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異向性超導體之渦旋物質的熱力學性質
---Ginzburg - Landau理論

學生：林佩真      指導教授：儒森斯坦

國立交通大學電子物理學系博士班

中文摘要

本論文主旨要探討在熱微擾下二類超導體在大磁場下的物理性質，以增廣超導應用上的知識。主

要研究的材料是針對高溫超導和新的非傳統超導，此類材料在空間上的異向性很強，強烈的影響

到費米面的不對偁性，使得材料在超導態的物理性質與傳統超導體有很大的不同。在磁場下超導

所形成的奈米級的『渦旋物質』，它們可以大小彼此間的影響力是可以由調變溫度和磁場所控

制，此外它們的活動深深影響在臨界區的物理現象。超導態的相變屬於二類相變的範疇, 因此我

們採用 Ginzburg – Landau 理論作為基本模型，根據不同的系統加以變化，並以統計力學的技巧考

慮高溫效應和雜質的影響在一項性強的材料下的物理性質。

材料在空間異相性可以分為ｘｙ平面上的異相性和ｚ軸上層狀結構。在ｘｙ平面上的異相性我們

探討了四方長柱形底材的渦旋物質之結構相變。根據我們的計算發現可以藉由調變磁場強度控制

渦旋物質結構使其產生由菱形到矩形的相變。在此研究中我們分別考慮了純系統和無序系統下對

此結構相變的影響，結果顯示雜質影響下原本為第二類相變結構相變成為第一類相變，同時雜質

也影響了結構相變曲線的溫度相依性等其他現象。

在研究ｚ軸上層狀結構我們探討此異性相對超導反磁性的影響。所採用的模型有 Laerence-

Doniach 模型和準二維的 Ginzburg – Landau 模型。一般勻稱的材料在 Hc2(T)附近的強磁場區裡

物理量在不同磁場下的溫度特性曲線會有最低 Landau 能級的 scaling 行為,我們發現底材層狀結

構和在準二維系統強大的熱擾動皆會破壞這個 scaling 行為,尤其在臨界曲線附近一般常用的最

低 Landau 能級的近似法無法使用描述具有強熱效應的準二維系統。我們將理論的結果與很多實

驗比照得到很好的應證。
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Ginzburg-Landau theory—The thermodynamic properties of the anisotropic 
superconductors

Student：Lin, Pei-Jen Advisors：Prof. Rosenstein, B

Department of Electrophysics
National Chiao Tung University

ABSTRACT

Vortex  matter  plays  an  important  role  in  superconductivity  state  especially  for  high-Tc  cuprate 
superconductors with layered structure. For an homogeneous system, the isotropic repelled vortices 
form the Abrikosov lattice. It was first proposed by Abrikosov for temperatures close to Tc, and then it 
was extended to all temperatures [56]. These theories ignore the fluctuations of the order parameter, 
called  mean-filed  theory.  It  is  a  very  good  approximation  for  the  conventional  superconductors. 
However, under fluctuations influence at high temperature, the motions of vortices are responsible for 
the thermodynamic properties and transport properties of systems especially for those unconventional 
superconductors due to it's strong anisotropic magnetic properties.

The most efficient way to study the mesoscopic phenomena is the effective Ginzburg-Landau (GL) 
functional. Unfortunately, because of the nonlinear term, even having the effective functional one can 
hardly calculate the free energy exactly.  It is a typical  problem for the critical phenomena. Lowest 
Landau level approximation (LLL) is a common way to simplify the question and its practical region is 
valid all the way down to H = Hc2(T)/13 [89]. The LLL degeneracy results in a high field scaling was 
observed in many experiments. For various physical quantities (static quantities such as magnetization 
curves, specific heat etc. and dynamic quantities such as electrical conductivity etc.) as function of 
temperature will collapse to a scaling function for various fields. However, recent experiments show 
the failure of high field scaling behavior and the GL model is under examination. To understand them, 
in this thesis, we consider two cases in liquid phase: For strongly quasi 2D system, higher landau levels 
contribution is taken into account. For the layered superconductors, the coupling between layers which 
changes  the dimensionality  of  the  system is  considered.  Our results  show a  good agreement  with 
several experiments.

iv



In the second part of this dissertation, the structural transition of vortex solid state is discussed. For a 4-
fold symmetric system, it transpires that the coupling between magnetic flux and underlying crystal 
lattice influences the vortex lattice configuration in a complicate way. The distortion of vortex lattice 
from hexagonal lattice to square lattice depends on an external magnetic field which enhances the 
effect of anisotropy and temperature. At a sufficient high field, the configuration is a perfect square 
lattice.

Temperature dependency of the structural phase transition is under debate. Experiments shows that 
even for small Gi materials, the structural phase transition has a strong temperature dependency which 
is inconsistent with theoretical prediction base on the thermal fluctuations influences. It is found that 
quenched disorder is responsible for the departure from the mean field result in clean sample. Thermal 
fluctuations merely smear the anisotropy effect at the vicinity of its melting line.
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Chapter 1

Introduction

A two steps transition from the superconducting to the normal state with two critical

fields was first observed in the magnetization of superconducting alloys by De Haas and

Casimir-Jonker back in 1935 [2]. It was originally “explained away” by inhomogeneity of

their samples. Correct explanation proposed on 1957 when Abrikosov predicted theoret-

ically the existence of type II superconductors that magnetic field can penetrate into a

superconducting material [4]. Each “individual”magnetic flux is quantized by surround-

ing supercurrent thus to form a vortex. Abrikosov also suggested a periodic magnetic

field distribution, transverse to the applied field, occurs near the critical region of super-

conducting -normal transition. Due to this structure, the mixed state is sometimes called

“the vortex lattice phase”. The existence of the vortex lattice was not widely accepted at

that time. In 1964, at the suggestion of De Gennes & Matricon, Cribier, Jacrot, Rao and

Farnoux performed the first experiment in which the triangular vortex configuration in a

single crystal was observed by neutron scattering [11]. At different magnetic field H and

temperature T , multitude of vortex lattice configurations were observed in Nb which has

a simple cubic underlying atomic crystalline structure. All the vortex lattices were locked

in a certain crystal direction [13]. Theoretically, the energy difference between various

lattices is very small. For example, it amounts to just 2% between the square and the tri-

angular lattices. In real substances, the crystalline symmetry can make the square lattice

more favorable. In 1966, Neumann and Tewordt proposed to incorporate nonlocal effects
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by including higher order derivatives terms in the general GL model which reflect the

material anisotropies. Since in original GL or London model, to incorporate anisotropy

terms is via local effective mass tensor, m. And Nb has cubic crystalline atomic struc-

ture whose m is isotropic, thus the nonlocal effect is important [12]. In the new class of

heavy fermion and cuprate superconductors, one would expect even richer behaviors of

vortex configuration as these materials exhibit highly anisotropic electronic structures

and order parameters with unconventional symmetries involving nodes in superconduct-

ing gap. Microscopically, the Fermi surface anisotropy, anisotropy of the effective mass,

and asymmetry in the superconducting gap remove the degeneracy of vortex lattice ori-

entation with respect to atomic lattice and also other lattice configurations will appear.

Renewed interest in the vortex configurations is due to experimental observations of the

rhombic-to-square lattice transition in high-κ materials in s-wave superconductors, such

as Boracabides (RE = Er, Y, Lu)Ni2B2C [14], V3Si [15] and Nb [13], and in d-wave

high Tc superconductors, such as La2−xSrxCuO4 [16] and Y Ba2Cu3O7[18] , and in re-

cently discovered d-wave heavy fermion superconductor such as CeCoIn5[19]. Roughly

speaking, for a system with a four-fold symmetry, magnetic field will enhance the cou-

pling with underlying crystal, therefore, square vortex lattice appears at higher magnetic

fields, compare with the magnetic fields where triangular lattices were observed. The

current puzzling issue is whether the temperature dependence of the structural phase

transition (SPT) line is a consequence of thermal fluctuations of vortex lattice or not.

This contrasts with the situation in low-Tc superconductors, such as Boracabides etc.

in which the thermal fluctuation influence is negligible. In the present thesis, I studied

how both the thermal fluctuation and the quenched disorder influence the structural

phase transitions in the vortex lattice based on the extension of the GL model for 4-fold

symmetric system[22][26]. Unlike the existing theoretical interpretations[23][24] [20], we

proposed that quenched disorder dominates the temperature dependence of SPT tran-

sition. Near the mean field SPT line, while having a square lattice structure at low

temperatures, rhombic lattice is restored at a higher temperature region in the vicinity

of Hc2 (T )[21][25]. In addition to the in-plane anisotropy which results in the struc-
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tural phase transition in vortex solid state, the anisotropy in c-direction dramatically

enhances the thermal fluctuations in the presence of magnetic field at high temperatures.

It is typical for high-Tc layered superconductors that thermal fluctuations change the

morphology of vortex matter. The intrinsic properties of the high-Tc superconductor

which enhanced fluctuations of order parameter are (a) the high-κ , the ratio between

coherence length and magnetic penetration depth, and (b) the large effective distance

(or weak coupling) between superconducting layers and (c) high critical temperature Tc

and (d) high critical field Hc2. A widely accepted way to characterize the thermal fluctu-

ations influence of a material is using a dimensionless quantity Gi (see section 1.3). Due

to the relatively large Gi of high-Tc layered superconductor (compare to conventional

superconductor), an additional critical scaling behavior which is very different from the

ordinary universality of critical phenomena arise from thermal fluctuations. In 1991,

the magnetization and resistivity in Y Ba2Cu3O7 by Welp et al [28] reported scaling

behaviors in the variable of (T − Tc (H)) / (TH)2/3 around the critical temperature in

the vicinity of the Hc2 (T ) . The temperature dependent physical quantities of various

magnetic fields collapse into a single scaling function (see Fig. 3.4). The scaling func-

tion is universal for various anisotropy 3D materials. Li and Suenaga noticed that the

magnetization of highly anisotropic Bi2Sr2Ca2Cu3O10 crystals can be described by the

2D version of the scaling function in the variable (T − Tc (H)) / (TH)1/2 [29]. Due to the

scaling behavior, there exist a crossing point (T ∗, H∗) where T dependent physical quan-

tity curves, O (T,H) , of various H (or T ) interact at the point for a given dimension.

The fixed point characterize the dimensionality of the system. The scaling called Lowest

Landau level (LLL) scaling is due to the situation that the fluctuations near Hc2 (T )

can be represented in terms of the GL field theory on a degenerate manifold spanned

by the LLL for Cooper pairs. The LLL scaling is formally valid in a wide range of the

H − T parameters space (see section 2.3 for details). Therefore, LLL approximation

is a general adopted approximation to simplified the nonlinear GL theory[48, 89, 83].

However, when the interaction term in the GL theory is larger then the cyclotron gap

of Cooper pairs and the fluctuations from excited Landau levels become significant. For
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layered materials such as LaSCO [32], HgBCCO[31] and underdoped Y BCO[86], while

the coherence length ξc (T ) is comparable to interlayer spacing d at certain temperature

near Hc2 (T ), the change of dimensionality of the system results in the breaking of the

general LLL scaling. Namely, the crossing point of the magnetization curves can ”moves”

from its 2D to 3D position while approaching Hc2 (T ) from the superconducting phase.

In 2000, underdoped LaSCO experiment by Huh shows the motion of crossing points

in the opposite directions to that predicted theoretically and eventually it exceed Tc

[32]. We mathematically define the intersection point and study its motion base on a

layered model, the LD model. It is shown that the intersection point always occurs

below Tc [36]. And the theory is in agreement with other recent experiments on layered

superconductors on HgBCCO[31] and LaSCO [32]. Recently experiments on strongly

anisotropic quasi-2D material BSCCO done by Ong et al. on 2005 provided a “new”

behavior of High-Tc superconductors[30], in which the data has been found to be in dis-

agreement with the theory based on the thermal fluctuations scenario. In this study, we

proposed that the anomalous behavior is due to the thermal fluctuations from excited

Landau levels in which we take into account the contribution from all Landau levels

and use resummation technique to obtain the theoretical curves. In the following, the

basic idea and the current understanding of the vortex matter in type II superconductor

are discussed in this chapter. The second chapter will discuss the various modifications

of homogeneous GL model for particular materials. In section 2.3, the valid region of

LLL approximation is discussed. In section 2.4, an efficient approach, the optimization

variational approach, and a resummation technique, a Borel-Pade approximation, are

introduced and the convergency of the series is discussed. In section 2.5 the disorder

model which will be used in SPT is discussed. The fluctuations influence of different di-

mensionality high-Tc superconductors are presented in Chapter 3. The structural phase

transition will be discussed in Chapter 4. As a result I can state that the “mystery” part

at the critical regime of high-Tc superconductivity can be understood as the thermal

fluctuations of order parameter.
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1.1 Superconductivity

Superconductivity was first discovered in 1911 by H. Kamerlingh Onnes in Leiden [1]. A

few years after he had first liquefied helium and reach temperatures of a few degrees of

Kelvin, he observed that the electrical resistance of various metals such as mercury, lead,

and tin disappeared completely in a small temperature range at a critical temperature,

Tc, which is characteristic of the material. This perfect conductivity is the first traditional

hallmark of superconductivity.

The next hallmark to be discovered was perfect diamagnetism, found in 1933 by

Meissner and Ochsenfeld [7]. They found that not only does magnetic field not enter

a superconducting sample, as might be explained by perfect conductivity, but also that

a field in an originally normal sample is expelled as the sample is cooled through Tc.

The existence of such a reversible Meissner effect implies that superconductivity will be

destroyed by a magnetic field above certain critical field Hc. The new thermodynamic

state is call superconducting state. This critical field, named as thermodynamic critical

field, is determined by the difference in free energies of the superconducting state and

the normal state.

