
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 543-557 (2009)

543

A Quasi-Delay-Insensitive Microprocessor Core
Implementation for Microcontrollers

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan

Microcontrollers are widely used on simple systems; thus, how to keep them oper-

ating with high robustness and low power consumption are the two most important issues.
It is widely known that asynchronous circuit is the best solution to address these two is-
sues at the same time. However, it’s not very easy to realize asynchronous circuit and cer-
tainly very hard to model processors with asynchronous pipeline. That’s why most proc-
essors are implemented with synchronous circuit. There are several ways to model
asynchronous pipeline. The most famous of all is the micropipeline; in addition, most
micropipeline based asynchronous systems are implemented with single-rail bundled-
delay model. However, we implemented our 8-bit microprocessor core for asynchronous
microcontrollers with an alternative – the Muller pipeline. We implemented our micro-
processor core with dual-rail quasi-delay-insensitive model with Verilog gate-level de-
sign. The instruction set for the target microprocessor core is compatible with PIC18. The
correctness was verified with ModelSim software, and the gate-level design was synthe-
sized into Altera Cyclone FPGA. In fact, the model we used in this paper can be applied
to implement other simple microprocessor core without much difficulty.

Keywords: asynchronous circuit, microcontroller, micropipeline, dual-rail, Muller pipe-
line, quasi-delay-insensitive

1. INTRODUCTION

It is widely known that synchronous circuits have some problems that have to be
carefully dealt with such as clock skew problem, difficulty in clock distribution, worse
case performance, not modular, sensitive to variations in physical parameters (tempera-
ture, voltage, and process), synchronization failure, and noise (EMI). All these problems
derive from the “clock” signal [1]! As the VLSI based systems become larger, more
complex, and work with higher clock rate, these problems also become more serious than
ever before. However, because of several complex historical and practical reasons, al-
most all systems today are still implemented with fixed clock period based design. While
synchronous design may introduce lots of problems with systems growing up larger and
larger, asynchronous design may overcome these problems via avoiding the use of clock
signal. Furthermore, how to accomplish IP reuse easier becomes one of the most impor-
tant issues for SoC design. Asynchronous circuits may be one of the best solutions to
address this issue. Without the influence of the “clock” signal, asynchronous circuits
make software OOP style design for hardware design possible. All things that the de-
signers need to know are the handshaking protocol interface [1]. It also makes each de-
signed component or IP more reusable. With growing up mobile device and embedded

Received May 10, 2007; revised November 6, 2007 & March 17, 2008; accepted July 17, 2008.
Communicated by Yao-Wen Chang.

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

544

system markets, all these issues need to be seriously considered. Thus, it’s time to im-
plement these systems with asynchronous circuits.

Microcontrollers are widely used on a variety of different simple systems. Most of
these systems do not need very complex processor core. Instead of very complex proc-
essor core, most of them needs processor core with some other special requirements such
as adaptation to operating variations, low power consumption, and low EMI. Asynchro-
nous circuits naturally meet these requirements. That’s why we focus on designing proc-
essor core for microcontrollers with asynchronous circuits. 8051, AVR, and MicroChip
PIC family microcontrollers are all popular 8-bit microcontrollers for embedded systems.
There are several asynchronous 8051 compatible microprocessor implemented [2, 3].
However, because of its CISC nature, it’s not very easy to implement it with pipeline
directly. Thus, in this paper, we implemented our microprocessor core with PIC18 in-
struction set with quasi-delay-insensitive model. Though we implemented our processor
core with PIC18 instruction set, we hope that our research could still be a generic model
to implement such processor core for these simple microcontrollers.

2. RELATED WORKS

Asynchronous circuits have been studied since early 1950’s; however, synchronous
circuits have still dominated the mainstream of digital circuit design. Recently, some
academic and commercial research shows that it’s worth to implement real-life systems
with asynchronous circuits. But, because of lack of tools and standardization of imple-
mentation and design models, there is still not much research on it and just limited com-
mercial applications.

