I R A T o A #Eﬁ'ﬁ?&ﬁ%fé'ﬁ—
ROBUSTNESS OF THE Z; TOPOLOGICAL PROPERTY OF A

NANO-PATTERNED TWO-DIMENSIONAL ELECTRON GAS

Foro4 tEsd

TS R e



2HWMA- BT AN LT Al

ROBUSTNESS OF THE Z; TOPOLOGICAL PROPERTY OF A

NANO-PATTERNED TWO-DIMENSIONAL ELECTRON GAS

R A A 3 | Student : Yu-Rou Wu

hERE AP RE Advisor : Prof. Chon Saar Chu

A Thesis
Submitted to Department of Electrophysics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the degree of
Msster
In
Electrophysics

September 2014
Hsinchu, Taiwan, Republic of China

PEAR- POz #£4 7



AWM BT F ARl pE el

E IR

&

TIF AR R AR ENY K BT ’;‘IR#BH Eay
zuf.;u Ko ¥ = 2 G o R (% € AP B B AL M R & R
VAR5

BRHEER G AP LA "??'f} Zodp RN T et 4(:@&;‘3—'? m;}aé Mo * K-
P EHABT AP M £ F 2 % s Hamiltonian T f247 + &
Eed N TFETG ra»@f;‘?—ulﬁufr? EELE
R T TS E o m AR A AR S o AR £ e R BB
AR AL AR ek B e b - BEE TG e e B A ART U
R LAF RN S RARTF LIPEIET G § BT hfiitld -

2+ 8 5 ¥ 0 Chern
iw;’?mﬁ*i PRl T
E_:,-
T



Robustness of the Z, Topological Property

of a Nano-patterned Two-dimensional Electrons Gas

Student: Yu-Rou Wu Advisor: Prof. Chon-Saar Chu

Department of Electrophysics
National Chiao Tung University

Abstract

The relativistic massless Dirac fermions is foundin-the low energy bands of the two-
dimensional electron gas subjected to triangular nano-patterned periodic potential. The
spin-orbit interaction further introduces gap at Dirac points for the massless fermions
and turns the semimetal into a Z2 topological insulator.

Base on these facts, we investigate.the robustness of the Z, topological nature of the
system under external magnetic field: The k- p theory is employed to develop the
effective Hamiltonian for the low energy bands with the presence of magnetic field. We
analytically calculate the Chern numbers of the bands. For the presence of only in-plane
magnetic field, the up and down spin along out-of-plane direction are no more good
guantum states. The mixing of these states ruins the Z, feature of the system. However,
with arbitrary small out-of-plane magnetic field, the Z, topological nature is restored
meaning the robustness of its topology under external magnetic field.
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The band structures of graphene with the Dirac points [13].

The top view of the MTP lattice with center to center distance a. The
potential is U, inside the disk with diameter d and zero outside.

This figure is quoted from the thesis by W. L. Su [15]. It shows the Chern
numbers of spin-up and spin-down for each energy bands and the
comparison for Fermi energy, Croccupiear Cloccupiear Zz number

Scanning electron microscopy images of the nano-patterned modulation doped
GaAs/AlGaAs sample [16].

The experimental setup of the 2DEG subjected to MTP lattice. We use the external
bias making the n-dope layer to control the Fermi energy.

(@) A top view of MTP lattice with distance a between the centers of adjacent
potential disks. The potential is U, _inside the disk with diameter d and zero
inside. (b) The reciprocal lattice and the first Brillouin zone.

(@) The lowest two bands of 2DEG subjected to MTP without SOI. The Dirac
point is at the touching points (at K and K*points)-of the two bands. For symmetry
reasons, the band structures around K” point are not shown here. (b) The Brillouin
zone with the symmetry-points in k-space. The parameters we employ here are
m* = 0.023m,; the MTP strength U, = 165meV with diameter, d = 0.663a,
where a = 40 nm is the lattice’constant.

(a) The real part for the 1 band at K’ valley (odd under y — -y). (b) The imaginary
part for the 2" band at K’ valley (odd under y — -y). (c) The real part for the 2"
band at K’ valley (even under y — -y). (d) The imaginary part for the 2" at K’
valley (even under y — -y). The parameters we employ here are m* = 0.023m,;
the MTP strength U, = 165 meV with diameter, d = 0.663a, where a =
40 nm is the lattice constant.

The lowest two bands for the 2DEG subjected to MTP lattice. The blues lines are
those without SOI, while the red lines are those with SOI. Apparently, the SOI
introduces the energy gap at K and K’ points. For symmetric reason, the band
structures near K’ point is not shown here. The parameters we employ here are
m* = 0.023m,; the MTP strength U, = 165meV with diameter, d = 0.663a,
where a = 40 nm is the lattice constant. The SOI coupling constant is 1 =
12042,

The band structures along different g-directions (different « values). Comparing
with the numerical results (the solid blue and red lines), the k- p theory
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(isotropic band structures, independent of «) is accurate. The parameters we
employ here are m* = 0.023m, ; the MTP strength U, = 165 meV with
diameter d = 0.663a,and a = 40 nm is the lattice constant. The SOI coupling
constant is A = 120A2

The lowest four bands of 2DEG subjected to MTP lattice. The blue solid lines
(double degenerate) are those with B, = 0T, while the red solid lines are those
with B, = 3T. The SOI is present for both of them. For comparison, the band
structures without SOl but with B, = OT (black dotted lines) and B, = 3T (gray
dashed lines) are also shown. The other parameters we employ here are 4 =120
A%(InAs); m* = 0.023m,; U, = 165meV; a = 40nm; d = 0.663a.

The lowest four bands around K point of 2DEG subjected to MTP lattice. The
blue lines are those with B, = OT while the red lines are those with B, = 0.03T.
The in-plane magnetic field is B, = 3T for both of them. The other parameters
we use here are 2 =120 A’ (InAs); m* = 0.023m,; U, = 165meV; a = 40nm;
d = 0.663a.

The band structures from the effective theory around K point. (a) The out-of-plane
field, B, = 0T and (b) B, .= 0.03T. The solid red and blue lines are those bands
from numerical results with different g-directions (o« = 0 and a = 10 for blue
and red lines, respectively). The parameters we employ here are m* = 0.023m,;
the MTP strength U, = 165meV with diameter- d = 0.663a and a = 40 nm
is the lattice constant. The SOI coupling constant is 1 = 12042

The Chern numbers of the lowest 4 bands.near the K point. (a) B, # 0,B;, =0
(b) B, #0,B, =|B,|Z2 (c) Bfj#0,B, =—|B,|Z (d) B, =0,B, = —|B,|Z.
The Chern numbers of the band are indicated by the numbers with corresponding
color. The SOI are present for all of them. The parameters we employ here are
m* = 0.023m,; the MTP strength U, = 165meV with diameter, d = 0.663a,
where a = 40 nm is the lattice constant. The SOI coupling constant is 1 =
120A2.

The top views of the MTP lattice with the a being the distance between the
centers of two adjacent disks. The potential is U, inside the disk with diameter
d and zero outside.

The energy band structures of 2DEG subjected to MTP lattice. The blue lines
are those without SOI while the red lines are those with SOI. The parameters
we employ here are m* = 0.023m,; the MTP strength U, = 165meV with
diameter, d = 0.663a, where a = 40 nm is the lattice constant. The SOI
coupling constant is A = 120A2.

The energy band structures of 2DEG subjected to MTP with SOI and in-plane
magnetic field, B, = 3T. The parameters we employ here are m* = 0.023m,;
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the MTP strength U, = 165 meV with diameter, d = 0.663a, where a =
40 nm is the lattice constant. The SOI coupling constant is A = 12042
Energy dispersion with in-plane magnetic field at the lowest four bands. At K
point, there are two degenerate points, indicated by the two black arrows. 1 =120
A? (InAs); m* = 0.023m,; U, = 165meV; a = 40nm; d = 0.663a; Bj, =
3(Tesla).
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Chapter 1. Introduction

Chapter 1

Introduction

The emergence of graphene, carbon atoms arranging into two dimensional (2D)
honeycomb lattice, has aroused much attention. It is not only because of the realization
of relativistic dynamics in condensed matter physics, but also due to its abundance
topological features as spin-orbit interaction (SOI) is introduced. On the other hand, the
Dirac features of band structures can be introduced in artificial lattice as well. The
energy dispersion of 2D electron gas (2DEG) subjected to nano-patterned external
lattice potential has been shown, both experimentally and theoretically, possessing
gapless Dirac like structure. Furthermore, the SOI removes the degeneracy at Dirac
point and introduces gap opening. With further topological analysis, the gap reveals,
itself, the Z, topological nature. Base on'the knowledge, we further study the robustness
of this topological properties under both in-plane‘and out-of-plane magnetic field,
individually and simultaneously. We-employ the k - p_ theory to develop the effective
Hamiltonian, and base on this Hamiltonian, the topology of the low energy bands are
discussed.

Before proceeding, the rest part‘of this-introduction is set to give a brief review of
the concepts of topological insulator and spin-orbit interaction. In Sec. 1.1, the term of
topological insulator is introduced. Historically, the topological nature of quantum Hall
effect indicating by Thouless et al [1] unveils the new insulating phase relating to
topology. Furthermore, Kane and Mele point out a richer topological feature relating to
spin in graphene, the quantum spin Hall effect (QSH). These will all discussed in Sec.
1.1. In Sec. 1.2, the spin-orbit interaction is introduced. In this section, the enhancement
of SOI in semiconductor is discussed. And finally, the motivation of this thesis is
presented in Sec. 1.3.

