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Abstract

By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlinear generalized synchro-
nization is studied in this paper. Instead of current mixed error dynamics in which master state variables and slave state
variables are presented, the nonlinear generalized synchronization can be obtained by pure error dynamics without aux-
iliary numerical simulation. The elaborate nondiagonal Lyapunov function is applied rather than current monotonous
square sum Lyapunov function deeply weakening the powerfulness of Lyapunov direct method. Both autonomous and
nonautonomous double Mathieu systems are used as examples with numerical simulations.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In secure communication [1,2], biological systems [3,4], and many other fields [5–25], chaos synchronization has been
widely used. Generalized synchronization is a complex type of chaos synchronization and gives rise to extensive inves-
tigations recently [26–33]. By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlin-
ear generalized synchronization is studied in this paper.

The auxiliary numerical simulation is unavoidable for current mixed error dynamics in which master state variables
and slave state variables are presented while their maximum values must be determined by simulation [34–38]. However,
the pure error dynamics can be analyzed theoretically without additional numerical simulation. Besides, monotonous
and self-limited square sum Lyapunov function, V ðeÞ ¼ 1

2
eTe, is currently used [39–44], but Lyapunov function can be

chosen in a variety of elaborate and ingenious forms for different systems. Restricting Lyapunov function to square sum
makes a long river brooklike, deeply weakens the powerfulness of Lyapunov direct method. Instead of current plain
square sum Lyapunov function, the elaborate nondiagonal Lyapunov function is applied in this paper.
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A systematic method of designing Lyapunov function is proposed based on Lyapunov direct method [45]. Nonlinear
generalized synchronization is achieved for both autonomous and nonautonomous double Mathieu systems by apply-
ing this technique. This paper is organized as follows. In Section 2, the method of designing Lyapunov function is pre-
sented, and nonlinear generalized synchronization is obtained. Section 3 contains the examples of autonomous and
nonautonomous double Mathieu systems, and numerical simulations show the feasibility of the proposed method.
Finally, the conclusions are drawn.
2. Design of Lyapunov function

Consider the master and slave nonlinear dynamic systems described by
_x ¼ fðt; xÞ; ð2:1Þ
_y ¼ fðt; yÞ þ uðt; x; yÞ; ð2:2Þ
where x,y 2 Rn are master and slave state vectors, f : R+ · Rn! Rn is a nonlinear vector function, and u : R+ ·
Rn · Rn! Rn is controller vector.

Generalized synchronization means that there is a functional relation y = g(x) between master and slave states as
time goes to infinity, where g : Rn! Rn is a continuously differentiable nonlinear vector function. Define e = y � g(x)
as generalized synchronization error vector, and the error dynamics can be obtained:
_e ¼ _y� _gðxÞ ¼ _y� dgðxÞ
dx

_x ¼ fðt; yÞ � dgðxÞ
dx

fðt; xÞ þ uðt; x; yÞ: ð2:3Þ
Eq. (2.3) can be rewritten in the following form:
_e ¼ pðt; eÞ þ qðt; x; yÞ þ uðt; x; yÞ; ð2:4Þ
where p : R+ · Rn! Rn and q : R+ · Rn · Rn! Rn are continuous vector functions represent the error variable terms
and the state variable terms in the error dynamics, respectively.

In order to transform current mixed error dynamics into pure error dynamics, the controller vector is chosen as
uðt; x; yÞ ¼ �qðt; x; yÞ þ vðt; eÞ; ð2:5Þ
where v : R+ · Rn! Rn is a continuous vector function.
Now the pure error dynamics can be obtained:
_e ¼ pðt; eÞ þ vðt; eÞ: ð2:6Þ
Based on Lyapunov direct method [45], the scheme of nonlinear generalized synchronization and the procedure of
designing elaborate nondiagonal Lyapunov function are described as follows:

Step 1 Construct a Lyapunov function
V ðt; eÞ ¼
Xn

i¼1

1

2
eT

i KiðtÞei ¼
1

2
k11ðtÞe2

1 þ k12e1e2 þ
1

2
k22ðtÞe2

2

� �
þ � � � þ 1

2
knnðtÞe2

n þ kn1ene1 þ
1

2
k11ðtÞe2

1

� �
; ð2:7Þ
where ei¼
ei

eiþ1

� �
ði¼ 1;2; . . . ;n�1Þ, en¼

en

e1

� �
, KiðtÞ¼

kiiðtÞ kiiþ1

kiiþ1 kiþ1iþ1ðtÞ

� �
ði¼ 1;2; . . . ;n�1Þ, KnðtÞ¼

knnðtÞ kn1

kn1 k11ðtÞ

� �
, and

Ki(t) 2 R2·2 (i = 1,2, . . . ,n) are unknown continuously differentiable positive definite matrices to be designed and Ki(t),
Kn(t) are nondiagonal. According to Sylvester’s criterion, Ki(t) have to be chosen that
8t P 0; kiiðtÞ > 0; kiiðtÞkiþ1iþ1ðtÞ � k2
iiþ1 > 0 ði ¼ 1; 2; . . . ; n� 1Þ;