Without clock signal, asynchronous circuits rely on handshaking protocols to make
sure the correctness of the circuit operations. The protocols can be divided into control
signaling and data encoding. Fig. 1 shows the 4-phase handshaking protocol. In this pro-
tocol, only the rising edge is the valid active transition; thus it’s a level signaling or re-
turn-to-zero protocol. On the contrary, in the 2-phase handshaking protocol, the falling
and rising edge of request and acknowledge are active signals; thus it’s a transition sig-
naling or non-return-to-zero protocol. However, it makes the control very complex and
hard to implement. Fig. 2 shows the 2-phase handshaking protocol. Except control sig-
naling, there are also choices for how to encode data (data signaling protocol). The Bun-
dled Data or called Single Rail refers to separate request and acknowledge wires that
bundles the data signals with them. Thus total n + 2 wires are required to send n-bit data.
Fig. 3 shows the bundled-data model. Except bundled-data model, there are data encod-
ing methods for DI circuits. However, because of implementation issue, dual-rail encod-
ing is the most popular used DI data encoding scheme. To represent 1-bit data in dual-
rail encoding method, two physical wires are used. For example, a valid data, D is repre-
sented by two physical data wires, d.0 and d.1. The following equation shows this en-
coding scheme. (1) D = 0; (d.0, d.1) = (0, 1) (2) D = 1; (d.0, d.1) = (1, 0). In particular,
(0, 0) represents a space which allows us to identify consecutive 0’s or 1’s. (1, 1) state is
not used. Data transferring starts from the (0, 0) state (called “null” or “empty” data). If a
state is changed from (d.0, d.1) = (0, 0) to (0, l)/(1, 0), which notices the arrival of valid
data ‘0/l’. Thus total 2 × n wires are needed to transfer n-bit data. Fig. 4 shows the dual-
rail model [1].

BANKED TLB WITH PREFETCHING MECHANISM

545

Fig. 1. The 4-phase protocol. Fig. 3. Bundled-data signaling model.

Fig. 2. The 2-phase protocol. Fig. 4. Dual-rail data signaling model.

David Muller proposed his famous Muller C-element and Muller pipeline (aka Mul-

ler distributor) in 1959 [4, 5]. A Muller pipeline is a naturally simple and elegant hand-
shaking control model. The simplest form of Muller pipeline mainly consists of C-ele-
ments and inverters. Fig. 5 shows the schematic symbol and truth table of a two-input
C-element. If both inputs are high or low, the output will be high or low; otherwise, the
previous value is kept. Fig. 6 shows the original Muller pipeline model. To understand
its behavior, let’s consider the ith C-element Ci. In the initial state, all C-elements are
initialized to 0. The handshaking may be initialized. The ith C-element Ci can propagate
a 1 from its previous stage the (i − 1)th C-element only if the next stage C-element (Ci+1)
is 0. Thus, the signal can be propagated one stage to one stage. It should be notice that
the original single-rail model is based on bundled-data model; thus the request signal
must be propagated via a matching delay as shown is Fig. 6. In fact, the matching issue
should be carefully handled on all bundled-data model. The pipeline model can also be
constructed as 4-phase dual-rail model as shown in Fig. 7 [6]. The model can be consid-
ered as two Muller pipelines connected in parallel with a common acknowledge signal in
per stage. The detailed behavior described in section 3.1.

Fig. 5. The muller C-element: symbol & truth table.

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

546

Fig. 6. The Muller pipeline.

Fig. 7. A three-stage 1-bit wide 4-phase dual-rail pipeline.

Except the Muller pipeline, there are also several models were proposed. The most

important of all is the micropipeline which was described by Ivan E. Sutherland is his
famous Turing Award “Micropipelines” lecture in 1989 [7]. The approach is based on a
two-phase bundled-data model with micropipeline as backbone control circuit. As the
most well-known asynchronous circuit design model, lots of different asynchronous sys-
tems have been implemented based on it. It can be used to implement many kinds of dif-
ferent pipelined systems, even processors. For example, the NSR processor is a very sim-
ple 16-bit micropipeline based microprocessor with very simple RISC instructions (less
than 20 instructions) [8]. In addition, the most famous of all is the Amulet series proces-
sors [9-12]. These processors are ARM compatible processors implemented with micro-
pipeline architecture.