The disappearance of the electrical resistance below Tc, has numerous important ap-

plications. Since it allows the existence of non-decaying electric currents, supercurrent,

stay permanently inside the material. It makes possible the production of many im-

portant devices such as extremely powerful electromagnets, energy reservoirs, and much

more. However, the supercurrent density allowed to flow through a sample is limited by

a critical value Jc, which is an upper limit of the current consumption of these devices

and, therefore, on their maximum output power.

Various theories were suggested in order to describe and explain superconductivity.

In 1935 F. and H. London [5][6] proposed a phenomenological theory based on clas-

sical Maxwell electromagnetism, which was able to describe the basic electromagnetic

properties of a homogeneous superconductor. The London theory and its future gen-

eralizations [10] introduced two important scales: the concepts of correlation length, ξ,

and penetration depth, λ. Those two parameter characterize many physical properties

5



of a system.

Figure 1.1: The H-T phase diagram of Type I and Type II superconductors

Even though the two quantities are both material and temperature-dependent, their

quotient is effectively temperature-independent and can be considered as a material

characteristic. The new dimensionless quantity is called the Ginzburg-Landau parameter

and is denoted by κ = λ/ξ. As was shown by Abrikosov [4], two types of superconductors

exist, differing by the value of κ and behaving differently in the presence of a magnetic

field. Superconductors with κ < 1/
√

2 are called Type-I, and those with κ > 1/
√

2 are

called Type-II. The values 1/
√

2 is an exact solution where the interface energy( between

superconductivity and normal state) vanished.

Type-I superconductors can exist in one of two thermodynamically stable states -

either in the normal, or in the superconducting state. The superconducting state is

energetically favorable at T < Tc and H < Hc. Hc and Tc are mutually dependent,

see Fig. 1.1. Applying an external magnetic field to the system turns on the surface

supercurrents, which screen the field from the interior of the superconductor. It does

not allow external magnetic field to penetrate deeper than λ. This phenomenon is

called the Meissner effect [7], and the whole state is sometimes called the Meissner

state. In this state the material has perfect diamagnetism The magnetization defined as

4πM = B (r) −H( where B = 0 in Meissner state) is negative and proportional to up

to Hc. In idea sample, it has a reversible hysteresis curve.
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When the external magnetic field approaches Hc and the screening surface supercur-

rents approach Jc (Hc and Jc are therefore mutually dependent), the superconducting

state is no longer energetically favorable, and a second order phase transition into the

normal state takes place. The opposite process is possible as well. The quantity H2
c /8π

is the condensation energy density of the system. It should be emphasized that this sce-

nario is exact only for the case of an infinite cylinder, while arbitrary geometry Type-I

superconductors transform into an intermediate state [50, 51], consisting of large super-

conducting and normal domains separated by domain walls.

Unlike Type-I, Type-II superconductors have an extra thermodynamically stable

state - the mixed state [4], in which the external magnetic field partially penetrates

the bulk of the superconductor, locally destroying superconductivity. In this case two

critical magnetic fields exist,Hc1 andHc2 (see Fig. 1.1). Hc1 is the lower critical magnetic

field, at which the magnetic field starts penetrating into the bulk of the superconductor

and superconductivity begins to decline, and Hc2 is the upper critical field, at which the

magnetic field fills the whole sample, i.e. superconductivity is destroyed while the normal

metallic state is recovered . The Hc1 is mainly determined by the London penetration

depth λ, which is the length scale determining the electromagnetic response of the

superconductor. From the London equation set, one got Hc1 = (Φ0/4πλ
2) log (κ) . The

upper critical field Hc2 is determined by the coherence length ξ of superconductor, which

determines the spatial response of the macroscopic field Ψ. The relation between Hc2

and ξ are given by Hc2 = Φ0/2πξ
2, where Φ0 is a fluxon. The transition to normal state

is of second order.

The differences in the behavior of Type-I and Type-II superconductors can be ex-

plained if one examines the transitional energy between the normal and the supercon-

ducting domains, which is positive in Type-I and negative in Type-II superconductors.

In this study, we have interest on physics of the mixed state.

In the mixed state, the penetration of the magnetic flux into the superconductor

takes place in the form of long thin flux lines, called Abrikosov vortices or fluxons (see

Fig.1.2). At the center of each vortex a normal core exists, bearing the magnetic flux

7



Figure 1.2: The order parameter and the magnetic field profiles of a single Abrikosov

vortex

created by supercurrents moving around the core. The characteristic radius of the core,

i.e., the radius at which the order parameter decay from its maximal value to zero is ξ,

while the magnetic field and the supercurrents, which surround the core, spread as far

as λ from it. The amount of magnetic flux Φ carried by each vortex is quantized and

equal to an integer number of unit quanta Φ0 = hc/2e = 2.07 · 10−7 (G · cm2) [61]. For

a single vortex, with magnetic field, H, apply to z direction, the induced magnetic field

B (r) =
Φ0

2πλ2
K0

( |r|
λ

)

where K0 is Hankel function has the following properties:

K0

( r
λ

)
≈





log (κ) , r ≤ ξ

− log (r/λ) , ξ ≪ r ≪ λ
(
π
2
λ
r

)1/2
e−r/λ , r ≫ λ

The core cutoff is introduced to prevent unphysical divergence of magnetic field.

Vortex interaction consists of two parts, electromagnetic interaction due to the Lorentz

force acting between the current loops, and interaction due to the gradient of the order

parameter in the vicinity of the core. The electromagnetic interaction between fluxons

and antifluxons (fluxons with an opposite direction of supercurrent and magnetic field)

is attractive, while the electromagnetic interaction between fluxons of the same sign

is repulsive. The cores interaction is always attractive but is usually neglected due to
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the fact that it decays over short distance compare to the electromagnetic interaction,

in extremely Type II superconductors (κ >> 1). Let’s look at a simplified model in

London limit where the validity is r ≫ ξ. Consider two parallel straight vortices , the

London equation is linear in magnetic field within range of its validity. The interaction

line energy density (Gibbs energy) between two straight vortices line which is defined as

∆g = g (x1,x2) − g (x1) − g (x2) where xi is the position of the core i is

∆g =
Φ2

0

8π2λ2
K0

( r
λ

)
.

The interaction force per unit length is

fforce = −dg
dr

=
Φ2

0

8π2λ2





r−1 , ξ ≪ r ≪ λ

1
2

(
π

2λr

)1/2
e−r/λ , r ≫ λ

.

One can see that the vortex repulsion is isotropic. In dense region, the vortex should

form the hexagonal Abrikosov lattice, which provides the maximal vortex spacing for a

given flux density B/Φ0. For interaction of curving vortices line please find the detail in

[99].

Figure 1.3: Profiles of correlation length ξ and penetration depth λ of Type-I (κ≪ 1) and

Type-II (κ ≫ 1) superconductors on a normal-superconducting interface the magnetic

field profiles of a single Abrikosov vortex
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1.2 Spontaneous Symmetry Breaking and Phase Tran-

sitions

Phase transitions [120] are usually described with an order parameter function, retain

a finite value at the ordered (non-symmetric) phase and vanish in the disordered (sym-

metric) phase. The order parameter depends on the system it describes, and bears the

symmetries of the ordered state. As an example, one can think of a conventional su-

perconductor, whose order parameter is a complex scalar having the U (1) symmetry,

which matches the local gauge invariance of superconductors (for detailed discussion of

the order parameter properties see discussion below).

There are two kinds of phase transitions, named the first order and the second order.

The difference between them is that during a first order phase transition the system

changes its state immediately rather than gradually, i.e., the order parameter is discon-

tinuous at the transition point. The liquid-gas transition is a typical example of such a

process where the density serves as an order parameter, and at the critical pressure there

is a sudden increase in the density even if the pressure changes slightly. This, however,

is not the case for the second order phase transition where various physical quantities

either vanish or diverge at the transition point continuously. The order parameter de-

clines smoothly as the system nears the transition point, while completely disappearing

at the point itself. In the critical region, the scale of correlation is unbounded, namely,

large scale correlation such as universality is observed. In the language of field theory,

one is approaching a zero mass theory. At such point the first derivative of the free

energy-like entropy, volume, magnetization, etc.-behave continuously. Note that is pos-

sible there is no change in symmetry at transition point. For example the critical point

of the gas-liquid transition involves no symmetry change at all.

Second order phase transitions can be modeled with a potential, proposed by Landau

[3]:

V = α |Ψ|2 +
β

2
|Ψ|4 (1.1)

where Ψ is the order parameter function anda and b′ are phenomenological parameters.
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Figure 1.4: The effective potential V (ϕ) describing second order phase transitions

Minimizing the potential one can find the values of |Ψ| corresponding to the vacuum

state (see Fig.1.4). Given b′ > 0 (a necessary condition for the existence of a minimum),

this potential has two modes differing by the sign of a. If a > 0 there is only one

minimum at |Ψ| = 0, and this mode corresponds to the disordered phase. However, if

a < 0 , the minimum is at |Ψ| =
√

|a| /b′, while |Ψ| = 0 turns into a maximum, and

this mode corresponds to the ordered phase. α is therefore a crucial parameter that

triggers the phase transition. The condensation energy is (αTc)
2 /2b′. It is temperature

dependent and has the following form at T ∼ Tc:

a(T ) ≃ αTc

(
T

Tc
− 1

)
(1.2)

As the temperature declines and passes through Tc the vacuum state of the system

changes, although it is possible that the new vacuum has a degeneracy. The type of this

degeneracy strongly depends on the properties of the order parameter in the ordered

phase. In a ferromagnet, for example, the order parameter is a real vector, namely the

vector of magnetization, but its energy, according to Eq. (1.1), is not affected by the

direction of magnetization, only by its magnitude. In 1D ferromagnets this situation

corresponds to a 2-fold degeneracy of the ordered state - the magnetization vector points

either up or down. The order parameter of a conventional superconductor is a complex

scalar. Looking at Eq. (1.1) one finds that the superconducting vacuum state is infinitely

degenerate, since the phase of order parameter does not appear in the potential and
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therefore does not affect the energy.

Abrikosov vortices is a kind of topological defect. The systems with a complex order

parameter are strings - 1D objects that are encircled by areas of different order parameter

phase in such a way that its total change around the string at every point of its length is

equal to 2πn, where n is an integer. The latter condition is required in order to ensure

that the order parameter is a single-valued function.

1.3 Thermal fluctuations in anisotropic/ disordered

superconductors

The main phenomenon determining the physics of the vortex lattice is thermal motion

of vortices about their equilibrium position. At high temperature thermal fluctuation

increase the amplitude of the vortices vibration. I first exemplify the qualitatively the

phenomenon using the London approximation limit, which is different from the so called

lowest Landau level approximation limit mainly employed in the following sections. An

isolated flux line acting as a stretched string can undergo both longitudinal or transverse

vibrations. At the region of parameter space in which vortices are densely packed the

vibrations are more localized along the length of the vortex core with numerous nearby

vortices participating in collective. The vortex motion strongly depends on the material

characteristics, impurities, external magnetic field and temperature.

A naive idea to estimate the influence of thermal fluctuation is via a characteristic

length LT of segment of the vortex associated the quantized flux energy to the thermal

energy. The energy UM of magnetic field in a region of volume V is given by

UM =
Φ2

0

8π

V

A2
,

where B = Φ0/A and A is the area of the unit cell of the vortex lattice. If this is equated

to the thermal energy kBT for a quantum flux, and if we write A2/V = 2πLT , we obtain

the characteristic length

LT =
Φ2

0

16π2kBT
=

1.79

T (Kelvin)
cm.

12



This is much larger than other characteristic lengths, such as ξ and λ, except in the case

of temperature extremely close to Tc both ξ and λ diverged as (Tc − T )−1. Therefore,

fluctuation can be expect to be small when at low temperature. In high temperature

cuprates several factors combine to enhance the effects of thermal fluctuations: (1) higher

transition temperature, (2) shorter coherence length ξ, (3) large magnetic penetration

length λ (4) quasi−2D− dimensionality, and (5) high anisotropy.

A proper fundamental material parameter describing the strength of thermal fluctu-

ations is the Ginzburg number Gi = (Tc/Fcon)
2 /2 [62], which is the ratio of the minimal

(T = 0) condensation energy Fcon = (H2
c /8π) ξcξ

2 within a coherence volume (ξcξ
2) and

the critical temperature Tc. It is a dimensionless quantity. For typical superconducting

metals Gi is very small (of order 10−6). It becomes significant for relatively isotropic

high Tc cuprates Y BCO (10−3) and even quite large for strongly anisotropic cuprates

BSCCO (up to Gi = .1 − .5).

Diroder of a sample originally comes from point defect, dislocation, oxygen vacncy,

grain boundary...etc.. It can change the local properties of the sample, sush as critical

temperature, the effective mass and coupling between vortices. A vortex will experience

a short range pinning force that hold the core of a vortex at a defect. The pinning

energies have been reported in the range of hunreds of meV . When sufficient pinning

center are present, the spatial structure of vortices will reflect the distribution of pinning

center and the long-range order of vortex lattice is disturbed. It will result in glassy state.

Disorder dramatically influence the vortex motion. Fig 1.5 shows the glass transi-

tion in the driven case. In the flux-flow regime, the driven lattice hits the defects and

pushes the vortex from the pinning centre. The onset motion of vortex is determined

by competition between driving forces, usually Lortz forces, and pinning force. In the

steady-state motion, the viscous force which result in dissipation are presense. In the

presense of thermal excitations, vortices can undergo thermal hopping between pinning

centers.

