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局域聲子在低維度的介觀物理系統中對量子傳輸

的影響 

 

研究生：林哲民 指導教授：朱仲夏  博士  

                              
國立交通大學電子物理研究所         

摘     要 

 

本論文的研究主要有兩個主題，第一個室探討局域聲子(local 

phonon)對單電子在一維導線中對量子傳輸特性的影響，第二個是探

討當單電子透射(tunnel)位於一維導線中量子點(quantum dot)中局

域聲子所產生的影響。在第一個主題中，我們對系統作了許多細節的

探討來當作我們研究第二個主題的基礎，包括局域聲子的吸引性或排

斥 性 (attractive or repulsive) ， 聲 子 溫 度 (phonon 

temperature) ，局域聲子的頻率和重量對單電子在一維導線中傳輸

特性的影響 。在第二個主題中，因為我們考慮在局域聲子的影響下

量子點的傳輸特性，我們可以將電子侷限在量子點中來使電子的波長

變短到可以跟聲子波長可以比較的長度，而且我們可以藉由這各方法

來增強聲子側能帶( phonon sideband)效應。 
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LOCAL PHONON EFFECTS IN LOW DIMENSION 

MESOSCOPIC STRUCTURE 

 

      Student: Jer-Ming Lin     Advisor: Dr. Chon-Saar Chu 
 

Department of Electrophysics 

National Chiao-Tung University 

 

Abstract 
 

There are two main topics in our thesis. First, we study the effect of local 

phonons on the quantum transport in a 1-D wire. Second, we investigate the effect of 

local phonons on the single electron tunneling through a quantum dot. In the first 

topic, we take deep insight to our system including the attractive or repulsive local 

phonons, the effect of phonon temperature T, oscillating frequency of local phonons 

ω, and  mass of  local phonon M. Take the analyses made in the first topic as a 

basis. In the second topic, because we study quantum transport properties of a single- 

molecular quantum dot w with local phonon effect, we can confine the incident 

electron in the quantum dot to shorten its wavelength, which can be compared to the 

phonon wavelength at ground state. And, we can enhance the phonon sideband effects 

by this way.   
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Chapter 1 
 

Introduction 
 

1.1Introduction  
 The advancement of fabrication techniques and theoretical development of 

quantum transport in mesoscopic nanostructures has provided great potential to the 

development of novel quantum devices in nanoscale, quantum wires and quantum 

rings for example. One of the interesting studies in mesoscopic systems is the effects 

due to electron- phonon interaction. Recently, solvable models for the interaction of 

phonons with electrons in quantum dot [1] and quasi-one-dimensional system [2,3] 

have been explored by several groups. In the work of Gelfand et al. [2], they invoked 

an ad-hoc electron-local phonon interaction Hamiltonian Hij(t) = -tij+δij [V0i+ V1i(t)] 

within a tight-binding model. The static barrier and the local phonons, with V1i(t) = V1

δi0 [be-iωt+ b+eiωt], are located at i=0 without center-mass-variation. Naturally, we 

may ask: what about center-mass-variation local phonons? Therefore, in Ch. 4, we 

consider a simple model to study the effect of local phonons on the transport 

characteristics in a one-dimensional system. The local phonons is modeled by an 

impurity which center is allowed to oscillate about its equilibrium position with a 

frequencyω.By treating the dynamics of both the electron and the impurity in the 

same footing, we aim at looking into detail of the transport characteristics of the 

electron.   

 In addition to these semiconductor devices, molecular devices also attract more 

and more attention to study their transport properties both in experimently and 

theorically, including single molecule devices [4-11], nanocrystals[14-18], and 
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nanotubes[19-20]. Especially the single molecular device experimental results worked 

by H. Park. et al. [5] show the evidence of conductance peak due to C60’ 

center-mass-variation, which we will introduce in Sec. 2.2 and 2.2. Take the analysis 

made in Ch. 4 as basis, we try to construct a brief model to describe this phenomenon. 

Therefore, In Ch. 5, we study the transport characteristics of the electron resonant 

tunneling through a single-molecular quantum dot coupled with 

center-mass-oscillation local phonons with non-perturbed method. As expected, it is 

found that in the presence of electron-phonon coupling, in addition to the resonance 

peak associated with the resonance level of the dot, phonon sideband peaks with the 

separation set by phonon energy ћω in the conductance. What is the interesting is that 

we can enhance the phonon sideband structures by confine the incident electron in the 

dot the reduce its wavelength which can be compared with the wavelength of local 

phonon at ground state in contrast to the 1-D wire model studied in Ch. 4.       

          

1.2A guiding tour to this thesis 
Thus far we have not yet provided the scaling of mesoscopic physics which is 

quite different from the devices having larger scale. This will be covered in Sec. 1.3. 

In Ch. 2, we introduce the quantized conductance phenomenon, which is a important 

characteristics of the mesoscopic system. In addition, the possible application of our 

study “ single molecule device” is briefly presented including the process of 

fabrication and some experimental results extracted from the works of M. A. Reed et 

al. [4], and H. park et al. [5]. In chapter 3, we introduce the Landauer-Büttiker 

formalism and scattering matrix method. We follow these methods to complete our 

theoretical calculation in Ch. 4 and Ch.5. 

The numerical results, discussion, and theoretical calculation of the effect of 

 2



local phonons on the transport characteristics in a one-dimensional quantum channel 

and the transport characteristics of the electron resonant tunneling through a quantum 

dot coupled with local phonons are respectively shown in Ch. 4. and Ch. 5. Finally, 

we conclude our results and mention a few feasible direction of our future work. 

 

1.3 Length Scale 
 A tiny circuit with dimension between microscopic and macroscopic is so called 

mesocsopic. The length scale of a mesoscopic system greater than microscopic’s, like 

atom, but smaller than the macroscopic regime, like bulk. 

 A system shows quantum behavior if its dimensions is comparable to three 

characteristic length scales (1) the Fermi wavelength, (2) the mean free path, and (3) 

the phase relaxation length which we will illustrate as follow. However, in the 

mesoscopic regime, the phase coherence of the charge carriers is preserved within the 

entire system. 

First, let’s see the Fermi wave length. The Fermi wavelength is written as 

 

λf = 2π/kF = (2πns)1/2 .  

 

For an high electron density of 5×1011/cm2, the Fermi wave length is about 35nm at 

sufficient low temperatures. 

 

Second, the mean free path (lm) can be defined as  

 

lm =νFτm.
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where the time scale τm give us the average time interval which refers to an electron 

in a perfect crystal with large momentum changes, for example collision with 

impurities . Then the momentum relaxation time τm can be relaxted to yhe collision 

timeτc by 

 

1

m c

ϕα
τ τ

=  , 

 

where αφ denotes the effectiveness of an individual collision in destroying phase. 

The phase breaking length is given by  

 

lφ = νF τφ.

 

Further, Lφ is the length scale over, which the electron stay in the same eigenstate 

which would be destroyed by phonons, spin-orbit, scattering, et al. 

Thanks to the maturity of the nanotechnology, the Lφ in weakly disordered can be 

longer than the dimension size of channel’s width and length. Therefore, we can see 

more further physical interesting characteristics in this regime. 

