Available online at www.sciencedirect.com

: : CHAOS
ScienceDirect SOLITONS & FRACTALS

ELSEVIER Chaos, Solitons and Fractals 39 (2009) 1959-1974

www.elsevier.com/locate/chaos

Nonlinear generalized synchronization of chaotic
systems by pure error dynamics and elaborate
nondiagonal Lyapunov function

Zheng-Ming Ge *, Ching-Ming Chang
Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC
Accepted 20 June 2007

Communicated by Prof. L. Marek-Crnjac

Abstract

By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlinear generalized synchro-
nization is studied in this paper. Instead of current mixed error dynamics in which master state variables and slave state
variables are presented, the nonlinear generalized synchronization can be obtained by pure error dynamics without aux-
iliary numerical simulation. The elaborate nondiagonal Lyapunov function is applied rather than current monotonous
square sum Lyapunov function deeply weakening the powerfulness of Lyapunov direct method. Both autonomous and
nonautonomous double Mathieu systems are used as examples with numerical simulations.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In secure communication [1,2], biological systems [3,4], and many other fields [5-25], chaos synchronization has been
widely used. Generalized synchronization is a complex type of chaos synchronization and gives rise to extensive inves-
tigations recently [26-33]. By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlin-
ear generalized synchronization is studied in this paper.

The auxiliary numerical simulation is unavoidable for current mixed error dynamics in which master state variables
and slave state variables are presented while their maximum values must be determined by simulation [34-38]. However,
the pure error dynamics can be analyzed theoretically without additional numerical simulation. Besides, monotonous
and self-limited square sum Lyapunov function, V(e) = %eTe, is currently used [39-44], but Lyapunov function can be
chosen in a variety of elaborate and ingenious forms for different systems. Restricting Lyapunov function to square sum
makes a long river brooklike, deeply weakens the powerfulness of Lyapunov direct method. Instead of current plain
square sum Lyapunov function, the elaborate nondiagonal Lyapunov function is applied in this paper.
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A systematic method of designing Lyapunov function is proposed based on Lyapunov direct method [45]. Nonlinear
generalized synchronization is achieved for both autonomous and nonautonomous double Mathieu systems by apply-
ing this technique. This paper is organized as follows. In Section 2, the method of designing Lyapunov function is pre-
sented, and nonlinear generalized synchronization is obtained. Section 3 contains the examples of autonomous and
nonautonomous double Mathieu systems, and numerical simulations show the feasibility of the proposed method.
Finally, the conclusions are drawn.

2. Design of Lyapunov function

Consider the master and slave nonlinear dynamic systems described by
x = f(¢,x), (2.1)
y=1(1,y) +u(t,x,y), (22)
where X,y € R" are master and slave state vectors, f: R x R" — R" is a nonlinear vector function, and u: Ry X
R'x R" — R" is controller vector.
Generalized synchronization means that there is a functional relation y = g(x) between master and slave states as

time goes to infinity, where g : R" — R" is a continuously differentiable nonlinear vector function. Define e =y — g(x)
as generalized synchronization error vector, and the error dynamics can be obtained:

=y g(x)=§— di(;‘) x =1(,y) — di—(xx)f(t, X) +u(t,x,y). (2.3)

Eq. (2.3) can be rewritten in the following form:
é=p(te) +q(t,x,y) +ult,x,y), (2.4)

where p: R+ X R" — R" and q : Ry X R"x R" — R" are continuous vector functions represent the error variable terms
and the state variable terms in the error dynamics, respectively.
In order to transform current mixed error dynamics into pure error dynamics, the controller vector is chosen as

u(t,x,y) = —q(t,x,y) + v(t,e), (2.5)

where v: R, x R" — R" is a continuous vector function.
Now the pure error dynamics can be obtained:

e =p(t,e) +v(t,e). (2.6)

Based on Lyapunov direct method [45], the scheme of nonlinear generalized synchronization and the procedure of
designing elaborate nondiagonal Lyapunov function are described as follows:

