
International Journal of Pattern Recognition
and Artificial Intelligence
Vol. 23, No. 2 (2009) 331–353
c© World Scientific Publishing Company

A FAST MULTISPRITE GENERATOR
WITH NEAR-OPTIMUM CODING BIT-RATE

I-SHENG KUO∗ and LING-HWEI CHEN†

Department of Computer Science
National Chiao Tung University, 1001 Ta Hsueh Rd.

Hsinchu, Taiwan 30050, R. O. C.
∗sasami@debut.cis.nctu.edu.tw

†lhchen@cc.nctu.edu.tw

Sprite coding, which can increase the coding efficiency of backgrounds greatly, is a novel
technology adopted in MPEG-4 object-based coding. Due to the geometric transforma-
tion applied to each nonreference frame in the procedure of sprite coding, the gener-
ated sprite is distorted and the available view angles relative to the reference frame are
restricted. These problems can be resolved by using multiple sprites. An optimal mul-
tisprite generator has been proposed by Farin et al., but the optimal method requires
high computation in the sprite coding cost. To treat this disadvantage, a fast multisprite
partition algorithm is proposed in this paper based on frame translations and scalings.
The proposed algorithm divides a video sequence into several subsequences, and a sprite
is generated from each subsequence. The experimental results show that the executing
speed of the proposed method is increased by 10 to 190 times than the optimal method,
with the total size of generated sprites is slightly higher and the qualities of generated
sprites are preserved.

Keywords: Multiple sprites; reference frame; sequence splitting; sprite generation; back-
ground mosaic; MPEG-4.

1. Introduction

MPEG-44 had adopted a novel technique to code a series of backgrounds belonging
to a scene into a single panoramic image, which is often denoted as a “sprite”. The
constructed sprite and some specified parameters are transmitted to the receiver,
and then a decoder can reconstruct the series of backgrounds by the transmitted
information. Since the sprite is transmitted only once, this technique can achieve
very low bit-rate with good quality. Aside from the high coding efficiency of sprite
coding, the generated sprite is also useful for segmenting moving objects.3 The
extracted moving objects and the sprite itself can be used in video summarization.6

A sprite is constructed in the encoder by a sequence of complex algorithms called
a “sprite generator”. Many sprite generators7,8,10–12 have been proposed, most of

†Author for correspondence

331

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



332 I.-S. Kuo & L.-H. Chen

Fig. 1. The framework of the sprite generator in MPEG-4 VM.

them are based on a framework provided by MPEG-4 VM.5 In the framework shown
in Fig. 1, a sprite generator consists of three parts: a global motion estimator, a
frame warper and a sprite blender. The global motion estimator estimates the
camera motion of each input frame relative to the camera view of a selected reference
frame, and the camera motion is represented by parameters of a certain geometric
model. These parameters are known as global motion parameters (GMP) and will
be sent to the receiver along with the generated sprite. Then each input frame is
geometrically transformed (also called warped) to the reference coordinate system
of the sprite that is also the coordinate system of the selected reference frame to
eliminate the effect of the camera motion. Each warped frame is then blended into
the sprite sequentially by the sprite blender.

The performance of a sprite generator is limited to the perspective motion model
applied in the MPEG-4 VM’s framework.2 The perspective model projects each
frame of a video sequence into a planar reference coordinate system, which is the
coordinate system of the reference frame, as shown in Fig. 2. The focal length of the
camera is f and the reference imaging coordinate system for a sprite is assumed to
be the first frame that is denoted as frame A in Fig. 2. All the following frames must
be projected to this reference system by geometric transformation. As the camera
rotates, transformed frames are geometrically distorted, this phenomenon can be

frame A transformed frame B on sprite 

frame C 

f

sprite coordinate system 

camera 

frame B 

camera rotation 

Fig. 2. A sprite coordinate system and the geometric distortions of transformed frames.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-001.jpg&w=360&h=94


A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 333

found between frame B and transformed frame B. If camera rotation continues,
from Fig. 2, we can see that frame C cannot be projected to the reference system.
Figure 3 shows a geometric distorted frame. Frame A shown in Fig. 3(a) is employed
as the reference frame of the sprite coordinate system. Figure 3(b) shows a frame
B, and the transformed frame B relative to frame A is shown in Fig. 3(c).

Theoretically, the perspective model employed in MPEG-4 VM can cover 180◦

of view. However, the useable viewing angle is much smaller in practice, since the
geometric distortion increases rapidly as the camera rotates away from the reference
frame. Frames away from the reference frame are forced to be recorded by extremely
large resolution, but this resolution is useless because the sprite must be scaled down
to display by the decoder.

In order to overcome the resolution-increasing effect, Massey and Bender pro-
posed to use the middle frame of a video sequence as the reference frame.9 The
generated sprite will be much symmetric and the boundary area of the generated

(a) (b)

(c)

Fig. 3. Demonstration of geometric distorted frame due to camera rotation. (a) Original frame
A. (b) Original frame B. (c) Transformed frame B.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-003.jpg&w=170&h=139
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-004.jpg&w=169&h=139
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-005.jpg&w=172&h=142


334 I.-S. Kuo & L.-H. Chen

sprite becomes much smaller if the background of the frames in the video sequence
pans toward only one direction. On the other hand, this method only slows down
the increasing effect of the sprite size, but the range of view angle is not extended.