1.1 Topological insulator

The evolution in condensed matter physics is often propelled by discoveries of novel
materials. In this respect, materials presenting unique quantum-mechanical properties
are of special importance. Topological insulators (TIs) are a class of such materials and
they are currently leading to the surge of research. They are called ““topological”

1



Chapter 1. Introduction

because the wave functions of their electronic states span a Hilbert space that has a
nontrivial topology. In crystalline solids the wave vector k becomes a good quantum
number, the wave function can be regarded as a mapping from the k-space to a
manifold in the Hilbert space, so the topology becomes relevant to the electronic states
in solids. A significant consequence of nontrivial topology in an insulator is that a
gapless interface state necessarily appears when the insulator is physically terminated
and faces an ordinary insulator (including the vacuum). This is because the nontrivial
topology is a noncontinuous characteristic of gapped energy states. As long as the gap
remains open, the topology cannot change; that is to say, for the purpose of the topology
changing across the interface into a trivial one, at the interface the energy gap must
close. Such principle for the necessary appearance of gapless interface states is called
bulk-boundary correspondence. Furthermore, the peculiar characteristics of the
edge/surface states is an another unique property of TlIs. Recently the TI research is
focused mostly on time-reversal invariant systems, where the nontrivial topology is
protected by time-reversal symmetry (TRS).

In 1980, von Kilitzing et al. found the Quantum Hall effect (QHE) in a high-
mobility 2D semiconductor under high magnetic field and very low temperature [2].
The quantized Hall resistance has plateaus as a function of the number of electrons.
Such a quantization of transport coefficients obviously pointed to a macroscopic
quantum phenomenon ( made by Laughlin’s gauge argument [3]). In 1982, it was
identified by Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) that QHE is not
only quantum mechanical but also topological. They demonstrated that in quantum Hall
(QH) system the k-space is mapped to a topologically-nontrivial Hilbert space, whose
topology can be specified by an integer topological invariant called TKNN invariant v,
and that o,,, isequal to v times e?/h [1]. The TKNN invariant is also called Chern
number. The QH system belongs to a topological class which breaks TRS. In recent
years, an new topological class has been proposed. These new quantum states belong
to a class which is TR invariant , and where SOI plays an significant role. The quantum
spin Hall (QSH) state is a state of matter proposed to exist in special, 2D
semiconductors with SOI. The QSH state of matter is the cousin of the integer QH state,
but, unlike the latter, it does not require the application of a large magnetic field. The
QSH state does not break TRS. The first proposal for the existence of a QSH state was
developed by Kane and Mele [4] who adapted an earlier model for graphene by Haldane
[5] which exhibits an integer QH effect. The Kane and Mele model is two copies of the
Haldane model such that the spin up electron exhibits a chiral integer QH effect while
the spin down electron exhibits an anti-chiral integer QH effect. It has been recently
proposed [6] and subsequently experimentally realized [7] in mercury (11) telluride

2



Chapter 1. Introduction

(HgTe) semiconductors. The QSH states have zero Hall conductance but it is associate
with the Z; [8] topological invariant. A Z, Tl is known to possess a pair of gapless
helical edge states protected by TRS. Similar to the gapless chiral edge states of QH
systems, responsible for the quantized Hall conductance, the helical edge states ensure
the quantization of spin Hall conductance. The Z classification is analogous to the
Chern number classification of the QH effect.

1.2 Spin-orbit interaction (SOI)

Spin-orbit coupling (or SOI: spin-orbit interaction) is a well-known phenomenon
which connects a particle’s spin with its momentum, significantly affecting the atomic
energy spectra. In solid-states system, spin-orbit coupling arises from the electron’s
motion in the intrinsic electric field of the crystal. This interaction makes symmetry
breaking because the coupling strength is related to the velocity measured in the
reference frame. Thus SOI arises from realistic quantum mechanics and one can obtain
the formula of SOI by taking the non-relativistic limit of the Dirac equation. In vacuum
the Hamiltonian of SOI is [9]:

Hgo = ——2—g - (EXP) =—2=0 - (VV X p), (L.1)

4m3c? 4m3c?

where m, is the free electron'mass; " is the Plank constant; c is the speed of light.

Eq. (1.1) could be illustrated in the framework of the classical electrodynamics. An
electron in reference frame moves with:veloeity v under an electric field E, finding a
magnetic field: B = —(v x E) = —(E X p). That is, the moving electron experiences
an equivalent magnetic in its rest frame that origins from the Lorentz transformation of
the electric field. Hence this effective magnetic field couples with the electron spin
through the magnetic moment of the electron. This physical picture also holds in
semiconductor, when V(r) can be the periodic potential of the host lattice. In addition,
the SOI in semiconductor requires an effective electric field. Such effective electric
field can be arose from the build-in crystal field has bulk inversion asymmetric
(Dresselhaus SOI, in zinc-blende structure) or structural inversion asymmetry (Rashba
SOI, in asymmetric quantum wells or heterostructures).

According to the effective mass approximation, the effect of all the fast-varying
atomic potential has been reduced to the effective mass. Slower varying V(r), with the
length scale of varying much greater than the spacing of lattice, is found to contribute
to SOI with a much larger SO coupling constant A . For a central potential V(r) =
V(r) invacuum, the SO coupling is:

_HK2 2

4mZc?

h? 1dVL Avac 1 AV
o-.(rXp)z_Z___-o'z_ﬁ__
0

3

am2c2r dr



Chapter 1. Introduction

where L is the orbit angular momentum, o is the Pauli matrices and

Avac = by ~ —3.72 X 10742
0

While in the semiconductor, also for a central potential V(r) = V(r), the SO coupling
is:

where 1 =~ £2 [— — ;]

3 |E5 (Eg+A0)2
For the two dimensional electron gases (2DEG), the SOI becomes:

A1dv(p)
Hyo = — %= o
SO = hr dp zYz

Here P is the momentum matrix element between s — and p — orbitals, E, is the
energy band gap, and A, represents the SOI energy split to the split-off band [10,11].
In particular 2 = 12042 in InAs, which is seven order of magnitude greater than A,
[10].

Qualitatively, this large enhancement of SO.coupling constant can be explained in

the following. With  A,,, « ——_we can see that

302 mom c?

A m*mgc?
—

Avac m Eg

1 2 0.5MeV :
For InAs, =2~ ——; 1% . 2"°""Jeading to
m 0.023 Eg 0.418eV
2
~52 x 10°
vac
. . R2 .
Comparing with % = 32 x 108, such hand waving argument has captured

the essential physical origin of the great enhancement.
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1.3 Motivation

The material graphene exhibits many remarkable mechanism and electron transport
properties due to the presence of Dirac points at the corners of the hexagonal Brillouin
zone. In the vicinity of these points, the low energy spectrum is conical, the conduction
and valence bands linearly intersecting right at Dirac points, exhibiting relativistic
dispersion with zero effective mass. Hence, the graphene can be well described by the
massless Dirac Hamiltonian. However, consider with topology, the new physics beyond
Dirac Hamiltonian is introduced when SOl is taken into account. Superficially, the SOI
introduces energy gap, giving a mass to the particles. Nonetheless, Kane and Mele point
out the QSH can be realized in graphene with SOI [12]. The emergence of the gap
converts graphene from a 2D semimetal to a Z» topological insulator which realizes the
QSH effect.

Fig 1.1 : The band structures of graphene with the Dirac points [13].

Beside graphene, the Dirac features of band structures also appear in nano-patterned
lattice. C. H. Park and S. G. Louie theoretically proposed that the massless Dirac
fermions are found in 2DEG under a triangular muffin-tin potential (MTP) lattice
shown in Fig 1.2. [14]. Base on these findings, the former thesis of W. L. Su, from our
group, further considers the SOI in MTP and discusses the topological properties of the
Dirac fermions. The results, in conclusion, the SOI introduces the gap for the Dirac
points and it reveals the Z> TI nature. Fig 1.3 shows the band structures and the
corresponding Chern numbers which summarizes the work of W. L. Su [15].
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S

Fig 1.2 : The top view of the MTP lattice with center to center
distance a. The potential is U, inside the disk with diameter d
and zero outside.
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Fig 1.3 : This figure is quoted from the thesis by W. L. Su [15]. It shows
the Chern numbers of spin-up and spin-down for each energy bands and
the comparison for Fermi energy, Croccupiea Cloccupiedr Zz number
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Chapter 1. Introduction

On the other hand, the experimental realization of nano-patterned MTP in
honeycomb lattice is achieved by M. Gibertini et al [16]. It is found that the massless
Dirac points, at the corners of Brillouin zone, can be created by modulating 2DEG with
long-wavelength periodic potential (modulation-doped GaAs quantum well). Fig 1.4
shows the scanning electron micro images of the nano-patterned modulation doped
GaAs/AlGaAs and Fig 1.5 shows the setup of experiment.

Fig 1.4 : Scanning electron-microscopy images of the nano-
patterned modulation.doped GaAs/AlGaAs sample [16].

insulator layer

1 I/ metal model .ﬁ /

2DEG

Fig 1.5 : The experimental setup of the 2DEG subjected to
MTP lattice. We use the external bias making the n-dope
layer to control the Fermi energy.

In this thesis, based on W. L. Su’s results [15], we study the robustness of the Z>
feature under in- and out-of- plane magnetic fields, individually and simultaneously.

The energy region we focus on in this thesis is the lowest two energy bands around the
7



Chapter 1. Introduction

Dirac points (i.e. K- and K’-valleys). We discuss the robustness of Z, topological
property under difference cases of magnetic field. We expect that the non-trivial
topological properties for nano-patterned 2DEG in MTP could be robustness against
the external magnetic fields.

1.4 Aguide to this thesis

The goal of this thesis is to investigate the robustness of the Z, topological feature
of 2DEG in MTP lattice with SOI in the presence magnetic field. The energy dispersion
without magnetic field is presented in Chapter 2. Besides, the k-p theory is
employed to develop the effective Hamiltonian for low energy bands. In Chapter 3, we
discuss the band structures for MTP lattice with SOI and magnetic field. Base on the
effective Hamiltonian introducing in Chapter 2, the effective theory for the presence
of magnetic field is also developed. On top of these, the topological properties of the
bands are demonstrated in Chapter 4.7/And finally, the conclusion and future work are
shown in Chapter 5.
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Chapter 2
Energy bands with spin-orbital interaction (SOI)

In this chapter, we discuss the band structures of the two-dimensional electron gas
(2DEG) in the presence of the muffin-tin potential (MTP) lattice with (Sec. 2.1) and
without (Sec. 2.2) spin-orbit interaction (SOI). For the low energy band structures, the
SOI introduces the energy gap at the K and K’ points, which crucially affects the
topological features. Since in the following chapters, we will focus on the band
topological properties of the low energy region, in Sec. 2.3, we further develop the low
energy effective theory around K and K’ points, which is the preparation for the
analytically topological discussion.

