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Chapter 1

introducion

1.1 Motivations

In the recent years research in semiconductor physics has been focused on the emerging

field of spintronics. Among the most prominent devices proposals is the spin-field-effect

transistor (FET) due to Datta and Das [1]. This proposal uses the Rashba spin-orbit

(s.o) coupling to perform controlled rotations of spins of electrons passing through an

FET-type device. This particular spin-orbit interaction is due to inversion-symmetry of

the confining potential and is of the form [2]

HR =
α

~
(pxσy − pyσx)

where ~p is the momentum of the electron confined in a two-dimensional geometry, and

~σ the vector of Pauli matrices. The coefficient α is tunable in strength by the external

gate of the FET. Not only one subject to spin-orbit interaction of the Rashba but also of

Dresselhaus type [3] we will apply. The latter is present in semiconductors lacking bulk

inversion symmetry. When restricted to a two dimensional semiconductor nanostructure

with appropriate growth geometry, this is coupling of the form [4, 5]

HD =
β

~
(pxσx − pyσy)

1



CHAPTER 1. INTRODUCION

where the coefficient β is determined by the semiconductor material and the geometry of

the sample.Tune the Rashba (via proper gating) and the Dresselhaus terms so that they

have equal strength α = β. In this case, we quite generally below that the electron spinor

is k independent in two dimensions.

Then we have an idea. Special case is |α| = |β|, which leads to the cancellation of the

k dependence the eigenstates, exhibits universal direction (±π/4 for α = ∓β). And In

the absence of the Dresselhaus term, spin direction is perpendicular to k direction. If we

propose have a device with spin k-independent lead and k-dependent dot, shall we have

spin-dependent current?

In our research, we met D.r hsu’s group and discuss the problem of double quantum

point contacts (QPCs) in series. We find out we can support them some brief theoretical

results via applying our experience in solving open quantum dot. So, why not just do it?

1.2 A guiding tour to this thesis

In next section of this chapter, we introduce the Lansauer-Buttiker formula and a long

controversy on it. This is the fundamental theory about next thesis. Extend these con-

cepts to more complicated geometrical structures in which phase coherence is preserved

and the description in terms of quantum flux is important. Such systems include quan-

tum point contacts as well as more complicated quantum waveguide structure in 2 and 3

dimensions. To generalize our formalism for treating current flow through such systems,

we go back to an early formalism, which has now become standard in the parlance of

nanostructure transport.

In chapter2, the experimental status in the realization of the destruction of coherence in

double quantum point contacts in series is reviewed. This experimental result is proposed

by K. M. Liu , W. R. Chen, Y. M. Lin , and S. Y. Hsu Low Temperature Laboratory,

Department of Electrophysics, National Chiao Tung University. Then We propose a

theoretical physical model to simulate their device and extend the model of inelastic

2



CHAPTER 1. INTRODUCION

scatter with complete randomization in 1 dimension to 2 dimensions.

The numerical results, discussion, and theoretical calculation of the Rashba spin-orbit

effect on the transport characteristics in a open quantum dot via lead has both Dresselhaus

and Rashba spin-orbit interaction are shown in in chapter 3 and 4. In chapter 3, we neglect

the subband-mixing in open quantum dot to get analytic form. In chapter 4, we include

subband-mixing in our calculation and get numerical form.

1.3 Derivation for the Landauer-Buttiker Formalism

We adapt the Landauer-Buttiker approach to calculate the conductance across the source

and drain.

In 1957, Landauer [6] proposed the novel point of view that transport should be

viewed as a consequence of incident flux. Later in 1970 [7], he further proposed that the

conductance of a one-dimensional conductor sandwiched between two phase-randomizing

resorvoirs is given by

G =
2e2

h

T

R

where T and R are the transmission and reflection coefficients of the conductor treated

as a single complex scattering center, and only one spin direction is included.

The formula was rediscovered in 1980 by Anderson et al [8] by employing it in a rigorous

formulation of the scaling theory of localization. Since then Landauer formula caught the

attention of wilder community [9]. Nevertheless, another version of conductance G = 2e2

h
T

was obtained by Economou and Soukoulis later in 1981 [10]. The answer was that they

pertain to different physical quantities [11]

This started a long controversy on ”which of the Landauer formula is correct?”.

For the original Landauer formula, G = I
µA−µB

T , where µA and µB are the chemical

potentials on the L.H.S. and R.H.S. of the barrier. However, the conductance formula by

Economou et. al. is Gc = I
µ1−µ2

T . Here, Gc is the conductance measured between the

3



CHAPTER 1. INTRODUCION

two outside reservoirs. The ambiguity of the two Landauer formulas was clarified by Imry

in 1986.

Apart from the controversy which is confusing before mid-80s, Landauer formula faced

another practical difficulties as it is restricted in single channel one-dimensional case only.

However, the Multichannel Landauer formula were proposed by Buttiker on 1985 [12]

and later in 1986 [13], he predicted a symmetry property in a four-probe experiment under

a magnetic flux and was successfully observed by Benoit et.al. [14] Since the confirmation

of the formula, it has been a concrete foundation for quantum transport theory. In

short, Landauer’s great insight that conduction in solids can be thought as a scattering

problem, and Buttiker brilliant extension of the multichannel formula has become the key

understanding of quantum transport in mesoscopic system. Hence, It is also now well

known as Landauer-Buttiker formula.

Next, we try to derive the multichannel Landauer-Buttiker Formula starting from

single channel case. Full reference is available on the original paper of M. Buttiker et. al.

[12]

Assume that there are two reservoir of electrochemical potential µ1 and µ2 respectively

and the two end of 1D channel; and, there is a barrier in between the reservoirs.

If we add a small bias at the two reservoir, then the difference of electrochemical

potential between the reservoir will be µ1 − µ2 = ∆µ. And, the transmission probability

of an electron from reservoir 1 to reservoir 2 can be calculated by Quantum Mechanics

as T. As both side of electrons from reservoir 1 to 2 or reservoir 2 to 1 cancel out each

other, only those transmitted electrons in between ∆µ contribute to the current density

J from reservoir 1 to 2. In 1D, J = I.

Therefore the current, I can be written as:

I = −2e
dn

dE
(µ1 − µ2) T

~kF

m

Note that dn
dE

(µ1 − µ2) is the number of states per unit length that are injected from

4



CHAPTER 1. INTRODUCION

reservoir 1; the velocity is equal to ~kF

m
; and, the number 2 refers to spin factor. Besides,

density of state per unit length in 1D is

dn

dE
=

dk

2π/L

1

(~2kF ) /m
=

m

~2kF

1

2π

Therefore, I = −2e
h

(µ1 − µ2) T . Moreover, the definition of conductance, G = I
V

, and

µ1 − µ2 is given by the voltage across V, so that µ1 − µ2 = −eV . As a result, we have

G =
I

V
=
−2e/h (ev) T

V
=

2e2

h
T

For the N × N multichannel system, we have the incident channel as n, the transmission

probability to m as Tnm, and the reflection probability to m as Rnm. Therefore, the total

transmission probability, Tn from the nth channel is
∑N

m=1 Tnm; and the total current,

Itot would be
∑N

n In.

In = −2e

h
(µ1 − µ2)

N∑
m=1

Tnm

and,

Itot = −2e

h
(µ1 − µ2)

N∑
n

N∑
m=1

Tnm

Subsequently, the conductance for N × N multichannel system would be:

G =
2e2

h

N∑
n

N∑
m=1

Tnm

5



Chapter 2

Decoherence effect in a serial

quantum point contact structure

2.1 Experimental result of quantum point contact in

serial

Here we report some experimental result of destruction of coherence in double quantum

point contacts (QPCs) in series. We want to propose an theoretical model to simulate the

experimental result by K. M. Liu , W. R. Chen, Y. M. Lin , and S. Y. Hsu Low Temper-

ature Laboratory, Department of Electrophysics, National Chiao Tung University. The

device as shown in Fig. 2.1 The main workhorse in regards to experimental measurements

is the split-gate structure fabricated on a high-mobility electron gas structure. For zero

gate bias, the 2DEG exists essentially everywhere in the space between the two Ohmic

contacts. With a negative bias applied to the two Schottky contact gates, the 2DEG is

depleted underneath as well as laterally from geometric edge of the gates.In the narrow

region between the two split-gates, a 1DEG is formed. The density of the 1DEG decrease

as the gate bias is made more negative until it eventually disappears between the split

gates. The length of the 1DEG is defined by the width of the gate contacts and the shape

of depletion regions around the contacts. Such split-gate structure are often referred to

6



CHAPTER 2. DECOHERENCE EFFECT IN A SERIAL QUANTUM POINT
CONTACT STRUCTURE

Figure 2.1: Destruction of coherence in double quantum point contacts (QPCs) in series.

quantum point contacts.