Apart from the geometric distortion, the effect of camera zoom-in and zoom-
out will highly affect the generated sprite and the reconstructed frames.2 Figure 4
illustrates how camera zoom-in operation affects generated sprite and reconstructed
frame. Since the reference coordinate system is based on the reference frame, the
zoomed-in frame has to be scaled down in order to be merged into the sprite.
Details of the zoomed-in frame are lost forever during the down-sampling and the
reconstructed frame is degraded. In contrast to the camera zoom-in, the camera
zoom-out operation makes the generated sprite looks blur after the zoomed-out
frame is blended into the sprite. As Fig. 5 shows, the zoomed-out frame has to
be up-sampled before blending into the sprite, this will make the blended sprite

zoomed-in frame 

reconstructed 
zoomed-in frame 

reference frame 

down-sampling 

up-sampling 

Fig. 4. Effect of camera zoom-in with the details of the reconstructed frame lost.

zoomed-out frame 

reference frame 

up-sampling 

Fig. 5. Effect of camera zoom-out with the sprite blurred.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 335

blurred. Furthermore, the up-sampled frame will occupy a very large area in the
sprite, this causes the area of the generated sprite to be expanded rapidly.

In order to solve the above-mentioned problems, a technique using multiple
sprites was proposed by Farin et al.2 In their work, the background of a scene is
stored by multiple sprites. In order to fit the MPEG-4 standard, a video sequence
is divided into several subsequences, and sprites of all subsequences are generated
independently. Figure 6 shows the geometric distortions using two sprites. In con-
trast to the geometric distortion using only one sprite shown in Fig. 2, the geometric
distortion of frame B in sprite #2 becomes smaller. Furthermore, frame C, which
is unable to be projected into sprite #1 can be projected into sprite #2 now. Full
360◦ of camera view may be covered if more sprites are used. Note that any single
sprite must not cover 90◦ or more of camera rotation over any direction to prevent
an effect called “degeneration”.1

Farin et al.2 have shown that using multiple sprites not only benefits the wider
range of camera view angles but also reduces storage for the generated sprites. This
means that storage required for multiple sprites is smaller than that for only one
sprite.

As mentioned above, before generating multiple sprites, a video sequence must
be divided into several subsequences. Each frame in the video sequence can be
a partition position from which the video sequence is divided into subsequences.
Thus, a partition algorithm is needed. For a video sequence with N frames, there
will be 2N−1 combinations of partitions. Not only the partition position but also the
reference frame of each subsequence must be selected by the partition algorithm.
The selection of reference frames greatly affects the size of generation sprites. Each
frame in a subsequence can be selected as the reference frame of the subsequence.
If the sequence is divided into K subsequences, each subsequence has Mi frames,
where i is the index of a subsequence. There will be

∏K
i=1 Mi selections for reference

frames. Farin et al. proposed an optimal multiple sprite partition algorithm. A cost

Fig. 6. Geometric distortions using two sprites.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-010.png&w=271&h=149


336 I.-S. Kuo & L.-H. Chen

function representing the total area of all generated sprites was defined, and a
smart exhaustive search through the entire partition positions and reference frame
possibilities was proposed. Since the partition algorithm is an exhaustive search, it
finds the optimal solution. However, it is very time-consuming.

In our paper, a fast multiple sprite partition method will be proposed. The
proposed method reduces the searching time for finding an applicable partition
for multiple sprite generation, and the memory required during the searching is
also decreased in contrast to the optimal partition method. Experimental results
show that the coding cost of the generated sprites using the proposed method is
near-optimum, i.e. only slightly higher than that in the optimal method.

The proposed method consists of two algorithms: video partition algorithm and
a reference frame selection algorithm. The video partition algorithm is developed
based on the characteristics of frame translations and scaling. The frame trans-
lation, which is caused by camera motion and also denoted as global translation,
represents the movement of the background of a frame in the x- and y-directions
relative to a reference frame. The global translations across frames are accumu-
lated to represent the estimated position of a frame projected in a sprite. Since the
geometric distortion depends on the accumulated global translation relative to the
reference frame, the accumulated global translation provides a good measurement
on the distortion. The effect of frame scaling caused by camera zoom-in or zoom-out
can be employed in a similar way.

The reference frame selection algorithm is developed based on the idea of Messey
and Bender’s work.9 In their work, the middle frame of a video sequence is suggested
as the reference frame, since its background has higher possibility to be located at
the center of a generated sprite. The proposed algorithm extends this idea by taking
the frame with its background most likely being at the center of the corresponding
sprite as the reference frame.

The rest of the paper is organized as follows. Section 2 describes the Farin et al.’s
optimal partition method. In Sec. 3, the effect of frame translations and scalings
are carefully analyzed and appropriate partition points and reference frames are
explained. The proposed fast multisprite algorithm is presented in Sec. 4. Section
5 shows the experimental results and comparisons with the optimal method. Com-
parison of time and space complexity are made in Sec. 6. Conclusions are presented
in Sec. 7.

2. Farin et al.’s Optimal Partition Algorithm

In order to find the optimal partition of a video sequence, an evaluation of par-
tition results must be selected. In order to reduce the computational complexity,
the area of the bounding box around a sprite is chosen to be the evaluation cost
function in Farin et al.’s work. Their optimal partition algorithm is divided into two
steps. The first step computes the minimal costs for coding sprites of all possible

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 337

subsequences and finds the optimal reference frames of every possible subsequence.
The second step decides the optimal partition positions which minimize the coding
costs computed in the first step. In the following, we will give a brief review for
their optimal partition algorithm.