2.1 Energy bands without SOI

First we start by discussing the energy-dispersion of the MTP lattice without SOI. The
Schrédinger equation of the 2DEG under the periodic potential is

HO‘Pk(r):{Zp—r;+V(r)}‘Pk(r): EW, (1), @.1)

where m*is the effective electron.mass; V(r)is the periodic MTP with V(r) =
> V.e6mT Due to the periodicity of the Hamiltonian in Eq. (2.1), the solution of the
Schrédinger equation is in the Bloch form

¥ (r)= (2.2)

|krze|G r
where N is the number of unit is cell and Aq 1s the area of unit cell in real space. The
m (and n) labels the reciprocal lattice points, G. The Fourier transform of the MTP

(derived in Appendix A) is

V. - 27U ,d 3, IG,|d ' 2.3)
V2|G,|aa, 2
Substitute Egs. (2.2), and (2.3) into Eq. (2.1),
Ze|kr |G r‘: :‘C +Ze'k' i(Gy+Gy, EZe'kr |Grn rC (243.)
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(a) (b)

Fig. 2.1 (a) A top view of MTP lattice with distance a between the centers of adjacent
potential disks. The potential is U, inside the disk with diameter d and zero inside.
(b) The reciprocal lattice and the first Brillouin zone.

The second summation in Eq. (2.4).can be further simplified by the index relabeling.
Specifically, let G,,,” = G,,» +Gyand m =m'" —m’, thus we have

e (GG r G R
Z eIk rel( wH m) r VmCm, _ z elk reIGm r erl_mlcmr — Z eIk I‘eIGm r er_mcm (2'4 b)
mm'’ m'm” mm’

In the final step in Eq. 2.4(b), the replacements of 'n’ — n and n — m are done. After
simplification, we arrive

2
Z{%|k+Gm,|2 5 +\7m,m} ¢ —Ec.,. 2.5)

m

h? 2
|k + G| S +V,

Let M, = {
2m

m’'—m

}, and Eq. (2.5) is in the compact matrix form

M. c,|=E|C

mm m m

(2.6)

The energy band structures in the MTP lattice is shown in Fig. 2.1. Since we are
interested in low energy bands, only lowest two bands are presented here. From Fig. 2.1,
the bands touch at K and K’ points, at the Brillouin zone corners, result in Dirac cones
at these points. The band structures are consistent with the results proposed by C. H.
Park and S. G. Louie [14].
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65

20 ’
M K K K

(a) (b)
Fig. 2.2 (a) The lowest two bands of 2DEG subjected to MTP without SOI. The Dirac
point is at the touching points (at K-and K” paints) of the two bands. For symmetry
reasons, the band structures around K>-point are not shown here. (b) The Brillouin zone
with the symmetry points in-k-space. The parameters we employ here are m* =
0.023m,; the MTP strength U, = 165meV with diameter, d = 0.663a, where a =
40 nm is the lattice constant.

Since we will derive the k-p effective Hamiltonian around Dirac points, the
symmetry properties of the degenerated states at K- and K’- valleys are crucial. Figs. 2.2
and 2.3 show the contours of these states for K- and K’- valleys, respectively. Specifically,
the real and imaginary parts of first band (y,) at K-valley are plotted in Fig. 2.2 (a) and
(b), while the real and imaginary parts of the second band, v, are shown in Fig. 2.2 (c)
and (d), subsequently. The counterparts of these band states, ¥; and 5, at K’-valley
are in Fig. 2.3. From these figures, we find 1, and 1p; are odd functions under mirror
reflection with respect to x axis (y — -y), while ¥, and 1, are even under the same
symmetry operation. These symmetry properties will be employed in the derivation of
the k- p Hamiltonian in Sec. 2.4 and the discussion in Sec. 3.1.
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Fig. 2.2 (a) the real part of ; at K-valley (odd under y — -y). (b) the imaginary part
of ,; at K-valley (odd under y — -y). (c) the real part of 1y, at K valley (even undery
— -y). (d) the imaginary part of 1, K-valley (even under y — -y). The parameters we
employ here are m* = 0.023m,; the MTP strength U, = 165meV with diameter, d =
0.663a, where a = 40 nm is the lattice constant.

12



Chapter 2. Energy bands with spin-orbital interaction (SOI)
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Fig. 2.3 (a) The real part for the 1% band at K’-valley (odd under y — -y). (b) The
imaginary part for the 2" band at K’-valley (odd under y — -y). (c) The real part for the
2" pand at K” valley (even under y — -y). (d) The imaginary part for the 2" at K’-valley
(even under y — -y). The parameters we employ here are m* = 0.023m,; the MTP
strength U, = 165meV with diameter, d = 0.663a, where a = 40 nm is the lattice

constant.
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2.2 Energy bands with SOI

Now we consider the effect of spin-orbital coupling from the MTP of the system. The

Hamiltonian H for the MTP lattice with SOI can be expressed by:

2

H :HO+HSO:%+V(r)+ Hq,

where

el A A
HSO 276.(pr):;G(pXVV):—;G‘(VVXp)l

and V is the periodic MTP expressed as V (r)=) e'®""V . Thus, we have

oy =0 (W xp) == T eV, 0.(G, xp).

The spin-orbit coupling constant here we employed is 1 = 12042, for InAs.

The wave function is in 2x1 column-vector form and expressed as
. : C
¥ (r)=ek" ele,-r m'? ,
(5} SR
where tand { denote spin-up-and spin-down, respectively. Thus, we have
il

i(Gpy +K)r
e C
Iﬂ“ iG, N7 ; mT
= e Vm(';z((zmxp)Z )
h < Zeu(em,w)»rcw
-

— i i(Gu +(Gmw +k)) 7 Cm'T
lxlgnl,e V, (G, x(G,, +k)) o, Lmj

In Eq.(2.10), the indexes are replaced according to the followings

i(GmrJer)»l’ 7 _ iGr\7 _ Gy r\7
De VoG  =D.€%""Voc. =D eV e
mm’ mm” mm'’

_ Gy r\7 _ G r\7
=> €%V =DV c
m'm” mm'’

(2.7)

(2.8 a)

(2.8 b)

(2.9)

(2.10)

The matrix in Eq. (2.10) is diagonal, meaning that the Hamiltonian of SOI decouples
spin-up and spin-down. Therefore, we can divide the eigen-energy equation into spin-up
and spin-down parts. Hence, we have the Hamiltonian equation in matrix form for a

single plane-wave, e!®*+Gm)T
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Chapter 2. Energy bands with spin-orbital interaction (SOI)

{h2|k+G| Zme( —i2[G, ., x(G +k]o*)Hzﬂ=E[zmq (2.11)

ml m'd

By Eq. (2.11), we compare the band structures with/without SOI and display the results
in Fig. 2.4. The SOI turns the system into an insulator (introduces an energy gap at the
Dirac point). Furthermore, the system behaviors as a Z, topological insulator [12]. In the
following chapters, we will discuss the effects on the topological properties from
external magnetic field.

36.4

34-3 | ! | L ) | ' 1
-0.04 -0.02 0.00 0.02 o0.04

g_(in unit of K )

Fig. 2.4: The lowest two bands for the 2DEG subjected to MTP lattice. The blues lines
are those without SOI, while the red lines are those with SOI. Apparently, the SOI
introduces the energy gap at K and K’ points. For symmetric reason, the band structures
near K’ point is not shown here. The parameters we employ here are m* = 0.023m,;
the MTP strength U, = 165meV with diameter, d = 0.663a, where a = 40 nm is
the lattice constant. The SOI coupling constant is 1 = 12042,
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2.3 The k. p theory at K- and K’- valley

Since we are only interested in the band structures near K and K’ points, we want to
develop the effective theory that fits the lowest two bands near these two symmetry
points. Here we adopt the following notations: the wave vector, k = tK + q, near tK
point , with |q| « |K]. The valley index T = +1 and —1, denotes K- and K’- valleys,
respectively. From the Schroédinger equation

{_ hz* v? +V(r) + Hso:|¢k (r) =ep(r), (2.12)
2m

with wave-function in Bloch form, ¢, (r) =e*"u, (r) =™y, (r). The kinetic term

in the LHS of Eq. (2.12) is replaced by
hz
om’

vy ()= ——— ™ (7K +q) + V|2 u, (r)

= _gla)r {||rK+V| +2(irK +V)-ig—q }u (r)

hAlirtK+V G 2 (2.13)
_ pilrK+a)r { %-%(|¢K+V) iq+%}uk(r)

~e 7K+q |hTK + p|
N 2m’

m (hrK+p) }uk(r)

Since g is small compared with K, the 'quadratic term in Eq. (2.13) is neglected. Thus
Eq. (2.12) is approximated accordingly,

{— "G+ Hso}ok(n
2m

|h2'K + p| V() +

~ il . 2m” u,(r) (2.14a)
- (htK +P)-q+ Hg (7K +q)

~ gV H (1K) + H, (7K) -G + Hgo (7K) Ju, (r)

= £e' ™Dy ().

|hrK+p|

Here Hy(7K) = + V(r) is treated as the unperturbed Hamiltonian, while

h
Hy(zK)-q = e
and Hgo(zK) are the perturbation. In Eq. (2.14), the SOI Hamiltonian is approximated
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Chapter 2. Energy bands with spin-orbital interaction (SOI)

as Hso(1K+ q) = Hgo(7K) since the remainder is of the order of g%. Drop the
common phase term in both sides, and express Eq. (2.14a) in the operator form

[ Hy (tK)+ Hy (zK) - q+ Hgo (zK) ||, 2K + 0 ) = £, (@) |n, 2K + 03 1) (2.14b)

where u labels the spin degrees of freedom that |n, K+ q; u) = In, 7K+ q)Q|u).
The eigen-states of H,(tK) form the complete set, {ln, T U, = In, T)®|y)}, saying

In K +q; )= > (a)|n)7; ) (2.15)
n'u
with {|n, t; u)} satisfying the eigen-value equation,
H, (rK)|n,r;,u> = gn'ﬂ(rK)|n,z';,u>.
Here n denotes the band index and u = +1 denote spin-up and spin-down states.
By restricting only lowest four degenerate states (including spin) in Eq. (2.15), saying