knnðtÞ > 0; knnðtÞk11ðtÞ � k2
n1 > 0 ði ¼ nÞ

ð2:8Þ
and
8t P 0; 0 < kmii 6 kiiðtÞ 6 kMii ði ¼ 1; 2; . . . ; nÞ; ð2:9Þ
where kmii, kMii are positive constants.
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Step 2 The derivative of Lyapunov function is
_V ðt; eÞ ¼
Xn

i¼1

_eT
i KiðtÞei þ

1

2
eT

i
_KiðtÞei

� �

¼ k11ðtÞe1 _e1 þ k12 _e1e2 þ k12e1 _e2 þ k22ðtÞe2 _e2 þ
1

2
_k11ðtÞe2

1 þ
1

2
_k22ðtÞe2

2

� �
þ � � �

þ knnðtÞen _en þ kn1 _ene1 þ kn1en _e1 þ k11ðtÞe1 _e1 þ
1

2
_knnðtÞe2

n þ
1

2
_k11ðtÞe2

1

� �
: ð2:10Þ
Eq. (2.10) can be rewritten in the following form:
_V ðt; eÞ ¼ F 1ð _k11; k11; . . . ; knn; k12; . . . ; kn1; tÞe2
1 þ � � � þ F nð _knn; k11; . . . ; knn; k12; . . . ; kn1; tÞe2

n

þ G1ðk11; . . . ; knn; k12; . . . ; kn1; tÞe1e2 þ � � � þ Gmðk11; . . . ; knn; k12; . . . ; kn1; tÞen�1en

þ ð2k11v1 þ k12v2 þ kn1vnÞe1 þ � � � þ ð2knnvn þ kn1v1 þ kn�1nvn�1Þen; ð2:11Þ
where F ið _kii; k11; . . . ; knn; k12; . . . ; kn1; tÞ ði ¼ 1; 2; . . . ; nÞ, Gjðk11; . . . ; knn; k12; . . . ; kn1; tÞ ðj ¼ 1; 2; . . . ;m; m ¼ nðn�1Þ
2
Þ are

continuous differentiable functions, and vi (i = 1,2, . . . ,n) are controllers to be determined.
Step 3 Appropriately design the controllers vi such that Eq. (2.11) can be reduced to
V ðt; eÞ ¼ bF 1ð _k11; k11; . . . ; knn; k12; . . . ; kn1; tÞe2
1 þ � � � þ bF nð _knn; k11; . . . ; knn; k12; . . . ; kn1; tÞe2

n

þ Ĝ1ðk11; . . . ; knn; k12; . . . ; kn1; tÞe1e2 þ � � � þ Ĝmðk11; . . . ; knn; k12; . . . ; kn1; tÞen�1en; ð2:12Þ
where bF ið _kii; k11; . . . ; knn; k12; . . . ; kn1; tÞ ði ¼ 1; 2; . . . ; nÞ and bGjðk11; . . . ; knn; k12; . . . ; kn1; tÞ ðj ¼ 1; 2; . . . ;m;m ¼ nðn�1Þ
2
Þ are

continuous differentiable functions.
Step 4 Assume
8j; bGjðk11; . . . ; knn; k12; . . . ; kn1; tÞ ¼ 0; ð2:13Þ
then the relationship between kij can be obtained.
Step 5 Use the results of step 4 to check if
8t P 0; bF iðk11; . . . ; knn; k12; . . . ; kn1; tÞ < 0 ði ¼ 1; 2; . . . ; nÞ: ð2:14Þ
Step 6 If Eq. (2.14) can be satisfied, the conditions derived from Eq. (2.14) can be obtained. If Eq. (2.14) cannot be
satisfied, i.e.,
8t P 0; bF jðk11; . . . ; knn; k12; . . . ; kn1; tÞP 0bF kðk11; . . . ; knn; k12; . . . ; kn1; tÞ < 0
ð2:15Þ
return to step 3 and modify the controllers vj by addition of kjej, where kj are constant gains to be determined. Repeat
steps 4 and 5, then the conditions guarantee the validity of Eq. (2.14) can be assured.
Step 7 Appropriately design kj and kij(t) such that each condition derived from the above procedure holds. Finally, the

elaborate nondiagonal Lyapunov function can be obtained and the generalized synchronization is achieved
according to Lyapunov direct method.
3. Nonlinear generalized synchronization of double Mathieu systems

In this section, the nonlinear functional relation between master and slave states is yi ¼ giðxiÞ ¼ ax2
i þ bxi þ c ði ¼ 1;

2; . . . ; nÞ. To demonstrate the use of the proposed method, two examples of autonomous and nonautonomous double
Mathieu systems are presented.

3.1. Regular and chaotic dynamics of autonomous and nonautonomous double Mathieu systems

The nonlinear damped Mathieu system is [46,47]
_x1 ¼ x2;

_x2 ¼ �að1þ sin xtÞx1 � ð1þ sin xtÞx3
1 � ax2:

ð3:1Þ
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An autonomous double Mathieu system can be constructed by mutual linear coupling of two Mathieu systems:
Fig. 1.
expon
_x1 ¼ x2;

_x2 ¼ �að1þ x4Þx1 � ð1þ x4Þx3
1 � ax2 þ bx3;

_x3 ¼ x4;

_x4 ¼ �ð1þ x2Þx3 � að1þ x2Þx3
3 � ax4 þ bx1:

ð3:2Þ
The parameters in simulation are a = 0.5, b = 1–1.254, and the initial condition is x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.2,
x4(0) = 0.2. The phase portraits, Poincaré Maps, bifurcation diagram, and Lyapunov exponents are shown in Fig. 1. It
can be observed that the motion is period 1 for b = 1.1, period 4 for b = 1.243, and period 8 for b = 1.246. For b = 1.24,
the motion is chaotic.