There are also some different models proposed for asynchronous processor design.
Some try to modify the original “micropipeline” architecture. For example, a new control
circuit for micropipeline was proposed by Choy et al. [13] and “Micronets” architecture
tries to decentralize the control to the functional units [14]. Furthermore, there have been
still several famous asynchronous processor implementation models proposed. Takashi
Nanya et al. showed their QDI 8-bit microprocessor model called “TITAC” which uses
Martin’s Q-element as control circuitry [15]. TITAC2 was proposed to show a new delay
model called scalable-delay-insensitive (SDI) [16]. The delay model modified original
DI or QDI unbounded gate and wire delay to bounded relative delay ratio between any
two components. There are also some works that try to model processor with asynchro-
nous circuits. Martin et al. in Caltech have already shown three generations of different
asynchronous processor model [17]. Chen et al. showed an asynchronous RISC proces-
sor model in 2002 [18]. In addition, there are also several asynchronous superscalar
processor models proposed, for example the Kin architecture [19], Hades project [20],
and the most famous of all the counter flow pipeline (CFPP) [21]. However, all these

BANKED TLB WITH PREFETCHING MECHANISM

547

superscalar models are not very easy to implement or just not realized ideas, and cer-
tainly not very suitable to be implemented for cores for simple microcontrollers.

3. NCTUAC18

There have been several asynchronous FIFO pipeline models proposed. However,
most of them are based on bundled-data model, especially micropipeline or related mod-
els. But it is widely known that the DI circuit has the highest robustness and reliability.
Moreover, almost all the research focuses on the original FIFO model, not to real system
implementation. Thus, in this paper, we tried to implement a real microcontroller with
QDI models. We implemented our asynchronous microprocessor core with 4-phase dual-
rail pipeline model as shown in Fig. 7. However, because it’s too hard to realize real DI
circuits, we selected the QDI model to implement our asynchronous microprocessor core.
In this section, the detailed implementation will be described.

3.1 The 4-Phase Dual-Rail Pipeline Model

The NCTUAC18 was implemented with 4-phase dual-rail pipeline model. Fig. 7
shows a 3-stage 1-bit wide 4-phase dual-rail pipeline model with completion detection
[6]. An N-bit pipeline can be constructed via connecting N such pipelines in parallel with
corresponding N-bit completion detector. Because of dual-rail nature, the behavior of
four-phase dual-rail pipeline in Fig. 7 is very simple. Once the pair of C-element in one
pipeline stage receives the empty (null) codeword {d.t, d.f} = {0,0}, it stores the empty
code word and sends the acknowledge signal ‘0’ out to its previous stage; otherwise,
once the pair of C-element receives any one of the two valid codewords {d.t, d.f} = {0, 1}
or {1, 0}, it stores the valid codeword and sends the acknowledge signal ‘0’ out to its
previous stage. Fig. 8 shows how the data items (D#) can pass through in a 4-stage
4-phase dual-rail pipeline. At time 0, all pipeline stages are initialized to null state and
the first data item D0 are prepared to enter the pipeline. Then, at time T1, the first data
item D0 with valid codeword enters the first stage and then the acknowledge signal can
be generated to notify its left side environment to prepare for the next null codeword. At
time T2, the data item D0 enters the second pipeline stage and the acknowledge signal is
generated to inform the first stage to accept the null codeword. Then, the null codeword
can enter the first pipeline stage. With 4-phase dual-rail protocol, the first data item D0

Fig. 8. Abstract view of data flow passing through 4-phase dual-rail pipeline.

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

548

can pass through the 4-stage pipeline at time T5. It clearly shows that any two pipeline
stages with valid state are separated by a stage with null (N) state. We solved the data
hazard problem in our pipeline design with this characteristic.

