目錄

中文摘要	i
英文摘要ii	i
致謝	V
目錄v	i
圖目錄vii	i
表目錄xv	V
第一章 緒論	1
第二章 二維電子氣系統&理論介紹	4
2-1 二維電子氣系統介紹	4
2-2 實驗樣品的特徵值(μ\n _s)	5
2-3 量子化電導	8
2-4 串聯形式的量子尖端接觸(QPC In series)10	
2-5 抽運電流(pumping current)1995	
2-5-1 古典抽運14	4
2-5-2 量子抽運10	6
I、開放系統(open system)17	7
II、封閉系統(close system)	3
(a)封閉系統19	9
(b)開放系統	23
第三章 元件製作	9
3-1 元件製作流程	9
第一部份 光微影製作流程(photolithography)	9
第二部份:電子束微影製作技術(ebeam lithography)	1
3-2 微影技術(lithography)	7

I 光微影製程技術(photolithography)	38
II 電子束微影製程 (E-Beam lithography process)	41
3-3 濕式蝕刻(wet etching)	42
3-4 熱蒸鍍技術(thermal evaporation)	43
3-5 熱退火(annealing)	45
3-6 低溫系統(cryostat system).	46
3-7 實驗量測	48
3-7-1 歐姆接點檢測	48
3-7-2 漏電流檢測	49
3-7-3 電性量測	50
(1)定電流源(AC constant current measurement)	50
(2)定電壓源(AC constant voltage measurement)	51
(3)AC 抽運電流量測(AC pumping current measurement)	52
第四章 實驗結果分析與討論	55
4-1 窄通道的量子化電導	55
4-1-1 窄通道寬度跟平台數目的關係	56
4-1-2 溫度對量子化電導平台的影響	61
4-2 串聯量子尖端接觸(QPC in series)	64
4-3 量子抽運電流(Quantum pumping)	71
4-3-1 單一指狀閘極對二維電子氣的影響	71
4-3-2 量子抽運電流量測	73
第五章 結論與展望	79
炙老立獻	80

圖目錄

圖 2-1	GaAs/AlGaAs 的異質接面結構
圖 2-2	GaAs/AlGaAs 的異質接面剖面圖,右圖是相對應的能帶圖,左邊是各個磊晶層
	的位置。5
圖 2-3	Hall bar 結構圖。量測中,磁場加的方向為垂直紙面之 Z 軸方向。
圖 2-4	縱向 (ρ_{xx}) 與橫向 (ρ_{yx}) 電阻率對磁場變化的關係圖,量測溫度在 $150mK$ 【13】。6
圖 2-5	為 1988 年, van Wees 所量測得的電導量子化圖形,隨著閘極的負偏壓改變,窄
	通道的寬度也隨之改變,其所佔據的次能帶數也跟著改,由圖可以很清楚的看
	到,G是以2e ² /h的整數倍變化。
圖 2-6	L.P. Kouwenhoven, B.J.van Wees 等人實驗的元件概要圖, 閘極 A 跟 B 各代表一
	對量子尖端接觸,兩者間隔著一直徑約 1.5μm 的腔體 (cavity) 【1】。1(
圖 2-7	(a) 樣品在加了高磁場後,電子沿著 edge stae 傳輸,在腔體裡較少散射發生,
	此為絕熱傳輸;(b) 在不加磁場的情況下,電子通過第一個 QPC 後,在腔體中
	成隨機散射,此為歐姆傳輸【1】。 9.9.9
圖 2-8	串聯 QPC 的幾何結構圖,陰影部分為 QPC,兩對 QPC 間距 L,電子由 QPC1
	流向 QPC2,方向為 X 方向, μ_{s} 、 μ_{d} 為源極-汲極 (source-drain) 的化學位能, μ_{l}
	μ _r 為遠離QPC 兩端的化學位能,可視為開放端。11
圖 2-9	D. A. Wharam 等人的實驗結構圖及量測結果。(a) 實驗結構圖,兩對閘極相距
	1μm, 閘極的線寬為 0.3μm。(b) 量測結果, 其中曲線 a 為閘極 g2 固定負偏壓
	在-IV,曲線b為閘極g2不加任何負偏壓【2】。
圖 2-10	(a)-(f) 古典抽運流程的示意圖。(a)-(f) 為控制三個位能障來促使電子
	由左往右移動的順序,形成一週期性循環。
圖 2-11	電子在穩定及不穩定位障下的散射示意圖。(a) 位障為穩定的情況。(b) 震盪
	位障的散射示意圖。16
圖 2-12	開放系統示意圖。圖中的黑跟白點表示準電子-電洞對。17