Finally, we talk about the difference between ballistic and diffusive regime. The 

ballistic regime means that the phase-breaking time is shorter than the momentum 

relaxation time and cause  lm ＞ lφ ＞ L(channel length). However, in the diffusive 

regime(lφ＞ lm ＞ L ) , the momentum relaxation time is shorter than the phase 

relaxation time. Therefore, the motion of an electron is not ballistic over a 

phase-relaxation time.   
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Chapter 2 
 

Experimental Technologies 
 

2.1 Conductance quantization 
The low temperature quantized conductance of narrow split-gate 

Quantum-point-contacts(QPCS) model from GaAs-AlxGa1-xAs heterostructures was 

independently discovered by the B. J. van Wees et al. [12] and D.Wharam et al. [13]. 

It is one of the most interesting discovery in mesoscopic history. 

 Because the point contact studied by B. J. van Wees of width and length L much 

smaller than mean free path lm = 8.5 μm. We can view it as the ballistic regime. In this 

regime, they discovered a sequence of steps of the voltage of the split gate as shown 

in Fig 2.1.  

  

 
Fig 2.1 : Conductance is plotted against gate voltage experimentally by B. J. van Wees 

et al. [12] 

As we can see, the conductance is quantized in units of 2e2/h. This result relies 
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on the fact of increase in number of propagating modes. Besides, it also can be seen as 

a special case of Landauer-Bütikker formula 2
,

,

2 / n m
n m

G e h T= ∑  

with no channel mixing. 

For the case of the hard wall modeling the transverse confinement to explain the 

experiment’s result more clear. The dispersion relation E(n, k) can be written as E(n, k) 

= (nπ /w)2 + k2 , where we have set ħ2/2m = 1. And the cut-off energy of hard wall 

confinement is ε(n) = (nπ /w)2 . The number of transverse modes contributes to the 

conductance at energy E is obtained by counting the number of modes having cut-off 

energies smaller than E. Therefore, if we change the voltage to cause the 

electrochemical potential μ to vary from ε(2) ≥ μ ≥ε(1) to ε(3) ≥ μ ≥ε(2), more electron 

channels open to propagate and contribute contributing to conductance. The 

conductance G will accordingly be changed from G= 2e2/h to G= 4e2/h.         

 

2.2 Experimental Application 

 

2.2.1 Single-molecular Transistor Device 
Here we report the fabrication and some experiment’s result of 

metal-molecule-metal device seen Fig 2.2. Such measurements are experimentally 

challenging and intriguing because one can test the validity of transport 

approximations at the molecule level. Such a metal-molecule-metal configuration 

would be to connect a single molecuke between metallic contacts. Such a 

metal-molecule-metal configuration would present the molecular embodiment of a 

system analogous to a quantum dot; with the potential barrier of the semiconductor 

system being replaced by any existing contact barrier of the molecule-metal interface. 
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Fig 2.2 Single-molecular device extracted from H. Park. et al.[5]. 

2.2.2 Fabrication of Single-molecular device 

  In this section, we list a serious of pictures as shown in Fig 2.2 to roughly 

illustrate the "break junction method " which fabricating metal-molecule-metal device 

extracted from Reference [4]. 
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Fig 2.3 Fabrication process of single molecular device extracted from M. A. Reed et 

al. [4] 

In Figure 2.3.A, the authors prepare a metal wire, a gold wire for example, glued 

on to a flexible substrate. In Figure 2.3.B, they add the organic resolution to the gold 

wire. In this case, they use the benzene-1,4-dithiol in tetrahydrofuran(THF). Besides, 

they also can use a dilute toluene of C60 [5]. Then, they can get a self-assembled 
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monolayer on the gold wire surface. In Fig 2.3.C, they mechanically stretched the 

wire and make the breakage of the gold wire producing two opposing gold electrodes 

with SAM-covered and we can get a pair of atomically sharp contacts. Last, in Fig 

2.3.D ,as the solvent evaporate, the two contacts will slowly move together. And, they 

will keep moving until we get the onset of conductance.  

 

2.2.3 Recent Experimental results of Single-molecular device 

 In this section, we illustrate some interesting experimental results shown in 

Fig2.4 and Fig 2.5 measured by H. Park et al. [5]. In H. Park et al.’s work, they 

fabricate a single-molecule transistors based individual C60 molecules connected to 

gold electrodes. And in their experimental results show the evidence for a coupling 

between the center-of-mass motion of the C60 molecules and single-electron hopping. 

Fig 2.4 is two-dimensional conductance (∂I/∂V) plotting as a function of the bias 

voltage(V) and the gate voltage(Vg). Data were obtained from four different devices 

prepared from separated fabrication runs. The dark triangular regions correspond to 

the conductance gap, and bright lines represent peaks in the differential conductance. 

In fig 2.4 (a)-(d), they can obviously find the conductance gap arising from the energy 

required to add(remove) an electron to(from) C60. And they define the gate voltage 

which the conductance gap disappears is Vc where the total energy of the system is 

same for two different C60 charge states. In addition to the conductance gap 

phenomenon, the white arrow indicate the ∂I/∂V peaks appear when a new quantized 

excitation becomes energetically accessible, providing an electron-tunneling pathway 

between C60 and the gold electrodes. The exact energy value of these quantized 

excitations which can be determined from the bias voltage intercepting the 

conductance gap varied from device to device and ranged from 3 to 7 meV. 
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Fig 2.5 show that differential conductance be plotted in a larger bias-voltage range 

than those in Fig 2.4. In Fig 2.5, there are two ∂I/∂V lines intercept the conductance 

gap at V=35 meV. The quantized energy(35 meV) is arising from the internal 

vibrational modes. This structure correspond to the phenomenon that C60 adsorb an 

energy about 35 meV and excited from the sphere mode to the prolate ellipsoid mode 

as shown in the inset of the Fig 2.3. 

Thanks to these experimental results. They show the evidence that it is  more and 

more possible that to study the effect of single molecule in the electronic transport.    

    

 

 

 

 
 

Fig 2.4 Experimental results extracted from H. Park. et al.[5]. 
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Fig 2.5 Experimental results extracted from H. Park. et al.[5]. 
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Chapter 3 
 

Landauer-Büttiker Formalism and 
Scattering Matrix Method 
3.1 Introduction to the Landauer-Büttiker 

formalism 
In this section, we introduce the multichannel Landauer-Büttiker formula starting 

from the single channel case. Full reference is available on the original paper of  

Büttiker et. al. [21].  

We assume that there are two reservoir of electrochemical potential 1μ  and 2μ  

respectively connected by a 1D channel and there is a barrier in between the 

reservoirs.It is straightforward to calculate the current of this system if we assume that 

the contacts are“reflectionless＂, that is , the electrons can enter both side reservoirs 

from the 1D channel without suffering reflections. Numerical calculation indicate that 

as long as the energy is not too close to the bottom of band, an electron from1D 

channel into reservoirs can exit negligible probability reflection [22] .  

Now, at zero temperature, we add a small bias at the two reservoirs. Because the 

contacts are“reflectionless＂, both side of electrons from reservoir 1 to 2 or reservoir 

2 to 1 cancel out each other. So, only the transmitted electrons between 1μ  and 2μ  

have distribution to the current from reservoir 1 to 2 . By the way, in 1D , J=I and the 

electron transfer the barrier with probability T. 