3.2 The NCTUAC18 Pipeline Model

The NCTUAC18 pipeline is based on the four-phase dual-rail pipeline model. It
makes the NCTUAC18 is a core with high modularity, robustness, and reliability. The
system block diagram of NCTUAC18 is showed in Fig. 9. Because of Muller pipeline
model nature, the utilization of our 4-stage pipeline is 50%. Though it’s not too hard to
improve it to 100% via adding extra pipeline latches for each stage, we still implemented
the original 50% model. There are several reasons for this selection. The first, with this
50% pipeline model, the OF stage and EX/WB stage cannot be executed simultaneously
and thus data hazard problem can be easily resolved without very complex design. Sec-
ond, this is just a microprocessor core for simple microcontroller, and thus simple pipe-
line model can reduce extra costs coming from extra pipeline latches and very complex
control circuits. Finally, with this simple pipeline model, the QDI constraints can be eas-
ily kept in real processor design.

Fig. 9. NCTUAC18 system block diagram.

In order to reduce memory access time, we implemented the most frequently PIC18

registers – PC (Program Counter), BSR (Bank Select Register), WREG (Working Regis-
ter), STATUS, STKPTR (Stack Pointer) and Stall Register defined by us. There are four
stages in NCTUAC18 pipeline namely IF (Instruction Fetch), ID (Instruction Decode),
OF (Operand Fetch) and EX/WB (Execution and Write Back). Following sections de-
tailed describe our implementation.

BANKED TLB WITH PREFETCHING MECHANISM

549

or
 (a) (b)

Fig. 10. (a) Generalized transistor-level C-element implementation; (b) Gate-level C-element im-
plementation.

Fig. 11. Dual-rail OR gate symbol and gate-

level implementation.
Fig. 12. 1-bit dual-rail register.

3.2.1 Basic building component construction

In order to implement our processor with dual-rail QDI model, the basic dual-rail
QDI basic building components should be constructed first. We implemented all needed
basic QDI dual-rail gates and constructed all building blocks with these QDI dual-rail
gates. The most important of all is the C-element. The generalized transistor-level C-ele-
ment implementation is shown in Fig. 10 (a); however, to provide synthesizable model
for FPGA we also modeled it with gate-level design as shown in Fig. 10 (b). In addition,
we also implemented C-element with reset for pipeline latch.

With C-element, other basic dual-rail components can also be constructed easily, for
example dual-rail OR gate as shown in Fig. 11.

To satisfy the QDI constraint, the NCTUAC18 was implemented without any com-
mon bus. Data transfers from one block to the register can only use a direct connection.
To meet our design requirement, we developed our own QDI register set. Fig. 12 shows
a 1-bit dual-rail register. When a valid codeword is sent to din.t and din.f, the two NOR
gates can correctly hold it. If the data item is written into the register, it issues acknowl-
edgement to its previous stage to inform the written operation done. Because of the dual-
rail nature, we designed the acknowledge signal simply through ORing two in/out signal
of the two NOR gates. To read data from the register, just send read request signal to it

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

550

and thus the dual-rail data can be correctly read out via dout.t and dout.f. We imple-
mented this design for NCTUAC18 registers. Our register design does not deliver much
higher cost than traditional register for synchronous systems.

Because lack of synthesis tool the design cannot be written in RTL model. Thus, the
whole circuit should be carefully written in gate-level design. If the asynchronous design
should be implemented with CMOS VLSI, some components had better to be created
with full-custom design. For example, to implement efficient CMOS C-element, manu-
ally designed C-element cell is needed. Except modeling it with transistor-level, we also
modeled it with gate-level as shown in Figs. 10 (a) and (b). Thus, it can be synthesized
with Altera Quartus II software. In addition, because of DI nature, all components should
be constructed carefully with DI model. Thus, the implementation cost is very high. The
circuit should be optimized manually. Then, the constructed components can be easily
put in that FIFO pipeline model.