Theoretical study of those phenomena predict a complicate phase diagram of vortex

matter shown in Fig.1.6, which is more complicate then the mean field diagram for clean
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Figure 1.5: Diagram of Vortex Motion

idea sample. There are five main distinct phases: unpinned solid (solid), pinned solid

(Bragg glass), pinned liquid (vortex glass or amorphous solid), weakly pinned solid with

marginal glassy dynamics, and unpinned liquid (or simply liquid). With anisotropic

effect on a− b plane, the phase diagram will have additional complexity, the vortex solid

will encounter structural phase transition.

Melting of the vortex lattice happened when thermal agitation induces a wander-

ing of vortex filaments and leads to an entangled flux liquid phase. Pairs of flux lines

passing close to each other can be cut, exchanged, or reattached. Qualitatively, ac-

cording to Lindermann criterion, melting occurs when the root mean-square fluctuation

amplitude urms exceed the quantity ≈ 10−1s, where s is the average vortex separation

distance. Evidence of the first-order vortex-lattice melting transition is confirmed by

experiments in single crystals of Y Ba2Cu3Oy[44] [33][28][39], Bi2Sr2CaCu2Oy [94][34],

and La2−xSrxCuOy[40][41][42] and other high−Tc materials. The transition type be

determined by magnetization jumps [94], spikes in specific heat [33], SQUID[34] and

etc..

The order-disorder (ODO) transition is defined as the moment of the loss of the
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Figure 1.6: Phase diagram of vortex matter: The complixity of the phase diagram is

due to the influence of thermal fluctuations, disorder and anisotropy.

translation and rotation symmetry. The intensity of the first Bragg peak can be used as

an order parameter. The first order ODO line has two parts: the melting segment and

the“second magnetization peak”segment, separates the homogeneous and the crystalline

phases. The broken symmetry is not directly related to pinning, but the location of the

line is sensitive to the strength of disorder. Thermal fluctuations, on one hand side, make

quenched disorder less effective in destroying crystalline structure, thereby favoring solid,

but, on the other hand, they themselves destabilize vortex lattice. The low temperature

segment of the ODO line, the second peak line, is disorder dominated and weakly depends

on temperature.

The memory effect is one of characteristics in glass state. The history-dependent

property was observed by Müller at the beginning of the high-Tc era. The irreversibility

line is not very sensitive to the type and distribution of defects, although these defects

have a pronounced effect on the critical current density. Moreover, there are two dis-

tinguishable liquid phases (refers as liquid 1 and liquid 2) which are classified by its
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dynamic properties. This feature receives a natural explanation within the developed

description. The line separating two regimes coincides with the melting line of a clean

sample. The theoretical argument can be found in [47].
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Chapter 2

Mesoscopic description of

superconductor in magnetic field

A phenomenological description, typically valid near the transition temperature, was

originally proposed by the Ginzburg and Landau [3] to describe any second order transi-

tion. The remarkable success of GL theory is due to the long-range character of critical

fluctuations leading to universality of the critical properties at the vicinity of transi-

tion temperature. The effective theory can be derived from a microscopic one which

determines the limited number of coefficients of the GL. The GL model is by far more

efficient to study mesoscopic phenomena rather then a microscopic theory. The origi-

nally proposed GL model described a material which is homogeneous in all direction.

Microscopically it followed from assumptions of the spherical Fermi surface and isotropic

pairing potential. Most of the newly discovered type II superconductors addressed in

this work (like high Tc cuprates, borocarbides etc.) are far from being isotropic. The

symmetry of the underlying structure influences profoundly the mesoscopic behaviors.

Here we introduce various commonly used modifications of the GL model describing the

anisotropy.

Within the GL approach the free energy is expanded in order parameter up to a

quartic term in potential, namely becomes a φ4 type theory. As a nonlinear field theory

the model is still nontrivial and further simplifications and approximations are required.
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The most commonly used is the lowest Landau level approximation. We will show

that the bifurcation expansion on distance between the S-N phase transition line works

well down to H = Hc2(T )/13 which is used very far from transition line [89] . In the

last section, we will demonstrate an resummation technique, the Borel-Padé series, to

extract more physics from a expansion coefficients of a function of coupling. The factorial

growth of the power series is taken into account by means of Borel transformations. As

quotients of polynomials, the Padé approximate can describe functions with poles in

lowest order. And a sequence of Padé approximates, which converges outside the region

of power series, can be used to define an analytical continuation of the function outside

the converge region of a power series.

2.1 Landau Expansion of the Free Energy in homo-

geneous Superconductors

The GL theory has both quantum and phase-transitional properties. It describes su-

perconductivity as a gauge-invariant quantum phenomenon, and that its nucleation in

a normal domain can be treated as a second order phase transition from the disordered

(normal) to the ordered (superconducting) state. The basic feature of the theory is that

the change in the Gibbs free energy density functional between normal and supercon-

ducting states can be expanded in powers of the order parameter . Since the electrons

forming the Cooper pairs are charged particles, the electromagnetic vector potential A

must also be introduced. In the case of conventional superconductivity, this expansion

has the form

Fcond = Fs − Fn =
~

2

2m∗ |Dψ|
2 − a (T ) |ψ|2 +

1

2
b′ |ψ|4 +

1

8π
(∇× A)2 (2.1)

where Fn is the free energy of the normal state and D = ∇ − i e
∗

~c
A is the covariant

derivative, Bj ≡ (∇×−→
A )j is the magnetic induction. The magnetic energy term is also

present. m∗ and e∗ are the effective mass and charge of the Cooper pair, respectively; c is

the speed of light; and a (T ) = α (T − Tc) and b′ are the Ginzburg-Landau coefficients.
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All those coefficient can be obtained from a microscopic theory. The stability of the

superconducting state requires that b′ is always positive, while a (T ) is temperature

dependent and can be either positive (superconducting state) or negative (normal state),

as shown in the Introduction.

Varying the free energy functional with respect to ψ∗ and A and equating the vari-

ation to zero the two steady state Ginzburg-Landau equations are achieved:

a (T )ψ + b′ |ψ|2 ψ +
~

2

2m∗

(
−i∇− e∗

~c
A

)2

ψ = 0 (2.2)

c

4π
∇×∇× A ≡ Js = − ie

∗
~

2m∗ (Ψ∗∇Ψ − Ψ∇Ψ∗) − e∗2

2m∗c
|Ψ|2 A (2.3)

where Js is the supercurrent density or simplily Js = e∗~

m∗
|ψ|2

(
∇φ− e∗

~c
A
)
. It is clear that

in the absence of fields (Meissner state) these equations have a homogeneous solution

ψ =
√

|α| /β exp (iφ), where φ is constant. It is no longer the case in the mixed state.

While at the center of the vortex core the order parameter ψ vanishes, at distances

sufficiently far from it the absolute value of the order parameter is again constant |ψ| =
√

|α| /β, but not the phase.

Requiring the supercurrents to encircle the core (i.e., ∇ · Js = 0) and choosing a

gauge in which ∇ · A = 0, one obtains the following equation for the order parameter

phase: ∇2φ = 0. Making another requirement of azimuthal symmetry, this equation has

the following solution: φ = nϕ + ϕ0, where ϕ0 is a constant, ϕ is the azimuthal angle

and n is an integer, since φ (ϕ) = φ (ϕ+ 2π) is a periodic function. From this result the

quantization of magnetic flux in a superconductor is deduced:

Φ =

∮

C

A · dl +
4πλ2

c

∮

C

Js · dl = nΦ0 (2.4)

This phenomenon was first observed by Little and Parks [61] and confirmed by numerous

experiments [75].

The quantization of magnetic flux in superconductors imposes an important con-

straint - the topological charge conservation. The topological charge of the Abrikosov

vortex is defined as:

n =
Φ

Φ0

=
1

2π

∮

C

|ψ|2 ∇φ · dl (2.5)
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where the integration is performed over an arbitrary path that encircles the vortex and

lies infinitely far from its core. The topological charge conservation means that vortices

can appear and disappear only by crossing the domain boundaries or, alternatively by

vortex-antivortex pair production or annihilation.

The GL free energy has the property of local gauge invariance, which leaves the GL

equations invariant under the following simultaneous gauge transformations:

ψ → ψ exp(iχ), A → A +
~c

2e
∇χ, µ→ µ− ~

2e

∂

∂t
χ . (2.6)

One can see that these transformations do not affect the physical quantities, such as

the Cooper pair density |ψ|2, the magnetic induction B = ∇ × A or the supercurrent

density Js. In order to eliminate the additional degree of freedom, appearing because of

the local gauge invariance, Eqs.(2.2-2.3) must be accompanied by a gauge condition. In

the absence of applied electric field a gauge that eliminates the scalar potential is used,

demanding µ = 0 as well as ∇ · A = 0.

2.2 Landau Expansion of the Free Energy in

Anisotropic Superconductors

For isotropic superconductors, the GL model discussed in previous section is sufficient.

However, in real materials, even in conventional superconductor such as Nb [13], ex-

perimental evidence had shown complicate behaviors of vortex matter. The symmetries

of superconductors are strongly related to the crystallographic symmetry group of the

material, producing an anisotropy of the Fermi surface, and to the effective attraction

mechanism of Cooper pairing [69, 70]. Both of these are omitted from the Gor’kov

equations and so does the GL model as Eq.( 2.1).

All High−Tc superconductivity arises in a family of layered copper oxides that all fea-

ture weakly coupled square-planar sheets of CuO2 Fig. 2.1 which are separated by other

materials. According to the current understanding, it seems that most of the proper-

ties are determined by electrons moving within the copper-oxide planes. The remaining
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components play structural roles and provide screening and doping environments. It

may be considered as an experimental fact that the copper-oxide plane that determines

the Fermi surface and low-energy electronic properties.

Figure 2.1: Crystal structure of La2−xSrxCuO4+δ and the Lawrence - Doniach model.

The basic building block in Fig.2.1 is a perovskite structure consisting of the CuO6

octahedron seen in the centre of the unit cell, surrounded by eight La ions. The

CuO6octahedra are elongated, giving rise to a layered structure with quasi-two-dimensional

CuO2 sheets. In this particular cuprate, a rocksalt-structured layer is stacked in between

the perovskite cells, but there are many variations that give rise to different families of

high-temperature superconductors. In La2−xSrxCuO4+δ, Sr substitution for La, or the

addition of interstitial oxygen, changes the carrier concentration on the CuO2 planes,

drastically altering the electronic properties of this compound.

To reflect the fact of layered structure, the simplest model is to assume infinitesimally

thin superconducting layered which are coupled via order parameter tunneling , the

Josephson coupling, through insulating layers of thickness d. The modified GL model is

called Lawrence-Doniach (LD) free energy functional, FLD [119]:
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FLD =
∑

n

d

∫
d2r

[
~

2

2m∗
ab

∣∣∣∣
(
∇− i

e∗

~c
A⊥

)
ψn

∣∣∣∣
2

− a (T ) |ψn|2

+
b′

2
|ψn|4 +

~
2

2m∗
cd

2

∣∣∣∣ψn+1 exp

(
−i e

∗

~c
Az

)
− ψn

∣∣∣∣
2

+
(B − H)2

8π

]
. (2.7)

The order parameter ψn has discrete dependence on the index n in z direction and a

continuous dependence on x,y directions; the total vector potential A⊥ +Azk̂ is defined

at all points, where Az = (1/d)
∫∫ (n+1)d

ns
Azdz. The structure of this equation is similar

to GL energy with respect to the in-plane components while the interplane coupling is

seen on expanding the exponent to be the operator ∂z− i (e∗/~c)Az to the case of finite

differences. The LD model is a practical tool for layered materials such as LSCO.

Suppose the temperature dependent coherence length(ξc) is larger then the layered

distance (d), system can be regarded as a continuous 3D system but has anisotropy in

c direction. A commonly used phenomenological GL model is introducing an effective-

mass m∗. The asymmetry factor is defined by the ratio of effective mass

γ =
√
m∗
c/m

∗
ab. (2.8)

For conventional superconductor, Pb (γ = 1), NbSe2 (γ = 11) and unconventional super-

conductor, Y Ba3Cu3O6.92 (γ = 5) , Y Ba3Cu3O6.7 (γ = 13), La2−xSrxCuO4+δ (γ = 15)

and Bi2Sr2CaCu2O8+δ (γ = 70) . With the anisotropy in c direction, the coherence

length ξc (T ) is typically much smaller

ξ2
c (T ) =

~
2

2mcαTc (1 − T/Tc)
= ξ2

ab (T ) /γ2 (2.9)

while the corresponding penetration depth λc (T ) is larger:

λ2
c (T ) =

m∗
cc

2β

4πe∗2αTc (1 − T/Tc)
= λ2

ab (T ) γ2. (2.10)

In slightly anisotropic layered SC such as Y BCO-type, d≪ ξc ,system can be described

by the anisotropic 3D GL Model [119]. Its free energy functional has the form:

F3D =

∫
d3x

~
2

2mab

|Dψ|2 +
~

2

2mc

|∂zψ|2 + a (T ) |ψ|2 +
b′

2
|ψ|4 +

(B − H)2

8π
. (2.11)
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In extreme layered high-Tc materials such as Bi2Sr2CaCu2O8+δ-type, d ≫ ξc, system

can be regarded as qusi-2D system (since the tunneling between nearby CuO2-layered

are negligible) [119]. A commonly used 2D GL model has the form:

F2D =

∫
d2x

~
2

2mab

|Dψ|2 + a (T ) |ψ|2 +
b′

2
|ψ|4 +

(B − H)2

8π
. (2.12)

Now we will consider the system which breaks the in plane O(2) rotational symmetry.