2.1. Coding costs computing and reference frames finding

A coding cost matrix holding the coding costs of all possible combinations of sub-
sequences are computed in this step. For a subsequence beginning at frame i and
ending at frame k, a sprite Sr

i;k can be generated for a reference frame r with
i ≤ r ≤ k. The coding cost for coding Sr

i;k is denoted as ‖Sr
i;k‖. ‖Sr

i;k‖ of all possible
combinations of i, k and r are computed. The number of possible combinations is
huge and this computation will take a lot of time. After computing all ‖Sr

i;k‖, the
optimal reference frame r∗i;k of a subsequence beginning at frame i and ending at
frame k can be selected by

r∗i;k = arg min
r

‖Sr
i;k‖. (1)

The minimized coding cost of this subsequence, ‖Si;k‖ = minr ‖Sr
i;k‖, is also kept.

The optimal reference frames for every possible subsequence are found and
stored in upper triangular matrixes indexed by i and k.

2.2. Optimal partitioning

In order to obtain the optimal partition, not only the starting frame (partition
position) of each subsequence but also the number of subsequences must be decided.
If the video is partitioned into n subsequences, n − 1 starting frames need to be
decided since the first subsequence always starts at frame 1. For a video with N

frames, a partition for the video can be represented by

P = {(1, p1 − 1), (p1, p2 − 1), (p2, p3 − 1), . . . , (pn−1, N)}, (2)

where pi is the starting frame of subsequence i + 1. The sprite coding cost of a
video sequence using a partition P is the summation of sprite coding costs of all
partitioned subsequences, and the optimal partition P ∗ is selected as

P ∗ = argmin
P

∑
(i,k)∈P

‖Si;k‖. (3)

The minimization problem is solved efficiently. If the video contains only the
first frame, there is only one possible partition P = {(1, 1)} and the optimal sprite
coding cost of the video is ‖S1;1‖ which is denoted as c1. If the video contains more
than one frame, the remaining frames are then added one by one. When adding

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



338 I.-S. Kuo & L.-H. Chen

frame k, the optimal sprite coding cost ck for the sequence ending at frame k can
be calculated as

ck = min
i∈[1,k]

{ci−1 + ‖Si;k‖}

pk = arg min
i∈[1,k]

{ci−1 + ‖Si;k‖},
(4)

where c0 is set to zero. The frame pk is the best partition point to obtain the
minimal cost for each frame k.

After calculating cN which is the minimal sprite coding cost for the entire
sequence, the optimal partition can be obtained by back tracking the stored p-values
from pN . That is, the entire sequence is best partitioned at frame pN to form two
subsequences (1, pN − 1) and (pN , N). The former subsequence is further divided
at p(pN−1), which is the best partition point of subsequence (1, pN − 1), and so on.

3. Proposed Candidate Partition Points Selection and Reference
Frames Finding Methods

Farin et al.’s method achieved optimal partition result with high computational
complexity, even if their efficient algorithm is applied. If we can reduce the possible
combinations of subsequences and reference frames, the computational complexity
will be reduced. In the following sections, we will first analyze the accumulated
translations and scalings. Based on the accumulated translations and scaling, some
candidate partition points and reference frames are then located first. Finally, a
method is provided to get a near-optimal partition with similar bitrate to Farins’.

3.1. Analysis of accumulated translation

As mentioned previously, the geometric projection distortion comes from the camera
motion, which is illustrated in Fig. 2. Farin et al.’s experiments2 also show that
the sprite area grows exponentially as camera panning angle increases. Thus the
selecting of partition frames must be highly related to the effect of camera panning.
In order to capture the effect of camera panning, the global translations between
video frames are calculated and analyzed.

The global translation between two frames is a measurement of background
displacement. Let frames i and j be the two frames to be measured and ⇀

p = (x, y)
be a pixel in frame j, the displacement of ⇀

p relative to frame i is defined as

⇀

dp = Tji(
⇀
p) − ⇀

p, (5)

where Tji is the geometric transformation applied in the frame warping which con-
verts locations of pixels from the coordinate of frame j to frame i. Due to the
effect of geometric transformation, the displacements of all pixels in frame j are

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 339

not consistent. In order to get a fast estimation of the frame displacement, the
average of four corner displacements is used, that is,

⇀

t ji =
1
4

∑
P∈{LT,RT,LB,RB}

⇀

dP , (6)

where LT, RT, LB, and RB are the left-top, right-top, left bottom and right bottom
pixel of frame j. The

⇀

t ji is considered as the global translation between frames i

and j.
The global translations of sequence “stefan” are illustrated in Fig. 7(a). The

first frame is set to be the reference frame. The calculated translations of frames
show their background displacements relative to the reference frame. A positive
translation in the x-axis represents a frame displacement in the right direction, i.e.
the frame is warped to the right side of the reference frame. A negative translation in
the x-axis denotes a displacement in the left direction, and the y-axis translations
can be denoted similarly. In Fig. 7(a), one can see that the view of background
moves toward the right direction in the first 30 frames. Then it moves left and
crosses the first frame in the next 90 frames. And then it moves toward the right
again until frame #205, finally it moves toward the left in the rest of frames.

The figure also shows that the view of background moves toward the left quickly
after frame #260. The magnitudes of global translations increase quickly from 100
to over 10,000 pixels. Actually, the magnitudes can be million pixels in short frames
and tend to be infinity when a frame is unable to be projected into the first frame.
The huge difference of magnitudes between frames is the result of huge geometric
distortions when projecting a frame into the first frame with a view angle far away
from the projecting frame. The huge difference makes it difficult to analyze the
effect of camera translations from the global translations.

