Working Regis-
ter), STATUS, STKPTR (Stack Pointer) and Stall Register defined by us. There are four 
stages in NCTUAC18 pipeline namely IF (Instruction Fetch), ID (Instruction Decode), 
OF (Operand Fetch) and EX/WB (Execution and Write Back). Following sections de-
tailed describe our implementation. 
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or      
  (a)                                         (b) 

Fig. 10. (a) Generalized transistor-level C-element implementation; (b) Gate-level C-element im-
plementation. 

     
Fig. 11. Dual-rail OR gate symbol and gate- 

level implementation. 
Fig. 12. 1-bit dual-rail register. 

 
3.2.1 Basic building component construction 
 

In order to implement our processor with dual-rail QDI model, the basic dual-rail 
QDI basic building components should be constructed first. We implemented all needed 
basic QDI dual-rail gates and constructed all building blocks with these QDI dual-rail 
gates. The most important of all is the C-element. The generalized transistor-level C-ele- 
ment implementation is shown in Fig. 10 (a); however, to provide synthesizable model 
for FPGA we also modeled it with gate-level design as shown in Fig. 10 (b). In addition, 
we also implemented C-element with reset for pipeline latch. 

With C-element, other basic dual-rail components can also be constructed easily, for 
example dual-rail OR gate as shown in Fig. 11.  

To satisfy the QDI constraint, the NCTUAC18 was implemented without any com-
mon bus. Data transfers from one block to the register can only use a direct connection. 
To meet our design requirement, we developed our own QDI register set. Fig. 12 shows 
a 1-bit dual-rail register. When a valid codeword is sent to din.t and din.f, the two NOR 
gates can correctly hold it. If the data item is written into the register, it issues acknowl-
edgement to its previous stage to inform the written operation done. Because of the dual- 
rail nature, we designed the acknowledge signal simply through ORing two in/out signal 
of the two NOR gates. To read data from the register, just send read request signal to it 
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and thus the dual-rail data can be correctly read out via dout.t and dout.f. We imple-
mented this design for NCTUAC18 registers. Our register design does not deliver much 
higher cost than traditional register for synchronous systems. 

Because lack of synthesis tool the design cannot be written in RTL model. Thus, the 
whole circuit should be carefully written in gate-level design. If the asynchronous design 
should be implemented with CMOS VLSI, some components had better to be created 
with full-custom design. For example, to implement efficient CMOS C-element, manu-
ally designed C-element cell is needed. Except modeling it with transistor-level, we also 
modeled it with gate-level as shown in Figs. 10 (a) and (b). Thus, it can be synthesized 
with Altera Quartus II software. In addition, because of DI nature, all components should 
be constructed carefully with DI model. Thus, the implementation cost is very high. The 
circuit should be optimized manually. Then, the constructed components can be easily 
put in that FIFO pipeline model. 
 
3.2.2 Design of each pipeline stage 

 
With those building blocks and components, the whole processor core can be built 

with them. In addition, the PIC18 compatible instruction set was implemented in our 
core. Table 1 shows the implemented instructions. Following section detailed describes 
the NCTUAC18 pipeline. 

Table 1. Implemented instructions of NCTUAC18 core. 
Operation Byte-Oriented Bit-Oriented Literal Control 

ADDWF BCF ADDLW BC 
ADDWFC BSF SUBLW BNC 
ANDWF BTG MULLW BN 
ANDWF  MOVLB BNN 
COMF  MOVLW BOV 
DECF  IORLW BNOV 
INCF  ANDLW BZ 

IORWF  XORLW BNZ 
MOVF   BRA 

MOVWF   GOTO 
MULWF   CALL 

NEGF   RETURN 
RLCF   PUSH 

RLNCF   POP 
RRCF   RCALL 

RRNCF   NOP 
SETF    

SUBFWB    
SUBWF    

SUBWFB    
XORWF    

Instruction 

MOVFF    
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IF stage: 
In the IF stage, the “Read” signal controls the output for valid data or null data. 

When the Read signal is high, it reads PC value from the PC register and then retrieves 
the instruction from the program ROM. In addition, the current PC value is sent to ID 
stage for calculating the next PC value. After the output data has completely sent to the 
pipeline latch, the pipeline latch returns an acknowledgement signal. The signal is used 
to pull down the Read signal low, and finally the IF stage becomes null state. 
 