It is an experimental fact that the for high Tc superconductors such as Y BCO has a

mixture of d-wave and s-wave components [38], newly discovered Sr2RuO4 [37] has

p-wave pairing and etc.. Experimentally evidences show those influences can result in

different configurations of vortex matter. In Y BCO both square and rhombic phases

exists [18] . In overdoped LaSCO, at low temperatures, the square and rhombic lattices

were observed in SANS experiments [16]. Asymmetry is not always related to the non s-

wave nature of pairing, it can strongly relate to the structure of the Fermi surface, which

is a consequence of the crystallographic symmetry group of the material. In borocarbides

(RE = Lu, Y,Er)Ni2B2C[14], Nb [13], and V3(Si) [15], square vortex lattice is observed

using techniques such as decoration, STM, SANS or µSR etc.

Taking in to account the coupling with underlying material from microscopic theories

is a formidable task. The current exist full microscopic models contain a large number

of unknown parameters and are rather cumbersome to work with numerically [106][27].

To study it in phenomenological approach, several ideas are proposed [20][22][26].

To include the in-plan anisotropy to GL model one need to take into account higher

order term. Since there is no quadratic in covariant derivative terms that break O(2).

In this study, we consider the material has fourfold (D4 ) symmetric. One can use four

derivative terms to modify the model. There are three such terms

∣∣(D2
x +D2

y

)
Ψ
∣∣2 , D2

zΨ
∗ (D2

x +D2
y

)
Ψ,
∣∣(D2

x −D2
y

)
Ψ
∣∣2 , (2.13)

but only the last term which breaks the O(2) is irrelevant. This term leads to anisotropic

shape of a vortex and an angle dependent vortex – vortex interaction thus the emergence

of lattices other than hexagonal, a symmetric rhombic lattices. One therefore can add
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the following gradient term for a in-plane 4-fold symmetric materail:

Fab−aniso = ηm
∣∣(D2

x −D2
y

)
Ψ
∣∣2 (2.14)

with dimensionless constant ηm characterizing the strength of the in-plan asymmetry.

Since the ultimate microscopic theory is not known as yet, the coefficient ηm is considered

as phenomenologically fixed parameters.

2.3 Applicability of Lowest Landau level approxima-

tion within the mean field approach

The most common additional assumption in most of theoretical studyies is the lowest

Landau level (LLL) approximation, namely, only the lowest Landau level (LLL) signif-

icantly contributes to physical quantities of interest [109, 107, 108, 48, 111, 112]. To

understand the valid region of the LLL approximation, we will discuss the higher Lan-

dau level correction to the free energy of superconducting state. Due to symmetries of

the problem leading to numerous cancellations the range of validity of the LLL approx-

imation in the mean field approach is much wider then a naive range but extends all

the way down to H = Hc2(T )/13. We will show that the contribution of higher Landau

levels is significantly smaller compared to LLL.

Now we discuss the solution of the Ginzburg-Landau equations obtained from Eq.

2.12 a perturbation method expend in ah, indicate as the distance near the mixed state

- normal phase transition line. This has been done before in Ref. [114] to the second

order and higher order by Li and Rosesntein [89]. Our starting point is the rescaled

free energy functional density Eq.(3.10). The expansion parameter is ahwhich is defined

in Eq.(3.9). Rewriting the quadratic part in terms of operator (“Hamiltonian” ) H ≡
−1

2
(D2 + b) whose spectrum starts from zero, the equation of motion is therefore

Hψ − ahψ + ψ|ψ|2 = 0 (2.15)

This equation is solved perturbatively in ah by assuming
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Φ = (ah)
1/2 [Φ0 + ahΦ1 + ...] (2.16)

It is convenient to represent Φ0,Φ1, ... in the basis of eigenfunctions of H, Hϕn = nbϕn,

normalized to unit ” Cooper pairs density”< |ϕN |2 >r≡
∫
cell

d2x|ϕN |2 b
2π

= 1, the inte-

gration go over a unit cell of the vortex lattice. Assuming hexagonal lattice symmetry,

one explicitly has

ϕN(x, y) =

√ √
2σ

2NN !

+∞∑

l=−∞
exp

[
iπρ(l2 − l)

]
exp

[
i
√

2πσly
]

HN

(
x√
b
−

√
2πσbl

)
× exp

[
−1

2

(
x√
b
−
√

2πσbl

)2
]
. (2.17)

with σ =
√

3/2 and ρ = 1/2. Function HN (x) is Hermite polynomials. Insert the Eq.(

2.16) to Eq.(2.15 ). To the order a
1/2
h , one get

HΦ0 = 0 (2.18)

and Φ0 is proportional to the Abrikosov vortex lattice solution ϕ0, namely Φ0 = g0
0ϕ0.

The general form expended in all Landau level for Φi is

Φi = gi0ϕ0 +
∞∑

N=1

giNϕN . (2.19)

Inserting into Eq.(2.15) to order a
3/2
h , one obtains

HΦ1 = g0ϕ0 − g0|g0|2ϕ0|ϕ0|2. (2.20)

Taking the inner product with ϕ0 one finds that

g0
0 =

1√
βA
, (2.21)

where the Abrikosov’s constant is the following average over primitive cell: βA ≡<
|ϕ0|4 >r≈ 1.159. Inner product with ϕN determines g0

N :

g0
N = − βN

nbβ
3/2
A

, (2.22)
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where βN ≡< |ϕ0|2ϕNϕ∗
0 >r . To fix the g1

0coefficient in Φ1, we need in addition also the

order a
5/2
h equation:

HΦ2 = Φ1 − (g0)
2(2Φ1|ϕ0|2 + Φ∗

1ϕ
2
0) (2.23)

Inner product with ϕ0 gives:

g1
0 =

3

2

∞∑

N=1

βN
2

Nbβ
5/2
A

. (2.24)

The mean field expression for the free energy to order a3
h can be obtained by inserting

the next correction Φ1 in Eq.(2.16 ) into Eq.(2.15) one obtains the free energy density:

Fmf

T
=

1

ω

(
− a2

h

2β
− a3

h

β3b

∞∑

N=1

βN
2

N

)
=

1

ω

(
−.43a2

h − .0078
a3
h

b

)
. (2.25)

Due to hexagonal symmetry of the vortex lattice [114], βN 6= 0 only when N = 6j, where

j ∈ N. For N = 6j it decreases very fast with j: β6 = −.2787, β12 = .0249. Because of

this the coefficient of the next to leading order is very small (additional factor of 6 in the

denominator). We might preliminarily conclude therefore that the perturbation theory

in ah works much better that might be naively anticipated H = Hc2(T )/13 and can be

used very far from transition line.

2.4 Optimized perturbation approach and the Bore-

Padé approximation

To solve the nonlinear problem Eq.(3.13) by field theory, we use optimized perturbation

approach (OPA) to obtain an converged series and then apply resummation technique

to extract more physics from the series. Resummation process we adopted here is a

Bore-Padé approximation [118].

OPA is first developed in field theory, one introduce an auxiliary parameter ε as

a variational parameter, then the free energy f can be interpolated as f = ε|ψ|2 +

α (f − ε|ψ|2). The artificial parameter α here is to generate a perturbation expansion by

expand the functional integral Z to order αn at α = 1. The nonperturbatively part is to
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optimize the free energy with respect to ε. To calculate the free energy feff = −ω0 logZ,

one starts from expanding the logarithm of the statistical sum Z in α,

Z =

∫∫
Dψ exp (−K) exp (−αV ) (2.26)

=

∫∫
Dψ

∞∑

i=0

(−αV )i

i!
exp (−K) .

For convenience in writing we defined f̃ as feff = ω0

V
f̃ . In OPA, we have f̃ ≡ f̃n +

O (αn+2) , the nth order of OPA, f̃n, is

f̃n = − log

∫∫
Dψ exp (−K) −

n+1∑

i=1

(−α)i

i!

〈
V i
〉
K
. (2.27)

where 〈...〉K denotes the sum of all the connected Feynman diagrams. The first two

order of f̃ as a function of ε are

f̃0 = 2

(
log

ε

4π2
+
aε
ε

+
1

ε2

)
, (2.28)

f̃1 = f̃0 −
1

ε4

(
18 + 8ε+ a2

εε
2
)
, (2.29)

where aε = aT − ε. The solution of nth order of OP denotes as εn is obtained from the

minimization equations,

(∂ε − ∂aε
) f̃n = 0, (2.30)

such that

fn = f̃n (εn) = min
[
f̃n (ε)

]
.

The feff series are calculated by several groups. The original paper by Thouless and

Ruggeri [110] reached 6th order; and expended to 13th order by Hu and MacDonald [115].

The free energy has the form

feff = 2 log
ε1

4π2
+ 2fn (x) + O

(
xn+1

)
, with (2.31)

fn (x) =
n∑

i=1

hix
i and x =

1

ε2
(2.32)

27



where ε =
(
aT +

√
a2
T − 4zn

)
/2. The coefficients hk can be found in [116] and zn can

be found in [85].The consecutive approximates are plotted on Fig.2.2. Dashed dotted

lines represent a optimized perturbation theory (denoted by the order numbers). One

can see clearly that the series are convergent with radius of convergence at aT = −5.

Figure 2.2: The free energy calculated using two different approximation schemes.

Dashed dotted lines represent a optimized perturbation theory (denoted by the order

numbers).

It is known that in the theory of critical phenomena one can extract more physical

results from a divergent series by resummation processes. Bore-Pad é approximation

is a good option. By applying Bore-Padé approximation to perturbation expansion at

“weak coupling” [118], an accurate description in the critical region is obtained, since

there exists a renormalization group flow from the weak coupling fixed point towards

the strongly couple one [117]. We use the following strategy: The factorial growth of

h (x) is taken into account by means of Borel transformations, then Pad é approximation

is used to approach the less divergent series. Observing that in our case the hk of the

asymptotic series growth factorial for large k, we divide each term in the expansion by

a factor k!, a less divergent series is obtained. It is so called Borel sum:

B (x) ≡
∞∑

k

Bkx
k, with Bk ≡ hk/k!. (2.33)

28



i hn zn−1

1 −2 −4

2 −1 −6

3 38
9

−12.239721181139888

4 −39 − 29
30

−7.508888400035477

5 471.39659451659446 −7.349933383279474

6 −6471.5625749551446 −14.152646217045422

7 101279.32784597063 −9.961364397930787

8 −1779798.7875947522 −9.174960576928443

9 34709019.614363678 −15.232548389083844

10 −744093435.66822231 −11.629924499110746

11 17399454123.559521 −10.8399817525306

12 −440863989257.28510 −15.9366927661989

13 12035432945204.531 −12.753308785106007

Figure 2.3: Coefficients hi and zi in 2D.

The Padé approximation for a series expansion B (x) =
∑k

i=0Bix
i +O

(
xk+1

)
up to the

order k is given by

[k, k − 1] ≡
k∑

i=0

aix
i

/
k−1∑

i=1

bix
i (2.34)

where ai and bi are chosen such that the series expansion of [k, k − 1] up to the order k

equals to the original series, B (x) = [k, k − 1] + O
(
xk+1

)
, or

k∑

i=0

Bix
i = [k, k − 1] . (2.35)

By doing the Borel transformation, the Borel sum , B (x), can be integrated to restore

f (x) ,

h (x) =

∫∫ ∞

0

dte−tB (xt) . (2.36)

The Bore-Padé series for different orders are shown in Fig. 2.2 with solid line denoted

by ”BP”plus the order number represent the [k, k−1] Borel - Pade series for k = 3, 4, 5.
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The k = 4 and k = 5 practically coincide on the scale of the plot. For k = 4 and k = 5,

the liquid energy converges to required precision (0.1%). The liquid energy extract by

BP approximation agrees with the optimized Gaussian expansion results [90] till its

radius of convergence at aT = −5.

2.5 Disorder

To describe the disorder (pinning) potential one adds a random component

αTc (1 − t)W (r) |ψ(r)|2

or

αTc (1 − t− b)W (r) |ψ(r)|2

to the GL functional. The first case is indicate the random pinning potential change the

local critical temperature; the later includes the a random effective mass due to defects

(in Lowest Landau level approximation). We assume that W (r) has a Gaussian random

distribution with variance,

W (r)W (r′) = nδ(3)(r − r′), (2.37)

n is related to the average number of pinning center per volume.The ensemble average

of a quantity O on all possible disorders is read as

〈O〉 =

∫
W
Oexp

[
−
∫

drW (r)2

2n

]

∫
W

exp
[
−
∫

drW (r)2

2n

] . (2.38)

Disorder can pin vortices therefore it affects both dynamic and statistical behaviors

of the system. Thermal fluctuation of the individual vortex lines lead to a dynamic

sampling and hence average the disorder potential over the spatial extent of the thermal

displacement 〈u2〉1/2th . Thermal fluctuation effect reduce the effect of quenched disorder

as thermal depinning which is a continuous crossover from a pinned to a an unpinned

situation.
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The number of pinning centers over the area of the sample L2 is N = n ·L2. Potential

of N small pinning centers located at xi can be represented by a sum of delta functions:

V (−→x ) = V0

N∑

i=1

δ(−→x −−→x i) (2.39)

The constant V0 is proportional to the gap between normal and superconducting energy.