In our device, several pairs of split gate are fabricated. Via choosing different pair

of split gate, we can observe the distance of double QPCs how to influence the total

conductance by choosing which pair of split gate.

GaAs/AlGaAs 0.3K

carrier density ns 1.88× 1011cm−2

mobility µ 0.8× 106cm2/V s

Fermi wavelength λf 57.8 nm

mean free path le 5.9 µm

QPCs is formed by applying negative bias on the split metal gates that are fabricated

the top of GaAs−AlxGa1−xAs hetrostrucure. This table shows the parameter of GaAs−
AlxGa1−xAs we use.

7



CHAPTER 2. DECOHERENCE EFFECT IN A SERIAL QUANTUM POINT
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Figure 2.2: Experimental results of double quantum point contacts (QPCs) in series.
G∗ = 1

(R12−R2)
. R12 is total resistance. L is the distance from QPC1 to QPC2.

Fig. 2.2 is G∗ plotted against the negative voltage on split gate 1. Choose the voltage

on the other split gate satisfy its conductance is G2 = 2 with unit 2e2

h
. In this figure,

G∗ behaves as quantized conductance when L approaches to mean free path le = 5.9µm.

So we want to propose a theoretical model to simulate the decoherence strength between

double QPCs in sereis.

2.2 Formulation of quantum point contact in serial

and theory of decoherence

We consider uniform constriction to simulate the QPC structure. our dimensionless hamil-

tonian can be written as: H = − ~2
2m

(
∂2

∂x2 + ∂2

∂y2

)
+ Vc (x, y)

We can separate our problem into two parts-QPC1 and QPC2. Then, we will connect

the scattering matrix by an inelastic scattering matrix. Through match boundary condi-

tion, we can get the relationship of transmission and reflection coefficients of QPC1 and

8



CHAPTER 2. DECOHERENCE EFFECT IN A SERIAL QUANTUM POINT
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Figure 2.3: Our model of quantum point contact in serial

get the scattering matrix of QPC1.

M ·




rn

tn

An

Bn




=




V1

V2

V3

V4




M =




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44




(2.1)

To construct scattering matrix, we need a complete basis to expand the wave function.

In hard wall confinement, we choose Eq. (2.2) and Eq. (2.3) to be our basis as usual.

φn (y) =

√
2

wr

· sin
(

nπy

wr

)
(2.2)

φ̃n (y) =

√
2

w3

· sin
(

nπy

w3

)
(2.3)

9



CHAPTER 2. DECOHERENCE EFFECT IN A SERIAL QUANTUM POINT
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Figure 2.4: wave function representation in one quantum point contact

For an electron incident from subband n = n0, the scattering wave function would be

of the form.

ψ1(x, y) = eik̃n0x · φ̃n0 (y) +
∑

n

rn · e−ik̃nx · φ̃n (y) (2.4)

ψ2(x, y) =
∑

n

[
An · eiknx + Bn · e−iknx

] · φn (y) (2.5)

ψ3(x, y) =
∑

n

tn · eiknx · φn (y) (2.6)

where n is the subband index, ε is energy ,and k̃n =
√

ε− n2

wr
. The energy unit is

taken to be E∗ =
~2π2k2

F

2m∗ ,and length unit is a∗ = 1
kF

.

Match wave function continuous at x = L1 and x = L2:

φ̃n0 (y) · eik̃n0L1 +
∑

n

rn · φ̃n (y) · e−ik̃nL1

=
∑

n

[
An · eiknL1 + Bn · e−ik̃nL1

]
· φn (y) (2.7)

∑
n

[
An · eiknL2 + Bn · e−iknL2

] · φn (y)

=
∑

n

tn · δn′,n · eik̃nL2 · φ̃n (y) (2.8)

10
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Match slope of wave function continuous at x = L1 and x = L2:

k̃n0 · φ̃n (y) · eik̃n0L1 +
∑

n

rn ·
(
−k̃n

)
· φ̃n (y) · e−ik̃nL1

=
∑

n

[
An · eiknL1 −Bne

−iknL1
] · kn · φn (y) (2.9)

∑
n

[
A · eiknL2

n −Bn · e−iknL2
] · kn · φn (y)

=
∑

n

tn · δn′,n · k̃n · eik̃nL2·φ̃n (y) (2.10)

Multiplying Eq. (2.7) and Eq. (2.8) by
∫ d+w1

d
φn′ (y) dy, we have:

δn′,n0 · eik̃n0L1 +
∑

n

rn · δn′,n · e−ik̃nL1

=
∑

n

[
An · eiknL1 + Bn · e−iknL1

] ·
∫ d+w1

d

φ̃n′ (y) · φn (y) dy (2.11)

∑
n

[
An · eiknL2 + Bn · e−iknL2

] ·
∫ d+w2

d

φ̃n′ (y) · φn (y) dy

=
∑

n

tn · δn′,n · eik̃nL2 (2.12)

Multiplying Eq. (2.9) and Eq. (2.10) by
∫ d+w1

d
φn′ (y) dy, we have:

k̃n0 · eik̃n0L1 ·
∫ d+w1

d

φn′ (y) · φ̃n0 (y) dy

+
∑

n

rn ·
(
−k̃n

)
· e−ik̃nL1 ·

∫ d+w1

d

φn′ (y) · φ̃n (y) dy

=
∑

n

[
An · eiknL1 −Bne

−iknL1
] · kn · δn′,n (2.13)

∑
n

[
An · eiknL2 −Bn · e−iknL2

] · kn · δn′,n

=
∑

n

tn · eik̃nL2 · k̃n ·
∫ d+w2

d

φn′ (y) · φ̃n (y) dy (2.14)

Now we can obtain the scattering matrix of QPC1 by solving Eq. (2.1) and the same

11
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as QPC2:




a1

b′1


 =




S11 S12

S21 S22


 ·




b1

a′1


 =




T1 R̃1

R1 T̃1


 ·




b1

a′1


 (2.15)




b′2

a2


 =




S ′11 S ′12

S ′21 S ′22


 ·




a′2

b2


 =




T2 R̃2

R2 T̃2


 ·




a′2

b2


 (2.16)

In using the Landauer counting argument for defining voltage probes to introduce phase

randomization, Buttiker calculated the contribution to the measured conductance due to

a single-channel model of a localized inelastic scatter.

Figure 2.5: Model of the inelastic coupler

Basically an inelastic scatter at any point in a conductor is modeled by a ”coupler”

whose function is to connect the conductor to a thermal reservoir via a current lead with

12
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two quantum channels, channel 3 and channel 4.Fig. 2.5. The segment of the conductor

to the left of the coupler is designed as channel 1 and the segment to the right right

of the coupler as channel 2. Therefore in the single-channel formulation introduced by

Buttiker, an inelastic scatter has four single-channel leads and is described by a unitary

4×4 S-matrix which determines the amplitudes of the outgoing waves in terms of the

amplitude of the incoming waves.

A reduction of the number of distinct relevant variables for this problem can be ac-

complished as follows. Let Sb denote the incoherent backward scattering and Sf denote

the incoherent forward scattering. For Single channel leads, these are the only scattering

probabilities. Then we have,

Sb = T13 + T14 = |S13|2 + |S14|2 (2.17)

Sf = T23 + T24 = |S23|2 + |S24|2 (2.18)

On the other hand, the coherent process are denoted by

Tc,L = T21 = |S21|2 , Rc,L = R11 = |S21|2 , (2.19)

Tc,R = T12 = |S12|2 , Rc,R = R22 = |S22|2 . (2.20)

Keep current conservation and unitarity, then we have leads to relations between derived

quantities as:

Rc,L + Tc,L + Sb = 1, (2.21)

Rc,R + Tc,R + Sf = 1. (2.22)

where Tc,R = Tc,L = T21 = T12 in the absence of magnetic field.

The inelastic scatter basically randomizes the phase of the charge-carries and therefore

feeds the conductor, through Sb and Sf , with incoherent carries up to energy µ, which

can be determined by requiring that no net particle current flows into the reservoir. In

13
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contrast to this zero particle flow, that inelastic scattering implies the existence of a net

energy flux towards the reservoir of chemical potential µ. We have for the current in

channels 3 and 4,

I3 = T32 · I (µR, µ) + T31 · I (µL, µ) (2.23)

I4 = T42 · I (µR, µ) + T41 · I (µL, µ) (2.24)

where I (µR, β) represents the saturated current values from a reservoir at chemical po-

tential µβ to terminal reservoir at chemical potential µR in the absence of any scatters.