0 100 200 300
-10000

-8000

-6000

-4000

-2000

0

2000

frame number

gl
ob

al
 t

ra
ns

la
tio

n

sequence stefan

X-axis translation
Y-axis translation

0 100 200 300
-1000

-800

-600

-400

-200

0

200

400

frame number

a
cc

um
ul

a
te

d
tr

a
ns

la
tio

n

sequence stefan

X-axis translation
Y-axis translation

(a) (b)

Fig. 7. Background displacements of stefan. (a) Global translations. (b) Accumulated
translations.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



340 I.-S. Kuo & L.-H. Chen

In order to analyze the camera translations efficiently, accumulated translation is
proposed. The accumulated translations are calculated from the local translations,
which represent the translation from one frame to its adjacent previous frame and
can be denoted as

⇀

t j(j−1) in Eq. (6). Since local translations are less geometric-
distorted than the global translations, they can be combined into an accumulated
translation, ⇀

aji, to represent a less-distorted global translation between frames j

and i, that is,

⇀
aji =

j∑
k=i+1

⇀

t k(k−1). (7)

Note that ⇀
aji can be computed by a recursive procedure:

⇀
aji = ⇀

a(j−1)i +
⇀

t j(j−1), (8)

where ⇀
aii is defined to be (0, 0).

The accumulated translations for sequence “stefan” are illustrated in Fig. 7(b).
In contrast to global translation, magnitudes of accumulated translations are limited
into a reasonable range. The details of camera movements are still preserved, and
the translations of all frames can be calculated, even for those frames that cannot
be projected into the first frame.

3.2. Accumulated translation based feasible partition point

finding method

One of the goals of a multisprite partition algorithm is to find some partition points
to split the video sequence into several subsequences. Since the geometric distortions
are the major issue of using multiple sprites, camera motion must be considered
first. The following paragraph demonstrates the finding of feasible partition points,
FPX, based on accumulated translations in the x-axis direction. In a similar way, we
can also find the feasible partition points, FPY, based on accumulated translation
in y-axis direction.

Figure 8 shows the x-axis accumulated translations which have been shown in
Fig. 7(b). The camera pans to the right from the first frame to frame 29, then pans to
the left until frame 107. When the camera begins the left-panning, the backgrounds
of frames from 29 to 69 go back through an area that has been recorded into the
current sprite. Since the background area already exists in the sprite, merging
these frames into the sprite will not expand the sprite area. Thus, frames from 29
to 69 must not be selected as candidate partition points, and frames 70 to 107 are
considered as candidate partition points.

Now, the camera pans to the right from frame 107 to 204, and backgrounds
of frames from 107 to 183 have been recorded, thus they will not be considered as
candidate partition points. For similar reasons, frames 204 to 244 are not considered
as candidate partition points, and frames after 245 are considered as candidates.
The candidates of partition points are illustrated by thick lines in Fig. 8. The

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 341

0 100 200 300
-1000

-800

-600

-400

-200

0

200

400

frame number

a
cc

u
m

u
la

te
d
 t
ra

n
sl

a
tio

n

sequence stefan

#29

#107

#204#183

#242
#245#70

Fig. 8. Finding feasible partition points.

candidates of partition points can be grouped into several pieces, and each piece
covers a small range of view angles. Since the covered view angle range in a piece is
small, frames in the same piece should be merged into a sprite. The first frame in
each piece is considered as a feasible partition point. If the candidates are grouped
into K pieces, there will be (K−1) feasible partition points, this will produce 2K−1

combination of possible partitions. In Fig. 8, feasible partition points are frames 70,
183 and 245. Comparing with Farin et al.’s result, which has an optimum partition
point at frame 242, we have a feasible partition point at frame 245 which is very
close to frame 242.

The above finding method is applied to both x- and y-axis directions, and two
sets of feasible partition points (x- and y-axes) are found. The final feasible par-
tition points are the union of the x- and y-axis partition points (FPX and FPY).
Experimental result of a testing sequence based on accumulated translations in
both directions is given in Sec. 5.

3.3. The proposed scaling factor based feasible partition point

finding method

Using an accumulated translation exploits the effect of camera panning to partition
a sequence. Therefore, if a sequence does not have camera panning, it will not be
partitioned. Figure 9 shows the accumulated translations of sequence “tabletennis”
from frame #1 to #131. The frames of the sequence are continually zoomed out
with no camera panning. One can see that the values of accumulated translations
fall into a very narrow range, that is, from +4 to −6. In this case, the accumulated
translations are useless, and the effect of scaling must be considered.

The effect of scaling between two geometric transformed frames can be directly
measured by the ratio of width or height of the transformed frames. However, due
to the effect of geometric transformation, the width ratio and height ratio of two
frames are not consistent. Instead of width or height ratio, ratio of area of two

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



342 I.-S. Kuo & L.-H. Chen

0 50 100
-6

-4

-2

0

2

4

frame number

a
cc

u
m

u
la

te
d
 t
ra

n
sl

a
tio

n

sequence tabletennis

X-axis translation
Y-axis translation

Fig. 9. Accumulated translations of “tabletennis”.