Step 1 Construct a Lyapunov function

1 1 , 1 1
Vit e) = Z EeiTA,-(t)e,- = {7 i (t)er + Anerer + E)Lzz(t)eg} 4t {,
=1

R 1
5 5 Ao (t)ei + Aneqse; + 5211 (t)ef] , (2.7)

Whereeiz{eei } (i:1,27...,n—1),en:[e"},A,-(t):{"”(’) i""“(t)} (=12, n—1), An(t):{i””(t) Ao },and

i+ e Al Airrist It An(t)
A{t) € R?? (i=1,2,...,n) are unknown continuously differentiable positive definite matrices to be designed and A(?),
A, (1) are nondiagonal. According to Sylvester’s criterion, A{¢) have to be chosen that
Ve =0, 2u(t) >0, 2(0) i () — Ay >0 (i=1,2,...,n—1),
() >0, L ()21 (8) = 22, >0 (i=n)

nl

(2.8)

and

Vit

A\

0, 0< i <Ai(t) <Ay (i=1,2,...,n), (2.9)

where 4,,;;, /. are positive constants.
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Step 2 The derivative of Lyapunov function is

n

Vite) = [éiTA;(l)ef + %eiTAi(t)ef

i=1

) . . . , . 1. 1.
= {An (terer + Annérer + Anerér + in(t)erer + 52»11 (t)ef + i/lzz(f)eg} + -

1. 1.
+ |:/1,m (t)e,,é,, + Anéner + Anenér + A (1)61é1 + E),,,,,(t)ei + E/Ll](l)e%:| . (210)

Eq. (2.10) can be rewritten in the following form:

V(t, e) = Fl(jvlhilh R ,)V,m,/llz, P ,inl,t)ef + e -|-1'7y,(/‘1,,"7 ;,11, ey )Ln,,, 112, RN )»nl,t)ei
+ Gl(}vlh ey Dy ),12, ceiy Al t)elez + 4 Gm(j'll7 ey )»,m, 2.12, ey )v,,l, t)e,,,len
+ (2/111U1 + /1121)2 + /l,,]l),,)@] + -+ (2&,,,,1.7,1 + j.,,llil + i,,,l,,vn,l)e,,, (21 1)
where Fi(}\,m/l]],. ~->Ann7/1127' ~-7Anl7t) (l = 172,. ..7}1), G/'(;Ll],. ..7/1,””)\,12,. . 7/1,117t) (J = 1,27.. ,m, m :Ti) are
continuous differentiable functions, and v; (i =1,2,...,n) are controllers to be determined.
Step 3 Appropriately design the controllers v; such that Eq. (2.11) can be reduced to

V(t7e) :ﬁ‘l(}hlhzlla"'7;‘11)17]'127'-'7)“n17t)e%+"'+ﬁn(jvrzny/lll7-">j~nn7;L|27"'a;Ln|7t)ef,
+ GLts s dams 12y -y 2ty 1)€1€ o Gty e oy Joans 212, -+ 2onty )€ 1€n, (2.12)
where Fi(Zi, A1y -+ Joums 212y ooy 2ty 8) (0= 1,2, on) and G (At - -y 2wy 212y - o 2ty 1) (G = 1,2, ymym = ") are

2
continuous differentiable functions.
Step 4 Assume

vja aj()~lla-~-7;“ni17j'12a"'7;“n17t) :07 (213)

then the relationship between Z; can be obtained.
Step 5 Use the results of step 4 to check if

vt = 0, F,-(/"LH,...,;vnm/l]z,...,)vnl,l)<0 (121727,?1) (214)
Step 6 1f Eq. (2.14) can be satisfied, the conditions derived from Eq. (2.14) can be obtained. If Eq. (2.14) cannot be

satisfied, i.e.,

Ve =0, Fi(hinyeesdum a2ee eyl ) =0
,\j( 1 12 1) (2.15)
Fk(;Lll:”~7)~nn7/1127~-~7j-nlyl) < O

return to step 3 and modify the controllers v; by addition of ke;, where k; are constant gains to be determined. Repeat

steps 4 and 5, then the conditions guarantee the validity of Eq. (2.14) can be assured.