3.2.2 Design of each pipeline stage

With those building blocks and components, the whole processor core can be built

with them. In addition, the PIC18 compatible instruction set was implemented in our
core. Table 1 shows the implemented instructions. Following section detailed describes
the NCTUAC18 pipeline.

Table 1. Implemented instructions of NCTUAC18 core.
Operation Byte-Oriented Bit-Oriented Literal Control

ADDWF BCF ADDLW BC
ADDWFC BSF SUBLW BNC
ANDWF BTG MULLW BN
ANDWF MOVLB BNN
COMF MOVLW BOV
DECF IORLW BNOV
INCF ANDLW BZ

IORWF XORLW BNZ
MOVF BRA

MOVWF GOTO
MULWF CALL

NEGF RETURN
RLCF PUSH

RLNCF POP
RRCF RCALL

RRNCF NOP
SETF

SUBFWB
SUBWF

SUBWFB
XORWF

Instruction

MOVFF

BANKED TLB WITH PREFETCHING MECHANISM

551

IF stage:
In the IF stage, the “Read” signal controls the output for valid data or null data.

When the Read signal is high, it reads PC value from the PC register and then retrieves
the instruction from the program ROM. In addition, the current PC value is sent to ID
stage for calculating the next PC value. After the output data has completely sent to the
pipeline latch, the pipeline latch returns an acknowledgement signal. The signal is used
to pull down the Read signal low, and finally the IF stage becomes null state.

ID stage:

It is widely known that dealing with conditional branches is very hard on pipeline
processors; moreover, that’s especially much harder on such asynchronous pipeline
without centralized control. Thus we develop our own model to deal with conditional
branches. Because the NCTUAC18 pipeline is not very deep and the target processor
core is very simple, the design should not be very complex. We believe that this model
can be easily applied to all simple processor core which is implemented with these
4-phase dual-rail QDI asynchronous pipeline. In order to deal with conditional branch
instructions simply, the conditional branch instructions are treated as two instruction
cycle instructions. The conditional branch instructions are handled in the ID stage. The
ID stage mainly consists of four parts. Fig. 13 shows the block diagram of the ID stage.
The operations of the four parts are described in the following.

Fig. 13. Block diagram of ID stage.

Instruction Decode: The Instruction Decode block decodes the input instructions and
generates the control signals to the whole processor. It also requests NPC to generate
next PC value directly if the input instruction is not a conditional branch.

Branch Control: If the current input instruction is a conditional branch instruction, the
Instruction Decode requests the Branch Control to deal with it. The Branch Control
reads the value in the STATUS register to decide whether the branch is a taken or
non-taken branch and then request the NPC to generate corresponding next PC value.

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

552

Stall Control: If the instruction is a conditional branch instruction and it is executed the
first time, the Stall Control will request the NPC to generate the same PC value again in
order to retrieve this instruction again. The mechanism can guarantee that the STATUS
register can be correctly updated by the EX/WB stage.

NPC Control: The NPC Control is responsible to generate the correct next PC value
corresponding to the input control signals.

OF Stage:

The OF stage is responsible for preparing source data and destination information
for the EX/WB stage. In addition, because registers are implemented as memory ad-
dresses or in memory in the original PIC18 but WREG & several frequently used regis-
ters are implemented as real registers in our core, a remapping mechanism is imple-
mented in the OF stage.

EX/WB Stage:

The EX/WB is the final stage of our pipeline and is responsible for computation and
saving the result back in according to the input operands and control signals from the OF
stage. It’s an important design issue why EXE and WB are combined in one stage.
That’s because not all instructions need to pass through both EXE and WB. For example,
“MOV” instruction only writes result back without any extra computation needed. Fig.
14 is the block diagram of EX/WB Stage. Because of the dual-rail nature, it’s possible to
design functional units that can complete each of its operations in variable length of time.
We developed our own model that makes it possible to design a stage that can execute in
variable length of time depending upon characteristics of the executing operation. Fig. 15
shows the concept of our proposed model. In Fig. 15, the block called “DeMUX” re-
ceives inputs from its previous stage and sends the inputs to the corresponding execution
element or just even a bypass path depending on the control signal. Then, the block
called “MERGE” sends the final result out into the next stage. In fact, all the MERGE
circuit needs to do is to check if the result is valid via completion detection. Because of
dual-rail nature, that’s very easy to accomplish this goal. We implemented this model in
all sub-stages of EX/WB stage. Though currently we only implemented this model in our

Fig. 14. Block diagram of EX/WB stage.