Fig. 10. Frame area calculation of a geometric-transformed frame.

frames is chosen in this paper. Area is the product of width and height, and area
ratio will combine both the effect of width and height ratios. This makes area ratio
more robust than width or height ratio.

An ordinary geometric transformed frame is illustrated in Fig. 10. The four
corners of the transformed frame are A, B, C and D and the corresponding coor-
dinates are denoted as (xP , yP ), where P ∈ {A, B, C, D}. A fast approximation of
the transformed frame area is to calculate the area of its bounding box, which is
illustrated in a dash-lined rectangle in Fig. 10. However, one can see that the trans-
formed frame is completely inside its bounding box. This makes the approximated
transformed frame area oversized. For the purpose of making a better approxima-
tion, the bounding box is revised by correcting the boundaries of the bounding box
as follows:

left =
xA + xD

2

right =
xB + xC

2

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-012.jpg&w=274&h=128


A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 343

top =
yA + yB

2

bottom =
yC + yD

2
.

(9)

The revised bounding box is shown by the solid-lined rectangle in Fig. 10. Clearly,
the revised bounding box is closer to the actual area. Now the approximated area
of the transformed frame j with frame i as a reference frame can be calculated by

AREAji = (right − left) × (bottom − top). (10)

After obtaining the areas of the transformed frames, the scaling factor of the
transformed frame j versus the transformed frame i is defined as

sji =
√

AREAji

AREAii
. (11)

Since area is the product of width and height, a square root is applied to make
the scaling factor linear. Similar to the computation of accumulated translations,
the accumulated local scaling factors are employed to increase the robustness of
scaling factor. The accumulated scaling factor of the transformed frame j versus
the transformed frame i is defined as

asji =
j∏

k=i+1

sk(k−1) = as(j−1)i × sj(j−1), (12)

where asii is defined to be one. The accumulated scaling factors of the sequence
“tabletennis” are illustrated in Fig. 11.

As mentioned previously, the quality degradation of a reconstructed frame is
higher as the scaling between the frame and its reference frame increases. Therefore,
the accumulated scaling of frames in a single sprite should be limited. This can be

Fig. 11. Accumulated scaling factors of “tabletennis”.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-019.jpg&w=176&h=149


344 I.-S. Kuo & L.-H. Chen

done by limiting the ratio of the maximum and minimum accumulated scaling
factors of frames in a sprite generated from frame k to h. That is,

max
i

{asik|k < i ≤ h}
min

i
{asik|k < i ≤ h} < t, (13)

where t is a threshold. According to Eq. (13), we process frames in a video sequence
sequentially. When Eq. (13) is not satisfied at a certain frame h, frame h is con-
sidered as a feasible partition point. We keep processing the remaining frames with
frame h as the starting frame to find all feasible partition points based on Eq. (13).
In our experiment, the threshold t is set to 1.8.

The fixed threshold t in Eq. (13) has a disadvantage: the scaling ratio of the
last partition will be smaller than that of the other ones. In the other words, the
last partition covers less scaling range than others. This can be solved by applying
an adjusted threshold

t′ = L

√
max

i
{asi1|1 ≤ i ≤ N}, (14)

where L is the number of feasible partition points found based on Eq. (13) and
threshold t, and N is the number of frames in the video sequence. The feasible
partition points, FPS, based on the accumulated scaling factors are searched again
by recalculating Eq. (13) with the adjusted threshold t′.

Figure 11 shows the feasible partition points found based on the accumulated
scaling factors. The selected feasible partition points of sequence “tabletennis” are
frames #51 and #78, which are marked by squares in Fig. 11. The optimal partition
method2 splits the sequence in frames #50 and #76, which are marked by triangles
in Fig. 11.

3.4. The proposed reference frame finding method

The second goal of a multisprite partition algorithm is to find a good reference
frame for each partitioned subsequence. In order to cover a larger view angle from
both directions of panning, the frame with its view at the center of the view in the
subsequence would be a good reference frame. Massey and Bender [11] suggested
using the middle frame in a sequence as the reference frame, but the middle frame
is not always at the center of view in a sequence. Here, we provide a method to get
the reference frame with view near the center.

When a subsequence is partitioned, its maximum and minimum values of x-axis
accumulated translations can be found. The maximum value represents the right
view boundary, and the minimum value represents the left view boundary. The
mean of the maximum and the minimum values will represent the view center, and
the frame with accumulated translation closest to the mean value is selected as the
reference frame.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 345

4. The Complete Algorithm

The proposed multisprite partition algorithm is based on the methods described
in Sec. 3. First, the accumulated translations and accumulated scaling factors are
calculated and the feasible partition points based on accumulated translations and
accumulated scaling factors are found separately. Then all feasible partition points
based on translation and scaling are considered as candidate partition points. After
finding the candidate partition points, the reference frames of all possible partitions
are found. Based on these candidate partition points and reference frames, the
second step of Farin et al.’s method is applied to obtain the final result.

4.1. Candidate partition points and reference frames finding

Let (X, Y ) be the size of frame i and Ti(i−1) be the geometric transformation
converting locations of pixels from the coordinates of frame i to i − 1. Let (1, 1),
(1, Y ), (X , 1), (X , Y ) be its four corners. Using Eqs. (5) and (6), we can obtain the
local translation

⇀

t i(i−1). Based on the local translation, we can get the accumulated
translations using Eqs. (7)–(8). Meanwhile, the locations of transformed corners in
each transformed frame are used to find the revised bounding box via Eq. (9).
The approximated area and accumulated scaling factors are calculated by applying
Eqs. (10)–(12). Then three sets of feasible partition points (FPX, FPY, FPS) are
found by the method described in Secs. 3.2 and 3.3. And the candidate partition
points is set to be the union of these three sets of feasible partition points.