Step 7 Appropriately design k; and 4,(7) such that each condition derived from the above procedure holds. Finally, the
elaborate nondiagonal Lyapunov function can be obtained and the generalized synchronization is achieved
according to Lyapunov direct method.

3. Nonlinear generalized synchronization of double Mathieu systems

In this section, the nonlinear functional relation between master and slave states is y, = g;(x;) = ox? 4+ fx; +7 (i = 1,
2,...,n). To demonstrate the use of the proposed method, two examples of autonomous and nonautonomous double
Mathieu systems are presented.

3.1. Regular and chaotic dynamics of autonomous and nonautonomous double Mathieu systems

The nonlinear damped Mathieu system is [46,47]
X1 =xz,

¥y = —a(l + sinwt)x; — (1 + sin wt)x — axy.
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An autonomous double Mathieu system can be constructed by mutual linear coupling of two Mathieu systems:

X1 = X2,

%y = —a(l +x)x; — (1 4+x4)x7 — ax; + bxs,

X3 = X4,

X4 =—(14+x)x; —a(l —Q—xz)xi — axy + bx,.

(3.2)

The parameters in simulation are a = 0.5, b = 1-1.254, and the initial condition is x{(0) = 0.1, x5(0) = 0.1, x3(0) = 0.2,
x4(0) = 0.2. The phase portraits, Poincaré Maps, bifurcation diagram, and Lyapunov exponents are shown in Fig. 1. It
can be observed that the motion is period 1 for » = 1.1, period 4 for b = 1.243, and period 8 for b = 1.246. For b = 1.24,

the motion is chaotic.

A nonautonomous double Mathieu system [48] can also be constructed by mutual linear coupling of two Mathieu

systems:
).Cl = X2,
%3 = —a(l +sinwt)x; — (1 +sinwt)x} — ax, + bx;,
X3 = X4,
%4 = —(1 + sinwt)x; — a(1 + sin wt)x; — axy + bx;.
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Fig. 1. (a) Phase portraits and Poincaré maps; (b) bifurcation diagram; (c) Lyapunov exponents; (d) local enlargement of Lyapunov
exponents for autonomous double Mathieu system.
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The parameters in simulation are a =0.5, b =0.9-1, w =1, and the initial condition is x;(0) =0.1, x,(0)=0.1,
x3(0) = 0.2, x4(0) = 0.2. The phase portraits, Poincaré Maps, bifurcation diagram, and Lyapunov exponents are shown
in Fig. 2. It can be observed that the motion is period 1 for 5 = 0.9, period 2 for b = 0.93, and period 4 for b = 0.934.
For b =1, the motion is chaotic.
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Fig. 2. (a) Phase portraits and Poincaré maps; (b) bifurcation diagram; (c) Lyapunov exponents for nonautonomous double Mathieu
system.
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3.2. Nonlinear generalized synchronization of autonomous double Mathieu systems

The master and slave autonomous double Mathieu systems can be described by

X1 =x,

3 = —a(l +x4)x; — (1 +x4)x° — ax + bxs,

.2 ( a)x — ( 4)x] 2 3 (3.4)
X3 = X4,

X = —(1+x2)x3 — a(l +x2)x3 — axy + bxy.

)./1 :y2+u17

b2 =—a(l+y)y; — (L +,)y] — ayy + by; + s, (3:5)
V3 =Yyt us,

Ja = —(1+y,)ys — a(l +y,)y3 — ay, + by, + ua.

The parameters in simulation are a = 0.5, b = 1.24, and the initial condition is x;(0) = 0.1, x,(0) = 0.1, x3(0) =0.2,
X4(0) = 0.2, y1(0) = 0.3, y2(0) = 0.3, y3(0) = 0.4, y4(0) = 0.4.
Let e, =y, —ox? — fx; —y (i=1,...,4) and subtract Eq. (3.4) from Eq. (3.5), then the error dynamics can be
obtained:
é=p(e) +q(x,y) +u(x,y), (3.6)