BANKED TLB WITH PREFETCHING MECHANISM

553

Fig. 15. The original concept of our EX/WB stage implementation model.

EX/WB stage, the proposed model can be implemented in all dual-rail circuits with sev-
eral execution paths! With this “DeMUX-MERGE pair” model, the EX/WB stage may
exploit data-dependent operations easily. Some operations of each of all the three sub-
stages may even be directly bypassed without waste of time. It should be pointed out that
the STATUS register will be updated in parallel with the WB sub-stage.

4. PERFORMANCE EVALUATION

In order to verify the correctness of the design, the ModelSim 6.0 was used to verify
the correctness of the functionality. Because our current core design is so simple, we
verified our design with random patterns and simple programs. Though it may be not
enough for more complex design, it may be enough for our current design. In fact, circuit
verification for the asynchronous system is very hard. It may be still a very good re-
search topic. Furthermore, we also tried to synthesis our gate-level design with Altera
Quartus II software. In order to fit the whole design, we selected Altera Cyclone
EP1C20F400C8 as the target FPGA. Table 2 shows the maximum path delay for each
stage. It’s very interesting to find that the ID stage is the critical stage of the whole de-
sign. That’s because the ID stage not only has to decode instructions but also to deal with
the branch instructions. The most important of all is that our core use a not very effi-
ciency method to deal with branch instructions. Furthermore, we may also find out that
without global clock each stage can work in different speed. In fact, the path delay of
each stage may vary with different operations. That’s quite different from synchronous
circuits which must work in worse case delay. That also means that you may replace any
parts of the circuits with faster design without considering the “clock” issue. The DI/QDI
circuit will automatically work fine with the new designed part.

Table 2. Maximum path delay of each stage.
Module Maximum Path Delay (ns)
Latch ~ 34

IF stage ~ 27
ID stage ~ 455
OF stage ~ 157

EX/WB stage ~ 216
Register ~ 19

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

554

Another important implementation issue is area. In order to compare how much ex-
tra area needed in dual-rail implementation, we compared our design with AE18 CPU
core which is an open source PIC18 compatible core implementation [22]. We synthe-
sized both design with Altera Quartus II. Both of the target FPGAs are Altera Cyclone
EP1C20F400C8. Table 3 shows the total logic elements needed of the both two designs.
The results show that the NCTUAC18 core needs about 3.5 times extra LEs than AE18
core. That’s because the NCTUAC18 core is a QDI implementation. However, it’s an
implementation tradeoff. It depends upon your implementation criteria!

Table 3. Comparison of LEs needed of both NCTUAC18 and AE18 core.
 NCTUAC18 Core AE18 Core

Logic Elements ~ 13,800 ~ 3,900

5. CONCLUSIONS AND DISCUSSIONS

Though there are several proposed asynchronous pipeline models, most asynchro-
nous processors are still implemented with micropipeline or modified micropipeline
models. That’s not only because it’s a Turing Award Lecture but also the implementation
cost consideration. In addition, because of dual-rail nature and higher timing constraints
coming from DI and QDI circuits, it’s very hard to implement microprocessor core with
DI or QDI circuits. Thus, most DI or ODI pipeline models are seldom used to implement
microprocessors. However, it is widely known that DI circuit has the highest reliability
and it is suitable to implement microcontrollers that may operate in variable environ-
ments. In addition, it does not need to consider the matching delay issue that may be en-
countered in implementation with bundled-data circuit such as micropipeline model. In
this paper, we provide a methodology to model a QDI PIC18 compatible microprocessor
core with dual-rail 4-phase pipeline in a reasonable cost. Though we just modeled PIC18
compatible core, the model can also be used on other simple microprocessor core. In fact,
we show a clear flow to design a QDI microprocessor core for simple microcontroller
with Verilog HDL and an easy implementation model.