The average of the probability over disorder potential assumed random is:

V (−→x ) =

(
1

L2

)N ∫

x1...xN

V0

N∑

i=1

δ(−→x − xi)

=
1

L2N
V0 × L2(N−1) ×N =

1

L2
V0N = V0n (2.40)

We see that V (−→x ) ∝ n is independent of −→x . The correlator can be computed in

similar way:

V (x)V (0) = (V0)
2

(
1

L2

)N ∫

x1...xN

∑

xi

∑

x′i

δ(−→x − xi)δ(−xi′)

= (V0)
2

(
1

L2

)N ∫

x1...xN



∑

xi 6=xi′

δ(−→x − xi)δ(−xi′) +
∑

xi=xi′

δ(−→x − xi)δ(−xi′)




= (V0)
2

(
1

L2

)N
[L2(N−2) × (N2 −N) + L2(N−1) ×N × δ(−→x )]

= (V0)
2

[
N2 −N

L4
+
N × δ(−→x )

L2

]
(2.41)

Since N >> 1, we obtain

V (x)V (0) ≈ (V0)
2[n2 + nδ(−→x )] (2.42)

It is convenient to define a shifted random disorder field:

W (x) = V (x) − V (x) = V (x) − V0n. (2.43)

31



Its correlator is proportional to a delta function (white noise):

W (x)W (0) = (V (x) − V (x))(V (0) − V (0))

= V (x)V (0) − V (x)V (0) − V (x)V (0) + V (x)V (0)

= V (x)V (0) − V (x)V (0) = (V0)
2[n2 + nδ(−→x )] − (V0n)2

= (V0)
2nδ(−→x ) (2.44)
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Chapter 3

Magnetization in Layered

Superconductors

3.1 Introduction

Fluctuation diamagnetism is one of the characteristic feature of a strongly fluctuating

superconductor. For high-Tc superconductors, due to the enhanced thermal fluctua-

tions, diamagnetism is observed even above the transition temperature, Tc (H) [59, 62]

.At high field region ∼ Hc2 (T ), Thouless and Ruggeri [109, 110] demonstrated that

thermodynamic and transport physical quantities have a good high-field scaling behav-

ior as function of the dimensionless scaling temperature aT ∼ (T − Tmf (H)) / (TH)r,

for quasi−2D system r = 1/2, while for 3D system r = 2/3. This is a consequence of

the dominant role of the Landau quantization: main contribution is coming from the

lowest Landau level. It was studied and elaborated later by Tešanovic et al and others

[48, 83]. For example, the magnetization experiments provide an evidence of the LLL

scaling in of both 3D and 2D systems. Data shows that at different magnetic fields and

temperatures magnetization curves collapse on a universal curve M/ (HT )r ∝ fsc (aT )

(see, for example, Fig.3.4) [29, 31, 44, 79].

Another striking feature is the magnetization curves M (T ) is that they intersect at

the same point (T ∗, H∗) for a wide range of magnetic fields, see Fig.3.6. It was observed
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both in extremely anisotropic quasi two dimensional (quasi-2D) layered materials such

as BSCCO [29] and the T l based high Tc superconductors [79] and in more isotropic

quasi 3D ones, such as the optimally doped Y Ba2Cu3O7−δ [44] and Y Ba2Cu4O8 [43].

However recently it was found that magnetization curves of several other classes of lay-

ered high Tc superconductors, including HgBa2Ca2Cu3O8+δ [31], strongly underdoped

Y Ba2Cu3O7−δ [86] and La1.92Sr0.08CuO4 [32], the intersection point is no longer the

same for all the magnetic fields. It rather moves a bit from its “3D”position at low fields

to its “2D” position at high fields.

Theoretically, the phenomenon of the intersection points in 2D [48] and 3D materials

[113] was first described in the framework of Ginzburg - Landau theory based on the

fluctuations dominance scenario. Later, using the systematic expansion, it was shown

that although the magnetization curves do not intersect at the same point at all the fields,

it can move a negligible distance on the phase diagram in both 2D and 3D [83] . For

layered Lawrence-Doniach (LD) model [86] , the theory shows a observaible migration

of the crossing points moving from 2D to 3D position while approach Hc2 (T ) from

supercoducting state.

Moreover recent measurement on the strongly underdoped La1.92Sr0.08CuO4 [32]

shows the migration of crossing points move in an opposite direction, namely at low

fields the intersection point is below Tc; while increasing magnetic field, the intersection

point moves in the opposite direction and eventually it exceeds Tc.In Ref. [32] the the-

oretical formulas of Ref. [86] in limits of quasi 2D and quasi 3D were used to quantify

the data on LaSCO. While it was possible to fit the data in the optimally doped case,

it was impossible to fit the data in the far underdoped cases.

In this study we will use LD for layered superconductor to investigate the movement

of the intersection points. By following Hartree-Fock approximation in LLL approxi-

amtion in Ref. [86], we mathematically defined the field dependent curve of “intersection

point” for different coupling constant. Our result shows that with increasing magnetic

field, the migration of the intersection points move from its 3D position to 2D position.

More, the intersection doesn’t exceed Tc is proved. Therefore, the results of strongly
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underdoped LaSCO are very puzzling and irreconcilable with the general LD theory.

Another topic we will study here is inspired by the experiment done by Ong et

al [30]. In which they claimed that for strongly layered superconductor BSCCO[30]

the diamagnetism at the vicinity of the critical temperature in type II superconductors

significantly differ from the behavior predicted by fluctuation diamagnetism theories

based on Ginzburg-Landau model [80, 83, 48, 108, 84].

Theoretically, in the vortex liquid of 3D system,such as Y BCO, the HLL contribu-

tion has been studied by Lawrie in the framework of the Gaussian (Hartree-fock like)

approximation [49] . The result shows that the region of validity of LLL is very limited.

Recently, the leading (Gaussian) contribution of HLL was combined with more refined

treatment of the LLL modes in 3D system by Li and Rosenstein [87]. In the vortex liquid

of 2D system, the phenomenon above Tc was studied by Prange [88]and later by [80].

The later study show the physical quantity is strongly dependence on the UV cut-off

which is puzzling.

In this study, we extend previous theoretical result [80] to T < Tc region by the

approach developed in Ref. [87]. Instead of using the traditional lowest Landau level

approximation we integrated out higher landau modes to obtain an effective lowest Lan-

dau level free energy functional and map it to existed lowest Landau result. Comparison

with experimental results shows a good agreement with our theory for an optimally

doped sample while underdoped sample differ from the theoretical results at low tem-

perature.

3.2 Basic equations and assumptions

The Lawrence−Doniach model for layered superconducts (LSCO-

like material)

The material parameters of layered material LSCO are ξab ≈ 34Å, γ ≈ 15 and the

interlayer spacing, d ≈ 15Å. The measurement temperature |1 − t| < 0.1, the ξc (T )

which diverged as (1 − t)−1 will exceed the interlayer spacing. The proper model for the
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system is the Lawrence-Doniach (LD) free energy functional, Eq.(2.7 ). We choice Tc

as a unit of temperature, T = tTc, and Φ0

2πξ2
as a unit of magnetic field, B = b Φ0

2πξ2
, the

coherence length ξab =
√

~2/ (2mabαTc) as a unit of length in ab plane. The gauge is

choice to be the Landau gauge, A = (0, Hx, 0). In c direction is in ξc = ξab/γ. Namely,

x→ ξabx, y → ξaby and d→ ξcd . The order parameter is rescaled as ψ2
n → 2αTc

b′
ψ2
n. The

Boltzmann factor of LD can be formulated as:

fLD =
FLD

T
=

1

ωt

∑

n

∫
d2x

1

2
|Dψn|2 +

1

2d2
|ψn − ψn+1|2 −

1 − t

2
|ψn|2 +

1

2
|ψn|4 (3.1)

The dimensionless coefficient ω,

ω =
√

2Gi2Dπ (3.2)

where the Ginzburg number is defined by

Gi2D ≡ 1

2

(
32π2e2κ2ξTcγ

c2h2d

)2

. (3.3)

The nonlinear term |ψn|4 becomes very important in the temperature range |1− t| ∼ Gi.

We will make the following assumption: (1) lowest Landau level approximation: the

essential contribution is from lowest landau level as we mentioned in the previous section.

(2) the magnetic fluctuation is negligible due the superposition of the magnetic field from

individual vortex. It is convenient to expand the order parameter in terms of the Landau

levels eigenfunctions basis, φNkz ,ky
(r)[91]

ψNn (x) =
∑

N,k,q

φNk,q(x)ψNk,q (3.4)

where

φNk,q(x) =
1√
LzLy

1

π1/4
√

2NN !
exp

[
iqy + ikdn− 1

2

(
x
√
b− q√

b

)2
]

(3.5)

×HN

(
x
√
b− q√

b

)
exp

[
−1

2

(
x
√
b− q√

b

)2
]
.

The N stands for the N th Landau level, q is the momentum in ab plane and k is the

one in c direction. For magnetic field is close the Hc2, the lowest Landau level modes

(N = 0) or in short LLL modes is a very good approximation[49]. The reason is that the
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en=0 << en6=0, so any contribution from the ϕn6=0 greatly increases the ψ2 contribution

to f . The same reason for fluctuations, fluctuation with n 6= 0 is not important. This is

achieved by enforcing the constraint

−1

2
D2ψ =

b

2
ψ. (3.6)

Take N = 0 limit,use the LLL constrain 3.6.The system now is missing one independent

parameter, since there is no gradient term in directions perpendicular to the field and

thus possesses the“LLL scaling” [109]. After additional rescaling x → x/
√
b, y → y/

√
b

and ψ2 → (btω/ω0)
1/2 ψ2 with ω0 = 4π. The Boltzmann factor of LD model becomes:

fLD =
FLD

T
=

1

ω0

∑

n

∫
d2x

γt
2
|ψn − ψn+1|2 + aT |ψn|2 +

1

2
|ψn|4 (3.7)

aT = −ah (btω/ω0)
−1/2 (3.8)

with

ah ≡
1 − t− b

2
(3.9)

and γt = 1
d2

(
bωt
ω0

)−1/2

.

2D Model for strongly anisotropic layered superconductors

The thermal fluctuation effect are particularly pronounced in BSCCO or T l compounds

(for BSCCO: ξab ∼ 30Å, γ ∼ 70 and d ∼ 20Å) due to the greater effective spac-

ing between near by two CuO-layer-group plane. Hence, the tunneling effect between

two CuO groups are negligible. We assume that the material is rotational symmetric

in-plane with strong anisotropy along the z axis. The system can be effectively de-

scribed by 2D Ginzburg-Landau free energy functional Eq.(2.12). We choice the gauge

A = (−By, 0, 0) such that B = (0, 0, B) describes magnetic field. More, we assume mag-

netic field is constant and nonfluctuating at the vicinity of Hc2(T ). It is base on the

fact that the inhomogeneity of magnetic field is of order 1/κ2 < 10−4 which is due to

superposition from many vortices. Even with fluctuations of the order parameter field,

one can neglect completely the fluctuations of the electromagnetic field for very large κ
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[93, 92]. Moreover, we assume the effect of point-like disorder which appear as random

pinning potential is negligible. Since the pounced thermal fluctuations influence in such

a strong anisotropy martial like BSCCO will smear out the disorder effect.

Rescaled the 2D free energyfunctional , Eq.(2.12), by x → ξabx, y → ξaby and ψ2 →
2αTc

b′
ψ2. The Boltzmann factor for 2D GL model becomes

f =
F2D

T
=

1

ωt

∫
dx

[
1

2
|Dψ|2 − (ah +

b

2
)|ψ|2 +

1

2
|ψ|4 +

κ2 (b − h)2

4

]
, (3.10)

where ω, ah and Gi2D are defined as Eq.(3.2), Eq.(3.9) and Eq.(3.3), respectively. In the

liquid state, since it’s homogeneity 〈ψ(x)〉 = 0, the fluctuation is ψ(x) itself. As in basic

lattice wave, we will construct an orthonormal set of functions suitable for treating the

fluctuation excitation ,ψ(x) . According to the Bloch theory, one can use translation

operator to construct a complete set from any solution of the Hamiltonian. In our case,

it is convenient to use the eigenfunctions from noninteracting part, the kinetic term

which is known as Landau basis. We choose the arbitrary solution to be the solution for

triangular lattice. By doing magnetic translation, one get the so called quasimomentum

basis ϕN,k for N th Landau level and vector k ∈ R
2 is within the first Brillouin zone

associated with the triangular lattice (σ =
√

3/2 and ρ = 1/2 ).

ϕN,k(x, y, z) =

√ √
2σ

2NN !