where

p(e) =[pi(e) pr(e) ps(e) P4(e)]T»
axy) =[a,(x,y) &xy) axy) gy,

P (e) = €,
p,(e) = —ae; — ae; + bes,
p3(e) = €4,
ps(€) = —es — aeq + bey,
01 (%,y) = o3 — 2000033 + 7, (3.7)
a:(x,y) = —a(ax] — ax; — bx3) — a(ygyy — fraxi) + (b= 2a)y — [(1+ y4)y} — B(1 + xa)x]]
+ 26 [a(l +xa)x; + (1 +x4)% — bxs),
qS(Xay) = ocxi — 2000334 + 7
qs(x,y) = —a(x3 — ax; — bx7) = (vy3 — Praxs) + (b —a = 1)y — al(1 + y2)3 = B(1 +x2)x]]
+ 200 [(1 + x2)x3 + a(1l +x2)x3 — bxy].
In order to transform current mixed error dynamics into pure error dynamics, the controller vector is chosen as
u(x,y) = —q(x,y) + v(e). (3.8)
Now the pure error dynamics can be obtained:
¢ =p(e) + v(e). (3.9)
Step 1 Construct a Lyapunov function
N 1., 1, 1., 1,
V(e) = ; iei Aie[ = z/mel + 2126162 —0—5),2262 + -4 §/L44€4 + )»416461 +§),44€4 s (310)

where A; are unknown continuously differentiable positive definite nondiagonal matrices to be designed. According to
Sylvester’s criterion, A; have to be chosen that

dn >0, Andn — i3, >0,

/122 >0 /122/133 — )»2 >0

o SN (3.11)
433 >0, Aszdag — A3y > 0,

, , 2
Aag > 07 /L44/111 — )»41 > 0.
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Step 2 The derivative of Lyapunov function is

4
e) = Zé;rAiei = [Ane1e1 + Anpérer + Apeiér + Anerer] + - - - + [luaesls + daeser + Ageser + Ajerén]. (3.12)
i=1

Eq. (3.12) can be rewritten in the following form:
V(e) = Fl(/llh ce 7)~447;”27 ce 7141)8% +F2(2‘11> s ;“447 2127 s 7/141)62 +F3(jvll7 e j'447&127 ce >A41)€§
+ Fy(Ps ooy Aaas Ay 7)»41)64 + Gi(Aan, ooy dasy azy ooy da)erer + Ga(Ais - oo Aagy Ay - - Aar )eres
+G3(/l]1,...,)v44,/112,...,/141)€1€4+G4(/L117.. /1447/112,.. /141)€2€3+G5(/1117.. }44,/1127...7/141)6264
+ Go(Ai1,- .-, Jaa, Aia, - .-, Aar)ezes + (241101 + Aiava + Agivs)er + (242000 + Aa3v3 + Apvy)en

+ (22331}3 + 2341}4 + ;»23172)63 + (2/1441]4 + /L4]U] + /L34U3)84, (313)

where

Fi(A1, ..o Aa) = —adin + bl

Fy(As. .0y 2a1) = iz — 2aln,

F3(A11,. .., 241) = bloz — A,

Fa(Ars. .y Aar) = Jsa — 2ala,

Gl(/lll,...,)v41):2/111 —a)vlz—Zalzz, (3 14)

Go(Ans -y har) = blao — aloz + blzg — 41, ‘

G3(/1117 ceey )~41) = 2bjgs — ll/l417

Ga(a1s - - -5 Aa) = 2bAxy — ada,

Gs(A,s .oy har) = I3 + Jar,

GG(/ll 1yeses 241) = 2/{33 — a234 — 2),44.
Step 3 Design the controllers

U = —é,

Uy = aey,

3.15
U3 = —éy4, ( )
Uy = €3,

such that Eq. (3.13) can be reduced to

f/(e) = ﬁl(ln, ooy Mgy Aany e ‘77»41)3% +ﬁ2(/1117 R P ST -,141)63 + 1?'3(/1117 .. ~7i447)ulz,~~~7/141)€§
+ Fa(Aats oy daas Ay Aa)eg + Gr(An, ooy Aaas oy -y dan)eres + Go(Aan, - .oy A, Az, - Aar eres