By the definition, I eρυ= −  where , 1 22 ( )dn T
dE

ρ μ μ= − . In addition, 

1 2(dn T
dE

μ μ− )  is the number of states per unit length that are injected from 
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reservior1 to reservior2 ,  2 is spin factor ; fkp
m m

υ = = . 

Therefore, I can be written as  

1 22 ( ) fkdnI T
dE m

μ μ= − −  

And at 1D,  

2

1
(2 ) ( 2 )f

dn dn dk dk
dE dk dE L k mπ

= =  so 

2

1 2

2
( )

I I eG T
V e hμ μ

= = =
− −

 

For the case of multichannel system, we assume there are N N×  multi-channels 

with transmission electrons injected from reservior1 with channel n and propagating 

to reservior2 with channel m. 

Therefore, the total transmission probability injected from channel n is then given by 

1

N

n n
m

T T
=

= ∑ m

m

 

Correspondingly the total current is 
1 1 1

N N N

n n
n n m

I T
= = =

=∑ ∑∑ , and 

total conductance 
2

1 1

2N N

nm
n m

eG T
h= =

= ∑∑  

 

3.2 The Scattering Matrix Method 
In this section we will employ scattering matrix method to our calculations. The 

scattering matrix which we now present as an alternative couples explicitly the 

outgoing states to the incoming states of a system. Here, we consider a N-layer 

multilayer structure, as shown in Fig. 3.1 . 
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……… ……… 

A0

B0

A1 An AN

B1 Bn BN

           I(1)       I(2)               I(n+1)    

Fig. 3.1 A N-layer multilayer structure 

  

0

0

(0, )                                                                                       (3.1)N

N

N
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A A
S

B B
 

The coefficients AN ,BB0 of outgoing states are related to the coefficients A0 and BN of 

the incoming states via scattering matrix S(0,N). 

For the nth-piece , we can define 

1

1

( , 1)                                                                                 (3.2)n n

n n

n n+

+

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

A A
S

B B
 

Moreover , we can get  

  1

1

( 1)                                                                                       (3.3)n n

n n

n+

+

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

A A
I

B B

where I(n+1) is the interfacial matrix representing the coupling of the barrier and the 

eigenstates of the (n+1)th interface.  
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tα α+

 

1 nn
rα α+

 

1

1

~
nntα α+

1

~
nnrα α+

1

 

 

 

 

 

 

 

Fig. 3.2 The transmission and reflection coefficient incident from right or left hand 

side 

 

1 1 1

1

( , 1)                                                                             (3.4)n n n n

j j n n

t r
n n r t

α α α β

β α β β

+ + +

+

⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
S  

where α  and β  are eigenstate index ; t and r are respectively transmission and 

reflection coefficient when electron incoming from left side ; t and  are 

transmission and reflection coefficient when electron incoming from right side 

r

Easily , I(n+1) can be represented as 

1 1 1 1

1 1 1 1

1 1

1 1
( 1)                                              (3.5)

j j j j j j

j j j jj j j j j j j j

t t r
n

r t t r t r

α α α α α β

α α α αβ α β β β α α β

+ + + +

+ + + +

− −

− −

⎡ ⎤−
⎢ ⎥+ =

−⎢ ⎥⎣ ⎦
I  

First , we start from calculate the two piece case as an example: 

 

1 0

0 1

(0,1)                                                                                          (3.6)
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A A
S

B B
 

where
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1 0 1 1

0 0 0 1

(0,1)                                                                                        (3.7)
t r
r t
α α α β

β α β β

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
S  

1 2

1 2

(2)                                                                                             (3.8)
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A A
I

B B
 

where

 1 2 1 1 2 2

1 2 1 21 1 1 1 1 2 2

1 1

1 1(2)                                                        (3.9)
j j

t t r
r t t r t r

α α α α α β

α α α αβ α β β β α α β+

− −

− −

⎡ ⎤−
= ⎢ ⎥−⎢ ⎥⎣ ⎦

I

Eliminating A1 ,BB1 , we have 

2 0

0 2

(0, 2)                                                                                         (3.10)
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A A
S

B B
 

[ ]
[ ] [

1
11 11 12 21

1
12 11 12 21 12 22 12

21 21 22 21 11

22 22 22 22 21 12

(0, 2) (2) (0,1) (2) (0,1)

(0, 2) (2) (0,1) (2) (0,1) (2) (2)
(0, 2) (0,1) (0,1) (2) (0, 2)
(0, 2) (0,1) (2) (0,1) (2) (0, 2)

−

−

= −

= − −

= +
= +

S I S I S

S I S I S I I
S S S I S
S S I S I S

]  

Similarly, the successive scattering matrixs S(0,3),S(0,2)……….S(0,N) can be 

calculated , from which the final transmission and reflection coefficients of N-layer 

multiplayer structures can then be obtained using Eq. 3.1. Finally, we study a problem 

shown in appendix A to establish an independent check on our scattering matrix 

method. 
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Chapter 4 
 

Local Phonon Effect On The 
Quantum Transport In a 1D Wire 
 

4.1 Introduction 
In this chapter, we make a complete and detailed analysis with a non-perturbed 

method on the quantum transport in a 1-D wire with interaction with a 

center-mass-oscillation local phonons. In the beginning, we show the model and 

formulation of local phonon in a 1-D wire. Next, we present the numerical results 

which including the electron-local phonon interaction strength V, mass of local 

phonon M, and phonon temperature ……etc dependence. As expected, the phonon 

sideband effects are small. And we try to enhance it in Ch. 5.  

 

4.2 Model of Local Phonon in a 1D Wire 
As shown in Fig. 4.1, we consider a single electron model, in which the electron 

propagates in a quasi-one dimensional system while interacting with a 

center-mass-oscillation impurity. The system under investigation can be described by 

the Hamiltonian :: 
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2 2 2 2
2 2

0 2 2

1 ( )                                         (4.1)
2 2 2

::    
 ::   

H M y V x y
m x M y

x electron propagating direction
y impurity oscillation direction

ω δ∂ ∂
= − − + + −

∂ ∂

Here, ω denotes the frequency of phonon and Vδ(x-y) describes the interaction 

between the electron and local phonon. 

 

   

 

 

 

 

e- 

 

    Fig. 4.1 The model of electron propagates in a quasi-one dimensional system 

while interacting with a center-mass-oscillation impurity  

 

4.2 Formulation of Local Phonon in a 1D Wire 
Here, we write down the formulation of the problem in section 4.1. It’s 

dimensionless Hamiltonian can be written as: 

 .mwhere M
M

=  

The energy unit is taken to be
22

* FkE = *2m
, and length unit is * 1a =

Fk , phonon 

frequency unit 
2* 1fk mMω ω= , the unit of the strength of interaction * *

FV E k=

* 0.067 em m=

 

and for GaAs .  

2 2
2 2

2 2 ( ) ,                                                        (4.2)DH M y v x y
x y

ω δ∂ ∂
= − − + + −

∂ ∂

R 

T 

center-mass-oscillation impurity
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Mathematically, we can write V δ (x-y)= ( ) ( )i i
i

V x x y y dxδ δ− −∑ ,which is 

represented by a series of delta-function potential. This allows us to solve the problem 

via scattering matrix method. 