We have for each electron spin

I (µR, µ) =
e

h
(µR − µ) (2.25)

I (µR, µL) =
e

h
(µR − µL) (2.26)

By requiring that I3 + I4 = 0, one readily obtains

µ =
µR · Sf + µL · Sb

(Sf + Sb)
(2.27)

Substituting the expression for µ, in terms of (µL − µR), in the expression forI1 = I2 = I

giving by I = T21 · I (µL − µR) + Sf · I (µ− µR), we obtain

G =
I

(µL − µR)
= T21 · e

h
+ Sf · e

h

Sb

(Sf + Sb)
(2.28)

From the requirement of unitary and time-reversal symmetry in the absence of external

magnetic field, we can construct the 4×4 S-matrix, which relates the scattered amplitude

as functions of incident amplitudes, of an inelastic scattering process Sin as a symmetric
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and unitary matrix

Sin =




0
√

1− ε
√

ε 0
√

1− ε 0 0
√

ε

√
ε 0 0 −√1− ε

0
√

ε −√1− ε 0




(2.29)

Where ε is decoherence strength which Sf = Sb = ε. We can write it down as equation

in series





a′1 =
√

1− ε · a2 +
√

ε · a3

a′2 =
√

1− ε · a1 +
√

ε · a4

a′3 =
√

ε · a1 −
√

1− ε · a4

a′4 =
√

ε · a2 +
√

1− ε · a3

(2.30)

In Fig. 2.5, combining matrix equation Eq. (2.15) and Eq. (2.16), we can obtain Fig. 2.6

and Eq. (2.31)




b′1

b′2

a′3

a′4




= S̃ ·




b1

b2

a3

a4




(2.31)
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Figure 2.6: Phase randomizing scatter between two QPC, outgoing amplitudes are related
to the incoming amplitudes through S-matrix, while amplitudes to the left of the inelastic
scatter are related to the amplitudes at the right side through the transfer matrix.

In order to get S̃, its matrix element represents transmission rate from one channel

to another channel and reflection rate. So we calculate its matrix element separately.

We must notice our problem is two-dimension. So b2 and b1 are vectors which represent

different subbands mixing. S̃ is a 4n×4n unitary matrix. where n is the number of

subbands we choose. Set b2 = a3 = a4 = 0, b1 = δn,m, b′1 = S̃11, b′2 = S̃21, we obtain:





a1 − R̃1 ·
√

1− ε · a2 = T1 · δn,m

S̃11 − T̃1

√
1− ε · a2 = R1 · δn,m

S̃21 − T2 ·
√

1− ε · a1 = 0

−R2 ·
√

1− ε · a1 + a2 = 0

(2.32)

Set b1 = b2 = a4 = 0, a3 = δn,m, b′1 = S̃13, b′2 = S̃23, we obtain:
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



R̃1 ·
(√

1− ε · a2 +
√

ε · δn,m

)
= a1

T̃1 ·
(√

1− ε · a2 +
√

ε · δn,m

)
= S̃13

T2 ·
√

1− ε · a1 = S̃23

R2 ·
√

1− ε · a1 = a2

(2.33)

Set b1 = b2 = a3 = 0, a4 = δn,m, b′1 = S̃14, b′2 = S̃24, we obtain:





R̃1 ·
√

1− ε · a2 = a1

T̃1 ·
√

1− ε · a2 = S̃14

T2 ·
(√

1− ε · a1 +
√

ε · δn,m

)
= S̃24

R2 ·
(√

1− ε · a1 +
√

ε · δn,m

)
= a2

(2.34)

Put these matrix elements into Eq. (2.28), we can solve this problem to simulate experi-

mental result.

2.3 Numerical results and discussion

In this section, we show the numerical results and discussion of two QPCs in series under

decoherent effect. We take the conductance G with the unit 2e2

h
. Length unit is 1

kf
nm

and energy unit is E∗ =
~2π2k2

F

2m∗ =0.0117 eV.It is just as the same as previous section.
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In Fig. 2.7, w1 is the width of QPC and its length is len(QPC). wr must be larger

than the width of QPC to simulate width of reservoir. We choose wr is 20× 1
kf

=194 nm.

In this figure we want to check our model can work for predict conductance of QPC. In

ballistic regime, conductance of QPC is discovered a sequence of steps of the voltage of

the split gate. In our model, the width od QPC is similar to the the voltage of the split

gate.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

W
1

G

w
r
=20 subbandnum=40

E=1
E=2
E=3

w
1

w
r

λ
f
/2

Figure 2.7: Conductance is plotted against the width of QPC

As we can see, the conductance is quantized in units of 2e2

h
. The result relies on the

fact of increase in number of propagating modes. The length of step is
λf

2
. Where λf is

the fermi-wave length which is 2π
kf

.
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G
1
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w
1

w
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Figure 2.8: Total Conductance of two QPCs in series plotted against the width of QPC2.
The width of QPC1 is fixed. Lq the length of QPC is 1× 1

kf
=9.2 nm and they are separated

with L = 3 × 1
kf

=27.6 nm. ε is decoherence strength. Energy of incident electron is 1.5

with unit E∗ =
~2π2k2

F

2m∗ eV. Number of subband is 40 in our approximation.

In classical mechanics, we can regard QPC as a type of resistence. And the effect

of decoherence is more probably happened between the QPC1 and QPC2. If two QPCs

in series can be regarded as two resistance in series. Therefore, the conductance has

relationship 1
Gtotal

= 1
G1

+ 1
G2

. Via this formula we can obtain Fig. 2.9 (Conductance of

QPC2 plotted against its width). In this point of view, we can see the effect of decoherence

between double QPCs in series. When decoherence strength ε is 1, conductance of QPC2 is

quantized just like Fig. 2.7. It means these two QPCs can be regarded as two resistances

in series under totally decoherent. If ε is much less than 1, the total conductance is

strongly coupled in their phase difference under quantum mechanics. The interference

effect will contribute extra conductance or resistance.
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Figure 2.9: Conductance of QPC2 plotted against the width of QPC2.

When strength of decoherence ε is increasing, we observe conductance is decreasing

in w2 = 2 but increasing in w2 = 4. This result gives us a hint: interference effect

will raise conductance or lower conductance. If interference effect raise conductance,

applying decoherence effect will lower conductance just like the case w2 = 2. In w2 = 4,

conductance is raised when we give small decoherence effect, and lowered when we give

more decoherence effect.
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First, we want to know the physical reason make the difference in w2 and w4. We know

in open quantum dot, quasi-bound state would be lower than that in closed quantum dot.

Conductance in different structure will give different behavior at the same energy. In order

to observe the phenomenon, we make Fig. 2.10 and Fig. 2.11 to observe what happen in

these two kind of case.

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

0.8

1

1.2

1.4

1.6

1.8

2

energy

G

w
1
=3  w

r
=20  w

2
=2 

ε=0
ε=0.1
ε=0.3
ε=0.5

A

Figure 2.10: Total conductance plotted against incident energy under w2 = 2.

In Fig. 2.10, it represents total conductance plotted against incident energy under

w2 = 2. There is an energy peak in E = 1.5
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Figure 2.11: Total conductance plotted against incident energy under w2 = 4.

In Fig. 2.11, it represents total conductance plotted against incident energy under

w2 = 4. There is an energy dip in E = 1.5 The resonance occurs in Fig. 2.11 so we can

find out dip structure in it. Fig. 2.10 is the normal case.
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Chapter 3

Quantum transport through a

Rashba-type spin-orbit open

quantum dot: in the absence of

subband mixing

We consider an open quantum dot connected via two leads to the source and drain elec-

trode as shown in figure 2-1. The lead has both Dresselhaus and Rashba spin-orbit in-

teraction while the open quantum dot has only Rashba (SOI). In this chapter, we neglect

subband-mixing to get analytic solution.

3.1 Solving the eigen state in channel with Dressel-

haus and Rashba spin-orbit interaction in the ab-

sence of subband mixing

At first, we solve eigen wave function in lead with Dresselhaus and Rashba spin-orbit

interaction. Hamiltonian of Rashba spin-orbit interaction is
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HR =
α

~
(pxσy − pyσx) (3.1)

Hamiltonian of Dresselhaus spin-orbit interaction is

HD =
β

~
(pxσx − pyσy) (3.2)

We assume the Dresselhaus and Rashba coefficient are the same α = β in the lead. The

lead is very narrow so we can neglect the subband mixing in lead. Therefore, Hamiltonian

in the lead can be written as:

H = −~
2 · ∇2

2m
+ Vc (x, y)− i~ · α1

∂

∂x
(σx + σy) (3.3)

Here, the σ are the Pauli matrices and Vc (x, y) is confining potential. Next, We choose

our dimensionless unit as energy unit be E∗ =
~2k2

F

2m∗ , length unit is a∗ = 1
kF

., and the unit

of Rashba coefficient is ~
2m

. So we get dimensionless Hamiltonian:

H = −∇2 + V (x, y)− i · α1
∂

∂x
(σx + σy) (3.4)

Its eigenstate is χ± = 1√
2




1

±ei π
4


 with eigenvalue λ = ±√2. For given eigenstate,

we have our wave function ψL,± ·χ±. Wave function must satisfy boundary condition and

be eigenfunction of Hamiltonian Equation.
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−∇2ψL,± + Vc (x, y) · ψL,± ∓ i ·
√

2 · α1
∂

∂x
ψL,± = E · ψL,± (3.5)

We consider confining potential is hard wall confinement. Therefore, the separation of

variables is accomplished by the substitution: ψL,± = φ (x)± ·φn (y) and E = Ex,±+
(

nπ
w1

)2

where

φn (y) =

√
2

w1

· sin
[
nπ (y − d)

w1

]
(3.6)

In the usual way, we find separate equations for φ (x)±

[
−i

∂

∂x
± α1√

2

]2

· φ (x)± −
α2

1

2
· φ (x)± = Ex,± · φ (x)± (3.7)

Assume φ (x) = e
∓i

α1√
2
x · ϕ (x)± to simplify this differential equation.