After obtaining the candidate partition points, the reference frames of all subse-
quences in all possible partitions are found using the method described in Sec. 3.4.

4.2. Reference frame validation

Although the reference frames are obtained in the previous section, the selected
reference frame may be 1–3 frames away from the reference frame found by Farin
et al. Since the size of a generated sprite is heavily affected by its reference frame, to
get a more accurate reference frame, the neighboring frames of the selected reference
frame are checked. If any of them achieves better result than the selected reference
frame, the reference frame will be replaced by it.

Here, two methods using different validations for sprite area are proposed to find
better reference frames. The first method is called normal validation. The bounding
box of the corresponding sprite using each neighboring frame is calculated. Then
the neighboring frame resulting in a minimal size of bounding box is selected as
the validated reference frame. Since every frame in the current subsequence must
be geometrically transformed toward each neighboring frame, this validation step
achieves better performance with higher computational complexity.

The second method called fast validation tries to take a shortcut. Four boundary
frames in the current subsequence are selected according to their accumulated trans-
lations: the frames with maximum and minimum values of x-axis translation, and

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



346 I.-S. Kuo & L.-H. Chen

the frames with maximum and minimum values of y-axis translation. For each
neighboring frame, only these four boundary frames are geometric transformed
toward the neighboring frame. Then a bounding box covering these four transformed
frames is found. The neighboring frame resulting in the corresponding bounding box
with minimum area is taken as the validated reference frame.

4.3. Sequence partition

In order to find the proper partition points, the optimal partition algorithm2

described in Sec. 2.2 is applied. The algorithm is originally developed to find the
optimal partition from a coding-cost matrix made up by costs of all combinations
of possible subsequences. In our method, the sequence is partitioned only in the
candidate partition points found in Sec. 4.1. Therefore, a much smaller coding-cost
matrix can be made up.

Assume that M candidate partition points {v1, . . . , vM} are found in Sec. 4.1.
The first and the last frame N are added by setting v0 = 1 and vM+1 = N + 1 to
form a node set V = {v0, . . . , vM+1} of size M + 2. The area of bounding box bi;j

of subsequence (vi, vj − 1) beginning at frame vi and ending at frame vj − 1 for all
possible vi, vj ∈ V and i < j can be obtained from the minimal area bounding box
(the bounding box with validated reference frame) found in Sec. 4.2.

An upper triangle coding-cost matrix C with size (M + 2) × (M + 2) can be
made by assigning

ci;j =

{
bi;j if i < j

0 otherwise
, (15)

where i and j are indices of two elements in V .
The matrix C is applied to Eq. (3) as the sprite coding-cost matrix ‖Si;k‖. Then

based on Eqs. (3) and (4), the partition of sequence can be found using the method
described in Sec. 2.2.

5. Experimental Results

Identical global motion parameters of testing sequences should be used in all com-
petitive methods to show the performance. However, the estimated global motion
parameters will be different according to various estimation methods, different fea-
ture points and initial guesses used in the gradient descent algorithm. Since it is
impossible to acquire the same estimated global motion parameters as those in
Farins’ paper, we choose to implement their optimal method. The global motion
parameters are generated in advance by using our previous work on a high visual
quality sprite generator,7 and the same parameters are used in both the proposed
and the optimal methods. The testing platform is an IBM laptop with mobile Pen-
tiumIII 800MHz CPU and 640MB of RAM. Both methods are implemented and
simulated by Matlab. The results of using a single sprite are also included as a
comparison.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 347

Table 1. Experimental results of sequence “stefan” (perspective).

Partitions Total Sprite Size Executing Time
(Reference Frames) (Bytes) (Seconds)

Using a single sprite (frame
#1∼#250)

— 2,862,240 —

Farin et al.’s optimal method 1–242 (57), 243–300 (265) 766,350 780
Proposed method with

normal validation
1–244 (60), 245–300 (266) 777,160 44

Proposed method with fast
validation

1–244 (53), 245–300 (265) 793,529 4.1

Table 2. Experimental results of sequence “stefan” (affine).

Partitions Total Sprite Size Executing Time
(Reference Frames) (Bytes) (Seconds)

Using a single sprite (frame
#1∼#300)

— 1,450,446 —

Farin et al.’s optimal method 1–245 (81), 246–300 (283) 604,214 766
Proposed method with

normal validation
1–244 (58), 245–300 (261) 608,685 44

Proposed method with fast
validation

1–244 (57), 245–300 (259) 633,953 4.1

Table 3. Experimental results of sequence “tabletennis”.