A nonautonomous double Mathieu system [48] can also be constructed by mutual linear coupling of two Mathieu
systems:
_x1 ¼ x2;

_x2 ¼ �að1þ sin xtÞx1 � ð1þ sin xtÞx3
1 � ax2 þ bx3;

_x3 ¼ x4;

_x4 ¼ �ð1þ sin xtÞx3 � að1þ sin xtÞx3
3 � ax4 þ bx1:

ð3:3Þ
(a) Phase portraits and Poincaré maps; (b) bifurcation diagram; (c) Lyapunov exponents; (d) local enlargement of Lyapunov
ents for autonomous double Mathieu system.
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The parameters in simulation are a = 0.5, b = 0.9–1, x = 1, and the initial condition is x1(0) = 0.1, x2(0) = 0.1,
x3(0) = 0.2, x4(0) = 0.2. The phase portraits, Poincaré Maps, bifurcation diagram, and Lyapunov exponents are shown
in Fig. 2. It can be observed that the motion is period 1 for b = 0.9, period 2 for b = 0.93, and period 4 for b = 0.934.
For b = 1, the motion is chaotic.
Fig. 2. (a) Phase portraits and Poincaré maps; (b) bifurcation diagram; (c) Lyapunov exponents for nonautonomous double Mathieu
system.
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3.2. Nonlinear generalized synchronization of autonomous double Mathieu systems

The master and slave autonomous double Mathieu systems can be described by
_x1 ¼ x2;

_x2 ¼ �að1þ x4Þx1 � ð1þ x4Þx3
1 � ax2 þ bx3;

_x3 ¼ x4;

_x4 ¼ �ð1þ x2Þx3 � að1þ x2Þx3
3 � ax4 þ bx1:

ð3:4Þ

_y1 ¼ y2 þ u1;

_y2 ¼ �að1þ y4Þy1 � ð1þ y4Þy3
1 � ay2 þ by3 þ u2;

_y3 ¼ y4 þ u3;

_y4 ¼ �ð1þ y2Þy3 � að1þ y2Þy3
3 � ay4 þ by1 þ u4:

ð3:5Þ
The parameters in simulation are a = 0.5, b = 1.24, and the initial condition is x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.2,
x4(0) = 0.2, y1(0) = 0.3, y2(0) = 0.3, y3(0) = 0.4, y4(0) = 0.4.

Let ei ¼ yi � ax2
i � bxi � c ði ¼ 1; . . . ; 4Þ and subtract Eq. (3.4) from Eq. (3.5), then the error dynamics can be

obtained:
_e ¼ pðeÞ þ qðx; yÞ þ uðx; yÞ; ð3:6Þ
where
pðeÞ ¼ p1ðeÞ p2ðeÞ p3ðeÞ p4ðeÞ½ �T;
qðx; yÞ ¼ q1ðx; yÞ q2ðx; yÞ q3ðx; yÞ q4ðx; yÞ½ �T;
p1ðeÞ ¼ e2;

p2ðeÞ ¼ �ae1 � ae2 þ be3;

p3ðeÞ ¼ e4;

p4ðeÞ ¼ �e3 � ae4 þ be1;

q1ðx; yÞ ¼ ax2
2 � 2ax1x2 þ c;

q2ðx; yÞ ¼ �aðax2
1 � ax2

2 � bx2
3Þ � aðy4y1 � bx4x1Þ þ ðb� 2aÞc� ½ð1þ y4Þy3

1 � bð1þ x4Þx3
1�

þ 2ax2½að1þ x4Þx1 þ ð1þ x4Þx3
1 � bx3�;

q3ðx; yÞ ¼ ax2
4 � 2ax3x4 þ c;

q4ðx; yÞ ¼ �aðx2
3 � ax2

4 � bx2
1Þ � ðy2y3 � bx2x3Þ þ ðb� a� 1Þc� a½ð1þ y2Þy3

3 � bð1þ x2Þx3
3�

þ 2ax4½ð1þ x2Þx3 þ að1þ x2Þx3
3 � bx1�:

ð3:7Þ
In order to transform current mixed error dynamics into pure error dynamics, the controller vector is chosen as
uðx; yÞ ¼ �qðx; yÞ þ vðeÞ: ð3:8Þ
Now the pure error dynamics can be obtained:
_e ¼ pðeÞ þ vðeÞ: ð3:9Þ
Step 1 Construct a Lyapunov function
V ðeÞ ¼
X4

i¼1

1

2
eT

i Kiei ¼
1

2
k11e2

1 þ k12e1e2 þ
1

2
k22e2

2

� �
þ � � � þ 1

2
k44e2

4 þ k41e4e1 þ
1

2
k44e2

4

� �
; ð3:10Þ
where Ki are unknown continuously differentiable positive definite nondiagonal matrices to be designed. According to
Sylvester’s criterion, Ki have to be chosen that
k11 > 0; k11k22 � k2
12 > 0;

k22 > 0; k22k33 � k2
23 > 0;

k33 > 0; k33k44 � k2
34 > 0;

k44 > 0; k44k11 � k2
41 > 0:

ð3:11Þ
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Step 2 The derivative of Lyapunov function is
_V ðeÞ ¼
X4

i¼1

_eT
i Kiei ¼ ½k11e1 _e1 þ k12 _e1e2 þ k12e1 _e2 þ k22e2 _e2� þ � � � þ ½k44e4 _e4 þ k41 _e4e1 þ k41e4 _e1 þ k11e1 _e1�: ð3:12Þ
Eq. (3.12) can be rewritten in the following form:
_V ðeÞ ¼ F 1ðk11; . . . ; k44; k12; . . . ; k41Þe2
1 þ F 2ðk11; . . . ; k44; k12; . . . ; k41Þe2

2 þ F 3ðk11; . . . ; k44; k12; . . . ; k41Þe2
3

þ F 4ðk11; . . . ; k44; k12; . . . ; k41Þe2
4 þ G1ðk11; . . . ; k44; k12; . . . ; k41Þe1e2 þ G2ðk11; . . . ; k44; k12; . . . ; k41Þe1e3

þ G3ðk11; . . . ; k44; k12; . . . ; k41Þe1e4 þ G4ðk11; . . . ; k44; k12; . . . ; k41Þe2e3 þ G5ðk11; . . . ; k44; k12; . . . ; k41Þe2e4

þ G6ðk11; . . . ; k44; k12; . . . ; k41Þe3e4 þ ð2k11v1 þ k12v2 þ k41v4Þe1 þ ð2k22v2 þ k23v3 þ k12v1Þe2

þ ð2k33v3 þ k34v4 þ k23v2Þe3 þ ð2k44v4 þ k41v1 þ k34v3Þe4; ð3:13Þ
where
F 1ðk11; . . . ; k41Þ ¼ �ak12 þ bk41;

F 2ðk11; . . . ; k41Þ ¼ k12 � 2ak22;

F 3ðk11; . . . ; k41Þ ¼ bk23 � k34;

F 4ðk11; . . . ; k41Þ ¼ k34 � 2ak44;

G1ðk11; . . . ; k41Þ ¼ 2k11 � ak12 � 2ak22;

G2ðk11; . . . ; k41Þ ¼ bk12 � ak23 þ bk34 � k41;

G3ðk11; . . . ; k41Þ ¼ 2bk44 � ak41;

G4ðk11; . . . ; k41Þ ¼ 2bk22 � ak23;

G5ðk11; . . . ; k41Þ ¼ k23 þ k41;

G6ðk11; . . . ; k41Þ ¼ 2k33 � ak34 � 2k44:

ð3:14Þ
Step 3 Design the controllers
v1 ¼ �e2;

v2 ¼ ae1;

v3 ¼ �e4;

v4 ¼ e3;

ð3:15Þ
such that Eq. (3.13) can be reduced to
_V ðeÞ ¼ bF 1ðk11; . . . ; k44; k12; . . . ; k41Þe2
1 þ bF 2ðk11; . . . ; k44; k12; . . . ; k41Þe2

2 þ bF 3ðk11; . . . ; k44; k12; . . . ; k41Þe2
3

þ bF 4ðk11; . . . ; k44; k12; . . . ; k41Þe2
4 þ bG1ðk11; . . . ; k44; k12; . . . ; k41Þe1e2 þ bG2ðk11; . . . ; k44; k12; . . . ; k41Þe1e3

þ bG3ðk11; . . . ; k44; k12; . . . ; k41Þe1e4 þ bG4ðk11; . . . ; k44; k12; . . . ; k41Þe2e3 þ bG5ðk11; . . . ; k44; k12; . . . ; k41Þe2e4

þ bG6ðk11; . . . ; k44; k12; . . . ; k41Þe3e4; ð3:16Þ
where
bF 1ðk11; . . . ; k41Þ ¼ bk41;bF 2ðk11; . . . ; k41Þ ¼ �2ak22;bF 3ðk11; . . . ; k41Þ ¼ bk23;bF 4ðk11; . . . ; k41Þ ¼ �2ak44;bG1ðk11; . . . ; k41Þ ¼ �ak12;bG2ðk11; . . . ; k41Þ ¼ bk12 þ bk34;bG3ðk11; . . . ; k41Þ ¼ 2bk44 � ak41;bG4ðk11; . . . ; k41Þ ¼ 2bk22 � ak23;bG5ðk11; . . . ; k41Þ ¼ 0;bG6ðk11; . . . ; k41Þ ¼ �ak34:

ð3:17Þ
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Step 4 Assume
8j; bGjðk11; . . . ; k41Þ ¼ 0; ð3:18Þ
then the relationship between kij can be obtained:
k12 ¼ 0; k23 ¼
b
2a

k22; k34 ¼ 0; k41 ¼
b

2a
k44: ð3:19Þ
Step 5 Use the results of step 4 to check if
bF iðk11; . . . ; k41Þ < 0 ði ¼ 1; . . . ; 4Þ: ð3:20Þ
It can be obtained that
bF 1ðk11; . . . ; k41Þ ¼ bk41 > 0;bF 2ðk11; . . . ; k41Þ ¼ �2ak22 < 0;bF 3ðk11; . . . ; k41Þ ¼ bk23 > 0;bF 4ðk11; . . . ; k41Þ ¼ �2ak44 < 0:

ð3:21Þ
Step 6 Since Eq. (3.20) is not satisfied, i.e.,
bF jðk11; . . . ; k41ÞP 0 ðj ¼ 1; 3Þ;bF kðk11; . . . ; k41Þ < 0 ðk ¼ 2; 4Þ;
ð3:22Þ
return to step 3 and modify the controllers v1 and v3 by addition of k1e1 and k3e3, respectively, where k1 and k3 are
constant gains to be determined. Because _V has been modified, Eq. (3.17) becomes
bF 1ðk11; . . . ; k41Þ ¼ bk41 þ 2k1k11;bF 2ðk11; . . . ; k41Þ ¼ �2ak22;bF 3ðk11; . . . ; k41Þ ¼ bk23 þ 2k3k33;bF 4ðk11; . . . ; k41Þ ¼ �2ak44;bG1ðk11; . . . ; k41Þ ¼ ðk1 � aÞk12;bG2ðk11; . . . ; k41Þ ¼ bk12 þ bk34;bG3ðk11; . . . ; k41Þ ¼ 2bk44 þ ðk1 � aÞk41;bG4ðk11; . . . ; k41Þ ¼ 2bk22 þ ðk3 � aÞk23;bG5ðk11; . . . ; k41Þ ¼ 0;bG6ðk11; . . . ; k41Þ ¼ ðk3 � aÞk34:

ð3:23Þ
Repeat steps 4 and 5, then the relationship between kij becomes
k12 ¼ 0; k22 ¼
a� k3

2b
k23; k34 ¼ 0; k44 ¼

a� k1

2b
k41 ð3:24Þ
and Eq. (3.20) can be satisfied if
k41 <
�2k1

b
k11; k23 <

�2k3

b
k33: ð3:25Þ
Step 7 The conditions derived from the above procedure can be summed up as follows:
k12 ¼ 0; k34 ¼ 0; ð3:26Þ

k11 > 0; k44 > 0; k44k11 � k2
41 > 0; k44 ¼

a� k1

2b
k41; k41 <

�2k1

b
k11; ð3:27Þ

k22 > 0; k33 > 0; k22k33 � k2
23 > 0; k22 ¼

a� k3

2b
k23; k23 <

�2k3

b
k33: ð3:28Þ
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Design
k1 ¼ �a; k3 ¼ �a;

k11 ¼ b; k22 ¼
a2

2b
; k33 ¼ b; k44 ¼

a2

2b
;

k12 ¼ 0; k23 ¼
a
2
; k34 ¼ 0; k41 ¼

a
2
;

ð3:29Þ
such that each condition holds. Then the elaborate nondiagonal Lyapunov function can be obtained
V ðeÞ ¼ a2

2b
e2

2 þ
a
2

e2e3 þ be2
3 þ

a2

2b
e2

4 þ
a
2

e4e1 þ be2
1 ð3:30Þ
and
_V ðeÞ ¼ � 3ab
2

e2
1 �

a3

b
e2

2 �
3ab

2
e2

3 �
a3

b
e2

4: ð3:31Þ
Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized synchronization is achieved.
a = 1, b = 2, c = 3 are chosen in simulation, and the results are shown in Fig. 3.

3.3. Nonlinear generalized synchronization of nonautonomous double Mathieu systems

The master and slave nonautonomous double Mathieu systems can be described by
_x1 ¼ x2;

_x2 ¼ �að1þ sin xtÞx1 � ð1þ sin xtÞx3
1 � ax2 þ bx3;

_x3 ¼ x4;

_x4 ¼ �ð1þ sin xtÞx3 � að1þ sin xtÞx3
3 � ax4 þ bx1:

ð3:32Þ

_y1 ¼ y2 þ u1;

_y2 ¼ �að1þ sin xtÞy1 � ð1þ sin xtÞy3
1 � ay2 þ by3 þ u2;

_y3 ¼ y4 þ u3;

_y4 ¼ �ð1þ sin xtÞy3 � að1þ sin xtÞy3
3 � ay4 þ by1 þ u4:

ð3:33Þ
The parameters in simulation are a = 0.5, b = 1, x = 1, and the initial condition is x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.2,
x4(0) = 0.2, y1(0) = 0.3, y2(0) = 0.3, y3(0) = 0.4, y4(0) = 0.4.

Let ei ¼ yi � ax2
i � bxi � c ði ¼ 1; . . . ; 4Þ and subtract Eq. (3.32) from Eq. (3.33), then the error dynamics can be

obtained:
_e ¼ pðt; eÞ þ qðt; x; yÞ þ uðt; x; yÞ; ð3:34Þ
where
pðt; eÞ ¼ p1ðt; eÞ p2ðt; eÞ p3ðt; eÞ p4ðt; eÞ½ �T;
qðt; x; yÞ ¼ q1ðt; x; yÞ q2ðt; x; yÞ q3ðt; x; yÞ q4ðt; x; yÞ½ �T;
p1ðt; eÞ ¼ e2;

p2ðt; eÞ ¼ �að1þ sin xtÞe1 � ae2 þ be3;

p3ðt; eÞ ¼ e4;

p4ðt; eÞ ¼ �ð1þ sin xtÞe3 � ae4 þ be1;