{In,T; )} ={I1,7;+), 12, 7; +), |1, 7; =), |12, T; —)} being the basis set we considering,
the matrix form of Eq. (2.14b) would be

g+7ha, 7ha, —i, 0 0 ¢ c;”
thq, +id, & —7hg, 0 0 : cim _, cim (217)

0 0 g+zhg, ~zh g, +ids || ™ "l e

0 0 z-hyqy - I]”SO 80 - Z'hqu an—) Cén—)

The matrix in Eq. (2.17) is Block-diagonal since-spin-up and spin-down are decoupled
even in the presence of SOI. Besides, the energy &, in the diagonal element is
independent of valley and spin that (n',7; u'|Ho(tK)|n, 7; ) = €06, /6, . The
numerically determined constants h,, h,, and Aso are all real, positive, and g- and,
also, z-independent. First of all, h, and h,,, are defined through

<n,r;,u|HAq(z'K)~)A(qX|n’,z';y'> L(n,z|(htK+p)-%|n',7)q,S,

=L(n,z|(heK +p,)|n",7)q,3, , (2.18a)
=0, (h7, +h,7,)8,
< 17 '> mL<n 1'| (htK+p) y|n r> 9,5,
=L(n,7|p,|n",7)0,5,, (2.18h)
- qy (hlﬂ-x + hZﬂ-Y)é‘/luU' = thlﬂ-xé‘ﬂ 78l

where m, and {nx, ny,nz} are the 2 x 2 identity and Pauli matrices for the space
spanned by {|1,7),|2,1)}, alone with ¢, and {ax, Ty, O'Z} being those matrices for the
spin degrees of freedom. In Eq. (2.18), the symmetry properties that |1,7,+) —
—|1,7, %) and |2,7; £) = |2,7; £) under y - —y are employed. Similarly,
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h

m*

ﬁq (7K) =

PO h A A
(ThK + Dy, py) - F (ThK + Dy, _py)

under the same symmetry transform. Such symmetry relations restrict the matrix
elements, in Eq. (2.18a), depending on i, and i3, while only m; and r, are presence in
Eq. (2.18b), leaving the expansion coefficients h,, h, h,, and hs, which are all real due
to the Hermitian of ﬁq(rK) q . On the other hand, the matrix
elements, (n, T;y|ﬁq(TK) . q|n’,r; u’), are also real (for details, see Appendix B), it
immediately infers that h, = 0. Therefore we reach the result that

<n,r;,U| HAo (TK)+ HAq(TK)'q|nlir;lul> = {(‘90 +qxh0)7%0 +qxh37%z +thl7%x}§y,;z"

The eigen-energies of the above Hamiltonian are

e(d) =&, +hyq, £ 4/ hszqf + h12q32,

However, the C5-rotation symmetry at tK requires h, = 0 and |hs| = |h4| to have the
energy replicating the 3-fold rotation symmetry of the bands. These help us to further
simplify Eq. (2.18):

(n,7; | ﬁq (rK)- %, |n i) = 7,0, 0 = Th 0,7, ® 6y,

~ A (2.19)
(n,7; 1|Hy(zK) - Yo

N, iy =q,h78,  =7ha,7, ® S,

by defining th, = h; and th, = h; with h, and hy are t-independent constants,
and |h,| = |hy|. The valley dependence (z-dependence) of these matrix elements is
discussed in Appendix B, and here we just employ the results.

The other numerical determined constant, Agg , is defined through the SOI
Hamiltonian, Hso = Vso®4,, saying

N, 1) = (07N |, 7) S, . = Ao, ® 6, (2.20)

(n,7; ] ﬁso

The matrix elements, (n, t|Vso|n’, ) whichis t-independent, and again, is represented
by 7, (details are shown in Appendix B).

In summary, we have
h, = {1 =1|(AK + ) R|1.e=1) =~ (2.7 =1 (K +B) - R|2.7 =1);
hy=L(Lz=1p-§|2,r =) =L(2,r=1]p- §|Lz =1);
Jeo =i{Lr=1Ng [2,7 =1).
which are all valley (7) independent. From numerical calculation, we found h, = h, =

h = 0.5088 h2K,/(2m*) , while Ago = 0.0026 h2K?/(2m*). Therefore we arrive the
k - p effective Hamiltonian with positive-definite and valley-independent parameters,
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€0 /150, and h
& T Thqx Thqy - IASO 0 0 Cl(.rl-) Cl(.rl)
Thqy +idy & —7hq, 0 0 _ C£n+) =g, ang , (2.21)
0 0 & +7hg,  zhq, +idg || c;”
0 0 tha, —idy & —7ha, )| c c;”

and the eigen-energies are

£,(Q) = 725 + h*q’ (2.22)

which are 2-fold degeneracy with n = +1, characterizing the upper and lower branches.
Atqg =0, i.e. exact on TK-point, &, = n|Aso|. Therefore the SOI open up an energy
gap on tK-point, with the gap of 2|Agg|. The energy band structures of the k- p
theory is shown in Fig. 2.5, which is consistent with those bands shown in Sec. 2.2.

: , :
® k-p (isotropic)

Numerical : & =0
Numerical : & =10

aq,

36.8

9.~

36.0 -

35.2

E (meV)

34.4

33.6 .
-0.10 -0.05 0.00 0.05 0.10
g (in unit of K )

Fig. 2.5 The band structures along different g-directions (different a values).
Comparing with the numerical results (the solid blue and red lines), the k- p theory
(isotropic band structures, independent of «) is accurate. The parameters we employ
hereare m* = 0.023m,; the MTP strength U, = 165meV with diameter d = 0.663a,
and a = 40 nm is the lattice constant. The SOI coupling constant is A = 120A2
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From the result in Fig. 2.5, the effective theory derived in this section has good
approximation to the band structure around K- and K’- valley. Therefore, in the following
chapters, we can develop the band structure in the presence of magnetic field (Chapter
3) and the topologies properties for our system (Chapter 4) by means of this effective
theory.
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Chapter 3
Energy bands with SOl and magnetic field

In this chapter, we start discussion by the band structures of 2DEG in MTP lattice
with SOI and in-plane magnetic field (Sec. 3.1). From previous chapter, the SOI
introduces the energy gap at the K- and K’- valley for the lower bands, seeing the spin-
up and spin-down state along z-direction. The effect of in-plane magnetic field
produces laterally sift and leaves the degenerate points at K- and K’-valley. Then we
consider in-plane and out-of-magnetic field simultaneously (Sec. 3.2). The strength of
the out-of-plane magnetic field is small enough so that it wouldn’t have influence on
the motion of electrons. The effect of out-of-plane magnetic field produces longitudinal
energy shift at the degenerate points in Sec. 3.1. In Sec. 3.3 we develop the perturbation
method and low energy effective theory around K- and K’-valley separately.

3.1 Energy bands with.SOI and. in-plane magnetic field

The Hamiltonian for the muffin-tin lattice with SOI and in-plane magnetic field can

be expressed by:
2

H:HO+HSO+HB:2p AV(r)+ Hgy + H, (3.1)
m

*

where Hgq is the SOI Hamiltonian shown in Eq. (2.8), and H, is the Zeeman term
introduced by in-plane magnetic field.

H|| = gyBS-BH.

Here g is the g-factor and is equal to 2; wg = 9.27 X 10724(J - T~1) is the Bohr
magneton; s = ga with o being the vector Pauli matrices, and B, = B,X+B,J is
the in-plane magnetic field.

As the derivation of the matrix equation without in-plane magnetic field discussed in
Chapter 2, we can obtain the equation with in-plane magnetic field in matrix form:
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g fabosdt

+zeik~reiGmr.r\7m,_ { -ilo, [G G +k)} }{z T} (3.2a)

m'y

+ze|kr @iGu T g,UB<BXO'x+ByO-y){ } Eze'kr aiGn [C " }
m m'd

In the second term in Eq. (3.2a), the index relabeling has been performed implicitly. We
define G, = G, + G,,, and m =m" —m’, and replace m” by m’ in the final
step. Specifically,

zelk r i(Gy+Gp, z e|k-reiGm~<r Vm",m'cm' — zeik»reiGm/-r Vm',mcm' (32 b)

m'm”

Finally, we arrive the equation for a general plane-wave e‘(k+Gn)T

h? 2 ~

——|k+G,| Sy +Viym (1-id0,| G,y X (G, +K)

o | ! L {Cm}:EE’“’T} (3.3)
m'd

Cmi

" +%g,uB (BXGX + Byay)é‘mm,
For the absence of By, the spin-up and--down are good quantum number, however, the
in-plane magnetic field mixes-them up. In other words, the orientations of spin-up and
spin-down state in Eq. (3.3) are not in the z-direction anymore. We cannot divide Eq.
(3.3) into spin-up & down equation after applying the in-plane magnetic field.
Furthermore, we use two group of indices to label the Hamiltonian matrices, MZZ;U' in
Eq. (3.3): where n,n" =T and | stand for'the spin indices while n and m label the
plane-wave index. The explicit form of M""',can be expressed by:

v {1-1A[ Gy x(G, +K) ]} 5,

mm mm’'“nn’

M 7777" — hz
2m

J{% 9 (B, +i77B, )}anm S,

Eq. (3.3) is in the compact matrix form

M7 c. |=E|c

mn m'n

Since we only address the low energy band features, Fig. 3.1 shows the low energy
band structures around K point with B, and also without B, for comparison. For band
structures with a wider energy range are shown in Appendix C. From Fig. 3.1, we find
that the spin-up and spin-down degeneracy in the absence of B; is removed by
magnetic field, resulting in four separated bands. Furthermore, there are doubly two-
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fold degeneracy exact at K point. Such degeneracy plays some crucial role in the band
topology which will be discussed in next chapter. In Appendix D, we will demonstrate
the degeneracy by symmetry argument.