回 2-13	封閉系統示意圖。
圖 2-14(a)(b)弱抽運跟強抽運的能階示意圖。19
圖 2-15	量子點的位能概圖,電子分佈在一量子點內, μ_r 、 μ_l 為右邊跟左邊熱庫
	的化學位能, $V=\mu_l-\mu_r$ 。量子點內有分離的能階間距(level spacing) Δ ,charging
	energy, U 。圖 (a) 中, μ_r 、 μ_l 之間沒有空的能階,所以電子無法穿遂過去。
	圖 (b) , μ_r 、 μ_l 間存在一空能階,使得電子可以躍遷進入量子點內。20
圖 2-16 ((a) - (d) 抽運電流的產生流程簡圖, μ_r 、 μ_l 為右邊跟左邊熱庫的化學位能,
	能階 N 表示 $\mu_d(N)$,有 N 個電子被局域在量子點內,能階 N+1 表示 $\mu_d(N+1)$ 。
	a-d 為 rf 循環的四個步驟,當位障降低時,電子穿遂的機率變大(實線的箭頭),
	當位障升高時,電子穿遂的機率變小(虛線的箭頭)21
圖 2-17	L.P. Kouwenhoven、A.T.Johnson 等人的實驗元件結構圖,在F、1、2、C 等閘
	極外加負偏壓來形成一量子點, F-1 及 F-2 形成兩對 QPC, 電流 I 流動方向如
	箭頭所示,rf 訊號外加至閘極 1、2, 閘極 C 可以調變量子點內的量子點電位
	能【16】。
圖 2-18	(a) rf 震盪頻率為 10MHz 所量得的 I-V 特性曲線, 顯示出電流平台, 其平台對
	應在 ef 的整數倍 (點線所示, f 為 $10 \mathrm{MHz}$), 五條曲線對應不同的 V_{c} , 為了可
	應在 ef 的整數倍(點線所示, f 為 $10 MHz$),五條曲線對應不同的 V_c ,為了可以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance
	以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance
圖 2-19	以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance oscillation)vs V_c 。(b) rf 震盪頻率為 5 、 10 及 20 MHz 所量得的 I - V 特性曲線。
圖 2-19	以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance oscillation)vs V_c 。(b) rf 震盪頻率為 5 、 10 及 20 MHz 所量得的 I - V 特性曲線。點線表示 ef 的整數倍(f 為 10 MHz)。
圖 2-19	以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance oscillation)vs V_c 。(b) rf 震盪頻率為 5×10 及 20 MHz 所量得的 I - V 特性曲線。點線表示 ef 的整數倍(f 為 10 MHz)。
	以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance oscillation)vs V_c 。(b) rf 震盪頻率為 5 、10 及 20 MHz 所量得的 I - V 特性曲線。點線表示 ef 的整數倍(f 為 10 MHz)。
	以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance oscillation)vs V_c 。(b) rf 震盪頻率為 5 、 10 及 20 MHz 所量得的 I - V 特性曲線。點線表示 ef 的整數倍(f 為 10 MHz)。
	以清楚分析,將其垂直位移。上方插圖為庫侖電導震盪(Coulomb conductance oscillation)vs V_c 。(b) f 震盪頻率為 5 、 10 及 20 MHz 所量得的 I - V 特性曲線。點線表示 ef 的整數倍(f 為 10 MHz)。