4+ G3(A1s -y haas s dar)eres 4 Ga(oat, oy gy s - -y da1)eres + Gs(hats o Aagy Ay - .o Jat )€res
+ Go(Ats ooy gy My e Jar )eses, (3.16)
where
Fi(Ats..,ar) = by,
Fa(dity -y dar) = —2aim,
F3(ity. .oy dar) = bioy,
Fa(har,- o dar) = —2alaa,

) =
)
)
)
N )= ~ahe, (3.17)
Go(A1, ooy Aar) = by + blag,
G3(Aits. .- Ag1) = 2bas — @iy,
G )
G )
G )=

= 2bly — a3,

—~ o~ N~~~ o~~~
~
£

—0134
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Step 4 Assume

Vi, Gi(ns-., A1) =0, (3.18)
then the relationship between A; can be obtained:

=0 )fb/l J34 =0 )*bi 3.19

‘2 — Y, 23 — 2a 22 34 — U, 41 — Z 44 - ( . )
Step 5 Use the results of step 4 to check if

Fi(haty .. o) <0 (i=1,...,4). (3.20)
It can be obtained that

1?1()~117 .y la1) = blg >0,

Ijz(),ll, . A41) —2aly < 0, (321)

F3(),117 .. ,A41) = b/LZ‘; > 0

ﬁ4(),11, . A41) —2(1244 < 0.
Step 6 Since Eq. (3.20) is not satisfied, i.e.,

Fj()~11’~~~7/141) 20 (j=13), (3.22)

Fillat,- oy ha) <0 (k=2,4),

return to step 3 and modify the controller§ vy and v3 by addition of kje; and kzes, respectively, where k; and k5 are
constant gains to be determined. Because 7 has been modified, Eq. (3.17) becomes

A (}llw" 7/141) = b/l41 +2k1}v117

()11, cee 7/141) = —2aly,
1?3()11> vy ha1) = bloz + 2k3s3,
1?4()11> cee 7/141) = —2a/44,
?1@117- yar) = (ki — a) g, (3.23)
Gy(Aity -y Aa1) = bAn + b,
Gy(1s -y dar) = 2bJag + (ki — @)1,
64(/”174 oy Aar) = 2bAy + (ks — a)los,
85(A11,. ,Aa1) =0,
Go(ars- -y 7)) = (ks — a)daa.
Repeat steps 4 and 5, then the relationship between 4; becomes
a—ks a—k,
=0, In= 73/%7 A =0, Iu= 71/»41 (3-24)
and Eq. (3.20) can be satisfied if
—2k —2ks3 |
Ja1 < ])11’ a3 < A 2 ds. (3.25)
Step 7 The conditions derived from the above procedure can be summed up as follows:
/112 = 07 },34 = 07 (326)
—k 2k
}41 > 07 244 > 07 244}41 — /Lil > 0, /l44 = %)»41, /141 < — ! /11]7 (327)
—k —2k
Jop >0, I3 >0, Jmig— I >0, =y < 2. (3.28)

b
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Design

kl = —a, k3 = —a,

2 2

a . . a

in=b, Jxn= 2B BT b, ‘lu= 3% (3.29)

a a

A2 =0, Iin= 7 =0, 4 = bR

such that each condition holds. Then the elaborate nondiagonal Lyapunov function can be obtained
aZ 2

Vie) = % —e2t 26263 + bes + % et 26461 + be? (3.30)
and

. 3ab a’ 3ab a’

Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized synchronization is achieved.
o=1, f=2, y=3 are chosen in simulation, and the results are shown in Fig. 3.

3.3. Nonlinear generalized synchronization of nonautonomous double Mathieu systems

The master and slave nonautonomous double Mathieu systems can be described by

xl = X2,

% = —a(l +sinwt)x; — (1 + sin wt)x> — ax, + bxs,

t = —a = ( )i — axy + bxs (3.32)
X3 = Xgq,

%4 = —(1 + sinwt)xz — a(1 + sin wt)x3 — axy + bx;.

=y, +u,

32 = —a(l +sinwt)y; — (1 +sinwt)y} — av, + by; + u, (3.33)
3 =ystus, ’

ya = —(1+sinwt)y; — a(l + sin wt)y; — ay, + by, + ua.