36.4 | c— H0+Hso+Hf/ — H0+Hso
| e HAH, e

; 35.7
L
g
g

35.0

34.3 1 i I . 1 ; 1 ; |

-0.04 -0.02 0.00 0.02 0.04
g (in unit of K )

Fig. 3.1 The lowest four bands of 2DEG subjected to MTP lattice. The blue solid lines
(double degenerate) are those with Bj = OT, while the red solid lines are those with
B, = 3T. The SOl is present for both of them. For comparison, the band structures
without SOI but with B, = 0T (black dotted lines) and B, = 3T (gray dashed lines)

are also shown. The other parameters we employ here are 2 =120 A% (InAs); m* =
0.023m,; U, = 165meV; a = 40nm; d = 0.663a.

From the numerical results in Fig. 3.2a and 3.2b, under in-plane magnetic field, the
lowest two bands split laterally into four bands and have two degenerate points at K
point. The scale of the energy gap between the degenerate points is proportional to the
strength of the applied field. However, for the doubly two-fold degeneracy bands, the
degeneracy at K point has robustness against the strength of in-plane magnetic field. In
other words, no matter what the in-plane magnetic field strength is, the crossing type
of the two degenerate points must be crossing in stead of anti-crossing ( for detail, see
Appendix D).
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3.2 Energy bands with SOI and general magnetic field

In this section, we generalize the direction of magnetic field. That is, besides an in-
plane field, By, asmall out-of plane magnetic field, B, , isalso applied simultaneously.
Since |B,| « |B,,|, we assume the electrons motion would not be affected by out-of-
plane field. Hence we could neglect the vector potential and consider only Zeeman
effect. The Hamiltonian of Zeeman term becomes:

- 1 1
Hy =05 B :Eg,uBo.(B“ + BL):EQ/’IB(BZGZ +B,o, + ByO'y), (3.5
Wlth B" = ijC\+Byy, BJ_ = BZZA

Substitute Eq. (3.5) into the Eq. (3.1), after calculation in Sec. 3.1 the total Hamiltonian
matrices under general magnetic field is:

n’ 2 7 i
Z o |k +Gm| T S VA {1— Iﬂ,O'I:GmLm X(Gm ol k)]z} {Cm} _E |:Cm'Tj| (3.6)

" +% g4 (BZGZ +B,o, + Byay)é‘m,

The matrix equation in Eq. (3.6) can be written in the following form:

M7 ¢, |=E|c

mn m'n

where 7,7’ =T1(1: spin-up, L: spin-down), the explicit form of M"", is:
M '777” — hz
mm zm*

+ E 0tg (B, +i7B, )} SO

mm'~nn’ n'

k+Gm|2+%g,uBBz}5 8y Vo {1=1A[ Gy x(G, +K) ]} 5,

The energy band structure under the general magnetic field at K point is shown in Fig.
3.2. Distinguish from the effect of in-plane magnetic field, out-of-plane magnetic field
gives longitudinally energy shifts at K point. The band structure under the in-plane
magnetic field (Sec. 3.1) degenerates at K point. With the effect of the small out-of-
plane magnetic field, this band structure would open gaps at the originally degenerate
points.
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36.4
35.5861
35.583}
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Fig. 3.2: The lowest four bands around K point of 2DEG subjected to MTP lattice. The
blue lines are those with B, = 0T while the red lines are those with B, = 0.03T. The
in-plane magnetic field is B, = 3T for both of them. The other parameters we use here
are 2 =120 A*(InAs); m* = 0.023m,; U, = 165méV; a = 40nm; d = 0.663a.

From Chapter 2, without SOI and magnetic field the lowest two bands degenerate
at K point (Fig. 2.1). After considering the effect of SOI, the degeneracy at K point is
broken, opening an energy gap. Furthermore we add external magnetic field to our
system in this chapter. The effect of magnetic field produces energy splits, lateral (in-
plane magnetic field) and longitudinal (out-of-plane magnetic field) energy shifts.
Furthermore, according to Sec. 3.1, the in-plane magnetic field leads to lateral energy
split and gives two degenerate points at K-valley for the lowest two bands. These
degenerate states at K-valley remain robustness against the strength of the in-plane
magnetic field, and they cannot open a gap even coupling higher bands via SOI.
However, in this section, the small out-of-plane magnetic field produces longitudinal
energy shifts and breaks the degeneracy mentioned in Sec. 3.1. From the previous
results, we find that the band structure and degeneracy at K- (and K’-) valley could be
adjusted through turning on/off SOI or magnetic field; additionally, there are the
appearance of topological variation simultaneously. About the topological properties of
our system would be discussed in the next chapter.
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3.3 Effect theory at K- and K’- valley

In this section, we base on the k- p theory discussed in Sec. 2.4, and develop the
effective theory of K- and K’- valley, which will be utilized in the analysis the topology
of these bands in next chapter. First of all, the Zeeman term, Hy = H, + H,, is
separated into 4, and H,, with

H, =39u,6-B, and
H, =%9u,6,B,, with
B=B,+B,7

The Hamiltonian of the system is H(k) = Hy(K) + Hgo + Hp, with k=1K +q.
Next, we replace Hy(k) by the k-p Hamiltonian, A (k), introducing in Eq.
(B.7) in Appendix B. Since the spin-degree of freedom is irrelevant in Hék'p) (k), we
only concentrate on the spatial part. By Eq. (2.17), we have the

& +1h.q, z'hyqy - d, O, a7)
7’-hyqy So. 70 Thqu qy _qx ' '

The basis set we employed here is.the two degenerate Bloch states exact on 7K, i.e.

{Inz)y} = i1 o) f25), )

The subscript “0” stresses the<states are g-dependent, while the eigen-states of
ﬁék'p) (k) do depend on g with the explicit forms:

H? (k = 7K +q) :(

|1,7,q) =sin 2|1, ), —cosZ[2,7), and o)
12,7,9) =cos 2|1, 7), +sin2|2,7), '

with energies ;(q) = &y — thq, &,(q) = & + thq, and tanfy = % Thus, the g-
dependent basis set with spinor is

Inzgiz)=[nz.0)®| 7)) = {Lraz ) [2n. a2 ) Lraz ) [2n.62,)), B9

where x, are the spin-up and spin-down states along the direction of in-plane
magnetic field, B;. With Eq. (3.9), the Hamiltonian in this basis set would be

—thgq+¢g il V., 0
n R +i thg—-¢ 0 £
A0 = A K+ q) =gy 0 " e
V.EL 0 —thq+¢  —idy
0 Vi€1 +ilso hq — ¢
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Chapter 3. Energy bands with SOI and magnetic field

Here we define the Zeeman splitting energies by Hyyx. = tex5, and H yy =
Yi€ixs ., with ¢ =%guB|B"| >0, while & =-gug|B;|>0 and y, =+1
indicating the direction of B, = B, Z =y, |B,|Z. Thus, it is straightforward to derive
the matrix elements

H

A

HL

A

n',r,q;;(ﬂ.>:,u£H§ 0, ., and

nn'=

(7.0,
<n, 7,0 7,

n’,r,q;;(ﬂ,> =£,0,,0, -
On the other hand, the matrix elements of Hgy are

Voo ® 0,

n',z,q; ;(y,>
n'7,q)5,.

|:|so|n'a7’q;l,/>: <n'T'q;Z#
= <n,T,Q|\730

(n.r.0iz, (3.11)

From Egs. (3.8) and (2.20), we have
(n, 7,4 Nso |n” 7, q> = Ao, -

The final form of the effective Hamiltonian in Eq. (3.10) seems independent to K- and
K’- valleys, but remember, the basis set in Eq. (3.9) already carries the valley
information, t.

By Eqg. (3.10), we can deduce the energies:

£,:(q) = 77\/2,520 +h’g’+e’ 480 + 25\/1520& +h*g’s’ +£°h’g’ (3.12)

with n = £1 and ¢ = +1, characterizing the four separated bands, and H; = (hq)?.

At q =0, i.e. exact on tK-point, &,; = U\/(Aso +¢&e,)? + ¢, and we find if €, =

0 (B, = 0), there are two doubly-degenerate energy at tK-point.

Fig 3.3 plots the effective theory for the lowest band structures of 2DEG in MTP with
SOI and magnetic field about K-valley.
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Fig 3.3 The band structures from the effective theory around K point. (a) The out-of-
plane field, B, = 0T and (b) B, = 0.03T. The solid red and blue lines are those bands
from numerical results with different g-directions (« = 0 and o = 10 for blue and
red lines, respectively). The parameters we employ here are m* = 0.023m,; the MTP
strength U, = 165meV with diameter d = 0.663a and a = 40 nm is the lattice
constant. The SOI coupling constant is 1 = 120A2
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Chapter 4

Topological analysis of the effective theory

The topological feature of the MTP with SOI and magnetic field is analytically
discussed in this section via the effective theory introducing in Sec. 3.3. In Sec. 4.1, a
brief but general review of the Berry phase and Berry curvature is presented. Based on
these, in Sec. 4.2, we can discuss the topological invariants, such as the Chern number
and Z2 numbers, which are utilized to classify the topological nature of the system.
Finally, based on the effective theory introduced in Sec. 3.3, we analytically calculate
the Chern numbers of the MTP system with SOI and general magnetic field. These will
be shown in Sec. 4.3.

4.1 Berry phase and Berry curvature

The Berry phase was proposed.in 1984 by Michael Berry. It rises from a quantum
system with an external time-dependent parameter k(t) by denoting it as H (k(t)),
following the cyclic adiabatic-evolution. When K(t) moves slowly along a path C,
with the n’th eigenenergy being non-degenerate everywhere along the path, and the
instantaneous eigenstate |wy.yn). satisfies the eigenvalue equation at time ¢,
H(K()|un) = & (K(O) [uieim)-

According to the quantum adiabatic thearem, a'system initially in one of its eigenstates
|uicoy,n) Will stay as an instantaneous eigenstate of H(k(t)) throughout the process.
The state at time ¢ can be written as,

W (1)) = e~ ¥n® il enlk(e)dt’ |uxcerm)- (4.1)

The first exponential term in Eq. (4.1) is geometric phase and the second exponential
term is dynamics phase. The extra phase e¥»(") s added for each eigen-state. Michael
Berry pointed that the geometric phase e may not return its origin value after the
evolution. Hence it is not necessarily removable.
Substitute Eq. (4.1) into the time-dependent Schrédinger equation

ihg | Wn(6)) = H(K(®))[¥n(0),
and multiply it from the left by (uk(t),n|, ¥n(t) can be expressed as

ot a .. k(@) d
Ya(t) =1 fO <uk(t’),n| at’ |uk(t'),n> dt’ =i k(0) <uk,n| dak |uk,n> dk. (4.2)

In a cyclic evolution through a closed path C : k(0) = k(t).
From Stoke’s theorem we have,
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V(€)= i [, dS- Vi X (upn|Vitin) = [f, dS-Qn(K), (4.3)

and y,, (C) is known as Berry phase.