	有一相位差的 AC 訊號並量測量子點兩邊的電位壓降。
圖2-22	(a) 在不同磁場下, V_{dot} 隨著相位變化量得的曲線。點為實驗上量測的結果,
	虚線為 $V_{dot} = A \sin \phi + A_0$ 擬和的結果。 (b) 抽運電流的振幅(amplitude)跟頻率
	的關係圖,抽運電流的振幅 $\sigma(A)$ 跟抽運的頻率呈現線性關係 (linear),其斜率
	約40nV/MHz【6】
圖2-23	(a) $\sigma(A_0)$ 、 A_{ac} 的關係圖,點為量測數據,當 A_{ac} 小於 $80 \mathrm{mV}$, $\sigma(A_0)$ 、 A_{ac} 的關
	係符合 $\sigma(A_0)$ $\propto A_{ac}^2$, 虛線為擬和曲線;當 A_{ac} 漸大,大於 80 m V 時, $\sigma(A_0)$ 、 A_{ac} 的
	關係漸漸傾向 $\sigma(A_0)$ \propto $A_{ac}^{1/2}$, $\sigma(A_0)$ \propto A_{ac} 的擬和曲線為實線;點線為 $\sigma(A_0)$ \propto $A_{ac}^{1/2}$ 的
	擬和曲線。右下插圖顯示當 A_{ac} 變大時 $(260 \mathrm{mV})$, V_{dot} 跟 ϕ 便不是正弦曲線的關
	係,但在 $\phi=\pi$ 時, V_{dot} 依然 $=0$ 。 (b) $\sigma(A_0)$ 跟溫度 $ ext{T}$ 的關係,虛線為 $ ext{power law}$
	$\sigma(A_0)$ = $0.2T^{-0.9}$ 所擬和,在高溫時(1 K- 5.5 K), $\sigma(A_0)$ 可以符合power law,但小
	於 1 K時, $\sigma(A_0)$ 漸漸不符合power law,而慢慢趨於飽和狀態【 6 】。
圖 3-1	平台結構示意圖,此圖為光學顯微鏡下所拍攝之照片,中間矩形區域為平台結
	構,平台寬度約為 200μm,方形為接點平台。A 為主要部分,但為配合量測需
	要,同時預留與平台連通的歐姆接點區,為標示 B 的區域, C 為未連通的金屬
	閘極接點區。3 (
圖 3-2	金屬閘極,閘極線寬約為 3.5µm,四個金屬原點為定位點,在做電子束微影時:
	用來對準用。
圖 3-3 ((a)(b) (a)為未改變設計圖形時的電子顯微鏡下的圖像,sg2、sg3 原應相距
	0.1μm,由於靠近的部分較多,增加近接效應的影響,以致失敗率提高,且也影
	響到 sg4 的形狀。(b) 為改過後的圖形, sg1、sg2 相距 0.1μm, 但靠近的部分較
	少,良率也因此有所增加。32
圖 3-4	(a)(b) 串聯分離閘極結構的影像圖分別為電子顯微鏡下 21k 及 4.2k 放大倍
	ـــ

邑	3-5	(a)(b)(c) (a)為串聯閘極整體的電子顯微鏡影像圖 (b)為左半邊分離閘	1
		極的放大圖,各閘極線寬約為 $0.4 \mu m$,通道寬度約 $0.4 \mu m$ 。(c)為右邊單獨一對	ţ
		的分離閘極, sg5和 sg6 相距約 15μm。	3
圖	3-6	分離閘極的電子顯微鏡圖像。四個十字為後續電子束微影所用來對準的	
		對準點。	4
圖	3-7	絕緣層之電子顯微鏡照片。圖中黑色部份即為絕緣層,由於絕緣層無法反射	
		二次電子束,因此在電子顯微鏡下所看到的圖像是無訊號的而呈現黑色。35	5
圖	3-8	(a)(b) (a)指狀閘極的電子顯微鏡影像,放大倍率 8.5k。(b)指狀閘極,閘	j
		極線寬約 50-70nm, 間距約 120nm。	6
圖	3-9	跨線閘極的電子顯微鏡照片。	7
置	3-10	熱蒸鍍機示意圖。44	4
		熱退火裝置示意圖。	
圖	3-12	³ He 低溫系統結構圖。 47	7
圖	3-13	(a): 雨點量測法。(b)四點量測法。	9
圖	3-14	· 漏電流檢測電路圖。(a) 閘極加正偏壓,(b) 閘極加負偏壓。R _s 代表樣品的	J
		電阻值。	Э
圖	3-15	定電流源的量測架構示意圖。5	1
置	3-16	定電壓源量測電路圖。52	2
置	3-17	低頻 AC 訊號耦合一高頻 AC 訊號示意圖。兩高頻訊號為同頻率及振幅但有一	-
		相位差φ。52	2
置	3-18	高頻訊號產生之儀器配接圖。53	3
置	3-19	AC 抽運電流量測示意圖。加一固定負偏壓在分離閘極上使窄通道寬度固定,	
		兩支指狀閘極加一固定頻率但有一相位差的 AC 訊號。54	4
置	4-1	各元件的電子顯微鏡影像。(a)串聯分離閘極 I,線寬 0.5μm,閘極間距 0.4μm。	0
		(b) 雙層分離閘極,線寬 $0.5\mu m$, 閘極間距 $0.3\mu m$ 。(c) 串聯分離閘極 II ,	
		線 寬 0.4um, 閘極間距 0.4um。	5

