中文摘要	i
英文摘要	iii
致謝	V
目錄	vi
圖目錄	viii
表目錄	XV
第一章 緒論	1
第二章 二維電子氣系統&理論介紹	4
2-1 二維電子氣系統介紹	4
2-2 實驗樣品的特徵值(μ、n _s)	5
2-3 量子化電導	8
2-4 串聯形式的量子尖端接觸(QPC In series)	10
2-5 抽運電流(pumping current)	14
2-5-1 古典抽運	14
2-5-2 量子抽運	16
I、開放系統(open system)	17
II、封閉系統(close system)	18
(a)封閉系統	19
(b)開放系統	23
第三章 元件製作	29
3-1 元件製作流程	
第一部份 光微影製作流程(photolithography)	29
第二部份:電子束微影製作技術(ebeam lithography)	31
3-2 微影技術(lithography)	

I 光微影製程技術(photolithography)	38
II 電子束微影製程(E-Beam lithography process)	41
3-3 濕式蝕刻(wet etching)	42
3-4 熱蒸鍍技術(thermal evaporation)	43
3-5 熱退火(annealing)	45
3-6 低溫系統(cryostat system)	46
3-7 實驗量測	48
3-7-1 歐姆接點檢測	48
3-7-2 漏電流檢測	49
3-7-3 電性量測	50
(1)定電流源(AC constant current measurement)	50
(2)定電壓源(AC constant voltage measurement)	51
(3) AC 抽運電流量測(AC pumping current measurement)	52
第四章 實驗結果分析與討論	55
4-1 窄通道的量子化電導	55
4-1-1 窄通道寬度跟平台數目的關係	56
4-1-2 溫度對量子化電導平台的影響	61
4-2 串聯量子尖端接觸(QPC in series)	64
4-3 量子抽運電流(Quantum pumping)	71
4-3-1 單一指狀閘極對二維電子氣的影響	71
4-3-2 量子抽運電流量測	73
第五章 結論與展望	79
參考文獻	80

圖目錄

圖 2-1	GaAs/AlGaAs 的異質接面結構4
圖 2-2	GaAs/AlGaAs 的異質接面剖面圖,右圖是相對應的能帶圖,左邊是各個磊晶層
	的位置。5
圖 2-3	Hall bar 結構圖。量測中,磁場加的方向為垂直紙面之 Z 軸方向。6
圖 2-4	縱向(ρ _{xx})與橫向(ρ _{yx})電阻率對磁場變化的關係圖,量測溫度在150mK【13】。6
圖 2-5	為 1988 年, van Wees 所量測得的電導量子化圖形,隨著閘極的負偏壓改變, 窄
	通道的寬度也隨之改變,其所佔據的次能帶數也跟著改,由圖可以很清楚的看
	到,G是以2e ² /h的整數倍變化。9
圖 2-6	L.P. Kouwenhoven, B.J.van Wees 等人實驗的元件概要圖, 閘極 A 跟 B 各代表一
	對量子尖端接觸,兩者間隔著一直徑約 1.5μm 的腔體 (cavity) 【1】。10
圖 2-7	(a) 樣品在加了高磁場後,電子沿著 edge stae 傳輸,在腔體裡較少散射發生,
	此為絕熱傳輸;(b)在不加磁場的情況下,電子通過第一個 QPC 後,在腔體中
	成隨機散射,此為歐姆傳輸【1]。996
圖 2-8	串聯 QPC 的幾何結構圖,陰影部分為 QPC,兩對 QPC 間距 L,電子由 QPC1
	流向 QPC2,方向為 X 方向, μ_s , μ_d 為源極-汲極 (source-drain) 的化學位能, μ_l ,
	μr為遠離QPC 兩端的化學位能,可視為開放端。11
圖 2-9	D.A. Wharam 等人的實驗結構圖及量測結果。(a) 實驗結構圖,兩對閘極相距
	1μm, 閘極的線寬為 0.3μm。(b) 量測結果, 其中曲線 a 為閘極 g2 固定負偏壓
	在-1V,曲線b為閘極g2不加任何負偏壓【2】。13
圖 2-10	(a)-(f) 古典抽運流程的示意圖。(a)-(f)為控制三個位能障來促使電子
	由左往右移動的順序,形成一週期性循環。15
圖 2-11	電子在穩定及不穩定位障下的散射示意圖。(a) 位障為穩定的情況。(b) 震盪
	位障的散射示意圖。16
圖 2-12	開放系統示意圖。圖中的黑跟白點表示準電子-電洞對。17

圖 2-14(a)(b) 弱抽運跟強抽運的能階示意圖。......19

圖 2-15 量子點的位能概圖,電子分佈在一量子點內, μ_r 、 μ_l 為右邊跟左邊熱庫 的化學位能, $V = \mu_l - \mu_r$ 。量子點內有分離的能階間距(level spacing) Δ , charging energy, U。圖(a)中, μ_r 、 μ_l 之間沒有空的能階,所以電子無法穿遂過去。 圖(b), μ_r 、 μ_l 間存在一空能階,使得電子可以躍遷進入量子點內。......20 圖 2-16(a)-(d) 抽運電流的產生流程簡圖, μ_r 、 μ_l 為右邊跟左邊熱庫的化學位能, 能階 N 表示 $\mu_d(N)$,有 N 個電子被局域在量子點內,能階 N+1 表示 $\mu_d(N+1)$ 。