Partitions Total Sprite Size Executing Time
(Reference Frames) (Bytes) (Seconds)

Using a single sprite — 620,044 —
Farin et al.’s optimal

method
1–49 (48), 50–75 (52), 76-131 (76) 177,766 95

Proposed method
with normal
validation

1–51 (9), 52–77 (57), 78–131 (83) 190,150 9.3

Proposed method
with fast validation

1–51 (4), 52–77 (52), 78–131 (78) 220,964 2.7

Tables 1 and 2 show the results of sequence “stefan” using perspective and affine
motion model respectively. Table 3 shows the results of sequence “tabletennis” in
perspective model. Note that the experimental results of the optimal method are
different from the results described in their paper2 because the global motion param-
eters of sequences are not the same. In all tables, we can see that Farins’ optimal
method achieves excellent performance. The total sprite sizes of all sequences by the
optimal method are superior to the sizes of using a single sprite. The performance of
using multiple sprites is obvious. Results also show that using affine motion model
slightly reduces execution time because the affine transformation is a bit faster than
perspective transformation, but the execution time of the optimal method is still
very slow.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



348 I.-S. Kuo & L.-H. Chen

The results of the proposed method with normal validation and fast validation
are also listed in tables. The proposed method divides the sequence “stefan” into
partitions at frame 245 and divides the sequence “tabletennis” into three partitions
at frames 52 and 78. The partition points of the proposed method are very close
to the partition points of using the optimal method, which is frame 243 in “stefan”
and frames 50 and 76 in “tabletennis”.

The total sprite sizes using the proposed method are only slightly higher than
those using the optimal method, but the executing time of the proposed method are
greatly reduced. The total sprite sizes of two testing sequences using the proposed
method with normal validation are 777,160 and 190,150 pixels respectively, which
are only 1.41% and 6.97% higher than total sprite sizes of using the optimal method.
The executing times are reduced from 780 seconds to 44 seconds, and 95 seconds to
9.3 seconds. The execution speed is increased over ten times. If the fast validation
method is applied, the executing times can be further decreased to 4.1 s and 2.7 s,
which is 35–190 times faster than that of the optimal method. In contrast to the
reduction of executing time, the total sprite size of using fast validation method is
not increased much.

The generated sprites of sequence “stefan” by the optimal method and the
proposed methods are shown in Fig. 12 respectively. We can see that the generated
sprites are perceptually similar, excepting for the dimensions of sprites. The effects
of geometric distortions are lightened and the qualities of generated sprites are

(a)

Fig. 12. Generated sprites of sequence “stefan” by different methods. (a) Farin et al.’s optimal
method. (b) Proposed method with normal validation. (c) Proposed method with fast validation.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-031.jpg&w=359&h=213


A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 349

(b)

(c)

Fig. 12. (Continued )

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-032.jpg&w=358&h=231
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-033.jpg&w=358&h=236


350 I.-S. Kuo & L.-H. Chen

(a)

(b)

(c)

Fig. 13. Generated sprites of sequence “tabletennis” by different methods. (a) Farin et al.’s
optimal method. (b) Proposed method with normal validation. (c) Proposed method with fast
validation.

preserved. The generated sprites of sequence “tabletennis” by different methods
are shown in Fig. 13.

The experimental results of sequence “building” are listed in Table 4. The
sequence consists of wide camera movements in y-axis direction and continuous
panning in x-axis direction. From Table 4, one can see that the proposed method
works well. Figure 14 shows the generated sprites of the sequence.

Table 4. Experimental results of sequence “building”.

Partitions Total Sprite Size Executing Time
(Reference Frames) (Bytes) (Seconds)

Farin et al.’s optimal
method

1–12 (10), 13–39 (31), 40–65 (56) 607,265 22

Proposed method
with fast validation

1–29 (10), 30–41 (37), 42–65 (56) 614,052 2.2

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-034.jpg&w=287&h=77
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-035.jpg&w=258&h=75
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-036.jpg&w=276&h=77


A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 351

(a)

(b)

Fig. 14. Generated sprites of sequence “building” by different methods. (a) Farin et al.’s optimal
method. (b) Proposed method with fast validation.

6. Complexity Analysis

Complexity can be discussed in two different ways: time and space. Both complex-
ities of the proposed and optimal methods are discussed.

The complexity of Farins’ optimal method is divided into two parts: the build-
ing of coding cost matrix described in Sec. 2.1, and the optimal partition algorithm
described in Sec. 2.2. While building the cost matrix, the coding cost of all subse-
quences beginning at frame i and ending at frame k with reference frame r must be
computed. Suppose that the sequence has N frames, the time and space complexity
of building a cost matrix will be N3. However, a method was developed to reduce
the space required for N2. The optimal partition algorithm using Eq. (4) to find
the best partition frame-by-frame takes N2 time.

The proposed method calculates the accumulated translation and scaling first,
and both of them take linear time. The finding of candidate partition points also
requires linear time because it only observes the changes of accumulated transla-
tion and scaling once. Let M be the number of candidate partition points found in
Sec. 4.1, finding reference frame for all possible subsequences takes M2 × N time.
Finally, the Farins’ optimal partition is applied. Since only M candidate partition
points are involved, it takes only M2 time. The accumulated translations and scal-
ings must be held in memory and the coding-cost matrix must be generated. These
will need 2N + M2 space.

Table 5 shows the complexity of both methods. The proposed method takes
N +N +M2 ×N +M2 time, i.e. O(M2 ×N) in time and O(M2)+O(N) in space.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-040.jpg&w=344&h=86
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-041.jpg&w=219&h=83


352 I.-S. Kuo & L.-H. Chen

Table 5. Complexity comparison.

Time Space

Farin et al.’s optimal method O(N3) O(N2)
Proposed method O(M2N) O(M2)+O(N)

Since M is usually very small in contrast to N in practice, for example, M = 6
and N = 300 in the sequence “stefan”, this makes the complexity of the proposed
method better than the optimal method.