Before we construct the scattering matrix, we need a complete basis to expand 

the wave function. To proceed, we start from the basis wave function obeying the 

equation: 

2
2 2

2( ) ( ) ( ).                                            (4.3)y n n n nH y M y y E y
y

ω
⎛ ⎞∂

Φ = − + Φ = Φ⎜ ⎟∂⎝ ⎠
  

Assuming y=αξ , with ( )1/ 42 ,Mα ω=  

we can get 

2
2 2

2( ) ( ) ( ) .                                              (4.4)n n n nH Eξ ξ ω ξ ξ ξ
ξ

⎛ ⎞∂
Φ = − + Φ = Φ⎜ ⎟∂⎝ ⎠

 

where  ( )1/ 22(2 1) ,n p pE n Mω ω ω= + =

1/ 2 21 1( ) Exp ( )  ,                                                  (4.5)
22 !

n nn
H

n
ξξ ξ

π
⎛ ⎞⎛ ⎞Φ = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
                     

and Hn(ξ ) is Hermite function. 

 

With the complete basis, we can write down the form of wave function at the 

neighbors of x=xj as shown in Fig. 4. 2 and try to construct the S(j, j+1) matrix. 

For an electron incident from phonon sideband n=n0, the scattering wave function 

would be of the form. 

0 0

0

0 0

0

( , ) ( ) ( )........in the regionI
                        (4.6)         

( , ) ( ).......................................in the regionII 

n n

n

ik x ik x
nn n nn n

n n

ik x
nn n

n

x e r e

x y t e y

ξ δ ξ ξ
∞ ∞

−

= =

∞

=

⎧Ψ = Φ + Φ⎪⎪
⎨
⎪Ψ = Φ
⎪⎩

∑ ∑

∑
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where n is the phonon mode index , and (2 1)mk n pε ω= − +  is the wave vector of 

an electron, whereεis the total energy of the system including the propagating 

electron and total phonons.   

 

 

 

 

 

           

 

 

 

 

 

Fig. 4.2 The wave function at the neighbors of x=xj

 

Performing the matching of the boundary condition at x=xj , as follows:  

wave function continuous at x=xj , we get  

0 0 0
0 0 0

( ) ( ) ( ).                                (4.7)       n j n j n jik x ik x ik x
nn n nn n nn n

n n n
e r e t eδ ξ ξ ξ

∞ ∞ ∞
−

= = =

Φ + Φ = Φ∑ ∑ ∑              

Multiplying Eq. 4.7 by ' ( )n dξ ξ
∞

−∞

Φ∫ , we have 

0 0

0

' '
0 0

'
0

( ) ( ) ( ) ( )                          (4.8)

( ) ( ) .

n j n j

n j

ik x ik x
nn n n nn n n

n n

ik x
nn n n

n

e d r e d

t e d

δ ξ ξ ξ ξ ξ ξ

ξ ξ ξ

∞ ∞∞ ∞
−

= =−∞ −∞

∞∞

= −∞

Φ Φ + Φ Φ

= Φ Φ

∑ ∑∫ ∫

∑ ∫
          

Matching the derivative of the wave function at x=xj we get  

00
( )n nnn

n
ik xeδ ξ∞

=
Φ∑

00
( )nnn n

n
ik xr e ξ∞ −

=
Φ∑

00
( )nnn n

n
ik xt e ξ∞

=
Φ∑

X=Xj 

Region I Region II
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( )

( ) ( )

0 0

0 0

0 0

0 0

( ) ( )

( ) ( )                          (4.9)

0.

n j n j

n j n j

ik x ik x
n nn n n nn n

n n

ik x ik x
n nn n j nn n

n n

ik e ik r e

Vdxik t e x t e

δ ξ ξ

ξ δ ξ α ξ
α

∞ ∞
−

= =

∞ ∞

= =

Φ + − Φ

− Φ + − Φ

=

∑ ∑

∑ ∑             

Multiplying Eq. 4.9 by ' ( )n dξ ξ
∞

−∞

Φ∫ , we have 

( )

( ) ( )

0 0

0 0

' '
0 0

' '
0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 .                                            

n j n j

n j n j

ik x ik x
n nn n n n nn n n

n n

ik x ik x
n nn n n nn n n j

n n

ik e d ik r e d

Vdxik t e d t e x d

δ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ δ ξ α ξ
α

∞ ∞∞ ∞
−

= =−∞ −∞

∞ ∞∞ ∞

= =−∞ −∞

Φ Φ + − Φ Φ

− Φ Φ + Φ Φ −

=

∑ ∑∫ ∫

∑ ∑∫ ∫
                                                                 (4.10)

 

Rewrite Eq (4.8) and Eq (4.10), we can construct the following matrix equation: 

0

0

11 12 1

21 22 2

                                                                            (4.11)nn

nn

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

rM M c
tM M c

                   

Here, submatrixs are given by 

( ) ( )

11 '

12 '

21 '

22 ' '

                                                                                             (4.12)n j

n j

n j

n j n j

ik x
n n

ik x
n n

ik x
n n n

ik x ik x
n n n n n

e

e

ik e
Vdx e ik e

δ

δ

δ

ξ ξ δα αα

−

−

=

= −

= −

= Φ Φ −

M

M

M

M

 

( )
( )

0

0 0

1 ''

2 ''

                                                                                          (4.13)n j

n j

ik x
n nn

ik x
n n nn

e

ik e

δ

δ

= −

= −

C

C
                   

Solving Eg. 4.11 we can obtain the column and . Similarly, if we let electron 

incident from n=1,n=2……………..n=M, we can get the 

0nr 0nt

M M×  matrix of 

rαβ and tαβ ,whereα,β are phonon mode index. 

Subsequently, in the similar way, we also get the M M×  matrix of αβr and αβt . 

Therefore, we can construct the S(j, j+1) matrix from Eq. 3.7, which is written as : 
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1 1 1

1

( , 1)                                                                              (4.14)j j j j

j j n j

j j
α α α β

β α β β

+ + +

+

⎡ ⎤
+ = ⎢ ⎥

⎢ ⎥⎣ ⎦

t r
S

r t
 

Using Eq. 3.10, we can get the matrix S(0, 2). Similarly, the successive scattering 

matrixs S(0,3),S(0,2)……….S(0,N) can be calculated and S(0,N) is written as  

[ ]
[ ] [

1
11 11 12 21

1
12 11 12 21 12 22 12

21 21 22 21 11

22 22 22 22 21 12

(0, ) ( ) (0, 1) ( ) (0, 1)

(0, ) ( ) (0, 1) ( ) (0, 1) ( ) ( )
(0, ) (0, 1) (0, 1) ( ) (0, )
(0, ) (0, 1) ( ) (0, 1) (2) (0, )

N N N N N

N N N N N N
N N N N N
N N N N N

−

−

= − − −

= − − − −

= − + −
= − + −

S I S I S

S I S I S I I
S S S I S
S S I S I S

]N

0

 

From Eq. 3.10 let column A0= nnδ and BBN=0, then 

( )

( )

0

0

0

0

2

' 0
' 0

2

' 0
' 0

( ')T (
( )
( ') ( )
( )

m n
n m

m n
n m

k m t P n
k n
k m

)

R r P n
k n

=

=

∑∑

∑∑
 

22 TeG
h

=  

where =0( )P n (1 ) ne eβ ω β− −− ω ,β=KBT, KB is the Boltzmann constant and T is 

absolute temperature. 