− ∂2

∂x2
ϕ (x)± =

(
Ex,± +

α2
1

2

)
· ϕ (x)± (3.8)

The solution wave function in the lead is found to be:

ψL(x, y) = eiknx · e∓i
α1√

2
x · φn (y) · χ± (3.9)

kn =

√
ε−

(
nπ

w1

)2

+
α2

1

2
(3.10)

After solving eigen state in the lead, dimensionless Hamiltonian in the dot can be

written as:
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H = −∇2 + V (x, y) + α2 · (~p× ẑ) · ~σ

= −∇2 + V (x, y)− i · α2
∂

∂x
σy (3.11)

We neglect subband mixing term +i ∂
∂y

σx in Hamiltonian. In fact, this way didn’t work

for our model physically. But its solution is analytic form to give us a hint to real case.

We also have spin eigenstate σ± = 1√
2




1

±i


 with eigenvalue λ = ±1. Then the

same algebra process as lead, we can get dispersion relation E = Ex,± +
(

nπ
w2

)2

and total

wave function ψ2,± = φ (x)± · φ̃ (y). where

φ̃ (y) =

√
2

w2

· sin
(

nπy

w2

)
(3.12)

As the same process in previous section, we can obtain x-direction differential equation.

[
−i

∂

∂x
± α2

2

]2

· φ̃ (x)± −
α2

2

4
· φ̃ (x)± = Ex,± · φ̃ (x)± (3.13)

The solution wave function in the lead is found to be:

ψD = e∓i
α2
2

x · eik̃nx · φ̃n (y) · σ± (3.14)

k̃n =

√
ε−

(
nπ

W1

)2

+
α2

2

4
(3.15)

3.2 Matching boundary condition and scattering method

We can take the solution to be of the form:
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Figure 3.1: The model of Rashba-type spin-orbit open quantum dot

if d < y < d + w1 and x < 0

ψL1(x, y) = eikn0x · e−i
α1√

2
x · φn0 (y) · χ+

+
∑

n

[
rn,+ · e−iknx · e−i

α1√
2
x · φn (y) · χ+ + rn,− · e−iknx · e+i

α1√
2
x · φn (y) · χ−

] (3.16)

if 0 < y < w2 and 0 < x < L

ψD =
∑

n

[
An,+ · e−i

α2
2

x · eik̃nx · φ̃n (y) · σ+ + An,− · e+i
α2
2

x · eik̃nx · φ̃n (y) · σ−
]

+
∑

n

[
Bn,+ · e−i

α2
2

x · e−ik̃nx · φ̃n (y) · σ+ + Bn,− · e+i
α2
2

x · e−ik̃nx · φ̃n (y) · σ−
] (3.17)

if d < y < d + w1 and x > L

ψL2(x, y) =
∑

n

[
tn,+ · eiknx · e−i

α1√
2
x · φn (y) · χ+ + tn,− · eiknx · e+i

α1√
2
x · φn (y) · χ−

]
(3.18)
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Match wave function continuous at x = 0:

φn0 (y) · χ+ +
∑

n

[rn,+ · χ+ + rn,− · χ−] · φn (y)

=
∑

n

[An,+ · σ+ + An,− · σ− + Bn,+ · σ+ + Bn,− · σ−] · φ̃n (y)

(3.19)

Multiplying Eq. (3.19) by σ∗± ·
∫ d+w1

d
φ̃n′ (y) dy, we obtain

(
σ∗+ · χ+

) ·
∫ d+w1

d

φ̃n′ (y) · φn0 (y) dy

+
∑

n

[
rn,+ ·

(
σ∗+ · χ+

)
+ rn,− ·

(
σ∗+ · χ−

)] ·
∫ d+w1

d

φ̃n′ (y) · φn (y) dy

=
∑

n

[An,+ · δn′,n + Bn,+ · δn′,n] (3.20)

(
σ∗− · χ+

) ·
∫ d+w1

d

φ̃n′ (y) · φn0 (y) dy

+
∑

n

[
rn,+ ·

(
σ∗− · χ+

)
+ rn,− ·

(
σ∗− · χ−

)] ·
∫ d+w1

d

φ̃n′ (y) · φn0 (y) dy

=
∑

n

[An,− · δn′,n + Bn,− · δn′,n] (3.21)

Match slope of wave function continuous at x = 0. In the boundary, we must input

step function in our Hamiltonian. Besides, we must keep our Hamiltonian be hermitian

operator.

H = −∇2 + V (x, y) + α1

(
−i

∂

∂x
+ i

∂

∂y

)
(σx + σy)

+
1

2
θ (x) ·

[
−i · α2

∂

∂x
σy − α1

(
−i

∂

∂x
+ i

∂

∂y

)
(σx + σy)

]

+
1

2

[
−i · α2

∂

∂x
σy − α1

(
−i

∂

∂x
+ i

∂

∂y

)
(σx + σy)

]
· θ (x) (3.22)
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Put this Hamiltonian into
∫ 0+ε

0−ε
H · ψ = 0 to match differential boundary condition.

we obtain

−
(

∂

∂x
+

1

2
i · α2 · σy

)
· ψ|0+ε +

[
∂

∂x
+

1

2
i · α1 · (σx + σy)

]
· ψ|0−ε = 0 (3.23)

Substituting Eq. (4.42) by Eq. (3.16) and Eq. (3.17)

kn0 · φn0 (y) · χ+ −
∑

n

[rn,+ · χ+ + rn,− · χ−] · kn · φn (y)

=
∑

n

[An,+ · σ+ + An,− · σ− −Bn,+ · σ+ −Bn,− · σ−] · k̃n · φ̃n (y)

(3.24)

Multiplying Eq. (4.43) by χ∗± ·
∫ d+w1

d
φn′ (y) dy, we obtain

kn0 · δn′,n0 +
∑

n

rn,+ · (−kn) · δn′,n

=
∑

n

[
An,+ ·

(
χ∗+ · σ+

)
+ An,− ·

(
χ∗+ · σ−

)−Bn,+ ·
(
χ∗+ · σ+

)−Bn,− ·
(
χ∗+ · σ−

)]

×
∫ d+w1

d

k̃n · φn′ (y) · φ̃n (y) dy (3.25)

∑
n

rn,− · (−kn) · δn′,n

=
∑

n

[
An,+ ·

(
χ∗− · σ+

)
+ An,− ·

(
χ∗− · σ−

)−Bn,+ ·
(
χ∗− · σ+

)−Bn,− ·
(
χ∗− · σ−

)]

×
∫ d+w1

d

k̃n · φn′ (y) · φ̃n (y) dy (3.26)

Therefore, we can write down the matrix equation at the boundary x = 0.
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


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44



·




δn,n0

0

rn,+

rn,−




=




N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44



·




An,+

An,−

Bn,+

Bn,−




(3.27)

Following the same process, match wave function continuous at x = L:

∑
n

[
An,+ · e−i

α2
2

L · σ+ + An,− · e+i
α2
2

L · σ−
]
· eik̃nL · φ̃n (y)

+
∑

n

[
Bn,+ · e−i

α2
2

L · σ+ + Bn,− · e+i
α2
2

L · σ−
]
· e−ik̃nL · φ̃n (y)

=
∑

n

[
tn,+ · e−i

α1√
2
L · χ+ + tn,− · e+i

α1√
2
L · χ−

]
· eiknL · φn (y) (3.28)

Multiplying Eq. (4.32) by σ∗± ·
∫ d+w1

d
φ̃n′ (y) dy, we obtain

∑
n

[
An,+ · eik̃nL + Bn,+ · e−ik̃nL

]
· e−i

α2
2

L · δn′,n

=
∑

n

[
tn,+ · e−i

α1√
2
L · (σ∗+ · χ+

)
+ tn,− · e+i

α1√
2
L · (σ∗+ · χ−

)]

×eiknL ·
∫ d+w1

d

φ̃n′ (y) · φn (y) dy (3.29)

∑
n

[
An,− · eik̃nL + Bn,− · e−ik̃nL

]
· e+i

α2
2

L · δn′,n

=
∑

n

[
tn,+ · e−i

α1√
2
L · (σ∗− · χ+

)
+ tn,− · e+i

α1√
2
L · (σ∗− · χ−

)]

×eiknL ·
∫ d+w1

d

φ̃n′ (y) · φn (y) dy (3.30)
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Match slope of wave function continuous at x = L. We also must input step function

in our Hamiltonian and keep it be hermitian operator.