ID stage: 

It is widely known that dealing with conditional branches is very hard on pipeline 
processors; moreover, that’s especially much harder on such asynchronous pipeline 
without centralized control. Thus we develop our own model to deal with conditional 
branches. Because the NCTUAC18 pipeline is not very deep and the target processor 
core is very simple, the design should not be very complex. We believe that this model 
can be easily applied to all simple processor core which is implemented with these 
4-phase dual-rail QDI asynchronous pipeline. In order to deal with conditional branch 
instructions simply, the conditional branch instructions are treated as two instruction 
cycle instructions. The conditional branch instructions are handled in the ID stage. The 
ID stage mainly consists of four parts. Fig. 13 shows the block diagram of the ID stage. 
The operations of the four parts are described in the following. 

 
Fig. 13. Block diagram of ID stage. 

 
Instruction Decode: The Instruction Decode block decodes the input instructions and 
generates the control signals to the whole processor. It also requests NPC to generate 
next PC value directly if the input instruction is not a conditional branch. 
 
Branch Control: If the current input instruction is a conditional branch instruction, the 
Instruction Decode requests the Branch Control to deal with it. The Branch Control 
reads the value in the STATUS register to decide whether the branch is a taken or 
non-taken branch and then request the NPC to generate corresponding next PC value. 
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Stall Control: If the instruction is a conditional branch instruction and it is executed the 
first time, the Stall Control will request the NPC to generate the same PC value again in 
order to retrieve this instruction again. The mechanism can guarantee that the STATUS 
register can be correctly updated by the EX/WB stage. 
 
NPC Control: The NPC Control is responsible to generate the correct next PC value 
corresponding to the input control signals. 
 
OF Stage: 

The OF stage is responsible for preparing source data and destination information 
for the EX/WB stage. In addition, because registers are implemented as memory ad-
dresses or in memory in the original PIC18 but WREG & several frequently used regis-
ters are implemented as real registers in our core, a remapping mechanism is imple-
mented in the OF stage. 
 
EX/WB Stage: 

The EX/WB is the final stage of our pipeline and is responsible for computation and 
saving the result back in according to the input operands and control signals from the OF 
stage. It’s an important design issue why EXE and WB are combined in one stage. 
That’s because not all instructions need to pass through both EXE and WB. For example, 
“MOV” instruction only writes result back without any extra computation needed. Fig. 
14 is the block diagram of EX/WB Stage. Because of the dual-rail nature, it’s possible to 
design functional units that can complete each of its operations in variable length of time. 
We developed our own model that makes it possible to design a stage that can execute in 
variable length of time depending upon characteristics of the executing operation. Fig. 15 
shows the concept of our proposed model. In Fig. 15, the block called “DeMUX” re-
ceives inputs from its previous stage and sends the inputs to the corresponding execution 
element or just even a bypass path depending on the control signal. Then, the block 
called “MERGE” sends the final result out into the next stage. In fact, all the MERGE 
circuit needs to do is to check if the result is valid via completion detection. Because of 
dual-rail nature, that’s very easy to accomplish this goal. We implemented this model in 
all sub-stages of EX/WB stage. Though currently we only implemented this model in our  

 
Fig. 14. Block diagram of EX/WB stage. 
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Fig. 15. The original concept of our EX/WB stage implementation model. 

EX/WB stage, the proposed model can be implemented in all dual-rail circuits with sev-
eral execution paths! With this “DeMUX-MERGE pair” model, the EX/WB stage may 
exploit data-dependent operations easily. Some operations of each of all the three sub- 
stages may even be directly bypassed without waste of time. It should be pointed out that 
the STATUS register will be updated in parallel with the WB sub-stage. 