Except the pipeline model itself, conditional branch handling is a very important
design issue for pipeline processors. Furthermore, it’s much harder for asynchronous
processors without centralized control. In this paper, we show an easy way to deal with
conditional branches for the dual-rail 4-phase pipeline microcontroller core. Though it’s
very simple, it’s enough for simple microcontroller core with such short pipeline.

We also propose a special bypass or variable execution path model as shown in Figs.
14 and 15. It is implemented in EX/WB stage. Though it looks like a traditional imple-
mentation, each path can execute in variable length of time because of its asynchronous
circuit nature. This proposed model really exploits data-dependent operations.

Furthermore, we also evaluate the maximum delay time of each stage and extra costs
that may be introduced. Though QDI or even most asynchronous circuits may cause
much extra cost, we still have to point out that it’s also a design tradeoff. In fact, it de-
pends upon your requirements. Asynchronous circuits may be a good solution for de-
signing mobile devices or systems that needs high reliability, low power and low EMI.

BANKED TLB WITH PREFETCHING MECHANISM

555

Our work may provide a microprocessor core implementation model for these require-
ments. Based on current work, we’ll focus on providing synthesizable 32-bit general
purpose processor with asynchronous circuits in the future.

REFERENCES

1. A. Davis and S. M. Nowick, “An introduction to asynchronous circuit design,”
Technical Report No. UUCS-97-013, Computer Science Department, University of
Utah, 1997.

2. J. H. Lee, W. C. Lee, and K. R. Cho, “A novel asynchronous pipeline architecture
for CISC type embedded controller − A8051,” in Proceedings of the 45th Midwest
Symposium on Circuits and Systems, Vol. 2, 2002, pp. 675-678.

3. A. J. Martin, M. Nyström, K. Papadantonakis, P. I. Pénzes, P. Prakash, C. G. Wong,
J. Chang, K. S. Ko, B. Lee, E. Ou, J. Pugh, E. V. Talvala, J. T. Tong, and A. Tura,
“The Lutonium: A sub-nanojoule asynchronous 8051 microcontroller,” in Proceed-
ings of the 9th International Symposium on Asynchronous Circuits and Systems,
2003, pp. 14-23.

4. D. Muller and W. Bartky, “A theory of asynchronous circuits,” in Proceedings of
International Symposium on the Theory of Switching, 1959, pp. 204-243.

5. J. Gunawardena, “A generalized event structure for the Muller unfolding of a safe
net,” in Proceedings of the 4th International Conference on Concurrency Theory,
1993, pp. 278-292.

6. J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design – A Systems
Prospective, Kluwer Academic Publishers, London, 2001, pp. 11-25.

7. I.E. Sutherland, “Micropipelines,” Turing Award Lecture, Communications of the
ACM, Vol. 32, 1989, pp. 720-738.

8. E. Brunvand, “The NSR processor,” in Proceedings of the 26th Hawaii Interna-
tional Conference on System Sciences, 1993, pp. 428-435.

9. J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver, and S. Temple,
“AMULET1: An asynchronous ARM microprocessor,” IEEE Transactions on Com-
puters, Vol. 46, 1997, pp. 385-398.

10. S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver, “AMU-
LET2e: An asynchronous embedded controller,” in Proceedings of the 3rd Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Systems,
1997, pp. 290-299.

11. S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. Day, J. Liu, and N. C. Paver,
“AMULET2e: An asynchronous embedded controller,” Proceedings of the IEEE,
Vol. 87, 1999, pp. 243-256.