回 4-2	保印細號 J-10 的分離用性 A-D 川里 則到的 U-V 回。 母一保 曲 綠代衣一到分離
	閘極所量得的結果,可以清楚的看見量子化電導的現象,即 G 為 $2e^2/h$ 的整數
	倍。57
圖 4-3	樣品編號 5-98 的分離閘極 E 所量測到的 G - V 圖,扣除串聯電阻約 60Ω 。分離
	閘極的線寬約為 $0.5 \mu m$,閘極間距 $0.3 \mu m$,可以清楚看到三個量子化電導平
	台。58
圖 4-4	樣品編號 5-98 之分離閘極 F 所量 G - V 圖,扣除串聯電阻約 200Ω 。樣品線寬
	0.4μm, 間距 0.4μm。
圖 4-5	雙層分離閘極第二次降溫所量得不同溫度下的 $G-V$ 圖。曲線作了 x 方向的平移
	(offset),以方便比較。隨著溫度的升高,量子化電導的現象漸不明顯。但 0.7 結
	構隨著溫度升高而更明顯。61
圖 4-6	雙層分離閘極第三次降溫下所量得的不同溫度之 $G-V$ 圖。量測溫度從
	0.27K-6.8K,為了使數據方便分析,曲線作x方向平移。再次驗證出隨溫度升高,
	平台結構漸不明顯,且可以發現,當平台結構消失時,0.7結構依然存在
	[11],
圖 4-7	(a)(b)(c) 不同串聯形式的分離閘極電子顯微鏡影像。 (a) 樣品編號 5-70
	所製作的分離閘極,每對閘極相距約 $20\mu m$,閘極線寬 $0.5\mu m$,間距 $0.4\mu m$ 。(b)
	樣品編號 5-70 製作的串聯形式分離閘極其中 $L_{sg2\text{-}sg3}$:1.0μm, $L_{sg3\text{-}sg4}$:0.8μm,
	$L_{sg4\text{-}sg5}$:1.1μm。(c) 為以樣品編號 5-98 所製作的串聯形式分離閘極, $L_{sg1\text{-}sg2}$:
	$0.5 \mu \text{m}, L_{\text{sg2-sg3}} : 0.9 \mu \text{m}, L_{\text{sg3-sg4}} : 0.7 \mu \text{m}, L_{\text{sg4-sg5}} : 1.1 \mu \text{m} $
圖 4-8	串連QPC量測示意圖。外加負偏壓V2固定QPC2在特定的次能帶上,量測QPC1
	的 <i>G-V</i> 曲線。65
圖 4-9	樣品 5-70,L 相距 $0.8\mu m$ 所量到的串聯 QPC G - V 圖。
	右圖:未扣掉 QPC2 電阻值的 $G ext{-}V$ 曲線, $G ext{=}I/R_{12}$ 。以負偏壓固定 QPC2 在不同
	的特定次能带上(n從0.9到6)。
	左圖:扣掉 QPC2 所貢獻電阻值後的 $G-V$ 曲線。 $G=1/(1/G-1/G_2)$,曲線有經過 X