4. PERFORMANCE EVALUATION 

In order to verify the correctness of the design, the ModelSim 6.0 was used to verify 
the correctness of the functionality. Because our current core design is so simple, we 
verified our design with random patterns and simple programs. Though it may be not 
enough for more complex design, it may be enough for our current design. In fact, circuit 
verification for the asynchronous system is very hard. It may be still a very good re-
search topic. Furthermore, we also tried to synthesis our gate-level design with Altera 
Quartus II software. In order to fit the whole design, we selected Altera Cyclone 
EP1C20F400C8 as the target FPGA. Table 2 shows the maximum path delay for each 
stage. It’s very interesting to find that the ID stage is the critical stage of the whole de-
sign. That’s because the ID stage not only has to decode instructions but also to deal with 
the branch instructions. The most important of all is that our core use a not very effi-
ciency method to deal with branch instructions. Furthermore, we may also find out that 
without global clock each stage can work in different speed. In fact, the path delay of 
each stage may vary with different operations. That’s quite different from synchronous 
circuits which must work in worse case delay. That also means that you may replace any 
parts of the circuits with faster design without considering the “clock” issue. The DI/QDI 
circuit will automatically work fine with the new designed part. 

Table 2. Maximum path delay of each stage. 
Module Maximum Path Delay (ns ) 
Latch ~ 34 

IF stage ~ 27 
ID stage ~ 455 
OF stage ~ 157 

EX/WB stage ~ 216 
Register ~ 19 
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Another important implementation issue is area. In order to compare how much ex-
tra area needed in dual-rail implementation, we compared our design with AE18 CPU 
core which is an open source PIC18 compatible core implementation [22]. We synthe-
sized both design with Altera Quartus II. Both of the target FPGAs are Altera Cyclone 
EP1C20F400C8. Table 3 shows the total logic elements needed of the both two designs. 
The results show that the NCTUAC18 core needs about 3.5 times extra LEs than AE18 
core. That’s because the NCTUAC18 core is a QDI implementation. However, it’s an 
implementation tradeoff. It depends upon your implementation criteria! 
 

Table 3. Comparison of LEs needed of both NCTUAC18 and AE18 core. 
 NCTUAC18 Core AE18 Core 

Logic Elements ~ 13,800 ~ 3,900 

5. CONCLUSIONS AND DISCUSSIONS 

Though there are several proposed asynchronous pipeline models, most asynchro-
nous processors are still implemented with micropipeline or modified micropipeline 
models. That’s not only because it’s a Turing Award Lecture but also the implementation 
cost consideration. In addition, because of dual-rail nature and higher timing constraints 
coming from DI and QDI circuits, it’s very hard to implement microprocessor core with 
DI or QDI circuits. Thus, most DI or ODI pipeline models are seldom used to implement 
microprocessors. However, it is widely known that DI circuit has the highest reliability 
and it is suitable to implement microcontrollers that may operate in variable environ-
ments. In addition, it does not need to consider the matching delay issue that may be en-
countered in implementation with bundled-data circuit such as micropipeline model. In 
this paper, we provide a methodology to model a QDI PIC18 compatible microprocessor 
core with dual-rail 4-phase pipeline in a reasonable cost. Though we just modeled PIC18 
compatible core, the model can also be used on other simple microprocessor core. In fact, 
we show a clear flow to design a QDI microprocessor core for simple microcontroller 
with Verilog HDL and an easy implementation model. 

Except the pipeline model itself, conditional branch handling is a very important 
design issue for pipeline processors. Furthermore, it’s much harder for asynchronous 
processors without centralized control. In this paper, we show an easy way to deal with 
conditional branches for the dual-rail 4-phase pipeline microcontroller core. Though it’s 
very simple, it’s enough for simple microcontroller core with such short pipeline. 

We also propose a special bypass or variable execution path model as shown in Figs. 
14 and 15. It is implemented in EX/WB stage. Though it looks like a traditional imple-
mentation, each path can execute in variable length of time because of its asynchronous 
circuit nature. This proposed model really exploits data-dependent operations. 

Furthermore, we also evaluate the maximum delay time of each stage and extra costs 
that may be introduced. Though QDI or even most asynchronous circuits may cause 
much extra cost, we still have to point out that it’s also a design tradeoff. In fact, it de-
pends upon your requirements. Asynchronous circuits may be a good solution for de-
signing mobile devices or systems that needs high reliability, low power and low EMI. 
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Our work may provide a microprocessor core implementation model for these require-
ments. Based on current work, we’ll focus on providing synthesizable 32-bit general 
purpose processor with asynchronous circuits in the future.  
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