 

4.3 Numerical Result and Discussion 
In this section, we show the numerical results and discussions of the local 

phonon effect on the quantum transport in a 1-D wire in several different cases. In all 

of cases, we study the G characteristics as a function of incident electron energy at 

zero phonon temperature except in the case considering the dependence of phonon 

temperature. Therefore, we take the G with units 2e2/h as the vertical axis and the 

energy of incident energy called E as the horizontal axis.      

The dependence of electron-local phonon interaction strength V 

 In Fig. 4.3, we take the frequency of local phonon ω=1.83 THz, the mass of 
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phonon M=20m*, the phonon energy ħω =1.2meV as energy scale, and interaction 

strength V varying from -0.2 to -0.8 with units 7.12×10-11 eV‧m. In these cases of 

attractive local phonon potential, we can see two interesting phenomena. First, dip 

structures appear near the energy with ћω . This is because that the system will have a 

quasi-bound state near the phonon sideband bottom. Therefore, we can find that the 

position of the dip is directly proportion to the 1/V2. Second, from the dip structures, it 

is found that as the interaction strengths V become stronger, dip structures become 

wider, which  cause the incident electron has shorter life time staying in the 

quasi-bound state  

In Fig. 4.4, we take the frequency of local phonon ω=1.83 THz, mass of phonon 

M=20m*, the phonon energy ħω as energy scale equal to1.2 mev , and interaction 

strength V varying from 0.2 to 0.8 with units 7.12×10-11 eV‧m. In these cases of 

repulsive local phonon potentials, no dip structures are found in G. Only the kinks 

happen near each phonon’s sideband structure. However, as the energy of incident 

electron increase, the kinks disappear and the transmission coefficient throughout the 

effective delta potential approach to unity. 
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Fig 4.3: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 

1.2meV for ω = 1.83THz, zero phonon temperature, and mass of phonon M = 20m* 

for attractive local phonon potentials’ strength V varying from -0.2 to -0.8 with units 

7.12×10-11 eV‧m. 
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Fig. 4.4: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 

1.2meV for ω = 1.83THz, zero phonon temperature, and mass of phonon M = 20m* 

for attractive local phonon potentials’ strength V varying from 0.2 to 0.8 with units 

7.12×10-11 eV‧m. 

 

The dependence of the local phonon’s frequency 

In Fig. 4.5, we take the oscillation frequency of local phonon ωvarying from 1.83 

to 7.32. THz, mass of phonon M=20m*, the Ef =9meV as energy scale, and interaction 

strength V= 0.6 with units 7.12×10-11 eV‧m to repulsive local phonon potential. In 

this case, it is found that the phonon sideband structures become weak when the local 

phonon oscillation frequency increase, which can explain by the classical formula ω = 
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(k/M) where k is string constant. As the oscillation frequency is higher, the string 

constant k also become larger causing the hardness for the electron to interact with the 

phonon., which resulting sideband structures become weaker. 

 

Fig. 4.5: G with unit 2e2/h plotted against energy of incident electron with unit EF 

=9meV for V= 0.6 with units 7.12×10-11 eV‧m to repulsive local potential, zero 

phonon temperature and mass of phonon M = 20m* for various frequencies of local 

phonon. 

The dependence of the local phonon’s oscillation mode when 

the electron incident 

In Fig. 4.6 and 4.7, we take the oscillation frequency of local phonon ω = 1.83 THz, 

mass of phonon M=20m*, the phonon energy ħω =1.2meV as energy scale, and 

interaction strength V = 0.6 and -0.6 with units 7.12× 10-11ev/m respectively to 

repulsive and attractive potential. In Fig. 4.6 and 4.7, the different curves show the 
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cases in which of different numbers of phonon modes n. In Fig. 4.6 and 4.7, the effect 

of phonon sideband structure become stronger as the local phonon staying in higher 

mode n, the hardness of electron–local phonons interaction is reduced due the higher 

energy of local phonons. Therefore, we can see the fruitful structures. In Fig. 4.8, we 

take the oscillation frequency of local phonon ω = 1.83 THz, mass of phonon 

M=20m*, the phonon energy ħω =1.2mev as energy scale, interaction strength V = 0.6 

with units 7.12×10-11 eV‧m respectively to repulsive potential, and the number of 

phonon number n = 10 while the electron incident. We can find that T10->10+ 

T10->11->10+ T10->9->10 dominate the total transmission. 

 

Fig. 4.6: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 

1.2meV for ω = 1.83THz, zero phonon temperature, and mass of phonon M = 20m*, 

and for attractive local phonon potentials’ strength V = -0.6 with units 7.12×10-11 

eV‧m with various numbers of phonon mode n. 
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Fig. 4.7: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 

1.2meV for ω = 1.83THz, zero phonon temperature, and mass of phonon M = 20m*, 

and for attractive local phonon potentials’ strength V = -0.6 with units 7.12×10-11 

eV‧m with various numbers of phonon mode n. 

 28



 

Fig 4.8: T plotted against energy of incident electron with unit ћω = 1.2meV for ω = 

1.83THz, repulsive local phonon potentials’ strength V = 0.6 with units 7.12×10-11 

eV‧m, and the number of phonon mode n = 10 while the electron incident. Black line 

corresponds to Ttotal. Red line corresponds to T10->10+ T10->11->10+ T10->9->10. Blue line 

corresponds to T10->11. Green line correspond to T10->9.

 

The dependence of phonon temperature 

In Fig. 4.9, we take the oscillation frequency of local phonon ω = 1.83 THz, 

mass of phonon M=20m*, the phonon energy ħω =1.2meV as energy scale, and 

interaction strength V = 0.6 with units 7.12×10-11 eV‧m respectively to repulsive and 

attractive potential and kBT varying from 0 to 5 ħω. Although the phonon sideband 
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structures become larger as local phonons mode n increase. The sideband structures 

would be smeared by thermal averageing. In addition, as increasing temperature, the 

local phonons have higher energy, which has more ability to interact with the electron. 

Therefore, the conductance is harder to saturate to unity in high energy regime. 

 

Fig. 4.9: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 

1.2meV for ω = 1.83THz, zero phonon temperature, and mass of phonon M = 20m*, 

and for repulsive local phonon potentials’ strength V = 0.6 with units 7.12×10-11 eV‧

m with various phonon temperature 0 to 5 T with unit Kb/ ћω. 

 30



The local phonon mass dependence 

In Fig. 4.10 and 4.11, we take the oscillation frequency of local phonon ω = 1.83 

THz, , the phonon energy ħω =1.2meV as energy scale, and interaction strength V = 

0.6 and -0.6 with units 7.12×10-11 eV‧m , mass of phonon M varying from 20 to 80 

m* and 20 to 1000 m*respectively for repulsive and attractive potential. In Fig. 4.10, 

we can find the phonon sideband structure will disappear as the phonon’s mass 

increasing to 100 m* in the repulsive case. It is because the oscillation phonon is 

harder to interact with electron when it’s mass is heavier. We can also realize it from 

the local phonon’s wave function. As the local phonon mass increases, its wave 

function becomes more localized. Therefore, the electron-phonon interaction barrier 

become more and like a single repulsive delta function barrier and the sideband 

structure will disappear gradually. However, for the attractive case, we can see that the 

dip structure in attractive case even the mass of local phonon increases to 100 m*. 