;	方向平移以利比較。67
圖 4-10	樣品 $5-70$, L 相距 $2.9\mu m$ 所量到的串聯 $QPCG-V$ 圖。
	右圖:未扣掉 QPC2 電阻值的 $G ext{-}V$ 曲線, $G ext{=}1/R_{12}$ 。以負偏壓固定 QPC2 在不
	同的特定次能帶上(n從0.8到5)。
	左圖:扣掉QPC2所貢獻電阻值後的 $G-V$ 曲線, $G=1(1/G-1/G_2)$ 。
圖 4-11	樣品 570 , \mathbb{L} 相距約 $20\mu m$ 所量到的串聯 $\mathbb{QPC}GV$ 圖。
	右圖:未扣掉 QPC2 電阻值的 $G ext{-}V$ 曲線, $G ext{=}1/R_{12}$ 。以負偏壓固定 QPC2 在不
	同的特定次能帶上(n從0.7到13)。
	左圖:扣掉 QPC2 所貢獻電阻值後的 $G ext{-}V$ 曲線, $G ext{=}1/(1/G ext{-}1/G_2)$ 。曲線經過平
	移已方便比較,可以清楚看出 QPC2 幾乎不影響 QPC1,即使 QPC2的n值限制
	在<1的地方,QPC1依然有平台結構。69
圖 4-12	固定 $N=2$,不同距離 (L) 下 $QPC1$ 的 $G-V$ 曲線圖。由圖可以看出,隨著 L 變
	大,電子傳輸屬於歐姆性質;當L距離近時,電子是屬於絕熱傳輸。70
圖 4-13	固定 $N=2$,不同距離 (L) 下 $QPC1$ 的 $G-V$ 曲線圖。當 QPC 距離近且其中一對
	的n值限制在<1的地方時,此時量子化電導便不存在。70
圖 4-14	雙層分離閘極電子顯微鏡影像。分離閘極跟指狀閘極中間隔一層絕緣層,厚度
	約 800-900Å,分離閘極的線寬約 $0.5 \mu m$,中間間距 $0.3 \mu m$ 。指狀閘極線寬約 60
	nm, 兩支指狀閘極間距約 0.1μm。71
圖 4-15	分離閘極與指狀閘極外加負偏壓之示意圖。分離閘極為固定負偏壓,指狀閘極
	FG1 負偏壓逐漸增加,漸將通道封閉,虛線跟實線分別表示分離閘極跟指狀閘
	極的限制位能形式。電流流向為x方向。72
圖 4-16	固定分離閘極負偏壓,使窄通道存在兩個次能帶 (n=2),分別對指狀閘極
	(Fg1&Fg2)增加負偏壓,如預期的,可以看到兩個平台結構。73
圖 4-17	固定樣品電阻值在 $4.4k\Omega$,不同頻率下,量得的 V_{DC} - ϕ 關係圖,頻率範圍從
	2.5MHz 到 12MHz。
圖 4-18	抽運強度的標準差 $\sigma(A_0)$ 跟頻率的關係圖。樣品電阻值固定在 $4.4~\mathrm{k}\Omega$ $(n=3)$,

	$V_{\mathrm{p.p}}$ =40m V ,紅線為擬和線,抽運強度的標準差跟頻率為 $\sigma(A_{_0})$ $\propto f^{4}$ 。	75
圖 4-19	固定樣品電阻值在 $8.6 \mathrm{k}\Omega$ ($n=1.5$),不同頻率下,量得的 V_{DC} - ϕ 關係圖。頻	頁
	率範圍從 5MHz 到 12MHz,可以發現, V_{DC} 跟相位震盪成正弦曲線的關係,	隨
	著頻率越高,V _{DC} 越大。	76
圖 4-20	抽運強度的標準差 $\sigma(A_0)$ 跟頻率的關係圖。(a) 樣品電阻值固定在 $4.4~\mathrm{k}\Omega$,	
	$V_{p,p}$ =40mV (b)樣品電阻值固定在 8.6 k Ω (n = 1.5), $V_{p,p}$ =40m V_{\circ}	76
圖 4-21	樣品電阻固定在 $4.4 \text{ k}\Omega$ 以及 $8.6 \text{k}\Omega$ 時的標準差 $\sigma(A_0)(uV)$ 跟頻率的關係圖。	77

表目錄

表 2-1 Umansky 團隊所提供的樣品,在我們實驗室所量得的樣品特徵值。…………....7