q1ðt; x; yÞ ¼ ax2
2 � 2ax1x2 þ c;

q2ðt; x; yÞ ¼ �a½að1þ sin xtÞx2
1 � ax2

2 � bx2
3� þ 2að1þ sin xtÞx3

1x2 þ 2a½að1þ sin xtÞx1x2 � bx2x3�
� ð1þ sin xtÞðy3

1 � bx3
1Þ � c½að1þ sin xtÞ þ a� b�;

q3ðt; x; yÞ ¼ ax2
4 � 2ax3x4 þ c;

q4ðt; x; yÞ ¼ �a½ð1þ sin xtÞx2
3 � ax2

4 � bx2
1� þ 2aað1þ sin xtÞx3

3x4 þ 2a½ð1þ sin xtÞx3x4 � bx1x4�
� að1þ sin xtÞðy3

3 � bx3
3Þ � c½1þ sin xt þ a� b�:

ð3:35Þ



Fig. 3. (a) Phase portraits of master system; (b) phase portraits of xi to yi (i = 1, . . . , 4) when generalized synchronization is obtained;
(c) time history of errors.
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In order to transform current mixed error dynamics into pure error dynamics, the controller vector is chosen as
uðt; x; yÞ ¼ �qðt; x; yÞ þ vðeÞ: ð3:36Þ
Now the pure error dynamics can be obtained:
_e ¼ pðt; eÞ þ vðeÞ: ð3:37Þ
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Step 1 Construct a Lyapunov function
V ðt; eÞ ¼
X4

i¼1

1

2
eT

i KiðtÞei ¼
1

2
k11ðtÞe2

1 þ k12e1e2 þ
1

2
k22ðtÞe2

2

� �
þ � � � þ 1

2
k44ðtÞe2

4 þ k41e4e1 þ
1

2
k44ðtÞe2

4

� �
; ð3:38Þ
where Ki(t) are unknown continuously differentiable positive definite nondiagonal matrices to be designed. According
to Sylvester’s criterion, Ki(t) have to be chosen that
k11ðtÞ > 0; k11ðtÞk22ðtÞ � k2
12 > 0;

k22ðtÞ > 0; k22ðtÞk33ðtÞ � k2
23 > 0;

k33ðtÞ > 0; k33ðtÞk44ðtÞ � k2
34 > 0;

k44ðtÞ > 0; k44ðtÞk11ðtÞ � k2
41 > 0

ð3:39Þ
and
0 < km11 6 k11ðtÞ 6 kM11;

0 < km22 6 k22ðtÞ 6 kM22;

0 < km33 6 k33ðtÞ 6 kM33;

0 < km44 6 k44ðtÞ 6 kM44;

ð3:40Þ
where kmii, kMii (i = 1, . . . , 4) are positive constants.
Step 2 The derivative of Lyapunov function is
_V ðt; eÞ ¼
X4

i¼1

_eT
i KiðtÞei

¼ k11ðtÞe1 _e1 þ k12 _e1e2 þ k12e1 _e2 þ k22ðtÞe2 _e2½ þ 1

2
_k11ðtÞe2

1 þ
1

2
_k22ðtÞe2

2

�
þ � � �

þ k44ðtÞe4 _e4 þ k41 _e4e1 þ k41e4 _e1 þ k11ðtÞe1 _e1½ þ 1

2
_k44ðtÞe2

4 þ
1

2
_k11ðtÞe2

1

�
: ð3:41Þ
Eq. (3.41) can be rewritten in the following form:
_V ðt; eÞ ¼ F 1ð _k11; k11; . . . ; k44; k12; . . . ; k41; tÞe2
1 þ F 2ð _k22; k11; . . . ; k44; k12; . . . ; k41; tÞe2

2

þ F 3ð _k33; k11; . . . ; k44; k12; . . . ; k41; tÞe2
3 þ F 4ð _k44; k11; . . . ; k44; k12; . . . ; k41; tÞe2

4

þ G1ðk11; . . . ; k44; k12; . . . ; k41; tÞe1e2 þ G2ðk11; . . . ; k44; k12; . . . ; k41; tÞe1e3

þ G3ðk11; . . . ; k44; k12; . . . ; k41; tÞe1e4 þ G4ðk11; . . . ; k44; k12; . . . ; k41; tÞe2e3

þ G5ðk11; . . . ; k44; k12; . . . ; k41; tÞe2e4 þ G6ðk11; . . . ; k44; k12; . . . ; k41; tÞe3e4 þ ð2k11v1 þ k12v2

þ k41v4Þe1 þ ð2k22v2 þ k23v3 þ k12v1Þe2 þ ð2k33v3 þ k34v4 þ k23v2Þe3 þ ð2k44v4 þ k41v1 þ k34v3Þe4; ð3:42Þ
where
F 1ð _k11; . . . ; tÞ ¼ _k11 � að1þ sin xtÞk12 þ bk41;

F 2ð _k22; . . . ; tÞ ¼ _k22 � 2ak22 þ k12;

F 3ð _k33; . . . ; tÞ ¼ _k33 þ bk23 � ð1þ sin xtÞk34;

F 4ð _k44; . . . ; tÞ ¼ _k44 � 2ak44 þ k34;

G1ðk11; . . . ; tÞ ¼ 2k11 � ak12 � 2að1þ sin xtÞk22;