+∞∑

l=−∞
exp

[
iπρ(l2 − l)

]
exp

{
i
[√

2πσl
(
yb1/2 + kxb

−1/2
)

+ yky

]}

× exp

[
−1

2

(
xb1/2 −

√
2πσbl − kyb

−1/2
)2
]
HN

(
xb1/2 −

√
2πσbl − kyb

−1/2
)
.(3.11)

The corresponding eigenvalue is eN = (N + 1/2) b. The fluctuations can be then ex-

panded in ϕN,k:

ψ(x) =
1

2π

∫

k

∞∑

N=0

ϕN
k

(x)ψn(k). (3.12)

Take N = 0 limit, and use the LLL constrain Eq.(3.6). After the LLL scaling we men-

tioned in previous LD model. The Boltzmann factor becomes:

f =
1

ω0

∫
d3x

[
aT |ψ|2 +

1

2
|ψ|4 + (btω/ω0)

−1 κ
2 (b − h)2

4

]
. (3.13)
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the aT defined in Eq. (3.8) is the LLL rescaled temperature. Since the magnetization

−4πM = H −B is of order 1/κ2, thus the last term in Eq.(3.13) is negligible very small

in high Tc superconductors. Free energy density in the newly scaled model is defined as:

feff (aT ) = −ω0

V
log

∫
Dψ exp (−f) . (3.14)

To compare with experiments, the rescaled free energy feff is related to the free energy

in physical units by

F =
H2
c2

4πκ2
ωbt feff (aT ) . (3.15)

In conventional units Eq.(2.12) within the LLL, the magnetization in the presence of

thermal fluctuations is determined from

δ

δB
F = Z−1

∫

Ψ

δ

δB
F [Ψ,B] exp

[
− 1

T

∫
F [Ψ,B]

]
= 0. (3.16)

The derivative results in

−Z−1

∫

Ψ

[∫

r

αTc
Hc2

|Ψ|2 +
B − H

4π

]
exp

[
− 1

T

∫
F [Ψ,B]

]
(3.17)

= −αTc
Hc2

〈
|Ψ|2

〉
− (B − H)

4π
= 0, (3.18)

where from now on 〈...〉 denotes thermal average. The magnetization on LLL is therefore

proportional to the superfluid density

M = −αTc
Hc2

〈
|Ψ|2

〉
. (3.19)

This motivates the definition of the scaled magnetization proportional to 〈|Ψ|2〉,

m (aT ) = −
〈
|ψ|2

〉
= − ∂

∂aT
feff (aT ) (3.20)

which is related to magnetization by

4πM =
πHc2

4κ2
(tbGi2D)1/2m (aT ) . (3.21)

One can see consequently that M (TB)−1/2depends on aT only[48, 109]..
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3.3 Dimensionality effects of layered superconduc-

tors

In momentum space, the LD Boltzman factor Eq.(3.7) is

fLD =
1

ω0




∑

kq

[
γt (1 − cos dk) |ψq|2 + aT |ψq|2

]
+
∑

kiqj

1

2
ψ∗
k1,q1

ψ∗
k2,q2

ψk3,q3ψk4,q4



 (3.22)

where k1 + k2 = k3 + k4 and q1 + q2 = q3 + q4. In Hatree-Fock approximation, we assume
〈
|ψq|2

〉
= ∆0. Applying the Wick theorem, the free energy is

fLD ≈ 1

ω0

∑

kq

{
[γt (1 − cos dk) + aT + ∆0] |ψq|2

}
. (3.23)

According the definition of ensemble summation,

〈
|ψq|2

〉
=

∫∫
Dψq

{
|ψq|2 exp (−fLD)

}
(3.24)

a self-consistent equations is read as

∆0 =
ω0√

(γt + aT + ∆0)
2 − γ2

t

. (3.25)

The magnetization calculated from the partition function Z, using the mean field Hamil-

tonian (2.7), is

4πM = − e∗~

cmab

2αTc
b′

√
btω/ω0∆0 (3.26)

To show that free energy F can exhibit a 3D → 2D crossover as temperature or field are

changed. We consider two limits for which the gap equation can be solved analytically.

∆0 =
ω0√

(γt + aT + ∆0)
2 − γ2

t

(3.27)

Here the coefficients γt ∝ d−2
√

d
bt

and aT ∝ −1−t−b
2

√
d
bt

. In 2D system, the inter-

layer distance is large (d → ∞), namely the coupling strength between two layers

γt → 0. The gap equations become analytical soluble ∆0 (aT + ∆0) ≈ ω0or ∆0 ≈
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−
(
aT +

√
a2
T + 4ω0

)
/2. The magnetization in this limit demonstrates a well pro-

nounced 2D scaling dependence

M√
HT

∝ f2D

(
T − Tc(H)√

HT

)
. (3.28)

For convenience, we define a dimensionless coupling constant g = Tcb′

πξ2
characterizes the

strength of the thermal fluctuations.

∆ = g
bt√

(b+ t+ ∆ + γt − 1)2 − γ2
t

, (3.29)

In 3D limit,

γ >> b+ t− 1 +
2((b+ t− 1)3

27
, and V =

4((b+ t− 1)3γ

27g2(bt)2
>

1

2

namely for the experiments at relatively low fields. In this case,

∆ = (bt)2/3

(
g2

γ

)1/3

f3D(V ) (3.30)

where

f3D(V ) = 2V 1/3 sin(
π

6
− ϕ

3
) −

(
V

2

)1/3

and

tanϕ =

√
2V − 1

1 − V
. (3.31)

Apparently, the behavior of the magnetization in this case is caused by 3D fluctuations:

M

(HT )2/3
∝ f3D

(
T − Tc(H)

(HT )2/3

)
(3.32)

In both limits one clearly finds a scaling behavior, manifested in Figures 3 and 4. For

an intermediate magnetic field, however, scaling is not expected even though the LLL

approximation is still valid. In this intermediate case the scale is provided by the inter-

layer spacing d.

Experimentalists often define the crossing point T ∗(H) as the temperature at which

two ” successive” magnetization curves M(T,H) and M(T,H + ∆H) cross [32]. There-

fore, the curves satisfy the equation

∂M

∂H

∣∣∣∣
T=T ∗

= 0, (3.33)
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i.e. ∂∆/∂b= 0 (or equivalently ∂∆/∂t = 0). Two equations Eq.(3.33) and Eq.(3.29) can

be solved with respect to b

b = −∆2(t∗ + ∆ + γt − 1)

∆2 − g2t∗2
, (3.34)

where t∗ = T ∗/Tc is the reduced temperature of T ∗. Substituting Eq.(3.34) back into

Eq.(3.29) one obtains the relation between the crossing temperature and magnetization

∆∗.This can be solved for ∆∗:

∆∗ = gt∗
gt∗(1 − γt − t∗) + γt

√
g2t∗2 + γ2

t − (1 − t∗ − γt)2

g2t∗2 + γ2
t

. (3.35)

The ”motion”of the crossing points for g = 0.08 and γt = 0.01, 0.05 and 0.1 is depicted in

Fig.3.1. Moreover, one easily sees from Eq.(3.35) that only for t∗ < 1 physical condition

∆ > 0 is obeyed. Thus, in this model, the intersection point generally cannot move

beyond Tc.

Figure 3.1: The evolution of the crossing points of the magnetization curves for the

coupling g = 0.08 and three copies of the anisotropy parameter γt=0.01, 0.05 and 0.1.

3.4 Sum of contributions of all Landau levels in quasi-

2D systems. The 1
st OPA method

Contributions of HLL are important phenomenologically in two sections of the phase

diagram. The first is at temperature above the mean field critical temperature Tc(H)
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inside the liquid phase. The second is far below the melting point deep inside the

solid phase. The first one is the interesting region. The first order approximation of

the optimized perturbation approach which we mentioned above is a Hartree-Fock-like

approximation. In the framework of this approximation, free energy, Eq.(3.10), is divided

into an optimized quadratic part K, and a small part V. Then K is chosen in such a

way that the Gaussian energy is minimal [49]. The Gaussian energy is a rigorous lower

bound on energy. In liquid phase with an arbitrary homogeneous U(1) symmetric, one

variational parameter ε is sufficient:

K =
1

ωt

∫
d2x

[
ψ∗
(
−1

2
D2 − b

2
+ ε

)
ψ

]
. (3.36)

The small perturbation is therefore:

V =
1

ωt

∫
d2x

[
(−ah − ε) |ψ|2 +

1

2
|ψ|4

]
. (3.37)

The eigenvalue of N thLandau level is −1
2
D2ϕ =

(
N + 1

2

)
bϕ. For simplified in writing,

we introduce ggauss (ε) = gtr log (ε) + 〈V (ε)〉K which is relative to the free energy density

as feff = −ωtggauss, where

gtr log ≡ log

[∫
DψDψ exp(−K)

]
=

b

2π

∞∑

N=0

log (Nb+ ε) (3.38)

〈V 〉K = (−ah − ε)
b

2π

∞∑

N=0

1

Nb+ ε
+ ωt

(
b

2π

∞∑

N=0

1

Nb+ ε

)2

. (3.39)

( Magnetic field independent term appear in the free energy density is dropped because

it is irrelevant to our study on magnetization.) Both terms has ultraviolet divergency,

namely at largeN the sums diverge. An UV momentum cutoffNf+1 = Λ
b

are introduced

for regulization. To extract the divergent part, one can interpolate the gtr log to two terms:

gtr log =
b

2π





Nf∑

N=1

[
log (Nb+ ε) −

∫ N+1/2

N−1/2

log (xb+ ε) dx

]
(3.40)

+ log ε+

Nf∑

N=1

∫ N+1/2

N−1/2

log (xb+ ε) dx



 . (3.41)

43



The last term is divergent and for large N , it can be approximated by log (1 + x) ∼ x:

b

Nf∑

N=1

∫ N+1/2

N−1/2

log (xb+ ε) dx

≈ Λ (log Λ − 1) + (ε− b/2) log Λ + (ε+ b/2) − (ε+ b/2) log (ε+ b/2) (3.42)

Therefore one can divided gtr log to an infinite part with Λ and a finite part, u:

gtr log =
1

2π
{Λ (log Λ − 1) + (ε− b/2) log Λ} + u (ε, b) . (3.43)

The finite part u can be simplified as

u(ε, b) =
b

2π
fs (ε/b) +

b

2π
(1/2 − ε/b) log b, (3.44)

where the function fs is defined as

fs (x) = log x− (x+ 1/2) (log (x+ 1/2) − 1) +
∞∑

n=1

[
log (n+ x) −

∫ n+1/2

n−1/2

log (y + x) dy

]
. (3.45)

which is basically − ln Γ (x) plus a constant.

The interactions part, the ” bubble” integral, diverges logarithmically:

b

2π

∞∑

n=0

1

nb+ ε
=

1

2π
log Λ + u′ (3.46)

where u′ ≡ ∂
∂ε
u(ε, b) = 1

2π
[f ′
s (ε/b) − log b], and the derivative of fs is a polygamma

function, Ψ (x), i.e.

f ′
s (x) =

∞∑

n=1

[
1

n+ x
−
∫ n+1/2

n−1/2

1

(y + x)
dy

]
+

[
1

x
− log (x+ 1/2)

]
= −Ψ (x) . (3.47)

The total free energy in Gaussian variational approximation for all Landau levels is

obtained,

ggauss (ε) =
1

2π
Λ (log Λ − 1) − ωt

(
1

2π
log Λ

)2

− (arh + b/2)

[
1

2π
log Λ

]

− (arh + ε)u′ + u(ε, b) + ωt (u′)
2
. (3.48)
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Thus, the temperature Tc and vacuum energy will be renormalized: arh = ah−2ωt 1
2π

log Λ.

The first three terms are divergent, however, they will not contribute to physical quan-

tities such as magnetization, specific hear ...etc. To find the minimum of ggauss (ε), we

need to solve the gap equation:

ε = −arh + 2ωtu′ (ε, b) (3.49)

Substitute the solution εs to ggauss (ε) one get the minimized free energy density feff =

−ωtg :

g =
1

2π
Λ (log Λ − 1) − ω2Dt

(
1

2π
log Λ

)2

− (arh + b/2)

[
1

2π
log Λ

]

+ u (ε, b)|εs
− ωt u′2 (ε, b)

∣∣
εs

(3.50)

In the ” Prange” limit where only the normal part is taking in to account,

gprg =
1

2π
Λ (log Λ − 1) − (arh + b/2)

[
1

2π
log Λ

]
+ u(−arh, b). (3.51)

3.5 All Landau level contributions in quasi-2D sys-

tems. An effective LLL model

As we mentioned in Chapter II, at the parameter range of interest for us, the coupling

between HLL and LLL is important. Unfortunately the above used Gaussian variational

approximation is not precise enough at low temperatures. (for example see free energy

of various approximants in Fig 2.2 ) and one is forced to use a more sophisticated

Borel-Pade approximation. A simple way to present it is via an effective LLL model

in which one ”integrates out” the HLL contributions. In the effective LLL model the

coupling between LLL and HLL renormalizes the LLL functional as following. Consider

the simplest case of the coupling of two different Landau leyers in the interaction term

|ψ|4. We have

|ψ|4 = . . .+ 4 (ψ∗
0ψ0ψ

∗
1ψ1 + ψ∗

0ψ0ψ
∗
2ψ2 + . . .) + . . . , (3.52)
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where only the most interesting quadratic in the ψipart is written. The index i > 0, i ∈ N

denotes the rest of Landau levels excluding the lowest one. Since coupling between the

two different high Landau level correction, 〈ψ∗
iψj〉K for i 6= j is small, we effectively drop

out the off-diagonal terms. We therefore extract the main coupling from the GL model:

fcouple [ψ0, ψi] = 2
∞∑

i=1

|ψ0|2 |ψi|2 . (3.53)

The correlation function is

〈
ψ∗
n,kψm,q

〉
=

2π

b

1

ε+ nb
δ (k + q) δn,m. (3.54)

For simplicity in the following we will neglect the fluctuations of the magnetic field be-

cause in lowest landau level approximation it gives just a renormalization of the interac-

tion term. Moreover, the high-Tc superconductors are extremely type II superconductors

and therefore even this renormalization is not essential. The total original action is

f [ψ0, ψi] = fHLL [ψi] + fLLL [ψ0] + fcouple [ψ0, ψi] . (3.55)

The effective LLL free energy is defined as f = −ωt logZ ≡ −ωtg

Z =

∫
Dψ0Zeff [ψ0] with (3.56)

Zeff [ψ0] =

∫ ∞∏

i=1

Dψi exp {−f [ψ0, ψi]} . (3.57)

To integrate out the high Landau level coupling parts, one can use Gaussian variational

method within which one uses a decomposition

fHLL [ψi] = K [ψi] + αV [ψi] , (3.58)

and seperates the main quadratic part

KHLL [ψi] =
1

ωt

∫
d2x

[
ψ∗
i

(
−1

2
D2 − b

2
+ ε

)
ψi

]
(3.59)

and a small perturbation,

VHLL [ψi] =
1

ωt

∫
d2x

[
(−ah − ε) |ψi|2 +

1

2
|ψi|4

]
. (3.60)
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The effective partition function, expanded to first order of α is

Zeff [ψ0] =

∫ ∞∏

i=1

Dψi (1 − (VHLL [ψi] + fcouple [ψ0, ψi])) exp [− (KHLL [ψi] + fLLL [ψ0])] .