- 圖 2-21 元件的結構以及量測電路配置圖。紅色點標示的閘極為形成開放量子點的閘 極,量子點兩邊為跟熱庫連通的一維窄通道,g1、g2 閘極用來加一相同頻率但

- 圖 3-1 平台結構示意圖,此圖為光學顯微鏡下所拍攝之照片,中間矩形區域為平台結構,平台寬度約為200µm,方形為接點平台。A 為主要部分,但為配合量測需要,同時預留與平台連通的歐姆接點區,為標示 B 的區域,C 為未連通的金屬 關極, 關極線寬約為3.5µm,四個金屬原點為定位點,在做電子束微影時,

圖 3-7 糹	絕緣層之電子顯微鏡照片。圖中黑色部份即為絕緣層,由於絕緣層無法反射	
-	二次電子束,因此在電子顯微鏡下所看到的圖像是無訊號的而呈現黑色。3	5
圖 3-8(a	(b) (a) 指狀閘極的電子顯微鏡影像,放大倍率 8.5k。(b) 指狀閘極,降	륏
枯	亟線寬約 50-70nm,間距約 120nm。3	6
圖 3-9 政	夸線閘極的電子顯微鏡照片。	7
圖 3-10 素	熟蒸鍍機示意圖。4	4
圖 3-11 素	热退火裝置示意圖。	5
圖 3-12	³ He 低溫系統結構圖	7
圖 3-13	(a): 雨點量測法。(b) 四點量測法。	9
圖 3-14	漏電流檢測電路圖。(a) 開極加正偏壓,(b) 開極加負偏壓。R _s 代表樣品的	þ
	電阻值。	0
圖 3-15	定電流源的量測架構示意圖。5	1
圖 3-16	定電壓源量測電路圖。5	2
圖 3-17	低頻 AC 訊號耦合一高頻 AC 訊號示意圖。兩高頻訊號為同頻率及振幅但有-	-
	相位差φ°5	2
圖 3-18	高頻訊號產生之儀器配接圖。5	3
圖 3-19	AC 抽運電流量測示意圖。加一固定負偏壓在分離閘極上使窄通道寬度固定,	
	兩支指狀閘極加一固定頻率但有一相位差的 AC 訊號。5	4
圖 4-1	各元件的電子顯微鏡影像。(a)串聯分離閘極 I,線寬 0.5μm, 閘極間距 0.4μm	o
	(b) 雙層分離閘極,線寬0.5μm,閘極間距0.3μm。(c)串聯分離閘極II,	
	線 寬 0.4µm, 閘極間距 0.4µm。5	5

- 圖 4-5 雙層分離閘極第二次降溫所量得不同溫度下的G-V圖。曲線作了 x 方向的平移 (offset),以方便比較。隨著溫度的升高,量子化電導的現象漸不明顯。但 0.7 結 構隨著溫度升高而更明顯。......61

- 圖 4-9 樣品 5-70, L 相距 0.8µm 所量到的串聯 QPCG-V 圖。
 - 右圖:未扣掉 QPC2 電阻值的 G-V 曲線, G=1/R₁₂。以負偏壓固定 QPC2 在不同的特定次能带上 (n 從 0.9 到 6)。
 - 左圖:扣掉 QPC2 所貢獻電阻值後的 G-V曲線。 $G=1/(1/G-1/G_2)$,曲線有經過 x

方向平移以利比較。......67

圖 4-10 樣品 5-70, L 相距 2.9µm 所量到的串聯 QPCG-V 圖。

右圖:未扣掉 QPC2 電阻值的 *G-V* 曲線,*G*=1/*R*₁₂。以負偏壓固定 QPC2 在不同的特定次能帶上(n從 0.8 到 5)。

左圖:扣掉QPC2所貢獻電阻值後的G-V曲線,G=1(1/G-1/G₂)。......68 圖 4-11 樣品 5-70, L 相距約 20μm 所量到的串聯 QPCG-V 圖。

右圖:未扣掉 QPC2 電阻值的 G-V 曲線, G=1/R₁₂。以負偏壓固定 QPC2 在不同的特定次能帶上 (n 從 0.7 到 13)。

圖 4-16 固定分離閘極負偏壓,使窄通道存在兩個次能帶 (n=2),分別對指狀閘極

2.5MHz 到 12MHz。......74

圖 4-18 抽運強度的標準差 $\sigma(A_0)$ 跟頻率的關係圖。樣品電阻值固定在 4.4 k Ω (n=3),

- 圖 4-21 樣品電阻固定在 4.4 k Ω 以及 8.6k Ω 時的標準差 $\sigma(A_0)(uV)$ 跟頻率的關係圖。...77

表 2-1 Umansky 團隊所提供的樣品,在我們實驗室所量得的樣品特徵值。…………….7