G2ðk11; . . . ; tÞ ¼ bk12 � að1þ sin xtÞk23 þ bk34 � ð1þ sin xtÞk41;

G3ðk11; . . . ; tÞ ¼ 2bk44 � ak41;

G4ðk11; . . . ; tÞ ¼ 2bk22 � ak23;

G5ðk11; . . . ; tÞ ¼ k23 þ k41;

G6ðk11; . . . ; tÞ ¼ 2k33 � ak34 � 2ð1þ sin xtÞk44:

ð3:43Þ



1970 Z.-M. Ge, C.-M. Chang / Chaos, Solitons and Fractals 39 (2009) 1959–1974
Step 3 Design the controllers
v1 ¼ ae1;

v2 ¼ �be3 � ae1;

v3 ¼ ae3;

v4 ¼ �be1 � e3;

ð3:44Þ
such that Eq. (3.42) can be reduced to
_V ðt; eÞ ¼ bF 1ð _k11; k11; . . . ; k44; k12; . . . ; k41; tÞe2
1 þ bF 2ð _k22; k11; . . . ; k44; k12; . . . ; k41; tÞe2

2

þ bF 3ð _k33; k11; . . . ; k44; k12; . . . ; k41; tÞe2
3 þ bF 4ð _k44; k11; . . . ; k44; k12; . . . ; k41; tÞe2

4

þ bG1ðk11; . . . ; k44; k12; . . . ; k41; tÞe1e2 þ bG2ðk11; . . . ; k44; k12; . . . ; k41; tÞe1e3

þ bG3ðk11; . . . ; k44; k12; . . . ; k41; tÞe1e4 þ bG4ðk11; . . . ; k44; k12; . . . ; k41; tÞe2e3

þ bG5ðk11; . . . ; k44; k12; . . . ; k41; tÞe2e4 þ bG6ðk11; . . . ; k44; k12; . . . ; k41; tÞe3e4; ð3:45Þ
where
bF 1ð _k11; . . . ; tÞ ¼ _k11 þ 2ak11 � að2þ sin xtÞk12;bF 2ð _k22; . . . ; tÞ ¼ _k22 � 2ak22 þ k12;bF 3ð _k33; . . . ; tÞ ¼ _k33 þ 2ak33 � ð2þ sin xtÞk34;bF 4ð _k44; . . . ; tÞ ¼ _k44 � 2ak44 þ k34;bG1ðk11; . . . ; tÞ ¼ 2k11 � 2að1þ sin xtÞk22;bG2ðk11; . . . ; tÞ ¼ �að2þ sin xtÞk23 � ð2þ sin xtÞk41;bG3ðk11; . . . ; tÞ ¼ 0;bG4ðk11; . . . ; tÞ ¼ 0;bG5ðk11; . . . ; tÞ ¼ k23 þ k41;bG6ðk11; . . . ; tÞ ¼ 2k33 � 2ð2þ sin xtÞk44:

ð3:46Þ
Step 4 Assume
8j; bGjðk11; . . . ; tÞ ¼ 0; ð3:47Þ
then the relationship between kij can be obtained:
k11 ¼ að2þ sin xtÞk22; k23 ¼ 0; k33 ¼ ð2þ sin xtÞk44; k41 ¼ 0: ð3:48Þ
Step 5 Use the results of step 4 to check if
8t P 0; bF ið _kii; . . . ; tÞ < 0 ði ¼ 1; . . . ; 4Þ: ð3:49Þ
Assume
k11 ¼ c1; k22 ¼
c1

að2þ sin xtÞ ; k33 ¼ c2; k44 ¼
c2

2þ sin xt
; ð3:50Þ
where c1 and c2 are positive constants to be designed. Eq. (3.49) can be satisfied if the following conditions hold:
bF 1ð _k11; . . . ; tÞ ¼ 2ac1 � að2þ sin xtÞk12 < 0;

bF 2ð _k22; . . . ; tÞ ¼ �2c1

2þ sin xt
� c1x cos xt

að2þ sin xtÞ2
þ k12 < 0; ð3:51Þ

bF 3ð _k33; . . . ; tÞ ¼ 2ac2 � ð2þ sin xtÞk34 < 0;

bF 4ð _k44; . . . ; tÞ ¼ �2ac2

2þ sin xt
� c2x cos xt

ð2þ sin xtÞ2
þ k34 < 0: ð3:52Þ
However, both results of Eq. (3.51) and Eq. (3.52) show the contradiction: bF 1 < 0 and bF 2 < 0 can not hold in the same
time, neither can bF 3 < 0 and bF 4 < 0. To simplify the following work, assume only bF 2 < 0 and bF 4 < 0 can hold.
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Step 6 Since Eq. (3.49) is not satisfied, i.e.,
8t P 0; bF jðk11; . . . ; k41ÞP 0 ðj ¼ 1; 3Þ;bF kðk11; . . . ; k41Þ < 0 ðk ¼ 2; 4Þ;
ð3:53Þ
return to step 3 and modify the controllers v1 and v3 by addition of k1e1 and k3e3, respectively, where k1 and k3 are
constant gains to be determined. Because _V has been modified, Eq. (3.46) becomes
bF 1ð _k11; . . . ; tÞ ¼ _k11 þ 2ðaþ k1Þk11 � að2þ sin xtÞk12;bF 2ð _k22; . . . ; tÞ ¼ _k22 � 2ak22 þ k12;bF 3ð _k33; . . . ; tÞ ¼ _k33 þ 2ðaþ k3Þk33 � ð2þ sin xtÞk34;bF 4ð _k44; . . . ; tÞ ¼ _k44 � 2ak44 þ k34;bG1ðk11; . . . ; tÞ ¼ 2k11 þ k1k12 � 2að1þ sin xtÞk22;bG2ðk11; . . . ; tÞ ¼ �að2þ sin xtÞk23 � ð2þ sin xtÞk41;bG3ðk11; . . . ; tÞ ¼ k1k41;bG4ðk11; . . . ; tÞ ¼ k3k23;bG5ðk11; . . . ; tÞ ¼ k23 þ k41bG6ðk11; . . . ; tÞ ¼ 2k33 þ k3k34 � 2ð2þ sin xtÞk44:

ð3:54Þ
Repeat steps 4 and 5, then the relationship between kij becomes
k11 ¼ að2þ sin xtÞk22 �
k1

2
k12; k23 ¼ 0;

k33 ¼ ð2þ sin xtÞk44 �
k3

2
k34; k41 ¼ 0:

ð3:55Þ
Assume
k11 ¼ c1 �
k1

2
c3; k22 ¼

c1

að2þ sin xtÞ ;

k33 ¼ c2 �
k3

2
c4; k44 ¼

c2

2þ sin xt
;

k12 ¼ c3; k34 ¼ c4;

ð3:56Þ
where c1,c2,c3,c4 are constants to be designed, and c1,c2 are positive numbers. Eq. (3.49) can be satisfied if
2ðaþ k1Þc1 < ðk2
1 þ ak1 þ 2aþ a sin xtÞc3;

ð4aþ 2a sin xt þ x cos xtÞc1 > að2þ sin xtÞ2c3;

2ðaþ k3Þc2 < ðk2
3 þ ak3 þ 2þ sin xtÞc4;

ð4aþ 2a sin xt þ x cos xtÞc2 > ð2þ sin xtÞ2c4:

ð3:57Þ
Step 7 The conditions derived from the above procedure can be summed up as follows:
k23 ¼ 0; k41 ¼ 0; ð3:58Þ

c1 > 0; c1 >
k1

2
c3;

2ðaþ k1Þc1 < ðk2
1 þ ak1 þ 2aþ a sin xtÞc3;

ð4aþ 2a sin xt þ x cos xtÞc1 > að2þ sin xtÞ2c3;

ð2c1 � k1c3Þc1 > c2
3ð4aþ 2a sin xtÞ:

ð3:59Þ

c2 > 0; c2 >
k3

2
c4;

2ðaþ k3Þc2 < ðk2
3 þ ak3 þ 2þ sin xtÞc4;

ð4aþ 2a sin xt þ x cos xtÞc2 > ð2þ sin xtÞ2c4;

ð2c2 � k3c4Þc2 > c2
4ð4þ 2 sin xtÞ:

ð3:60Þ



Fig. 4. (a) Phase portraits of master system; (b) phase portraits of xi to yi (i = 1, . . . , 4) when generalized synchronization is obtained;
(c) time history of errors.
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Design

k1 ¼ �0:4; k3 ¼ �0:4; k23 ¼ 0; k41 ¼ 0;

c1 ¼ 20; c3 ¼ 9 ) k12 ¼ 9; k11 ¼ 21:8; k22 ¼
20

að2þ sin xtÞ ;

c2 ¼ 50; c4 ¼ 11) k34 ¼ 11; k33 ¼ 52:2; k44 ¼
50

2þ sin xt
; ð3:61Þ



Z.-M. Ge, C.-M. Chang / Chaos, Solitons and Fractals 39 (2009) 1959–1974 1973
such that each condition can be satisfied. Then the elaborate nondiagonal Lyapunov function can be obtained
V ðt; eÞ ¼ 21:8e2
1 þ 9e1e2 þ

20

að2þ sin xtÞ e
2
2 þ 52:2e2

3 þ 11e3e4 þ
50

2þ sin xt
e2

4 ð3:62Þ
and
_V ðt; eÞ ¼ � ð4:64þ 4:5 sin tÞe2
1 �

44þ 4 sin t þ 40 cos t � 9 sin2 t

ð2þ sin tÞ2
e2

2

� ð11:56þ 11 sin tÞe2
3 �

56þ 6 sin t þ 50 cos t � 11 sin2 t

ð2þ sin tÞ2
e2

4: ð3:63Þ
Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized synchronization is achieved.
a = 1, b = 2, c = 3 are chosen in simulation, and the results are shown in Fig. 4.
4. Conclusions

The nonlinear generalized synchronization is studied by applying pure error dynamics and elaborate nondiagonal
Lyapunov function. This method gives a rigorous theory for generalized synchronization and greatly extends the use
of various forms of Lyapunov function, while current method gives semi-simulation theory for generalized synchroni-
zation, which must get the maximum values of state variables by simulation, and use monotonous square sum Lyapu-
nov function. By the systematic procedure, the complexity of designing suitable elaborate nondiagonal Lyapunov
function is reduced greatly. The proposed method is effectively applied to both autonomous and nonautonomous dou-
ble Mathieu systems.
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