The gauge invariant of Berry phase that makes Berry phase physical and proves it is
measurable by interference phenomena. Considering the gauge transformation
|t n)=€2®|uy ) , where e®® s a k -dependent phase factor. We have
(wien | Vit n) = iViA(K) + (g n|Vag ), substituting into the LHS of Eq. (4.3), the
additional term V,xVA(K) = 0. So we have the gauge freedom of multiplying it with
an overall phase factor which can be parameter dependent. The Berry is unchanged by
such a phase factor, provided the eigenwave function is kept to be a single valued over
the path.

Furthermore, the Berry phase is geometrical because it can be written as line integral
over a closed path C in the parameter space. This property makes it possible to express
Berry phase in terms of local geometrical quantities. Michael Berry show that the Berry
phase can be written as the integral of a field, which is known as Berry curvature.
From Eqg. (4.3), the Berry curvature is denoted by Q,,(k),

0 (K) =iV X (e [Victlie ). (4.4)
Besides the differential form in-Eq.(4.4), the Berry curvature can be also written as a
summation over the eigenstates,

00 =i <uk,n| Ox H (k)|uk,n'z<u1ir;'|aky1‘1 (k)|uk,n>_(x‘—’J’) 5

knTEgn!
There is no differentiation on the eigenstates involved in Eq. (4.5), therefore it can be
evaluated under any gauge choice. This istuseful for numerical calculations, in which
the condition of a smooth phase choice of the eigenstates is not guaranteed in standard
diagonalization algorithms. In addition, Eq. (4.5) gives another insight on the origin of
the Berry curvature. The adiabatic approximation adopted earlier is crucially a
projection operation, i.e., the dynamics of the system is restricted to the nth energy level.
The Berry curvature can be viewed as the result of the “residual” interaction of those
projected-out energy levels.

On the other hand, the Berry phase is like the Aharonov-Bohm phase of a charged
particle traversing a loop including a magnetic flux, while Berry curvature is like the
magnetic field. The integral of the Berry curvature over the closed surfaces (ex a sphere
or torus), is known to be topological and quantized as integers and is also called Chern
number.

(4.5)
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4.2 Chern number and Z, number of topological insulator

The Berry phase or the Berry curvature discussed in previous section enable us to
study the topology of the energy band structures. By Eq. (4.5), we can define the Berry
curvature of the n-th band, Q,(k), with the varying parameter being the crystal
momentum, K. Since the crystal momentum is defined on the first Brillouin zone with
the closure property, k + G = Kk, the domain of Q, (k) is a close surface (manifold).
According to the Chern theorem, the integral of the Berry curvature over a closed
manifold is quantized in unit of 27, which defines the Chern number of the n" band

C,=+ jB_Z_Qn(k)dk eZ.

The total Chern number defined by summing over all occupied bands, C =
Y.nevalance Cn, 1S @n invariance provided there is a finite gap separating the valance and
conduction bands within the whole Brillouin zone. Thus, C is a topological order that
characterize the topology of the bands. Historically, Thouless et al utilize Kubo formula
to calculate o, of aquantum Hall system and recover o, = C e*/h which explains
the robustness of the quantization.of ‘o,,,, and provides a topological understanding of
quantum Hall effect (QHE). Following this, the field of topological insulator (or
topological phase) arises. General speaking, a topological insulator is an insulator with
bulk gap, however, the conducting edge states arise at the boundaries if it is connected
to other type of insulator. The Chern number categories the classes of topological phase
and the topological phase transition is. accompanied. by a process of gap closing during
the varying of parameters in the Hamiltonian. In this sense, the topological phases are
robust under perturbation to the Hamiltonian.

Topological quantities are practically significant in characterizing the electrical
transport properties in quantum Hall effects of 2DEG. It has been proposed earlier that
the quantum Hall (QH) effect is associated with a topological invariant integer known
as Chern number. The value of Chern number n, which gives the quantized Hall
conductivity for each band c%, is given by the integral of Bloch wave functions over
the magnetic Brillouin zone. Since the Hall conductivity does not obey the time-reversal
symmetry (TRS), recently people have proposed that the SOI in a single plane of
graphene in absence of magnetic field results in TRS quantum spin Hall (QSH) state
which has a bulk energy gap and a pair of gapless spin filtered edge states on the
boundary. The QSH effect is analogous to QH effect but it doesn’t break TRS. The QH
states are specified by Chern numbers, while the QSH states are characterized by Z,
numbers. As TRS rising, for instance, in a 2D model [8] (m-electron tight-binding
model with mirror-symmetry about the plane), the perpendicular spin component S,
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is conserved and the spin-up and spin-down have independent Chern integers C; and C;.
TRS requires the Chern number C = C; + C, is equal to zero, distinguish from
ordinary insulator and offers a new class of topological invariant which is classified as
Z, topological order. The Z, invariant is shown as

v =_C, mod 2.
The value v =0 is trivial insulator and v =1 is topological insulator (QSH
insulator).

At the end of this section, we want to discuss the intuitive 2-band model that
manifests the topology of the system. The Hamiltonian of the 2-band model is, generally,
expressed in the combination of Pauli matrices:

H(k)=h(k)-6 . Dy
(k)=h(k)-o = h+ih  —h

The eigen-states are

cosle ™' sinfe ™'
|k’+>: ’ 9 ’and|k’_>= ’ o |
sinZe'? —cosge”

where + and — stand for conduction and valance bands, respectively, and 6, ¢ are the

polar and azimuth angles of ~the wunit —vector, # = |h|"th(k) =

(sinfcose, sinfsing, cosO), defined over the Bloch sphere. Assume there is an overall

gap separating the conduction and valance bands; thus it’s straightforward that

cose ™29 O —isinfe 0

olky=lk)=g t

g in2e'?0 @ —icosde'?0

sinje 0, P

Therefore the Berry curvature of the valance band would be
Q (k) =1sin6(0,60,0 - 0,00,p)1,
and the Chern number is

C=2][ sing(0,00,p—-0,00,9)dk == [ axa,A-fdk (4.6)

s

Since n is a unit vector which defines the mapping from Brillouin zone to the normal
vector at Bloch sphere, fi L d, n; the integrand of Eq. (4.6) immediately interpreted
as the solid angle spanned by 0,ndk, and 0,ndk, . Integrate over the whole
Brillouin zone and the Chern number, here, defines the number of times i wrapping
around the Bloch sphere as Brillouin zone mapping to n.
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4.3 Topological analysis of the effective theory

In this section, the topological quantities such as Berry curvature and Chern (or Z»)
number of the muffin-tin potential lattice with SOI and general magnetic field, B, is
discussed. In the former thesis of our group [15], we have demonstrated the successful
of effective theory in calculating the Berry curvature and Chern number. Therefore, we
will continually employ the effective Hamiltonian in Eq. (3.10) and analytically discuss
the band topology.

Particularly, the effective Hamiltonian we considering here is, by Eq. (3.10),

—thq+¢ -y ViéL 0
n +i hg - ¢ 0 g
AR vy =gr| 0 T T (4.7)
V.E 0 —thg—¢  -ily
0 V., +idy,  Thg+g

The parameter, y, = %1, indicates the direction of magnetic field, B = B| + y,|B,|Z.
The basis set is defined in Egs. (3.8)and (3.9) with y, denotes the spin-up/-down
along B,. Hence, the general eigen solutions of Eq. (4.7) would be

lw(@) = AQ)|Lz.8:2)+B(@)|2 79 7 )

: 4.8
- COLn) - D)2 5 2.) @0
and immediately, we have
V|L7.0iz,)= V{sing—;|1, 7), ®|2,)—Cos %|2,7), ®|;(ﬂ>}
= {cos%‘*|1, 7), ®| 2, ) +sin%[2,7), ®|zy>}%veq (4.9a)

:|2,r,q;;(#>%v9q and

v|27,a1,) = V{cos%“|1, 7), ®| z,) +sinE[2.7), ®|;(ﬂ>}
={-sin2[L7), ®|z,)+cos E[2,7), ®|,)}4 V6, (4.95)
= —|1,r,q;;(#>%V6’q,

which is useful in calculating
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A Lrgz|+] (VARG 2)+3 (V0 ) A2 b z.)+
B" (27,07 |+| |(VB)|2.7.0: 2.} - 1(V8,)BL .0 1) +
Wiviv) =3 .
C L,z [+ | [(VC)|Lr,0; 7 ) +%(V6,)Cl2. 7,0 1) +
: (4.10)
q

D’ (27.0,2.] | |(VvD)|2.7,0:2.)~3(V6,)D|L 7,0 2,
AVA-1(V0,)AD+BVB+4(V6,)BC+
|c've-4(ve,)C'B+DVD +4(VE,)DA |

From Eqg. (4.10) and the definition of Berry curvature in Eq. (4.4), we have

Q, (=1 Vx(y,.(@)|V|y,.(@)
—iVx {A{;rvp\w _%(ng)pg,an,r + B:,TVBH,‘[ +%(V0q ) B;,rCn,r +} (411)

*

C,.VC,.-%(Vv6,)C, B, +D, VD, +1(V4,)D; A,

nz-nr

n,c ~n,t n,c—n,t

:i%Vx{(VGq)(D;TAW—A:TDM+B* C_-C'B )}

In the final step of Eq. (4.11), terms like V. X A*VA, for example, is dropped because
Vx(A'VA)= VA'X VA + AF*VA
=(VA =1 VA) < (VA #i VA,)
= 2i VA, xVA =0.