(3.61)

After integrating out high Landau level coupling terms, one gets

g (ε) = log

∫
Dψ0Zeff [ψ0]

=
b

2π

∞∑

N=1

log (Nb+ ε) + (−ah − ε)
b

2π

∞∑

N=1

1

Nb+ ε
+ ω2Dt

(
b

2π

∞∑

N=1

1

Nb+ ε

)2

+ log

∫
Dψ0 exp

{
−
[
fLLL [ψ0] + 2

b

2π

∞∑

n=1

1

nb+ ε
|ψ0|2

]}
. (3.62)

Alternatively, one can rewrite this as

g = gHLLgauss (ε) + log

∫
Dψ0 exp

{
fLLL [ψ0] + 2

b

2π

∞∑

N=1

1

Nb+ ε
|ψ0|2

}
(3.63)

= gHLLgauss (ε) + geffbp (ε) , (3.64)

where fLLL is the functional energy with lowest landau level constrain Eq. 3.13 and

gHLLgauss (ε) is the free energy without contribution from lll and it’s first order coupling

with hlls. The summation

b

2π

∞∑

N=1

1

Nb+ ε
=

1

2π
log Λ + u′ (ε, b) − b

2π

1

ε
.

The effective LLL free energy functional with the first order coupling with high landau

level is,

f effLLL [ψ0] =

∫∫
dx2

{
−aAh |ψ0|2 +

1

2
|ψ0|4

}
(3.65)

with

aAh = arh + 2ω2Dt

(
b

2π

1

ε
− u′ (ε, b)

)
. (3.66)

High landau level coupling term renormalized the rescaled temperature arh , therefore

one modified the LLL result by Bore-Padé approximation. After substitution of the gap

equation solution εs into the free energy, one gets:

g = gHLLgauss (εs) + geffbp (εs) . (3.67)
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Magnetization can be obtained by taking the first derivative of Gibbs energy with respect

to magnetic field b.

M = − H2
c2

4πκ2
ωt∂bg(b, t). (3.68)

The theoretical curves of magnetization curves with various approaches are shown in

Fig.3.2 where the scaled magnetization

m = −∂bg(b, t) (3.69)

is used.
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Figure 3.2: Theoritical magnetization curve in vrious approach.

3.6 Results and Comparisons with Experiments

The high temperature part of the magnetization was fitted to a Curie law, M = χH =

(χ0 + C/T )H, and extrapolated to temperatures below Tc. The extrapolated values
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of M were subtracted from the raw data measured below Tc. Observing the scaling

behavior of the experiments (see Fig. 3.4 and 3.5 ), one found Bi2Sr2Ca3Cu3Oy[81]

TiBa2Ca3Cu4Oy [79], three-layered HgBa2Ca3Cu3O8+δ [31] and Bi2Sr1Ca1Cu2O
OP
8+δ

[30] has good scaling behavior in high field. The scaling theory suggest those are quasi-

2D system. However, while the scaling function obtained from BP approximation de-

scribe accurate [79, 81] and [31], it doesn’t go well as [30] since the diverse at the high

temperature region at the vicinity of Tc. Especially for under doped Bi2Sr1Ca1Cu2O
UD
8+δ,

the scaling behavior doesn’t exist.

Tc (K) H ′fitting
c2 (T/K) H ′scaling

c2 (T/K) Gi2D κ

Bi2Sr2Ca3Cu3Oy 111 3.39 3.3 ∼ 4.2 0.0011 140

TiBa2Ca3Cu4Oy 127 2.20 2.24 0.0001 84.8

HgBa2Ca3Cu3O8+δ 132 2.95 2.95 0.0011 55

Bi2Sr1Ca1Cu2O
OP
8+δ 93.3 2.36 2.15 0.0035 72.3747

Bi2Sr1Ca1Cu2O
UD
8+δ 57 2.98 1.8 0.31 97.183

Figure 3.3: fitting of the melting curve
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Figure 3.4: Magnetic moment versus temperature for quasi2D sytem, fitting by the with

parameter discussed and given in the text. Materials are: (a)Bi2Sr2Ca2Cu3O10 (b)

T lBaCaCuO7(c) HgBa2Ca2Cu3O8+δ

The HLL correction will be calculated as follows. We numerically solve the gap

equation (3.49) from which F (T,H) can be obtained. Then Eq.(3.68) is used to cal-

culate the magnetization of the full GL model in Gaussian approximation. The HLL
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correction is thus the magnetization of the full GL model in Gaussian approximation

minus the magnetization of the LLL contribution in Gaussian approximation. We com-

pare the experiments using following approximation. While the corrections due to HLL

are calculated in Gaussian approximation, the LLL contribution will be calculated non-

perturbatively. The comparison of the theoretical predictions with the experiments for

optimized dopedBSCCO[30], is shown on Fig.3.5. The fitting parameters Tc, Hc2 ,κ

and Gi obtained from the fitting of the melting curve tabulated in Fig.3.3. The agree-

ment is fair at intermediate magnetic fields and high temperature. It is expected that

agreement is improved at higher temperature for all fields. One can tell that the theory

of the full GL model (higher Landau levels included) beyond Gaussian approximation is

required at low magnetic fields. Indeed experimentally it is often claimed that one can

establish the LLL scaling for fields above 3 T for Y BCO (see, for example, ref. [43] )

as at low magnetic fields, the HLL contribution will be significant. When go below low

temperature region, the HLL contribution is expected to decrease, but the correction

from theoretical curve is still strong.

Figure 3.5:

Intersection points of magnetization curves of layered superconductors tells the di-

mensionality of the fluctuations. In this section the Lawrence - Doniach model was

applied to describe the magnetization curves in HgBCO and LaSCO samples. Pre-
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viously the data were analyzed by using either 2D or 3D Ginzburg - Landau models.

However, unlike the optimally doped Y BCO or BSCCO, these materials belong to a

class of materials which are neither 2D nor slightly anisotropic 3D for which LD model,

a simple generalization of GL models, described in section 2.2 is applicable.

They include layered superconductorHgBa2Ca2Cu3O8+δ whose magnetization mea-

sured in ref. [31] is fitted by using the Lawrence - Doniach formulas is given above in

3.6(a). The transition temperature Tc derived directly from the magnetization data is

132K. Although in the original paper the value of the slope dHc2(T )
dT

|T=Tc
, derived form

the scaling field Hs was estimated as1.32 Tesla/K indicating Hc2 = 178.2 Tesla, a much

higher value Hc2 = 390 Tesla was applied. The dimensionless coupling constant g = 0.08

and the interlayer-coupling parameter γt = 0.1 give the best fit to experimental data. Ac-

cording to the result of the underdoped Y BCO [86] at temperature exceeding the mean

field transition temperature, the LLL approximation overestimated magnetization. This

can be realized by including higher Landau levels. The evolution of the crossing point

is also shown in 3.6(a).

Data for a sample close to the optimally doped La1.857Sr0.143CuO4 of ref. 7 are

presented in 3.6(b). For magnetic fields from 2 Tesla to 7 Tesla, the crossing points

move in the direction consistent with theory and are always below Tc. The transition

temperature is Tc = 36.4 K [32]. The best fitting parameters are g = 0.019, Hc2 = 80

Tesla and γt = 0.02. In the strongly underdoped samples, such as La1.92Sr0.08CuO4,

the experimental data were rather unusual. Two different well-defined crossing points

were observed. As magnetic field increased from 0.3 Tesla to 7 Tesla the crossing point

unexpectedly ” jumped” from a temperature below Tc to another one well above Tc. The

phenomenon obviously conflicts with our previous qualitative conclusion based on the

Lawrence - Doniach model. Even though, the high magnetic field data can be fitted if

slightly higher transition temperature Tc = 24.2 K is assumed. 3.6(c) shows the fit for

La1.92Sr0.08CuO4 with g = 0.05, Hc2 = 44 Tesla and γt = 0.02.
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Figure 3.6: Magnetic moment versus temperature in the high-field region.The solid lines

are fits using Eq. 3.26 with parameter discussed and given in the text. Materials

are: (a) HgBa2Ca2Cu3O8+δ(b) the optimally doped La1.857Sr0.143CuO4(c) the strongly

underdoped La1.92Sr0.08CuO4.

3.7 Discussion

The order parameter may be considered as an average of the localized quantity over a

few lattice spacings, or a microscopic length scale a. Only for distance much larger then

a can a field-theoretic description of the system in terms of order field be meaningful.

Below the microscopic length a microscopic properties of the material begin to become

relevant. Such that one can classified the thermal fluctuation to the microscopic thermal

fluctuations and two kinds of mesoscopic thermal fluctuations.

On the microscopic level, temperature modifies properties of the electron gas and

the pairing interaction responsible for the creation of Cooper pairs. When “integrating

out” the microscopic (electronic) degrees of freedom, one obtains an effective mesoscopic

GL free energy with temperature dependent parameters, m∗, α and β, in terms of the

distributions of the order parameter Ψ(x) with a lower limit on the length scale, a,

over which the order parameter field can vary, or an upper limit to the momentum ,

Λ = 2π/a, of the Fourier components of the field. In practice, if one decompose Ψ (x)

to a bases, for example Fourier components, with amplitude ϕk, the measure, DΨ,of a

path integral in partition function of the system can be written as

DΨ =
∏

k>0;|k|<Λ

d2ϕk (3.70)
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The remaining part of the statistical sum can be view as the mesoscopic fluctuations.

Therefore, unlike the theory proposed in ref.[80], for measurable quantity such as mag-

netization, the UV cut-off dependence should cancel out with the by renormalization of

the bare mass, i.e. the mean field transition temperature.

The mean field lowest Landau level theory of thermal fluctuation is able to describe

magnetization curves near Tc, including the intersection point, in both the quasi 2D

superconductors like BSCCO and the 3D superconductors like Y BCO. It is therefore

expected that the natural generalization of the model to include the coupling between

layers, the Lawrence - Doniach model, should describe sufficiently well the thermal fluc-

tuations in a wide range of layered materials, which exhibit neither the 2D nor the 3D

behavior. A characteristic general feature is that the magnetization curves intersect

always below Tc. While we show that the theory is consistent with the recent very de-

tailed studies on HgBCCO and earlier studies on LaSCO, the results on the strongly

underdoped LaSCO, which show the intersection point above Tc, are incompatible with

the theory. Despite the fact that the theory has a number of assumptions like effects of

disorder and contributions of higher Landau levels, the discrepancy is real. Since the de-

scription of the layered superconductors by the Lawrence - Doniach is a very important

part of the physics of the high Tc superconductors this question should be addressed

experimentally.
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Chapter 4

Structural Phase transition in

Fourfold Symmetric

Superconductors

4.1 Introduction

The symmetry of the order parameter in superconductor is strongly related to the crys-

tallographic symmetry group of the material, the structure of the Fermi surface and

the nature of the pairing mechanism. In Y BCO, the in-plane O(2) is breaking due to

the d-wave character of pairing. It has both a square and a rhombic phases [18]. In

overdoped LaSCO, at low temperatures, the square and rhombic lattices were observed

using SANS by Gilardi et al [16]. Asymmetry is not always related to the non s-wave

nature of pairing. In borocarbides (RE : Y, Lu,Er)Ni2B2C [14], Nb [13], and V3(Si)

[15], square vortex lattice is observed using techniques such as decoration, STM,SANS

or µSR etc.

The precise location in the T−H plane of the square-rhombohedral SPT in the vortex

crystal is still a matter of discussion. Earlier experiments on LuNi2B2C indicate a very

small positive slope of the transition line in the T − H plane H2 (T ) till it reaches the

Hc2 (T ) region. According to some experiments, it abruptly turns up and even acquires a
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negative slope at high fields, while in other experiments experiments in a closely related

material Y Ni2B2C,it continues the gradual increase even near H2 (T ). The results at

low temperatures was first explained in the framework of the nonlocal London NLL

theory proposed by Kogan et al [20].The NLL theory includes four derivative terms

which bring in the anisotropy effects essential to trigger the SPT between the vortex

lattice phases. The more symmetric square vortex crystal, stable at a stronger magnetic

field higher density of vortices , transforms into a less symmetric rhombic vortex crystal

as the magnetic field decreases. Thus the square-to-rhombus SPT is associated with a

spontaneous breaking of the fourfold symmetry of the system. The transition has also

been understood theoretically on the basis of the Ginzburg-Landau functional which

had to be extended in a similar fashion, by including an asymmetric four derivative

term. Such higher derivatives Ginzburg- Landau HDGL theories are applicable, strictly

speaking, not far from Tc, but they generally work well in a much larger part of the

T − H plane, including fields and temperatures well below the Hc2 (T ) line. Although

temperature might be introduced into these phenomenological models via a temperature

dependence of their coefficients, the resulting slope of the transition line is typically very

small and, more importantly, is of higher order in the relevant expansion parameter and

therefore cannot be predicted.

It should be emphasized at this point that both NLL and HDGL were solved at the

mean-field level only in the papers mentioned above and only recently in Refs. [20]and

[24] , respectively, were attempts made to take into account thermal fluctuations on the

“mesoscopic” scale. Although thermal fluctuations are dominant in high-Tc supercon-

ductors, leading, they are negligible in low-Tc materials for which the Ginzburg number,

characterizing the strength of the thermal fluctuations, is several orders of magnitude

lower. In high-Tc superconductors the square-to-rhombus transition was observed di-

rectly via neutron scattering in Y Ba2Cu3O7+δ ,and La2Sr1−xCuxO4,and indirectly via

the peak effect in LaSCO.