12. S. B. Furber, D. A. Edwards, and J. D. Garside, “AMULET3: A 100 MIPS asyn-
chronous embedded processor,” in Proceedings of the International Conference on
Computer Design, 2000, pp. 329-334.

13. C. S. Choy, J. Butas, J. Povazanic, and C. F. Chan, “A new control circuit for asyn-
chronous micropipelines,” IEEE Transactions on Computers, Vol. 50, 2001, pp.
992-997.

14. D. K. Arvind, R. D. Mullins, and V. E. F. Rebello, “Micronets: A model for decen-

CHANG-JIU CHEN, WEI-MIN CHENG, HUNG-YUE TSAI AND JEN-CHIEH WU

556

tralising control in asynchronous processor architectures,” in Proceedings of the 2nd
Working Conference on Asynchronous Design Methodologies, 1995, pp. 190-199.

15. T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takmura, “TITAC: Design of
a quasi-delay-insensitive microprocessor,” IEEE Design and Test of Computer, 1994,
pp. 50-63.

16. A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno, and
T. Nanya, “TITAC-2: A 32-bit asynchronous microprocessor based on scalable-de-
lay-insensitive model,” in Proceedings of the International Conference on Computer
Design, 1997, pp. 288-294.

17. A. J. Martin, M. Nyström, and C. G. Wong, “Three generations of asynchronous
microprocessors,” IEEE Design and Test of Computers, 2003, pp. 9-17.

18. C. J. Chen, C. C. Shiu, and M. S. Wu, “The design of asynchronous processor,” in
Proceedings of International Computer Symposium, 2002.

19. R. Kol and R. Ginosar, “Kin: A high performance asynchronous processor architec-
ture,” in Proceedings of the 12th International Conference on Supercomputing, 1998,
pp. 433-440.

20. C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven, “Hades − An asyn-
chronous superscalar processor,” in Proceedings of IEE Colloquium on Design and
Test of Asynchronous Systems, 1996, pp. 10/1-10/6.

21. R. F. Sproull, I. E. Sutherland, and C. E. Molnar, “The counterflow pipeline proces-
sor architecture,” IEEE Design and Test of Computers, 1994, pp. 48-59.

22. S. Tan, “AE18 CPU CORE,” http://www.opencores.org/projects/ae18, 2003.

Chang-Jiu Chen (陳昌居) received his Ph.D. degree in
Computer Science from University of Oklahoma, in 1993, and his
B.S. and M.S. degrees in Computer Engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 1980 and 1986, re-
spectively. He has been an Associate Processor of Department of
Computer Science, National Chiao Tung University, Hsinchu,
Taiwan, since 1994. His research interests include asynchronous
circuit design, computer architecture, digital system, microproc-
essor, and parallel processing.

Wei-Min Cheng (鄭緯民) received his B.S. and M.S. de-
grees in Computer Science from Tatung Institute of Technology,
Taipei, Taiwan, in 1995 and 1997, respectively. He is currently a
Ph.D. student in Computer Science in National Chiao Tung
University, Hsinchu, Taiwan. His research interests include com-
puter architecture, asynchronous system design, microprocessor
and SoC.

BANKED TLB WITH PREFETCHING MECHANISM

557

Hung-Yue Tsai (蔡宏岳) received his B.S. degree in Com-
puter Science from National Central University, Chungli, Tao-
yuan, Taiwan, in 2004, and M.S. degree in Computer Science from
National Chiao Tung University, Hsinchu, Taiwan, in 2007. He is
currently a Ph.D. student in Computer Science in National Chiao
Tung University, Hsinchu, Taiwan. His research interests include
asynchronous circuit & system design, SoC, VLSI design auto-
mation, network security, and computer architecture.

Jen-Chieh Wu (巫仁傑) received his M.S. degree in Com-
puter Science from National Chiao Tung University, Hsinchu,
Taiwan, in 2006. He is currently an R&D engineer in Wistron
Corporation, Taipei, Taiwan. His research interests include VLSI
de- sign, asynchronous circuit design, microprocessor, and SoC.