Here, Ar(q)and A;(q), are functions of q since the Hamiltonian in Eq. (3.10) depends
on g only. Accordingly, both VAgz-and VA, are parallel to q resulting in null of
VAgp x VA;. Finally, we define

*

Fn',(q):D:JﬁJ—A’: D,.+B C_-C B _, (4.12)

T oonT nz’nz nzo-nr

and the Berry curvature in Eq. (4.11) is further reduced
Q.. (@)=iVx(y, . (@]V|v,. (@)

= I%V x {(Veq)(D:rAw - A:,T Dn,r + B:,rcn,r - Cn,r Bn,r )} (413)
=iV x{(veq)Fm(q)} =i1{VF, (9)}xV4,.
The gradient of the angle, 6, = tan‘l(qy/qx), IS

a7~ o Uy ady Oy
-2

— 0% gy 0%y

—(sech) (qxq X+6y xy)

The Chern number is straightforwardly,
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C, =% [Q.(a)- 207

=+ [{VF,.(@)}x Ve, 2d*q

=+ [{&F.(@}3(0,%+0q,9) x % (-q,8+q,§) - 2d’q (4.14)

=+ [{&F.. (@)} +9°2-2(27q)dg

=4 [4F, (@da=4[F,. (@], =-4F..(@=0)
Therefore, the Chern number is determined by the function, F,.(q), at ¢ = 0 and
q = co. These values are derived in Appendix F with the simple results F, ;(c0) =0
and F,.(0) = —ify,.Notethatat g = 0, the Hamiltonian in Eq. (4.7) is automatically

valley-independent, therefore, it concludes the Chern number, C,, is also t-
independent. Finally, the Chern number of the band label by n and ¢ is

1
ng :_Eé:yi (4-15)

For the special case of B, = 0, the effective Hamiltonian in Eq. (4.7) becomes

—thq+¢, g 0 0
. +idg— tha—¢ 0 0
H (eff) K _ o] I ) '
(TK+a) =g +| =g o Y (4.16)
0 0 il  Tha+g

which is decomposed into two uncoupled 2 x 2-matrices. Therefore the general eigen
states of Eq. (4.16) would be

lw(@)) = A@)|L7,9;2,)+B(a)[2,7,0; 1), or
lw(@) = C@)|Lz,a; 2 )+ D@27, 7,)

Following similar derivation from Eq. (4.10) to Eq. (4.11), it is easy to show the Chern
numbers here are zero for all the four bands.

In conclusion, we have derived the Chern numbers that manifest the band topology
of the MTP system. The Chern numbers are characterized by the parameters y, &,
which are introduced in Eq. (4.7). If only in-plane magnetic field is presence (i.e. €, =
0), the Chern numbers are zero, independent of the magnitude and direction of B,.
However, for the presence of both B, and B, the Chern numbers become Sy,
depending on the direction of B, (still independent of the magnitude of magnetic
field). Fig 4.1 (a), (b), (c) and (d) label the Chern numbers for the lower bands under
the different conditions of magnetic field.
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(a) (b) (c) (d)
1 1
b 2 7]
0 5 2
0 = 1 _1
2 _E P
0
0
K
| | | |
0.0 0.0 0.0 0.0
B #0 B #0 B #0 B =0
B =0 B, =B |z B, =-B,|Z B =-B,|Z

Fig 4.1 The Chern numbers of-the lowest 4 bands near the K point. (a) B, # 0,B; =0
(b) By #0,B, =|B,|Z (c) By #0,B.==|B,|z (d) B,=0,B, =—|B,|Z. The
Chern numbers of the band are indicated by the numbers with corresponding color. The
SOl are present for all of them. The parameters we employ here are m* = 0.023m,;
the MTP strength U, = 165meV with diameter, d = 0.663a, where a = 40 nm is
the lattice constant. The SOI coupling constant is 1 = 120A2.
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Chapter 5

Conclusion and future work

The Chern numbers for the MTP lattice with SOI and magnetic field is analytically
derived. From Fig. 4.1, the Z» nature of the system is robustness under external
magnetic field. For the presence of only in-plane magnetic field, the spin-up and spin-
down states along z-direction are no more good quantum states. The mixing of these
spin bands results in null Chern numbers meaning the breaking of topological feature.
However, with arbitrary small out-of-plane magnetic field, the Z> nature is restored.
These conclude the robustness of the topological properties of 2DEG subjected to MTP
with SOI.

The existence of helical edge states is expected for a Z» topological insulator.
However, base on the effective Hamiltonian, we failed in the searching of these edge
states. On the other hand, lessons from graphene with SOI, although the effective
Hamiltonian predicts the correct Chern-numbers (comparing with the full tight-binding
Hamiltonian), the finding edge states is out of the scope of effective Hamiltonian.
Therefore, the extension work-of this thesis is resuming-the searching of edge states via
the full Hamiltonian.
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Appendix A

The Fourier transform of the MTP

In this appendix, we show the derivation of coefficient V,,, in Eq. (2.3). The 2DEG
is modulated by a two-dimensional MTP in the explicit potential form

d

y T_)
X
>
I 1
aZ
a
al

Fig A.1: The top views of the MTP.lattice with the \a being the distance between the
centers of two adjacent disks. The potential i1s' U, inside the disk with diameter d and
zero outside.

V(ir) =X;;V(r—Ry)

=¥ o V(r — 2milt — 2mj2)
= Y=o V (2mi, 27j, 1)

= ij=_oo V(ty,121) (A.1)

where R;; =ia; + ja, (a;,a, are the basis vectors in real space (Fig A.1) ). Then
we use Poisson sum formula (Eq. (A.2)) cast the real-space infinite sum into the
reciprocal-space sum.

S o f2M) = -5 o F()
F) = [" f(r) e dr (A2)
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Therefore, we obtain the expression of periodic potential

V(r) = _Zvl_—oof © 27 sz——oof V(Tll Ty, r)e lU1T1dT e —iv, Ty dT

= (27.[) Zvl_—oo Zuzz—oof V(l' - le -7 az)e ‘vlrldf e lvzfsz (A3)
where b,= Zn( . 2 -, by=2 (azlxxaalz)’

V=Z$'bey;1: =Z]2/Ty ay; VT = Zﬂz)z,l)y’l'y, (A4)

where v is the vector in k-space (b, is the basis vector in k-space);  is the real-
space vector, and v,, 7, are the coefficients for those basis vectors, then we
substitute Eq. (A.4) into Eq. (A.3) and obtain the integral term

fv(r-)e s

2w d1,dT,

— 2n? [T (¢)e ) i de

__@m? -ivr [V (Detvrdr (A.5)

ajazsin60®

where we use 7/ = r — - insecond row in Eqg. (3.5), and the integral term in above
equation is
e—iv-er(T)eivrdT

a . vd .
= U, foz elvTCOS¢Td¢)dT = U, foz foznelxcos¢§d¢%dx

= Uy () [ 2 fz”z o (D) (X)e ™ xdpdx

vd

= Up(2)’ [ 2mfy(0)xdx = 2000 () 3y (D)1 = ™0,

v

() (A8)

then we substitute Eq. (A.6) into Eq. (A.5) to rewrite Eq. (A.3) in the form of

~ 2 )2 —ivrtUpd d
Vi) = Z V(r=Ryj) = (3;) semer Z Z e Y, (%)
i,j V1=—00 Uy =—00
= T vymco €V H ], (%) = Ko 6T (A7)

where G,, = v, and the coefficient 1, = ﬁlza””l‘;‘iaz J1(16mle)
m
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Appendix B

Matrix elements of k- p theory

In this appendix, we analytically derive the matrix elements of the k-p
Hamiltonian. Before proceeding, the basis set and its properties is discussed. The basis
set, we employ here, is

{|n,z';,u>E|n,z'>®|;(#>}={|1,z';+>,|2,z';+>,|1,r;—>,|2,r;—>},

where {|1,7),12,7)} are the lowest two degenerate states of H,(tK) = % + V(r)
and |Xu) is the spin state with +/— labeling spin-up/-down. In the plane-wave basis
representation, we have

(rln,z)=e"™ "> Cclre™ " and (B.1)

Z{f—HTK + Gyl G +\7m_mv}Cfn"r”) =2 Ho(rK) ]  ci =g, CI?. (B2)

m,m’

First of all, the coefficients, C,(,:"T), are all real since H,(7K) is a real symmetric

matrix in the plane-wave representation (,, € R for MTP with origin at the inversion
center). In addition, from Eqgs.«(B.1) and (B.2), there’re-transformations
[Ho(eK)]. L =R (K) |

m,m’ m,m’

and

=1

ci =ce (B.3)

connecting the wave-functions and Hamiltonians at different valleys (V,, = V= has
been employed implicitly). With these understandings in mind, by Eq. (2.14b), we are
ready to derive the matrix elements of k- p Hamiltonian,

<n,T;ﬂ| |:|o (TK)+ l:lq(TK)'q + |:|so(TK) n',r;,u'>. (B.4)

The first term is straightforward,

<n,r;/1||:|0(rK)|n',r,u'>=805 0, , =&ET,®a,, (B.5)

nn'"=

since these bases are degenerate eigen-states of H,(tK) with energy e,. Here, m,
and {m,,m,, m,} are the 2 x 2 identity and Pauli matrices for the space spanned by
{I1,7),12,7)}, alone with o, and {oy,0,,0,} being those matrices for the spin
degrees of freedom. The next term, can be separated into two terms, each of them
following different symmetry relations:
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<n,r;,u||—A|q(z'K)-)?qX '>
= %5#,#26;“”*0;”“” (htK +G,,)- %q,

=L5, 6y crf (heK + G, )-Kq,
(B.6a)
= %5M,,5n,n,rz|c,§:’f> (hK +7G,)-%q,
=5 nan|c<'”> (hK +7G,,)- q,
=0, (ho7z0 + h37z3) ® o,
<n,r;,u|l:lq(rK)-f/qy|n',r;y’>
=46, 204775, -4,
=5, , nanC(" VCI G -yq, (B.6h)

—h 5## nnrzC(ﬂf)*C(n T)Z'G yqy

=, (hlﬂ'x +h,7z, ) ® 6y =0,h7, ® 0,

As shown in Sec. 2.3, the symmetry relation of the states, {|1,7),|2, 1)}, is employed,
resulting in the Kronecker delta factors, &,/ and 6, 7/, in Egs. (B.6a) and (B.6b),
respectively. Besides, the t-dependence in Eq. (B.6) Is extracted out of the summation
and by Eq. (B.3) along with G; = —G,,, the summand is independent of 7. After that,
the m-matrices are utilized to expand the matrix elements with the coefficients, h;,

which are all proportional to 7. Since all the coefficients, C,(,:"T), are real, we
immediately have h, = 0. Finally, as shown in Sec. 2.3, h, is required to be null and

|hi| = |h3| in order to be consistent with C;-rotation symmetry of the energy
dispersion. Combined with Eq. (B.5), we have,

<n,r;y| ﬁék'p)(k)|n',r;y'> = <n,z';,u| I:IO(TK) + ﬁq(rK)-q|n',T;u'>

0 h h
(5 o 28 o
0 & hyqy _hqu (B?)

with th, =hs, thy=h,, and |h,| = |h,|. Here, h, and h, are the -
independent constants

The last term in Eq. (B.4) is
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<n,z-;,u| I:|SO(7K)|n',r;y’> = —%(n, T;/J|G (VV x p)|n',r;,u'>
— £ COTCEN, (G, x G, ), ®6,

m

=—i2> COVCEN, (G xAGy ), ® S, = 4,7, ® 6,
m,m’ (BS)

The summand in Eq. (B.8) is real, but Hgo is Hermitian meaning that
(n,7; 1| I:ISO(TK)|n',T;,Lt’> oc 7?2.