This is because that even though the electron-phonon attractive interaction barrier 

turns to like static single attractive delta function, it can make the quasi-bound state 

causing dip structure. 

In summary, in this section, we have discussed the electron transport through 

local phonons in a 1-D channel, including the effect of interaction strength V, 

oscillation frequency ω ,phonon temperature Tph, and mass of oscillation impurity M. 
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Fig. 4.10: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 
1.2meV for ω = 1.83THz, zero phonon temperature, and for repulsive local phonon 
potentials’ strength V = 0.6 with units 7.12×10-11 eV‧m with mass of phonon M 
varying from 20m* to 80m*. 
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Fig. 4.11: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 
1.2meV for ω = 1.83THz, zero phonon temperature, and for attractive local phonon 
potentials’ strength V = -0.6 with units 7.12×10-11 eV‧m with mass of phonon M 
varying from 20m* to 80m*. 
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Chapter 5 
 

Local Phonon Effect In a 
Quantum Dot On The Quantum 
Transport  
 

5.1 Introduction 
In order to describe the experimental results about C60 center-mass-oscillation in 

single-molecular device worked by H. Park. et al.[5]. In this chapter, we take the 
analyses made in Ch. 4 as basis to study the electron tunneling through the 
single-molecular quantum dot embedded with center-mass-oscillation local phonons. 
First, we show the model and formulation. Next, we present our numerical results and 
discussions. And our numerical shows that, in addition to the main peaks related to 
tunneling through the dot, the phonon sideband peaks due to electron-local phonons 
interaction appear. Moreover, we can enhance this effect by shortening the width of 
the dot to reduce the wavelength of electron. 

 

5.2 Model of the electron resonant tunneling 

through a quantum dot coupled with local 

phonons 
In Fig. 5.1, we consider a single electron model, in which the electron 

propagates from a 1D wire into a quantum dot while interacting with a local phonon 

staying in the quantum dot. The system under investigation can be described by the 

Hamiltonian,  

0 ( ) DBH H V x y Vδ= + − +  

where H0 is shown in Eq. 4.1 and DBV  represents the double barrier modeling the 

 34



quantum dot is written as 

0 2 0( ) (DBV V x L V x L2 )δ δ= + + −  

where  is related to the strength of the double barrier and 2L0V 2 is the width of the 

quantum dot. 

  

5.3 Formulation of Local Phonon in a Quantum 

Dot 
In this section, we derive the formula of Local Phonon Effect In a Quantum 

Dot On The Quantum Transport which calculation is quietly similar to that in 

section 4.2. 

We can also write down the dimensionless Hamiltonian as 

0 2 0( ) (DD DH H x L x L2 )υ δ υ δ= + + + −  

where we take the same units as shown in section 4.2  

Here, we especially add two delta barrier 0 2 0( ) ( 2 )x L x Lυ δ υ δ+ + −  outside the 

series delta-function potential arising from the ( )x yυδ − . Therefore we can also 

numerically solve this problem with scattering matrix method. Moreover, we can 

use the same basis as shown in Eg. 4.1.  

Next, let’s illustrate the process of constructing the scattering matrix S(0, N). First, 

we need to matching at x = -L2 to get the scattering matrix S(0, 1). Seen in Fig. 5.2. 

For an electron incident from phonon sideband n=n0 of region I , the scattering wave 

function would be of the form. 

    

          
0 0

0

0 0

0

( , ) ( ) ( )........ in the regionI
             (5.1)

( , ) ( ).......................................in  the regionII

n n

n

ik x ik x
nn n nn n

n n

ik x
nn n

n

x e r e

x y t e y

ξ δ ξ ξ
∞ ∞

−

= =

∞

=

⎧Ψ = Φ + Φ⎪⎪
⎨
⎪Ψ = Φ
⎪⎩

∑ ∑

∑
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where n is the phonon sideband index , and (2 1)mk n pε ω= − + ,where ε  is the 

total energy of the system including the propagating electron and the local system.    

Performing the matching of the boundary condition at x=-L2.  

Wavefunction continuous at x=-L2, matching at both sides, we get  

0 0 0

( 2) ( 2) ( 2)

0 0 0
( ) ( ) ( )                      (5.2)n n nik L ik L ik L

nn n nn n nn n
n n n

e r e t eδ ξ ξ ξ
∞ ∞ ∞

− − − −

= = =

Φ + Φ = Φ∑ ∑ ∑         

Multiplying Eq. 5. 2 by ' ( )n dξ ξ
∞

−∞

Φ∫ , we have 

2 2

0 0

2

0

( ) ( )
' '

0 0

( )
'

0

( ) ( ) ( ) ( )                     (5.3)

( ) ( )

n n

n

ik L ik L
nn n n nn n n

n n

ik L
nn n n

n

e d r e d

t e d

δ ξ ξ ξ ξ ξ ξ

ξ ξ ξ

∞ ∞∞ ∞
− − −

= =−∞ −∞

∞∞
−

= −∞

Φ Φ + Φ Φ

= Φ Φ

∑ ∑∫ ∫

∑ ∫
       

Matching the derivative of the wave function at x=-L2,, we get 

 

( )

( ) ( )

2 2

0 0

2 2

0 0

( ) ( )

0 0

( ) ( )
0 2

0 0

( ) ( )

( ) ( ) ( )                     (5.4)

0

n n

n n

ik L ik L
n nn n n nn n

n n

ik L ik L
n nn n nn n

n n

ik e ik r e

ik t e V L t e

δ ξ ξ

ξ δ ξ α ξ

∞ ∞
− − −

= =

∞ ∞
− −

= =

Φ + − Φ

− Φ + − − Φ

=

∑ ∑

∑ ∑       

Multiplying Eq. 5. 4 by ' ( )n dξ ξ
∞

−∞

Φ∫ , we have 

 

( )

( ) ( )

0 0

0 0

' '
0 0

' '
0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )   (5.5)

0

n j n j

n j n j

ik x ik x
n nn n n n nn n n

n n

ik x ik x
n nn n n nn n n j

n n

ik e d ik r e d

Vdxik t e d t e x d

δ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ δ ξ α ξ
α

∞ ∞∞ ∞
−

= =−∞ −∞

∞ ∞∞ ∞

= =−∞ −∞

Φ Φ + − Φ Φ

− Φ Φ + Φ Φ −

=

∑ ∑∫ ∫

∑ ∑∫ ∫

 

Rewrite Eq. 5.3 and Eq. 5.5 in matrix form, we can construct the following matrix 

equation 
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0

0

11 12 1

21 22 2

                                                                                   (5.6)nn

nn

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

rN N D
tN N D

                  

Here, submatrixs are given by 

2

2
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2 2

( )
11 '

( )
12 '

( )
21 '

( ) ( )
22 0 '

n

n

n

n n

ik L
n n

ik L
n n

ik L
n n n

ik L ik L
n n

e

e

ik e
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1 ''

( )
2 ''

n

n

ik L
n nn

ik L
n nn

e
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D
 

Solve Eq. 5.6 we can get the column and . Similarly, if we let electron 

incident from n=1,n=2……………..n=M, we can get the 

0nr 0nt

M M×  matrix of 

αβr and αβt , whereα,β are phonon sideband index. 