∑
n

[
An,+ · e−i

α2
2

L · σ+ + An,− · e+i
α2
2

L · σ−
]
· k̃n · eik̃nL · φ̃n (y)

−
∑

n

[
Bn,+ · e−i

α2
2

L · σ+ + Bn,− · e+i
α2
2

L · σ−
]
· k̃n · e−ik̃nL · φ̃n (y)

=
∑

n

[
tn,+ · e−i

α1√
2
L · χ+ + tn,− · e+i

α1√
2
L · χ−

]
· kn · eiknL · φn (y) (3.31)

Multiplying Eq. (4.37) by χ∗± ·
∫ d+w1

d
φn′ (y) dy, we obtain

∑
n

[
An,+ · e−i

α2
2

L · 〈χ+ | σ+〉+ An,− · e+i
α2
2

L · 〈χ+ | σ−〉
]

×k̃n · eik̃nL ·
∫ d+w1

d

φn′ (y) · φ̃n (y) dy

−
∑

n

k̃n · e−ik̃nL ·
[
Bn,+ · e−i

α2
2

L · 〈χ+ | σ+〉+ Bn,− · e+i
α2
2

L · 〈χ+ | σ−〉
]

×k̃n · e−ik̃nL

∫ d+w1

d

φn′ (y) · φ̃n (y) dy

=
∑

n

[
tn,+ · kn · eiknL · e−i

α1√
2
L · δn′,n

]
(3.32)

∑
n

[
An,+ · e−i

α2
2

L · 〈χ− | σ+〉+ An,− · e+i
α2
2

L · 〈χ− | σ−〉
]

×k̃n · eik̃nL ·
∫ d+w1

d

φn′ (y) · φ̃n (y) dy

−
∑

n

[
Bn,+ · e−i

α2
2

L · 〈χ− | σ+〉+ Bn,− · e+i
α2
2

L · 〈χ− | σ−〉
]

×k̃n · e−ik̃nL ·
∫ d+w1

d

φn′ (y) · φ̃n (y) dy

=
∑

n

[
tn,− · kn · eiknL · e+i

α1√
2
L · δn′,n

]
(3.33)
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Therefore, we can write down the matrix equation at the boundary x = L.




P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44



·




An,+

An,−

Bn,+

Bn,−




=




Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44



·




tn,+

tn,−

0

0




(3.34)

Then we combine matrx equation Eq. (3.27) and Eq. (3.27), we can obtain transfer

matrix defined by

T ·




δn,n0

0

rn,+

rn,−




=




tn,+

tn,−

0

0




(3.35)

Then we have:

T = (Q)−1 · P · (N)−1 ·M =




T11 T12

T21 T22


 (3.36)

and

T11 ·




δn,n0

0


 + T12 ·




rn,+

rn,−


 =




tn,+

tn,−




T21 ·




δn,n0

0


 + T22 ·




rn,+

rn,−


 = 0

(3.37)
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3.3 Numerical result and discussion

In this section, we show the numerical results and discussion of open quantum dot with

spin-orbit interaction but neglect the subband mixing. Length unit is 1
kf

=4 nm and energy

unit is E∗ =
~2k2

F

2m∗ =0.059 eV. Where kf =
√

2πn = 2.5× 108(1/m) in InGaAs.
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Figure 3.2: Open quantum dot in the absence of spin-orbit interaction

Fig. 3.2 shows the transmission plotted against incident energy in open quantum dot

in the absence of spin-orbit interaction. In order to simplify our calculation, we let our

case is symmetric in transverse direction. WL represents the width of lead and WD is the

width of dot. len is the length of open quantum dot. Number of subband in calculation

is 20. This figure help us to realize what happens in spin-orbit interaction. Dot vertical

line represents the eigen energy of quasi-bound state. We find that whenever incident

energy aligns with particle-in-a-box energy levels, there are dramatic changes in G (i.e

the resonant energy). Surprisingly, this is a system with large opening of WD/WL ratio

equal to 2. It is hardly a close box although the resonant states and particle-in-a-box

states match so well. Wave fuction (nx, ny) states for particle-in-a-box (or a closed dot)

is
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ψnx,ny (x, y) = sin
(nxπ

L
x
)

sin

(
nyπ

WD

y

)
(3.38)

We observe that whenever particle-in-a-box states (nx, ny); ny = 1, the correspon-

dence resonant energy does not form a qusi-bound state. Although we cannot explain

the selection rules of the formation of quasi-bound state in the dot yet, we are able to

describe the behavior of electron whenever its incident energy coincides with energy level

of particle-in-a-box. We find that wave function do not build up in the dot for ny=1 by

plotting its time averaged probability density. But for (ny=3) states, wave function build

up inside the dot for its correspondence incident energy. Note that, for particle-in-a-box

states of( ny=2), because in symmetric structure, wave function coupling of odd and even

is zero. We can get this conclusion by comparing Fig. 3.3 and Fig. 3.4.
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Figure 3.3: Open quantum dot with spin-orbit interaction in absence of subband mixing
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In Fig. 3.3, Rashba effect in the open quantum dot will flip the spin. Total current

doesn’t make change in spin-orbit interaction. The stronger Rashba effect in the open

quantum dot we have, the more spin flip. The flip ratio is only depend on the Rashba

effect in the open quantum dot but independent of incident energy. And the ratio is

independent of the Rashba and Dresselhaus effect in the lead, too.
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Figure 3.4: Open quantum dot with spin-orbit interaction in absence of subband mixing
and asymmetric structure.

The same phenomenon we observe in asymmetric structure. Except the resonance

structure due to wave function coupling of odd and even, the ratio of spin flipping is not

influenced by asymmetric structure. And transmission is spin independent.
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Figure 3.5: the ratio of flipping spin plotted against the rashba coupling in the open
quantum dot.

Fig. 3.5 show that the ratio of flipping spin plotted against the Rashba coupling in

open quantum dot. The ratio of flipping spin is defined by Tflipping/Ttotal. Note that the

spin injection direction didn’t influence the total transmission. It is because neglecting

the subband mixing, it means we drop the possibility the spin precession at the same

time. Surprisingly, this ratio is independent of incident energy, too. But we also can get

a hint from these result, Rashba coupling in open quantum dot indeed influence the spin

flipping. It is because that spin direction independent of momentum if we neglect the

subband mixing at all.

Next chapter, we will take subband mixing into our consideration.
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Chapter 4

Quantum transport through a

Rashba-type spin-orbit open

quantum dot: including subband

mixing

4.1 Solving the eigen state in channel with Dressel-

haus and Rashba spin-orbit interaction including

subband mixing

In the previous section, we neglect the term to simplify our problem to get analytic form.

In this section, we introduce a numerical method to get approximate solution. First, we

must find proper basis function to span the eigen function in the open quantum dot.

Assume ψ = ei(kxx+kyy) ·




a

b




Our Hamiltonian is:
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HD = −∇2 + V (x, y)− α ·
(
−i

∂

∂x
σy + i

∂

∂y
σx

)
(4.1)

Figure 4.1: Assume a plain wave propagating in angle of θ

We want do fourier transform in our Hamiltonian and get numerical solution.

H · ψ =
[(

k2
x + k2

y

)
+ α · (−kx · σy + ky · σx)

] · ψ = E · ψ (4.2)

Rewrite equation Eq. (4.2) into matrix form by following substitution σx =




0 1

1 0




and σy =




0 −i

i 0


. we have:




k2
x + k2

y − E α · (i · kx + ky)

α · (−i · kx + ky) k2
x + k2

y − E


 ·




a

b


 = 0 (4.3)

Solve this eigen value problem, we can get eigen energy and corresponding eigen vector:
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E± =
(
k2

x + k2
y

)± α ·
√

k2
x + k2

y (4.4)

set a = 1, then




a

b



±

=
1√
2




1

∓i kx+i·ky√
k2

x+k2
y


 =

1√
2




1

∓i · ei·θ


 (4.5)

where θ = tan−1 ky

kx

We try to find eigen function in the open quantum channel with Rashba effect. One

given incident wave must have two reflected wave with different spin state in order to

match boundary condition in y-direction. One reflected wave case:

Figure 4.2: Assume one incident wave has one reflected wave

In order to keep conserve energy, reflected wave must have the same spin state as

incident wave.