The parameters in simulation are a = 0.5, b =1, w = 1, and the initial condition is x;(0) = 0.1, x(0) = 0.1, x3(0) = 0.2
x4(0) = 0.2, 71(0) = 0.3, y2(0) = 0.3, y3(0) = 0.4, y4(0) =

Let ¢, =y, —ox? — fx;—y (i=1,...,4) and subtract Eq. (3.32) from Eq. (3.33), then the error dynamics can be
obtained:

é:P(Be)+Q([7X7Y)+“([7X7Y)7 (334)
where

p(tve):[pl(t7e) p2(t,e) p3(t,e) p4(t7e)]T7
q(tvxvy):[ql(tvxvy) ‘Iz(tvxv)’) Q3(t7x7y) Q4(t7xvy)]—r7

pi(t,e) = e,

p(t,e) = —a(l +sin wt)e; — aey + bes,

ps(t,e) = e,

pa(t,e) = ( sin wt)e; — aeq + bey,

a1(1,%,) = 0 = 20, + 7, (333)
4, (t,x,y) = [ (1 +sinwt)xt — axj — bx3] + 2a(1 + sin wt)x3x; + 2afa(1 + sin wt)x;x; — bxoxs]

— (1 +sinwt)(y; — px3) — yla(l + sinwt) +a — b],

q;(1,X,y) = a3 — 2003x4 + 7,

q4(t,%,y) = —a[(1 + sin wt)x? — ax2 — bxj] 4 2aa(1 + sin wt)xixy + 20[(1 4 sin 0t)x3xy — bxixy
—a(l +sinwt)(y3 — fx3) — [l +sinwt +a — b].
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Fig. 3. (a) Phase portraits of master system; (b) phase portraits of x; to y; (i = 1,...,4) when generalized synchronization is obtained;
(c) time history of errors.
In order to transform current mixed error dynamics into pure error dynamics, the controller vector is chosen as
u(t,x,y) = —q(,x,y) + v(e). (3.36)
Now the pure error dynamics can be obtained:
e =p(t,e) +v(e). (3.37)
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Step 1 Construct a Lyapunov function
- 1 T 1 2 1 2 1 2 1 1 2
V(l‘7 e) = Z e; Al-(t)e,- = |:§)L]1(l‘)el + Apejer + 5122(1)62:| 4+ 4 |:§/144(t)64 + Agreqe; + §A44(Z)€4 s (338)

where Aft) are unknown continuously differentiable positive definite nondiagonal matrices to be designed. According
to Sylvester’s criterion, Aft) have to be chosen that

Ji(t) >0, A (6)n(t) — 73, >0,
In(t) >0
J33(t) >0, I3
Ja4(t) >0

(3.39)

and

(3.40)

o

AN

N

g
NN NN
>N > >

where A, Anii (i =1,...,4) are positive constants.
Step 2 The derivative of Lyapunov function is

4
V(e) = & A(t)e
i=1
. 7 . . . 1 3 2 1 5 2
= [ill(t)elel —+ Aperen + /1126162 —+ j.zz(t)€2€2+§),11(t)el —+ E/Lzz(l‘)ez + .-

. . . . L 1.
+ [Aaa(t)eses + Aarese) + Agresey + /ln(f)€|€|+§/144(t)€i + E/Ln(l‘)e%} . (3.41)

Eq. (3.41) can be rewritten in the following form:

V(te) :Fl(qu?in,n~,)~447/1127~~-,ﬂ417f)€%+F2(jtzz7)»11,~- gy A2y A, 1€

o F3(A33, 0y - oy Aty A1y - - Fat, 1) €2 +F4(/.144,211,...,/L44,),127...,241,1?)6%
+ Gi(A1y. ey Aaay A1ay e ooy dar t)erer + Ga(Ayry . ooy dagy Aoy - ooy a1, t)ere;
+ Gi(Ai1y .oy Aaay Mgy ooy Aar, )eres + Ga(Ary, - oy Aagy Aoy <o, Aa1, ) eses
+ Gs(A1y- vy Aaay A12y - ooy dar b)eses + Go(Any - ooy dagy Aoy - ooy Aars t)eses + (240100 + Aoy
+ Aqva)e; + (22002 4 Ja3v3 + Aiavi)er + (223303 + Aaavs + Aosva)es + (2Aaavs + A0y + A3av3)es, (3.42)
where
Fi(A1,...,0) = iy —a(l + sinot) Ay + biay,
Fz(/.lzz, 1) = oy — 20y + Sz,
F3(2s3,. .., 1) = Ja3 + blos — (1 + sin t) A4,
F4(/.144, vy ) = dag — 2004 + 34,
Gi(Any .oy t) =24 — alp — 2a(1 + sin wt) Ay, (3.43)
Gy(ity .-y t) = bla — a(l + sinwt) Aoz + bAzg — (1 + sin i) Ay,
G3(Ains .. t) = 2bAas — ala,
Gs(Ains ... t) = 2bixn — alas,
Gs(Ais .- st) = Jos + i,
( ) =22

33 — Al34 — 2(1 + sin wt)i44.
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Step 3 Design the controllers

vy = aey,
v, = —bes — aey,
U3 = aes,

vy = —be; — es,

(3.44)

such that Eq. (3.42) can be reduced to

V(t,e)=F

where

w o =

IS
Soe NS
ES <
S w

w %)

N O RO UOY L S VR

Step 4 Assume
Vi, Gi(h,. .

),22, AN

Allyees

(2117/1111 .. .7/144,/112,. . 7/14171‘)8% + ﬁz(izz,/{]], . ,/144,).127 . ,/141,1‘)6‘%
+ F3 1337/111,. . .,/1447/112,. .. ,;u417t)€§ +ﬁ4(/’1447)\,117 e 7/1447},12, e 7)u41,t)€i
)117 .. ,/144,212, .. .,)u41,l)€1€2 + 62(/111, .. .,)44,/112, .. .,;~41,t)€1€3
)11, e ,/144,)42, e ,)»41,1)6184 + 64(111, .. ‘,),447112, .. .,},41,I)€2€3

+ G5 )117 . ,/l44, 2127 R ;u41, l)€2€4 + 66(/111, ey )447 /112, e, Aal R t)€3€47 (345)

by — 2alp + A2,

= A3z + 2als3 — (2 + sin wt) 34,

las — 204 + )34,

(3.46)

3+)417

A3z — (2 + sin a)t)/l44.

1) =0, (3.47)

then the relationship between 4; can be obtained:

),11 = (1(2 + sin (Dl‘);n227 ;Lz; = O7 ;L33 = (2 + SiIl CL)I)/l44, ),41 =0. (348)

Step 5 Use the results of step 4 to check if

Vi >0,

Assume

Al =c,

- a2+ sinwt)’

<0 (i=1,...,4). (3.49)

| C
2 +sinwt’ (3.50)

33 =cCy, Au=

where ¢; and ¢, are positive constants to be designed. Eq. (3.49) can be satisfied if the following conditions hold:

ﬁl(}bllw-w

1?‘2(/.122,. ..

1?3(/.133,~-

~

~
~

l) = 2ac; — a(2 + sin wt);ulz < 0,

—2¢ 1 Ccos wt

T 2+sinot (2 + sinowr)
71) = 2ac, — (2 + sin a)l);u34 < 07

Fy(lags ...

+ 1 <0, (3.51)

—2ac, CH( COS Wt

C 24sinot (2 + sinot)?

+ a4 < 0. (3.52)

However, both results of Eq. (3.51) and Eq. (3.52) show the contradiction: Fi <0 and Fr<0 can not hold in the same
time, neither can F3 < 0 and F,4 < 0. To simplify the following work, assume only F, < 0and F, < 0 can hold.
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Step 6 Since Eq. (3.49) is not satisfied, i.e.,
Vt>07 ﬁj(;“lh"w;%l)}() (.]:173)7
ﬁk(;Lll:~-~7)~4l)<0 (k=2,4),