Subsequently, in the similar way, we also get the M M×  matrix of αβr and αβt . 

With matrix αβr , αβt , αβr , and αβt , we get scattering matrix S(0, 1) matrix by Eq. 

3.7. In addition, we have constructed the S(1, 2),S(2, 3)…to S(N-2, N-1) matrix  

last chap. And, we construct the S(N-1, N) by the same way of constructing S(0, 1) 

matrix except replacing the –L2 with L2. With S(0, 1), S(1, 2)……..S(N-1, N) 

matrix.  we can get the S(0,N) scattering matrix by scattering matrix method as 

mentioned in Section 3.2 finally.  

Let column A0= 0nnδ and BBN=0. Then  
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22eG T
h

=  

where =0( )P n (1 ) ne eβ ω β− −− ω ,β=KBT, KB is the Boltzmann constant and T is 

absolute temperature. 
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X = -L2 
 

 

 

two static 
barriers 
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Fig. 5.1 Model of electron tunneling through a single-molecular quantum dot embedded 

with center-mass-oscillation local phonons 
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Fig. 5.2 The wave function at the neighbors of x=-L2
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5.3 Numerical Result and Discussion 
In this section, we show the numerical results and discussions of a electron 

tunneling through a quantum dot coupled with local phonons different cases. In all 

of cases, we study the G characteristics as a function of incident electron energy. 

Therefore, we take the G with units 2e/h as the vertical axis and the energy of 

incident energy called E as the horizontal axis 

The phonon sideband peaks 

In Fig 5.3, the electron-local phonon interaction strengths vary from V=0.2 to 

0.4 with units 7.12×10-11 eV‧m and we take the phonon energy ћω=0.12meV as 

energy scale, mass of phonon M=20m*, and the strength of double barrier V0 = 5 

with unit 7.12×10-11 eV‧m at zero phonon temperature. In addition, the black line 

correspond to the conductance resulting from electron tunneling through the double 

barrier modeling the quantum dot. The separation between the phonon sidepeaks 

and the main resonance peak due to electron tunneling through the double barriers 

is about by the phonon energy ћω. The phonon sidepeaks are related to the excitation 

of local phonons by the electron tunneling onto the quantum dot. And at zero 

temperature, the electron tunneling onto the quantum dot can only excite phonons but 

absorb no phonon, which explain why the phonon sidepeaks only appear in right hand 

side of main resonance peaks. 
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VDB only 

G 

 

 

 

Fig 5.3: G with unit 2e2/h plotted against energy of incident electron with unit ћω = 

1.2meV as energy scale for ω = 1.83THz, zero phonon temperature, and mass of 

phonon M = 20m* for repulsive local phonon potentials’ strength V varying from 0.2 

to 0.6 with units 7.12×10-11 eV‧m. 
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The incident electron wavelength dependence for repulsive 

local phonon potential at zero phonon temperature   

   

In Fig 5.4, 5.5, 5.6 and 5.7, the widths of double barrier are respectively W=16, 

20, 24,32 nm and we take the phonon energy ћω=2.14 with unit 9meV, mass of 

phonon M=1000m*, the strength of double barrier V0 =30 and electron-local phonon 

V= 30 with unit 7.12×10-11 eV‧m at zero phonon temperature. Those figures 

respectively shown in the inset of Fig 5.4 to 5.7 are the locally enlarged figures of 

phonon sidepeak. In this series of figures, we can find that the phonon sidepeaks 

can be enhanced 100 times height as the widths of double barrier become narrower 

from 16 nm to 32nm. It is because that the incident electron wave is confined in the 

double barrier. Therefore, as the width of double barrier is down to 16 .nm, the 

electron wavelength is also down to16 nm, which can be compared with the phonon 

wavelength at ground state about 1.6 nm and enhance the phonon sidepeaks. 

 

 

 

 

 

 

 

 

Fig. 5.4: G with unit 2e2/h plotted against energy of incident electron with unit EF 

=9meV for V= 30 with units 7.12×10-11 eV‧m to repulsive local potential, zero 

phonon temperature, width of static barrier 16 nm, phonon energy ћω = 19.2meV, 

and mass of phonon M = 1000m*. 
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Fig. 5.5: G with unit 2e2/h plotted against energy of incident electron with unit EF 
=9meV for V= 30 with units 7.12×10-11 eV‧m to repulsive local potential, zero 
phonon temperature, width of static barrier 20 nm, phonon energy ћω = 19.2meV, 
and mass of phonon M = 1000m*
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Fig. 5.6: G with unit 2e2/h plotted against energy of incident electron with unit EF 
=9meV for V= 30 with units 7.12×10-11 eV‧m to repulsive local potential, zero 
phonon temperature, width of static barrier 24 nm, phonon energy ћω = 19.2meV, 
and mass of phonon M = 1000m*
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Fig. 5.7: G with unit 2e2/h plotted against energy of incident electron with unit EF 
=9meV for V= 30 with units 7.12×10-11 eV‧m to repulsive local potential, zero 
phonon temperature, width of static barrier 32 nm, phonon energy ћω = 19.2meV, 
and mass of phonon M = 1000m*
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The local phonon mass dependence for repulsive local phonon 

potential at zero phonon temperature  

First, In Fig 5.8, the mass of phonon M vary from 100m* to 1000m* and we 

take the phonon energy ћω=0.74 with unit 9meV, the width of double barrier 

is ..nm ,the strength of double barrier V0 = 30 with unit 7.12×10-11 eV‧m and 

electron-local phonon V= 10 with unit 7.12×10-11 eV‧m at zero phonon temperature. 

And the light blue line corresponds to the case of the local phonon replaced by the 

static barrier with the same strength. In Fig 5.8, the phonon side peaks are also 

enhanced due the similar reason mentioned above. However, in Fig 5.8, we fixed 

the wavelength of incident electron wavelength and increase the phonon wavelength 

from 1.6 nm to 3.2 nm by reducing the mass of phonon from 1000m* to 100m* with 

the same phonon energy. Second, Fig 5.9 is enlarged Fig 5.8 from E=0.7 to 1.1 with 

unit 9meV. In Fig 5.9, it is found that as the mass of local become heavier, the main 

peak become closer to that related to static case. 

 

 

 

 

 

 

 

Fig. 5.8: G with unit 2e2/h plotted against energy of incident electron with unit EF 

=9meV for V= 10 with units 7.12×10-11 eV‧m to repulsive local potential, zero 

phonon temperature, width of static barrier 49 nm, phonon energy ћω = 6.6meV, 

and mass of phonon M various from 100m* to 1000100m*. 
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Fig. 5.9: Plotting Fig. 5.8 again at the energy rangy of 0.7 to 1.1 with unit EF 

=9meV. 