7. Conclusions

An efficient and fast method for generating multiple sprites is proposed. In contrast
to the conventional sprite generating method that uses a single sprite, using multiple
sprites reduces the storage space of sprites. Conventional multiple sprite generation
method uses an exhaustive search to find the optimal subsequence partition and
optimal reference frame of each partition. However, the exhaustive search costs a
lot of time. The proposed method consists of a subsequence partition algorithm
and a fast reference frame selection algorithm, which are developed based on the
frame accumulated translations and scalings. By using the proposed methods, a
video sequence can be partitioned and reference frame can be selected in a very
short time. In order to increase the performance of the selected reference frames,
two reference frame validation methods are also proposed. The proposed validation
methods searches frames close to the result of the fast reference frame selection
method and checks if better reference frame exists. The experimental results also
show that the proposed method greatly increases the executing speed from 10 to
190 times in contrast to the Farins’ optimal method, the total sprite size is slightly
higher and the qualities of generated sprites are preserved.

Acknowledgments

This work is supported in part by National Science Council under the contract
number NSC-96-2221-E-009-201-. The authors would like to thank the anonymous
reviewers for their many valuable suggestions which have greatly improved the
presentation of the paper.

References

1. D. Farin and P. H. N. de With, Enabling arbitrary rotational camera motion using
multisprites with minimum coding cost, IEEE Trans. Circuits Syst. Vid. Technol.
16(4) (2006) 492–506.

2. D. Farin, P. H. N. de With and W. Effelsberg, Minimizing MPEG-4 sprite coding-cost
using multisprites, SPIE Vis. Commun. Imag. Process. 5308 (2004) 234–245.

3. D. Farin, P. H. N. de With and W. Effelsberg, Video-object segmentation using multi-
sprite background subtraction, IEEE Int. Conf. Multimedia and Expo (ICME ‘04)
(June 2004), pp. 343–346.

4. ISO/IEC MPEG Video Group, MPEG-4 video international standard with amd. 1,
ISO/IEC 14496-2 (Jully 2000).

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



A Fast Multisprite Generator with Near-Optimum Coding Bit-Rate 353

5. ISO/IEC MPEG Video Group, MPEG-4 video verification model version 18.0, N3908
(January 2001).

6. S. Kopf, T. Haenselmann, D. Farin and W. Effelsberg, Automatic generation of video
summaries for historical films, IEEE Int. Conf. Multimedia and Expo (ICME ‘04)
(June 2004), pp. 2067–2070.

7. I. S. Kuo and L. H. Chen, A high visual quality sprite generator using intelligent
blending without segmentation masks, Int. J. Patt. Recogn. Artif. Intell. 20(8) (2006)
1139–1158.

8. Y. Lu, W. Gao and F. Wu, Efficient background video coding with static sprite
generation and arbitrary-shape spatial prediction techniques, IEEE Trans. Circuits
Syst. Vid. Technol. 13(5) (2003) 394–405.

9. M. Massey and W. Bender, Salient stills: process and practice, IBM Syst. J. 35(3–4)
(1996).

10. A. Smolić, T. Sikora and J-R. Ohm, Long-term global motion estimation and its
application for sprite coding, content description, and segmentation, IEEE Trans.
Circuits Syst. Vid. Technol. 9 (1999) 1227–1242.

11. R. Szeliski, Video mosaics for virtual environments, IEEE Comput. Graph. Appl.
16(2) (1996) 22–30.

12. H. Watanabe and K. Jinzenji, Sprite coding in object-based video coding standard:
MPEG-4, World Multiconference on Systemics, Proc. Cybernetics and Informatics
(SCI) XIII (July 2001) 420–425.

I-Sheng Kuo received
the B.S. and M.S. deg-
rees in electrical engi-
neering from National
Sun Yat-sen University,
Kaohsiung, Taiwan, in
1997 and National
Cheng Kung Univer-
sity, Tainan, Taiwan, in
1999, respectively. He is

currently a Ph.D. student in the Institute
of Computer Science and Engineering at
National Chiao Tung University, Hsinchu,
Taiwan.

His research interests include image
processing, video and image compression,
MPEG-4 and H.264.

Ling-Hwei Chen re-
ceived the B.S. degree
in mathematics and the
M.S. degree in applied
mathematics from
National Tsing Hua
University, Hsinchu,
Taiwan in 1975 and
1977, respectively, and
the Ph.D. degree in

computer engineering from National Chiao
Tung University, Hsinchu, Taiwan in 1987.

From August 1977 to April 1979 she
worked as a research assistant in the Chung-
Shan Institute of Science and Technology,
Taoyan, Taiwan. From May 1979 to February
1981 she worked as a research associate in
the Electronic Research and Service Organi-
zation, Industry Technology Research Insti-
tute, Hsinchu, Taiwan. From March 1981 to

August 1983 she worked as an engineer in the
Institute of Information Industry, Taipei, Tai-
wan. She is now a Professor in the Depart-
ment of Computer Science at the National
Chiao Tung University.

Her current research interests include
image processing, pattern recognition, mul-
timedia compression, content-based retrieval
and multimedia steganography.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-046.jpg&w=71&h=93
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001409007144&iName=master.img-047.jpg&w=70&h=93


This article has been cited by:

1. Walid Barhoumi, Mohammed Chafik Bakkay, Ezzeddine Zagrouba. 2013. An online
approach for multi-sprite generation based on camera parameters estimation. Signal,
Image and Video Processing 7:5, 843-853. [CrossRef]

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

09
.2

3:
33

1-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1007/s11760-011-0273-1