ψinc = ei(kxx+kyy) · χ1, χ1 =
1√
2




1

−i · ei·θ1


 (4.6)

ψref = r · ei(kxx−kyy) · χ̃1, χ̃1 =
1√
2




1

−i · e−i·θ1


 (4.7)
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where E1 = k2
x + k2

y + α · √k2
x + k2

y. r is reflection coefficient, and we try to match

boundary condition y = 0 to find proper r.

eikxx · 1√
2




1

−i · ei·θ1


 + r · eikxx · 1√

2




1

−i · e−i·θ1


 = 0 (4.8)

Each term in spin state can be separate:





1 + r = 0

ei·θ1 + r · e−i·θ1 = 0
(4.9)

If θ1 6= 2nπ, no proper r can be found. To solve this problem, we must introduce

another reflected wave with the same energy.

Figure 4.3: Add another reflected wave to fit boundary condition

Let k̃ =
√

k2
x + k̃2

y satisfy k2 − α · k̃ = k2 + α · k which k̃y > ky.

ψtotal = ei(kxx+kyy) · χ1 + r11 · ei(kxx−kyy) · χ̃1 + r12 · ei(kxx−k̃yy) · χ̃2 (4.10)
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As the same process, we have another incident wave:

ψtotal = ei(kxx+k̃yy) · χ2 + r21 · ei(kxx−kyy) · χ̃1 + r22 · ei(kxx−kyy) · χ̃2 (4.11)

In a quantum channel with Rashba effect, wave function must satisfy boundary con-

dition at y = d and y = 0. So we calculate reflection coefficient rij and r̃ij .

(1) Satisfied boundary condition at y = d : ψ|y=d = 0

eikxx ·eik̃yd ·




1

f−


+ r̃22 ·eikxx ·e−ik̃yd ·




1

h−


+ r̃21 ·eikxx ·e−ikyd ·




1

h+


 = 0 (4.12)





eik̃yd + r̃22 · e−ik̃yd + r̃21 · e−ikyd = 0

eik̃yd · f− + r̃22 · e−ik̃yd · h− + r̃21 · e−ikyd · h+ = 0
(4.13)

r̃22 =
(−h+ + f−)

(h+ − h−)
· ei·2k̃yd (4.14)

r̃21 =
(−f− + h+)

(h+ − h−)
· ei·(k̃y+ky)d (4.15)
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Consider the other incident wave and following the same process, we obtain:

r̃12 =
(−h+ + f+)

(h+ − h−)
· ei·(k̃y+ky)d (4.16)

r̃11 =
(−f+ + h−)

(h+ − h−)
· ei·2k̃yd (4.17)

(2) Satisfied boundary condition at y = 0 : ψ|y=0 = 0

eikxx ·




1

h−


 + r22 · eikxx ·




1

f−


 + r21 · eikxx ·




1

f+


 = 0 (4.18)





1 + r22 + r21 = 0

h− + r22 · f− + r21 · f+ = 0
(4.19)

r22 =
−f+ + h−
f+ − f−

(4.20)

r21 =
−h− + f+

f+ − f−
(4.21)

Consider the other incident wave and following the same process, we obtain:
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r12 =
−f+ + h+

f+ − f−
(4.22)

r11 =
−h+ + f−
f+ − f−

(4.23)

Now, we can write down the eigen function in a quantum channel with Rashba effect

by linear combination of four wave function which have the same energy.

4 component wave at the same energy:
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A : eikxx · eik̃yy · χ2, E = k̃2 − α · k̃, x2 =
1√
2




1

i · ei·θ2


 (4.24)

B : eikxx · eikyy · χ1, E = k2 + α · k, x1 =
1√
2




1

−i · ei·θ1


 (4.25)

C : eikxx · e−ikyy · χ̃1, E = k2 + α · k, x̃1 =
1√
2




1

−i · e−i·θ1


 (4.26)

D : eikxx · e−ik̃yy · χ̃2, E = k̃2 − α · k̃, x̃2 =
1√
2




1

i · e−i·θ2


 (4.27)
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Figure 4.4: Dispersion relation

For given a fixed energy, we have 4-state with different kx.

ψ (E) = eikxx ·
[
A · eik̃yy · x2 + B · eikyy · x1 + C · e−ikyy · x̃1 + D · e−ik̃yy · x̃2

]
·e−iE·t (4.28)
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Numerical Solve Eigen Energy.

A · r̃11 + B · r̃21 = D

A · r̃12 + B · r̃22 = C

C · r21 + D · r11 = A

C · r22 + D · r12 = B

⇒




r̃11 r̃21 0 −1

r̃12 r̃22 −1 0

−1 0 r21 r11

0 −1 r22 r12



·




A

B

C

D




= 0 ⇒ M ·




A

B

C

D




= 0

(4.29)

det (M) = −1 + (r12 · r̃21 + r22 · r̃22 + r21 · r̃12 + r11 · r̃11)

− (r12 · r21 · r̃12 · r̃21 − r12 · r21 · r̃11 · r̃22)

+ (+r11 · r22 · r̃12 · r̃21 − r11 · r22 · r̃11 · r̃22) (4.30)

Eigen state




1 0 −r21 −r11

0 1 −r22 −r12

0 0 1− r12 · r̃12 − r22 · r̃22 −r11 · r̃12 − r12 · r̃22

0 0 −r21 · r̃11 − r22 · r̃21 1− r11 · r̃11 − r12 · r̃21



·




A

B

C

D




= 0 ⇒ T·




A

B

C

D




= 0

(4.31)

Therefore we can obtain Eigen state wave function by solving Eq. (4.31).

4.2 Matching boundary condition and scattering method

After having the eigen state in the quantum dot including subband mixing, we match

boundary condition to solve this problem as the previous chapter.
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Figure 4.5: The model of open quantum dot.

ψL1(x, y) = eikn0x · e−i
α1√

2
x · φn0 (y) · χ+

+
∑

n

[
rn,+ · e−i

α1√
2
x · χ+ + rn,− · e+i

α1√
2
x · χ−

]
· e−iknx · φn (y) (4.32)

In order to apply our formulation to evanesce mode, we rewrite the representation of

spin state.
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an =
1√

1 + f 2
1

·




1

f1


 , f1 = −i

(
kx,n + i · k̃y,n

)
√

k2
x,n + k̃2

y,n

(4.33)

bn =
1√

1 + f 2
2

·




1

f2


 , f2 = i

(kx,n + i · ky,n)√
k2

x,n + k2
y,n

(4.34)

cn =
1√

1 + h2
2

·




1

h2


 , h2 = i

(kx,n − i · ky,n)√
k2

x,n + k2
y,n

(4.35)

dn =
1√

1 + h2
1

·




1

h1


 , h1 = −i

(
kx,n − i · k̃y,n

)
√

k2
x,n + k̃2

y,n

(4.36)

Write down the wave function in the quantum dot:

ψD =
∑

n

Rn · eik̃nx · [An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]

+
∑

n

Ln · e−ik̃nx ·
[
Ãn (y) ãn + B̃n (y) b̃n + C̃n (y) c̃n + D̃n (y) d̃n

]
(4.37)

Write down the wave function in the lead:

ψL2(x, y) =
∑

n

[
tn,+ · e−i

α1√
2
x · χ+ + tn,− · e+i

α1√
2
x · χ−

]
· eiknx · φn (y) (4.38)

Match wave function continuous at x = 0:
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φn0 (y) · χ+ +
∑

n

[rn,+ · χ+ + rn,− · χ−] · φn (y)

=
∑

n

{Rn · [An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]}

+
∑

n

{
Ln ·

[
Ãn (y) ãn + B̃n (y) b̃n + C̃n (y) c̃n + D̃n (y) d̃n

]}
(4.39)

Match slope of wave function continuous at x = 0. Put step function in our Hamil-

tonian to keep our Hamiltonian be hermitian operator.

(
∂

∂x
+

1

2
i · α2 · σy

)
· ψ|0+ε =

[
∂

∂x
+

1

2
i · α1 · (σx + σy)

]
· ψ|0−ε (4.40)

σy · an =




0 −i

i 0


 · 1√

2




1

i · ei·θ


 =

1√
2
ei·θ




1

i · e−i·θ


 = ei·θ · dn

σy · bn =




0 −i

i 0


 · 1√

2




1

−i · ei·θ′


 =

(−1)√
2

ei·θ′




1

−i · e−i·θ′


 = −ei·θ′ · cn

σy · cn =




0 −i

i 0


 · 1√

2




1

−i · e−i·θ′


 =

(−1)√
2

e−i·θ′




1

−i · ei·θ′


 = −e−i·θ′ · bn

σy · dn =




0 −i

i 0


 · 1√

2




1

i · e−i·θ


 =

1√
2
e−i·θ




1

i · ei·θ


 = e−i·θ · an

(4.41)

Put substitution Eq. (4.41) into Eq. (4.32) and Eq. (4.37).
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kn0 · φn0 (y) · χ+ −
∑

n

kn · [rn,+ · χ+ + rn,− · χ−] · φn (y)

=
∑

n

Rn · k̃n · [An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]

−α2

2
·
∑

n

Rn ·
[
An (y) · eiθ · dn −Bn (y) · eiθ′ · cn − Cn (y) · e−iθ′ · bn + Dn (y) · e−iθ · an

]

−
∑

n

Ln · k̃n ·
[
Ãn (y) ãn + B̃n (y) b̃n + C̃n (y) c̃n + D̃n (y) d̃n

]

−α2

2
·
∑

n

Ln ·
[
Ãn (y) · eiθ · d̃n − B̃n (y) · eiθ′ · c̃n − C̃n (y) · e−iθ′ · b̃n + D̃n (y) · e−iθ · ãn

]

(4.42)

Match wave function continuous at x = L:

∑
n

(
Rn · eik̃nL

)
· [An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]

+
∑

n

(
Ln · e−ik̃nL

)
·
[
Ãn (y) ãn + B̃n (y) b̃n + C̃n (y) c̃n + D̃n (y) d̃n

]

=
∑

n

[
tn,+ · eiknL · e−i

α1√
2
L · χ+ + tn,− · eiknL · e+i

α1√
2
L · χ−

]
· φn (y)

(4.43)

Match slope of wave function continuous at x = L.