 

The electron-local phonon interaction strength dependence for 

repulsive local phonon potential at zero phonon temperature 

In Fig 5.10, the widths of double barrier are respectively W=16 nm and we 

take the phonon energy ћω=2.14 with unit 9meV, mass of phonon M=1000m*, the 

strength of double barrier V0 =30 and electron-local phonon V= 8, 10, 20, 25, 30 

with unit 7.12×10-11 eV‧m at zero phonon temperature respectively corresponding 

to green, blue, red, purple, and black line. In Fig 5.10, we can find that the phonon 
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sideband peaks cannot be infinitely enhanced by increase the electron-local 

interaction strength. This is because that the electron wavefunction would be 

saturated by the local phonon with too strong interaction strength with electron. 

Therefore, we do not have to enhance the phonon sideband peaks by constantly 

increasing the interaction strength. 

Fig 5.10, the widths of double barrier are respectively W=16 nm and we take the 

phonon energy ћω=2.14 with unit 9meV, mass of phonon M=1000m*, the strength 

of double barrier V0 =30 and electron-local phonon V= 8, 10, 20, 25, 30 with unit 

7.12×10-11 eV‧m at zero phonon temperature respectively corresponding to green, 

blue, red, purple, and black line. 

The dependence of the local phonon’s oscillation mode n=1 

when the electron incident 
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 In Fig 5.11, the widths of double barrier are respectively W=16 nm and we 

take the phonon energy ћω=2.14 with unit 9meV, mass of phonon M=1000m*, the 

strength of double barrier V0 =30, electron-local phonon V= 30 with unit 7.12×10-11 

eV‧m and the local phonon staying in n=1 state while the electron incident. In Fig. 

5.11, we let the local phonons are excited to the n=1 and 2 states besides of n=0 

mode, where we not only see the satellite peaks in the right hand side of the main 

resonance peak but also in the left hand site due to the electron tunneling through 

quantum dot resonance level by absorbing a phonon.  

 

 

 

 

 

 

 

Fig 5.11, The widths of double barrier are respectively W=16 nm and we take the 

phonon energy ћw=2.14 with unit 9meV, mass of phonon M=1000m*, the strength 

of double barrier V0 =30, electron-local phonon V= 30 with unit 7.12×10-11 eV‧m 

and the black, red, blue lines respectively corresponding to  local phonon staying 

in n=0, 1, 2 states while the electron incident. Besides, the cyan dot line corresponds 

to static case. 

Level repulsion phenomenonIn Fig. 5.12 and 5.13, The widths of double 

barrier are respectively W=16 nm and we take the phonon energy ћw=2.14 with unit 

9meV, mass of phonon M=1000m*, and repulsive local phonon potentials’ strength V 

= 8 and V=14 with units 7.12 10× -11 eV‧m respectively to Fig. 5.12 and 5.13. Besides, 
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red line corresponds to Ttotal. Green line corresponds to T0->0+ T0->1->0. Black line 

corresponds to T0->1. Cyan line corresponds to local phonon barrier replaced by the 

same strength static barrier. In Fig 5.12, because the difference of the second and first 

resonance levels to this system is much larger than the phonon energy. We can 

separate the main peak due to resonance tunneling through the resonance level of the 

system and phonon side peak definitely. However, in Fig. 5.14, the difference of the 

second and first resonance levels to this system is approximately equal to the phonon 

energy. Therefore, we can see the level repulsion phenomenon. 

 In summary, we see the phonon sideband peaks due one-phonon emission 

process expect the main resonance peak due the single molecular quantum dot. 

Besides, we can enhance the phonon sideband peaks by reducing the wavelength of 

incident electron.  
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Fig. 5.12 The widths of double barrier are respectively W=16 nm and we take the 

phonon energy ћw=2.14 with unit 9meV, mass of phonon M=1000m*, and 

repulsive local phonon potentials’ strength V=8 with units 7.12 10× -11eV‧m. 

Besides, red line corresponds to Ttotal. Green line corresponds to T0->0+ T0->1->0. 

Black line corresponds to T0->1. Cyan line corresponds to local phonon barrier 

replaced by the same strength static barrier. 
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Fig. 5.13 The widths of double barrier are respectively W=16 nm and we take the 

phonon energy ћw=2.14 with unit 9meV, mass of phonon M=1000m*, and 

repulsive local phonon potentials’ strength V=14 with units 7.12 10× -11eV‧m. 

Besides, red line corresponds to Ttotal. Green line corresponds to T0->0+ T0->1->0. 

Black line corresponds to T0->1. Cyan line corresponds to local phonon barrier 

replaced by the same strength static barrier. 
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Chaper 6 
 
Conclusion remarks 

Throughout the thesis, we have developed a non-perturbed method to analyze the 

effect of local phonons on the electron transport in a 1-D wire as well as the case of 

quantum dot. 

In Ch. 4, we make a complete and detailed analysis to the case of the electron 

transport in a 1-D wire scattered by local phonons. And our numerical result 

demonstrate (1) We can see the dip structure in attractive local phonon potential even 

the mass of phonon up to 1000 times m*. However, in the repulsive local phonon 

potential , we can find structures in G even the mass of phonon only to 80 times m*, 

(2) As the temperature increase, the kinks found in conductance G can be thermal 

averaged,(3) We can find that the transmission coefficient of the propagating electron 

throughout the local phonons is dominated by the no energy-loss scattering and the 

one-phonon emission process or one-phonon absorption process has only a little 

contribution to the transmission coefficient. As mentioned in chap 4, we can find 

phonon sideband structures in the case of electron transport in a 1-D wire scattered by 

local phonons but those effects are very small. However, in Ch. 5, we confine electron 

in the double barrier and succeed to enhance the phonon sideband structures. And, our 

numerical result demonstrate (1)At zero phonon temperature, we can see the satellite 

peak on the right side of the resonance peak. Since at zero temperature, no phonon 

modes are excited on the quantum dot, the propagating electron can tunnel only by 

emitting a phonon. Therefore, while the phonons modes are excited to the n state on 

the quantum dot, the satellite peak can also appear on the left hand side of the 

resonance peak, (2) Even the mass of local phonon is up to 1000 times m* in repulsive 
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local phonon potential, the phonon sideband structures can be found obviously only if 

the electron wavelength is comparable to the phonon wavelength.   

Throughout our thesis, we do not really model the single molecule device 

worked by H. Park. et al.[5]. The model what we use is a single particle model and 

we can find the interference effects while we neglect the effect of coulomb blockade. 

That is we neglect the many particle effects. Therefore, in the future, we will try to 

add the many particle effects to our model. 
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Appendix A 
 
To establish an independent check on the about piece-wise mode matching 

method, we consider the following problem. It is an infinite long wire of width w=2 
with a hard wall con nement an a barrier at y=y0 exist within the region 0 =< x <= L 

as shown in Fig. A1.

fi

 
 

W=2 

x=L x=0 

 
 y=y0 

 
 
 
 

vδ(y-y0)[θ(0)-θ(L)]  
 

Fig. A1 An infinite long wire of width w=2 with a hard wall confinement an a barrier 

at y=y0 exist within the region 0 =< x <= L. The Hamilton can be written as 

2 2

02 . ( )[ (0) ( )]                                                (A1)
2

H H W v y y L
m x

δ θ θ∂
= − + + − −

∂

This problem allows another method of calculation which we mode match at x=0 

and x=L only. And we can make sure the correctness of the scattering matrix method 

by this way.  
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