Besides, Eg. (B.8) also demonstrates Ao is t-independent.

In summary, we have

<n,r;,u| I-AI0 (rK)+ I:|q(rK)-q + I:ISO(TK)|n',r;,u'> =

g +7hg, 7hq, —ilg 0 0
th,q, +ily, & —7hgQ, 0 0
0 0 g +rhq, 7hq, +ilg
0 0 thyg, —id, & —7hq,
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Band structures in a wider energy range
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Fig. C.1: The energy band structures of 2DEG subjected to MTP lattice. The blue lines
are those without SOl while the red lines are those with SOI. The parameters we employ
here are m* = 0.023m, ; the MTP strength U, = 165 meV with diameter, d =
0.663a, where a = 40 nm is the lattice constant. The SOI coupling constant is A =
120A2.
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Fig. C.2: The energy band structures of 2DEG subjected to MTP with SOI and in-plane
magnetic field, B, = 3T. The parameters we employ here are m* = 0.023m,; the
MTP strength U, = 165meV with diameter, d = 0.663a, where a = 40 nm is the
lattice constant. The SOI coupling constant is A = 12042
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Appendix D

An analytical discussion of the band crossing at 7K

Here, we will analytical demonstrate the band touching points of the at tK shown
in Fig. D.1 is crossing rather than anti-crossing. First of all, let define the Hamiltonian
be H, + H; + Hso with the unperturbed term, H, + H, and the perturbation, Hg.
There are two degenerate points at tK for the unperturbed Hamiltonian and let’s
denote the two pairs of degenerate states to be {|1,7;x:) 12, 7;x4+)} and
{11, 7; x-),12,7; x-)} . Here we concentrate on the first pair states, without loss
generality, and show that the perturbation, Hgo, would not remove the degeneracy
between these states.

o Ga— HD+HSO+H’J’ R HO+HSO
| - == HOjLH// ........

/>_\ 35.7
P
g
83

35.0

34.3 1 ) | ) | L | L |

-0.04 -0.02 0.00 0.02 0.04
g (in unit of K )

Fig. D.1: Energy dispersion with in-plane magnetic field at the lowest four bands. At K

point, there are two degenerate points, indicated by the two black arrows. A =120A?
(InAs); m* = 0.023m,; U, = 165meV; a = 40nm; d = 0.663a; B;, = 3(Tesla).

There are two routes to couple |1,7; x4) and|2,7; x.) via Hgo. The first one is
from direct coupling between them, (1,7; x,|Hso|2,7; x4) which is zero since Hsg
flips in-plane spin. While the other one is indirect coupling,
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(1,‘[; )(+|ﬁso|n, T; )(_)(n, T; X—lﬁso|2: T; )(+) (D.1)
with the intermediate states |n, t; y_). Note that the spinor of the intermediate states
must be orthogonal to those of |1,t; x;) and |2, 7; ;). To show the matrix element
product in Eq. (D.1), the parities of the states and SOI will be employed.

From the discussion in Sec. 2.1, the lowest two bands have different parity under the
symmetry operation of y - —y. However, Hgg = —%&-Vfo) is invariant under the
same symmetry operation. The parity of intermediate state, |n,7; y_), must be
opposite to both |1,7;x,) and |2,t;x,). However, the parities of |1,t;x,)
and |2, t; y,) are already different, which means |n, T; y_) cannot exist. Therefore we
have proved that SOI cannot couple the degenerate states, and the band touching in Fig.
E.1 is exactly crossing.
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Appendix E
The valuesof F,.(q =0) and F, (g —» )

In this appendix, we have to find the eigen-states of the effective Hamiltonian,

—thg+¢g -y Vi€l 0
~ +i thg—¢ 0 £
HEO (K +q)=¢, + o -4 T
Vi€, 0 —thg—-¢ il
0 V.E, +idgg tha + ¢ (E.1)

_, _{ h, 7&11]
= &, R X
7,61 h,

defined in Eq. (4.7) with basis set being
{n.0:2)=In.0.0) @] ) = {Lra 2 ) 2@ 2 b L ed ) 2702}

The h, and h,, here, are

(E.2)

And the eigen-value equation would be

" " h:ﬁi [a}zg(aj, and
rel h \B B
a=ye’(e-h,)B , (E3)
ﬂ = ylgll(g—ﬁl)a
which directly leads to
{(8—62)(8— ﬁl)—gf}a =0, and
det{(g—ﬁz)(a—ﬁl)—ai} (E.4)
=det{£? + 2%, + 1’0" — & — &7 + 222h06, - 26456, + 2ig A0, | =0
By Eq. (E.4), we have the equation
(52 + A% +h%q* - 8“2 -& )2 —4&°h’q° —4g% 2 +45HZZSZO =
2 )
(52 — A2 —h’g® - SHZ - gf) —42%.& —4h2q2(9‘i2 —4h’g’s? =0
which determines the eigen-energies (with the labels n = +1 and & = +1) to be
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£,0(0) = 2, + W0 4 &7 +62 + 28\ 2067 NPl +hPqPe? = e, (q). (E5)
At q =0,
£, =0) =\ [Ty + 88 488 + 28008, =1\(leo + 0. )+ =12,(0),  (E)
and from Eq. (E.4), we have
{‘955 + Ago — & — &1 — 26, 25,0, + 2i8”ﬂsoax}a”§
=245 {/150 +&e —¢,.0,+ ig‘lax}a%

=2 {(ﬂs +ée )a +( 0 ig”Jrig"ﬂa } (E.7)
oo Tef )% s Lig, 0 )% |
0 )
=24 S1/5§—(€H2a,75+ _ I77{8§+778”} a,.r=0
in{e; —ne) 0

with s = sgn(4so + &€, ). The definition of &,; = ne; in Egs. (E.5) and (E.6), leads
to the inequalities

e +ng>0and ¢, —ng >0

cause &; > g > 0. With these, it is convenient to manipulate with the square root in
the following. Eq. (E.7) determines the 2%X 1 column-vector, «a,

(Aggj in{e, +ne )| fine; +nz
a] = , = = s
* B S\e - Sy&: =78,
From Egs. (E.3) and (E.8), we have
- g.—¢& Hig Aﬁ
B =7.& -h)a,. =yt " ( ,
wo ( Fnt l) - —is0 Epe T8 Bné

o ’7{‘95 _77‘9“}'%: +150B,; (£9)
=V.&
n{e +16 B —ido A,

The normalization constant determined from Egs. (E.8) and (E.9) is
=|a[ +
‘e —ﬂ%\}% +iZeoBl [ + e n{e; + ) By, —iZeoAy|
=25, + k(e e )(e2 — )+ Zo (e, ) + 250 (6, —mey ) &L <7
+§{(‘% +11g)) (2 - )+ Ao (& + 15 ) + 25750 (& +’7‘9\\)M}
=26, +4 2, {§\/g§—7gz+,aso}2 =26, + 326, (Ao — Iy — &, | = ¢,
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The above equation has utilized the fact that s = sgn(Agg + Eel) Therefore,
nﬁr(o) 7751(0) |:D:,TA1,T_Aernr+BnTCnT n,z nr]

+|n{e +ne B, '%o%] (A ]
N2 _[Aéf] [ & +71¢,{B;, 'ﬂsoAvg}

" e Lo e &+ 108 ] 8T
_[Bf][ { 5_775|\}A§¢+Mso|3,;¢}*
= N2 2 (A f e

2 . *
B[ |+ 4ine, |m(A;§B,;§)}

4idgos, +4is5\|el —&f
= :|(ﬂso+§,/g§—qf)

48{5
_j Aso _(ﬂso +§5¢)
Vié1
=-igy, (E.9)

On the other hand, from Eqg. (E.1),as q — oo, the effective Hamiltonian becomes
- SE = EIS RO

“ 0 h 0
[H(eff)(TK +q) :I - nq V&,
a0 &, 0 “=hg O

0 ye 0 7hg

(E.10)

Note that in Eqg. (E.10), y,&, is kept'as 'q = o since the out-of-plane field, B,
couples the degenerate states |1,7; x4) (with energy &, — thq) and |2,7; x4) (with
energy &, + thq). Therefore, the eigen-states are
cos2|,z; x, Y +sing|lz; 7 ),
sin¢(l,z; . )—cos4|Lz; v ),
2| Z> - 2| Z> (E.11)
cos4|2,7;,)+sin4|2,7; x), and
sing|2,7; z,)—cos4|2,7; 1),
with energy ¢y —thq + y,¢&,,and g, + thq + y, €,, sequentially. Eq. (E.11) directly
results in null of F,.(q — o) because one of A,; and D,; mustbe zero and so does
Bne and Cy;. In conclusion, we have

Fi]ér(q = 0) = _ié:j/L
(@—>x)=0

ﬂir

which will be utilized in the calculation of Chern number in Sec. 4.3.
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