∑
n

Rn · eik̃nL · k̃n · [An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]

−α2

2
·
∑

n

Rn · eik̃nL ·
[
An (y) · eiθ · dn −Bn (y) · eiθ′ · cn − Cn (y) · e−iθ′ · bn + Dn (y) · e−iθ · an

]

-
∑

n

Ln · e−ik̃nL · k̃n ·
[
Ãn (y) ãn + B̃n (y) b̃n + C̃n (y) c̃n + D̃n (y) d̃n

]

−α2

2
·
∑

n

Ln · e−ik̃nL ·
[
Ãn (y) · eiθ · d̃n − B̃n (y) · eiθ′ · c̃n − C̃n (y) · e−iθ′ · b̃n + D̃n (y) · e−iθ · ãn

]

=
∑

n

kn ·
[
tn,+ · eiknL · e−i

α1√
2
L · χ+ + tn,− · eiknL · e+i

α1√
2
L · χ−

]
· φn (y)
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(4.44)

Multiplying Eq. (4.39) by
∫ w1

0
[An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]+dy, we

obtain:

[
AL

m,n0
· a+

m · χ+ + BL
m,n0

· b+
m · χ+ + CL

m,n0
· c+

m · χ+ + DL
m,n0

· d+
m · χ+

]

+
∑

n

[(
AL

m,n · a+
m · χ+ + BL

m,n · b+
m · χ+ + CL

m,n · c+
m · χ+ + DL

m,n · d+
m · χ+

) · rn,+

]

+
∑

n

[(
AL

m,n · a+
m · χ− + BL

m,n · b+
m · χ− + CL

m,n · c+
m · χ− + DL

m,n · d+
m · χ−

) · rn,−
]

=
∑

n

(Rn · δm,n + Ln ·Gm,n)

(4.45)

where the matrix element is defined by following representation:

AL
m,n = A∗

m ·
∫ d

0
e−ik̃yy · φn (y) · dy, ÃL

m,n = Ã∗
m ·

∫ d

0

e−ik̃yy · φn (y) · dy (4.46)

BL
m,n = B∗

m ·
∫ d

0
e−ikyy · φn (y) · dy, B̃L

m,n = B̃∗
m ·

∫ d

0

e−ikyy · φn (y) · dy (4.47)

CL
m,n = C∗

m ·
∫ d

0
eikyy · φn (y) · dy, C̃L

m,n = C̃∗
m ·

∫ d

0

eikyy · φn (y) · dy (4.48)

DL
m,n = D∗

m ·
∫ d

0
eik̃yy · φn (y) · dy, D̃L

m,n = D̃∗
m ·

∫ d

0

eik̃yy · φn (y) · dy (4.49)

and

Gm,n =

∫ w2

0

[An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]+ ·
[
Ãn (y) ãn + B̃n (y) b̃n + C̃n (y) c̃n + D̃n (y) d̃n

]
dy

(4.50)

Multiplying Eq. (4.42) by χ∗± ·
∫ w1

0
φn′ (y) dy, we obtain
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kn0 −
∑

n

rn,+ · kn · δm,n

=
∑

n

Rn · k̃n ·
[(

AL
m,n

)+ · χ+
+ · an +

(
BL

m,n

)+ · χ+
+ · bn +

(
CL

m,n

)+ · χ+
+ · cn +

(
DL

m,n

)+ · χ+
+ · dn

]

−α2

2
·
∑

n

Rn ·




(
AL

m,n

)+ · eiθ · χ+
+ · dn −

(
BL

m,n

)+ · eiθ′ · χ+
+ · cn

− (
CL

m,n

)+ · e−iθ′ · χ+
+ · bn +

(
DL

m,n

)+ · e−iθ · χ+
+ · an




−
∑

n

Ln · k̃n ·
[(

ÃL
m,n

)+

· χ+
+ · an +

(
B̃L

m,n

)+

· χ+
+ · bn +

(
C̃L

m,n

)+

· χ+
+ · cn +

(
D̃L

m,n

)+

· χ+
+ · dn

]

−α2

2
·
∑

n

Ln ·




(
ÃL

m,n

)+

· eiθ · χ+
+ · dn −

(
B̃L

m,n

)+

· eiθ′ · χ+
+ · cn

−
(
C̃L

m,n

)+

· e−iθ′ · χ+
+ · bn +

(
D̃L

m,n

)+

· e−iθ · χ+
+ · an




(4.51)

and

−
∑

n

rn,− · kn · δm,n

=
∑

n

Rn · k̃n ·
[(

AL
m,n

)+ · χ+
− · an +

(
BL

m,n

)+ · χ+
− · bn +

(
CL

m,n

)+ · χ+
− · cn +

(
DL

m,n

)+ · χ+
− · dn

]

−α2

2
·
∑

n

Rn ·




(
AL

m,n

)+ · eiθ · χ+
− · dn −

(
BL

m,n

)+ · eiθ′ · χ+
− · cn

− (
CL

m,n

)+ · e−iθ′ · χ+
− · bn +

(
DL

m,n

)+ · e−iθ · χ+
− · an




−
∑

n

Ln · k̃n ·
[(

ÃL
m,n

)+

· χ+
− · an +

(
B̃L

m,n

)+

· χ+
+ · bn +

(
C̃L

m,n

)+

· χ+
− · cn +

(
D̃L

m,n

)+

· χ+
− · dn

]

−α2

2
·
∑

n

Ln ·




(
ÃL

m,n

)+

· eiθ · χ+
− · dn −

(
B̃L

m,n

)+

· eiθ′ · χ+
− · cn

−
(
C̃L

m,n

)+

· e−iθ′ · χ+
− · bn +

(
D̃L

m,n

)+

· e−iθ · χ+
− · an




(4.52)

Define matrix element by following representation:
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AR
m,n = A∗

m ·
∫ d

0
e−ik̃yy · φn (y) · dy, ÃR

m,n = Ã∗
m ·

∫ d

0

e−ik̃yy · φn (y) · dy (4.53)

BR
m,n = B∗

m ·
∫ d

0
e−ikyy · φn (y) · dy, B̃R

m,n = B̃∗
m ·

∫ d

0

e−ikyy · φn (y) · dy (4.54)

CR
m,n = C∗

m ·
∫ d

0
eikyy · φn (y) · dy, C̃R

m,n = C̃∗
m ·

∫ d

0

eikyy · φn (y) · dy (4.55)

DR
m,n = D∗

m ·
∫ d

0
eik̃yy · φn (y) · dy, D̃R

m,n = D̃∗
m ·

∫ d

0

eik̃yy · φn (y) · dy (4.56)

Multiplying Eq. (4.43) by
∫ w1

0
[An (y) an + Bn (y) bn + Cn (y) cn + Dn (y) dn]+dy, we

obtain:

∑
n

[
Rn · eik̃nL · δm,n + Ln · e−ik̃nL ·Gm,n

]

=
∑

n

[
tn,+ · eiknL · e−i

α1√
2
L · (AR

m,n · a∗m · χ+ + BR
m,n · b∗m · χ+ + CR

m,n · c∗m · χ+ + DR
m,n · d∗m · χ+

)]

+
∑

n

[
+tn,− · eiknL · e+i

α1√
2
L · (AR

m,n · a∗m · χ− + BR
m,n · b∗m · χ− + CR

m,n · c∗m · χ− + DR
m,n · d∗m · χ−

)]

(4.57)

Multiplying Eq. (4.44) by χ∗± ·
∫ w1

0
φn′ (y) dy, we obtain
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∑
n

Rn · eik̃nL · k̃n ·
[(

AR
m,n

)+ · χ+
+ · an +

(
BR

m,n

)+ · χ+
+ · bn +

(
CR

m,n

)+ · χ+
+ · cn +

(
DR

m,n

)+ · χ+
+ · dn

]