1971

(3.53)

return to step 3 and modify the controllers v; and v; by addition of ke; and kses, respectively, where k; and k3 are

constant gains to be determined. Because ¥ has been modified, Eq. (3.46) becomes

1?“ (/'l“,.‘.,t):iu+2( + ki) — a(2 + sin i) Ay,
(/L227 St = Azz —2aky + A,
(A;;, cot) = /m +2(a+ k3) Ay — (2 + sin i) Aag,
1;“4(/L447 o) = Jag — 200 + Asa,
Gi( Aty ey t) =201 + kidia — 2a(1 + sin wt) Ay,
@2(}11, coyt) = —a(2 4 sinwt) Ay — (2 + sinwt) Ay,
G3(Ja1, ... 1) = ki1,
Ga(Aa1,. .. 1) = ks,
65(}11,...,t)—)23+/141
Go(Ait, - 1) = 2033 + kslsg — 2(2 + sin 1) s

Repeat steps 4 and 5, then the relationship between 4; becomes
. ky |
N =a(2+s1nwt)/122 *%Au, /123 :07

. k
)»33 = (2 —+ sin (L)l)/144 — 73234, /141 =0.

Assume
k C1
A= Iy =————,
n=aTe 27 42+ sinwr)
k )
A3 = =
BTQTHE & 2 +sinwt’

Al =C3, A3 = cyy
where ¢y, ¢, ¢3, ¢4 are constants to be designed, and ¢y, ¢, are positive numbers. Eq. (3.49) can be satisfied if
2(a+k)er < (K + aky + 2a + asin ot)c3,
(4a + 2asin ot + wcos wi)e; > a(2 + sin wt) e,
2(a+ks)es < (k3 + aks + 2 + sin ot)c,
(4a + 2a sin wt + w cos wt)c; > (2 + sin wt)’ey
Step 7 The conditions derived from the above procedure can be summed up as follows:
J3 =0, iy =0,
k
cp > 0, cp > EIC37
2(a+k)er < (k2 + aky + 2a + asin ot)cs,
(4a + 2asin wt + w cos wt)e, > a(2 + sin wr)’cs,
(2¢1 — kie3)er > ci(4a + 2asin wt).
k
Cy > O7 Cy > 736‘4
2(a+ks)ez < (k3 + aks + 2 + sin ot)c,
(4a + 2asin wt + wcos wi)c; > (2 + sinwr)’cy,
(2¢3 — kscq)cr > ci(4 + 2sin wt).

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
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Fig. 4. (a) Phase portraits of master system; (b) phase portraits of x; to y; (i=1,..

(c) time history of errors.

Design
kl = —047 k3 = —047 )~23 = 07 )~41 = 0, 20
C1 :20, 6329 3}.1229, }.11 :2187 /122:—.,
a(2 gbsmwl)

=50 =1l= =11, A3 =522 Jy=——
(&) ;G4 = /34 ) 33 s 44 2 T sinor’

.,4) when generalized synchronization is obtained;

(3.61)
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such that each condition can be satisfied. Then the elaborate nondiagonal Lyapunov function can be obtained
50

o 2 2 2 2

V(t,e) =21.8¢; + 9e e, +4a(2 T sin o) €5+ 52.2¢5 + lleses + > Fsnor (3.62)
and

: 44 4 4sint + 4 — 9sin’

V(te) = — (4.64+45sin)e’ +4sint + O.COS; 9sin” ¢ :

(2 +sint)
. )
(1156 + 11Sint)ez_56+6smt+50<:ost 11 sin tez. (3.63)
’ (2 4 sin7)? ¢

Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized synchronization is achieved.
o=1, f =2, y=73 are chosen in simulation, and the results are shown in Fig. 4.

4. Conclusions

The nonlinear generalized synchronization is studied by applying pure error dynamics and elaborate nondiagonal
Lyapunov function. This method gives a rigorous theory for generalized synchronization and greatly extends the use
of various forms of Lyapunov function, while current method gives semi-simulation theory for generalized synchroni-
zation, which must get the maximum values of state variables by simulation, and use monotonous square sum Lyapu-
nov function. By the systematic procedure, the complexity of designing suitable elaborate nondiagonal Lyapunov
function is reduced greatly. The proposed method is effectively applied to both autonomous and nonautonomous dou-
ble Mathieu systems.
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