−α2

2
·
∑

n

Rn · eik̃nL ·




(
AR

m,n

)+ · eiθ · χ+
+ · dn −

(
BR

m,n

)+ · eiθ′ · χ+
+ · cn

− (
CR

m,n

)+ · e−iθ′ · χ+
+ · bn +

(
DR

m,n

)+ · e−iθ · χ+
+ · an




−
∑

n

Ln · e−ik̃nL · k̃n ·




(
ÃR

m,n

)+

· χ+
+ · an +

(
B̃R

m,n

)+

· χ∗+ · bn

+
(
C̃R

m,n

)+

· χ+
+ · cn +

(
D̃R

m,n

)+

· χ+
+ · dn




−α2

2
·
∑

n

Ln · e−ik̃nL ·




(
ÃR

m,n

)+

· eiθ · χ+
+ · dn −

(
B̃R

m,n

)+

· eiθ′ · χ+
+ · cn

−
(
C̃R

m,n

)+

· e−iθ′ · χ+
+ · bn +

(
D̃R

m,n

)+

· e−iθ · χ+
+ · an




=
∑

n

[
tn,+ · eiknL · e−i

α1√
2
L · kn · δm,n

]

(4.58)

and

∑
n

Rn · eik̃nL · k̃n ·
[(

AR
m,n

)+ · χ+
− · an +

(
BR

m,n

)+ · χ+
− · bn +

(
CR

m,n

)+ · χ+
− · cn +

(
DR

m,n

)+ · χ+
− · dn

]

−α2

2
·
∑

n

Rn · eik̃nL ·




(
AR

m,n

)+ · eiθ · χ+
− · dn −

(
BR

m,n

)+ · eiθ′ · χ+
− · cn

− (
CR

m,n

)+ · e−iθ′ · χ+
− · bn +

(
DR

m,n

)+ · e−iθ · χ+
− · an




−
∑

n

Ln · e−ik̃nL · k̃n ·




(
AR

m,n

)+ · χ+
− · an +

(
BR

m,n

)+ · χ+
− · bn

+
(
CR

m,n

)+ · χ+
− · cn +

(
DR

m,n

)+ · χ+
− · dn




−α2

2
·
∑

n

Ln · e−ik̃nL ·




(
ÃR

m,n

)+

· eiθ · χ+
− · dn −

(
B̃R

m,n

)+

· eiθ′ · χ+
− · cn

−
(
C̃R

m,n

)+

· e−iθ′ · χ+
− · bn +

(
D̃R

m,n

)+

· e−iθ · χ+
− · an




=
∑

n

[
tn,− · eiknL · e+i

α1√
2
L · kn · δm,n

]

(4.59)

Combine Eq. (4.45), Eq. (4.51), Eq. (4.57) and Eq. (4.58), we can use scattering
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method as the previous section to obtain the transmission rate and reflection rate.
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Chapter 5

Spin-dependent current and

numerical result

In this chapter, we show the numerical results and discussions of Quantum transport

through a Rashba-type spin-orbit open quantum dot including subband mixing.

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
L
=3  w

D
=10  L=3  α

1
=0.03  num=20  r

nonflip
=0.99899

energy

T
n

T
f

T
Eq

L

w
D

w
L

(n
x
,n

y
)=(1,1) (1,2) (1,3)

Figure 5.1: Open quantum dot with spin-orbit interaction in the absence of subband
mixing under asymmetric structure
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Before discuss the numerical result of chapter 4, we review chapter 3 at first. Fig. 5.1

is the numerical result by neglecting subband mixing. The structure is asymmetric as

sketch in Fig. 5.1. wD is the width of the open quantum dot and L is the its length. wL

is the width of lead. Assume the spin direction in the lead is determined.

T is total transmission, Tn is the transmission which spin direction doesn’t flip and

Tf is which spin direction flip. Eq is the energy of bound state in closed dot. αL is the

strength of Rashba effect in the lead and αD is that in th open quantum dot. The number

of subband is 20 in our calculation.

According the conclusion of chapter 3, We know the ratio of spin flipping is only

depend on αD. We give small αD = 0.03 in Fig. 5.1, so the ratio of spin non-flipping

rnonflip is 0.99899 so closed to 1. Therefore Tn is very closed to T and Tf approaches to

zero.
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Figure 5.2: Open quantum dot incuding spin-orbit interaction and subband mixing under
asymmetric structure

Fig. 5.2 is the same structure as Fig. 5.1. But we notice that Fig. 5.2 is not obviously

different from Fig. 5.1. Although we can calculate the ratio of spin flipping numerically,

but it is still too small to observe.
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Surprisingly, transmission is depend on the direction of spin-injection. But the differ-

ence of transmission is very small to give us confidence to make conclusion.
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Figure 5.3: Spin precession distribution and the number of density in the open quantum
dot

Fig. 5.3 is the spin precession distribution and the number of density in the quantum

dot with the structure of Fig. 5.2. The incident energy is 1.5 with the unit E∗ =
~2π2k2

F

2m∗ .

T↓↑ means the spin-down transmission coefficient under spin-up injection. R↓↑ means the

spin-down reflection coefficient under spin-up injection. We observe strong spin precession

on the boundary of open quantum dot. Obviously, the refection coefficient R↓↑ and R↑↓

is closed to zero.
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Figure 5.4: Open quantum dot incuding spin-orbit interaction with αD=0.05 which is
stronger than Fig. 5.2

In Fig. 5.4, we tune the strength of Rashba effect in the open quantum dot αD up to

0.05 with the unit ~
2m

. Surprisingly, although we didn’t tune the Rashba effect very much,

we observe obvious transmission depend on spin injection near the quasi-bound state

(nx, ny) = (1, 2). But this feature is indistinct in (nx, ny) = (1, 3). Through calculation,

we obtain the ratio of spin non-flipping in the absence of subband mixing under this

condition is 0.99719. So the spin-coupling due to subband mixing is very strong in this

case.
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Figure 5.5: Spin precession distribution and the number of density in the open quantum
dot with αD=0.05

We can see obvious spin precession in the open quantum dot in Fig. 5.5. Not only in

boundary of the quantum dot, but also the center of the open quantum dot can see clear

spin precession. Notice that, the boundary of lead and open quantum dot can see strong

spin precession effect than Fig. 5.2.
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Figure 5.6: Open quantum dot with spin-orbit interaction in the absence of subband
mixing under symmetric structure

In order to get more clear resonance structure, we design a symmetric structure to

neglect wave function coupling of odd and even. So resonance near quasi bound state

(nx, ny) = (1, 2) will disappear. Only resonance near quasi bound state (nx, ny) = (1, 3)

can be observed in Fig. 5.6.This resonance dip can approach to zero very closely.
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Figure 5.7: Open quantum dot incuding spin-orbit interaction and subband mixing under
asymmetric structure

In Fig. 5.7, we see the strong spin flipping on the resonance dip. And the resonance

dip didn’t approach to zero due to strong spin flipping. Interestingly, the electron with

spin flipping can pass through the open quantum dot on resonance dip. Compare the

figure of spin-up injection and spin-down injection, we also can observe spin-dependent

transmission.
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Figure 5.8: Spin precession distribution and the number of density in the open quantum
dot with αD=0.05 under symmetric structure

Fig. 5.8 is very different from Fig. 5.3 and Fig. 5.5. And we can see the spin rotate

almost 180o from left lead to right. It can explain why the transmission of spin slipping

is stronger than the transmission of spin non-flipping. This feature gives us confidence to

our numerical result.
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Conclusion and Future work

In chapter 2, we use custom method to induce numerical de-phase process in 1 dimension

case to solve 2 dimension problem through considering subband mixing. De-coherent

strength ε = 0 occurs when double QPCs in series and coherent length is infinite. If de-

coherent strength is raising up, the total conductance approaches the classical theoretical

results and the de-coherent process increase the resistance so that total conductance is

lowering down. But there is a special case. If resonance occurs, de-coherent strength

cancel the effect of resonance but increase the resistance at the same time. If cancelation

of resonance is more important, the resistance is increasing.

Through this conclusion, in future work, we may find out the relation of dwell time

and coherent length.

In chapter 3, neglecting the subband mixing in calculation means we drop the possi-

bility the spin precession at the same time. Transmission is independent of spin injection,

and the ratio of spin flipping is independent of the shape of quantum dot, incident energy,

and Rashba and Dresselhaus effect in the lead.

In chapter 5, we can see spin precession in the open quantum dot and transmission is

depend on spin injection. These feature especially occurs on resonance structure. Another

interesting point is that we can always suppress the spin precession by properly arranging

the injected spin. In the next, we will try to control the direction of spin injection. We may
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want to know if geometry of quantum dot will influence the transmission, is it possible the

current will turn another direction different from its original direction without applying

magnetic field just depend on spin-orbit interaction?

Still lots of work we must to do.
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