In this study, we will consider both thermal fluctuations and disorder in both per-

turbation and nonperturbation method. We suggest that for low-Tc material such as
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borocarbides, the disorder influence is pronounced and result in the reentrance of rhom-

bic latter near the Hc2.

4.2 Basic equations and symmetries

The system is phenomenologically described by the anisotropy Ginzburg–Landau free

energy functional with 4-fold symmetry, F4−fold = F3D + Fansio:

f =
F4−fold
T

=
1

ω

∫
d3x

[
1

2
ψ∗Hψ − 1 − t

2
|ψ|2 +

1

2
|ψ|4

]
, (4.1)

where the gradient part of the free energy H = H0 + H′[26]: The isotropic

H0 = − ~D2 − ∂2
z , (4.2)

and the anisotropic parts H′ is chosen to have a combination from terms in Eq.(2.13)which

preserve the Hc2(T ) line produced by H0 (up to first order of η̃).

H′ = − η̃
4

[
cos (4Θ)

{(
D2
x −D2

y

)2 − (DxDy +DyDx)
2
}

+ sin (4Θ)
{(
D2
x −D2

y

)
(DxDy +DyDx) + (DxDy +DyDx)

(
D2
x −D2

y

)}]
(4.3)

where Θ is the angle between the rhombic lattice and the atomic lattice and Dx =

∂x − iby, Dy = ∂y. Within the gauge, the rescaled magnetic field is in c direction, b =

(0, 0, b) .The properties of a particular material are encoded into the phenomenological

coefficient ηm. Due to GL expansion, ηm is a constant but in fact it can depend weakly

on temperature and other external parameters. It can be positive (usually in low Tc

materials) or negative (usually in high Tc materials). In terms of operators of creation

and annihilation of Landau levels,

â† ≡ − 1√
2b

(Dx − iDy) , â ≡ 1√
2b

(Dx + iDy) , . (4.4)

The commutation relations is

[
a+, a

]
= −1, (4.5)

[
a, a+

]
= 1. (4.6)
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It is simply

H0 = ba†a− 1

2
∂2
z (4.7)

H′ = −b2ηm
[(
a†
)4

e4iΘ + a4e−4iΘ
]
. (4.8)

The effective magnitude of the four–fold anisotropy depends also on the magnetic in-

duction and should be specified by a parameter that is proportional to bηm.

4.3 Structure of the vortex lattice in the clean sys-

tem and its phase transition

In mean field approach, one must find the order parameter which minimizes the total

free energy of the system, namely to solve the nonlinear equation

Hψ − ahψ + ψ |ψ|2 = 0. (4.9)

One can first solves the linearized GL equation Hψ = ahψ to obtain an nontrivial solu-

tion, ψ 6= 0. If bηm ≪ 1, the anisotropic part of H′ can be treated as a perturbation [66],

the presence of anisotropy modifies the eigenfunctions of the isotropic part ϕN,k(x, y, z)

by

φNk = ϕNk − b2η̃
∑

M 6=N

〈ϕM,k

∣∣∣
(
a†
)4

e4iΘ + a4e−4iΘ
∣∣∣ϕN,k〉

b (N −M)
ϕMk + ... (4.10)

where the eigenfunctions

ϕN,k(x, y, z) =

√ √
2σ

2NN !
eikzz

+∞∑

l=−∞
exp

{
i
[
πρ(l2 − l)

]}
exp

{
i
[√

2πσl
(
yb1/2 + kxb

−1/2
)

+ yky

]}

× exp

[
−1

2

(
xb1/2 −

√
2πσl − kyb

−1/2
)2
]
.HN

(
xb1/2 −

√
2πσl − kyb

−1/2
)

(4.11)

, σ = 1
2
tan θwhere θ is the apex angle between vortex lattice basis d1 and d2 chosed as

Eq.(4.14) (see Fig. 4.2 ). The first order correction of H is

φ0k ≡ φk = ϕk + ηe4iΘϕ4k, (4.12)

η =
√

3/2bηm (4.13)
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called the modified lowest Landau level (MLLL) which will be employed as LLL approx-

imation in previous topic. Note that the magnetic translation operator had been applied

on the eigenfunction of N th Landau level to get a complete basis for functions belonging

to each Landau level as we mentioned in previous chapter. The normalization factor is

defined by the average over a unit cell of |ϕN,k(x, y, z)|2 = 1. To simplify the notation,

from now on 〈...〉 denotes the average over a unit cell in real space. HN (x) is Hermite

Polynomials. The components of the vectors that determine the unit cell are

d1 =

(
√

2πσ,
1

2

√
2π

σ

)

d2 =

(
0,

√
2π

σ

)
(4.14)

In the above formulas we measure all distances between the vertices with magnetic length

ℓ which are related to the magnetic field by Φ0 = 2πHℓ2.

To solve the GL equation, one can expand ψ on ah − 1−t−b
2

, the distance from Hc2

line. The solution of GL equation (4.9) has the form

ψ =
√
ah (Ψ0 + ahΨ1 + ...) , (4.15)

Ψ0 = cφ0, Ψ1 =
∑

N

cNφN , ...,

which is formally identical to the case of the isotropic GL model. The normalization

coefficient c−2 =
〈
|φ0|4

〉
is fixed by the nonlinear terms of the GL equation. We use 〈. . .〉

for spatial average. In lowest order expansion in ah, the mean field solution is

Ψ =

√
ah〈
|φ0|4

〉φ0 (4.16)

Expand in first order of η,

〈
|φ0|4

〉
=
〈
|ϕ0|4

〉
+ 2η(Re)

(
e4iΘ

〈
ϕ4ϕ

∗
0 |ϕ0|2

〉)
+ O

(
η2
)

(4.17)

≡ β0(θ) + 4ηβ4(θ) cos (4Θ) + O
(
η2
)
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where β0(θ) =
〈
|ϕ0|4

〉
, β4(θ) =

〈
ϕ4ϕ

∗
0 |ϕ0|2

〉
are real function since (Im)β4 = 0. In

general, apex angle,θ, dependent 〈ϕ∗
NϕMϕOϕ

∗
P 〉 for any landau level is

〈ϕ∗
NϕMϕOϕ

∗
P 〉

=

√
2M2PP !M !

2N2ON !O!

∑

m1,m2

{
exp

[
− π

4σ

(
(2m1 −m2)

2 + 4m2
2σ

2
)]

[√
2πσm2 − i

√
π

2σ
(2m1 −m2)

]N−M [√
2πσm2 + i

√
π

2σ
(2m1 −m2)

]O−P

LN−M
M

[
1

2

(
2πσm2

2 +
π

2σ
(2m1 −m2)

2
)]

LO−P
P

[
1

2

(
2πσm2

2 +
π

2σ
(2m1 −m2)

2
)]}

(4.18)

where Lrq (x) is Legendre Polynomials. In the derivation, we use the fact
∫ ∞

X=−∞
e−X

2

HM(X + Y )HN(X + Z)

=
√
π2NM !ZN−MLN−M

M (−2Y Z) (M ≤ N). (4.19)

The mean field free energy density which depends on the geometrical parameters θ and

Θ of the vortex lattice has the form

F0(θ,Θ) = − a2
h

2
〈
|φ0|4

〉 + O(a3
h). (4.20)

The minimization with respect to Θ and θ determines the orientation and shape of the

vortex lattice at equilibrium, respectively. Since β4 < 0 for π/4 < θ < π/3, thus the

minimize condition is cos 4Θ = η/ |η| .Therefore for positive ηGL, Θ = 0 and for negative

η, Θ = π/4.The energy density is

F0(θ) = −a
2
h

2

1

β0 + 4 |η| β4 (θ)
. (4.21)

The minimization with respect to θ was performed numerically in [26]. The phase

transformation between the square and rhombic lattices found in this way is continuous.

Therefore, in order to find the boundary between these phases it is also possible, and more

convenient in this case, to study the conditions for the stability of the more symmetric

square phase. The condition for stability reads

d2Fmf (θ)

dθ2
|θ=π

4
= 0 (4.22)
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or

β′′
0 (θ =

π

4
) + 4 |ηc| β′′

4 (θ =
π

4
) = 0 (4.23)

which yields |ηc| = 0.02923 i.e. the phase transition line bSPT on H-T diagram is:

bSPT =
0.02387

|ηm|
. (4.24)

In this approximation the line of square–rhomb structural phase transformation (SPT

line) is parallel to the reduce temperature axis, t. Note however that some weak tem-

perature dependence can appear through the parameter ηm. The small magnitude of ηc

means that the SPT occurs well below Hc2(T = 0) that consistent with our approach in

which in H of Eq.(4.8) H′ is treated as a perturbation.

4.4 Effects of weak disorder on structural phase tran-

sition

In the following we discuss the quenched disorder correction to the STP. Quenched

( or static ) disorder is essentially unavoidable for any material especially for low-Tc

superconductor whose thermal fluctuation depinning is small. In naive way, disorder

change the local critical temperature and change the effective mess of the local cooper

pair. As we mentioned in Disorder section. An random pinning potential W (x) is

introduce, in the rescaled model, the disorder potential ahW (r) |ψ(r)|2 is added to the

GL functional, Eq. (4.1). Disorder potential W (r) is assumed to be independent of

temperature and magnetic field.

If a weak disorder potential is present in the system, vortex lattice distorts to take

advantage of the places where the local Tc (at given magnetic field H) is higher and to

avoid the places with lower Tc. The complete energy reads

F = F0(W = 0) + Fdis (4.25)

The free energy correction Fdisof the GL equation is ahW (x) |ψ|2 . Following the same

strategy, one can minimize the disorder GL functional to obtained the order parameter
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ψ(r;W ) and then averaging over the disorder to obtained the effective free energy of the

system:

F = −1

2

〈
|ψ(r;W )|4

〉
u.c.

= F0 + Fdis.

It is convenient to introduce a new random potential U(r) = W (r)√
n

with the correlator

U(r)U(r′) = δ(3)(r − r′). We rewrite the HDGL Eq. (4.9) as

Hψ − ahψ + ψ |ψ|2 + ahrU(r)ψ = 0, (4.26)

where we introduced the new perturbation parameter r =
√
n.

Expanding in γ, one gets

ψ(r;U) =
√
ah

[
Ψ0 +

m∑

m=1

rΨm

]
. (4.27)

The first term is given by linearized GL equation: Ψ0 = cφ0 with c = 1/
√
B0. The

equations for the next two term are

(
1 − 1

2ah
∂2
z − 2 |Ψ0|2

)
Ψ1 − Ψ2

0Ψ
∗
1 = UΨ0, (4.28)

(
1 − 1

2ah
∂2
z − 2 |Ψ0|2

)
Ψ2 − Ψ2

0Ψ
∗
2 = 2 |Ψ1|2 Ψ0 + Ψ2

1Ψ
∗
0 + UΨ1,

The unknown functions are found using the expansion in φk basis: Ψ1 =
∫
k
dkφk, Ψ2 =

∫
k
ekφk. The coefficients of these expansions read:

d0 = − c
2
U0,

dk =
c

∆k

[(
1 − 2

Bk

B0

− k2
z

2ah

)
Uk +

G∗
k

B0

U∗
−k

]
, k 6= 0, (4.29)

e0 = − 1

2c

∫

k

|dk|2,

∆k =

[
2
Bk

B0

− 1 − |Gk|
B0

+
k2
z

2ah

] [
2
Bk

B0

− 1 +
|Gk|
B0

+
k2
z

2ah

]
, (4.30)

where Uk = 〈U(r)φ∗
k(r)φ0(r)〉u.c.. The coefficients ek with k 6= 0 are not needed for our

purposes.
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The correction to the free energy density due to disorder is given by:

Fdis = − a2
hγ

2

2 (2πLz)

∫

x

{
4|Ψ1|2 |Ψ0|2 +

[
2Ψ∗

2Ψ0 |Ψ0|2 + (Ψ∗
1)

2Ψ2
0 + cc

]}

= −a
2
hγ

2

2

{
4ce0 +

∫

k

[
4
Bk

B0

|dk|2 +

(
G∗
k

B0

dkd−k + cc

)]}

= −a
2
hγ

2

2

∫

k

[
−2|dk|2 + 4

Bk

B0

|dk|2 +

(
G∗
k

B0

dkd−k + cc

)]

=
a2
hγ

2

2
c

∫

k

(
d∗kUk + cc

)
(4.31)

At the last step the equation for dk has been used. Performing disorder averages we

obtain:

Fdis =
a2
hr

2c

2

∫

k

(
d∗kUk + cc

)

=
a2
hr

2

2
c

[∫

k

1

∆k

(
(1 − 2

Bk

B0

)UkU∗
k +

Gk

B0

U∗
kU

∗
−k + cc

)]

=
a2
hr

2

2
c2
[∫

k

1

∆k

(
(1 − 2

Bk

B0

)Bk +
Gk

B0

G∗
k

)]

= −a
2
hr

2

2

[∫

k

Bk

B0

− |Gk|
B0

2Bk

B0

− 1 − |Gk|
B0

+ k2
z

2ah

+

∫

k

Bk

B0

+ |Gk|
B0

2Bk

B0

− 1 − |Gk|
B0

+ k2
z

2ah

]
(4.32)

Performing the kz integration we arrive at the formula Eq.(4.33 ) in which the numerator

was expressed via dispersion relations. The disorder correction of free energy is negative:

Fdis = − a
5/2
h n

B08
√

2π2

∫

BZ

d2k

(
Bk − |Gk|√

ǫAk
+
Bk + |Gk|√

ǫOk

)
, (4.33)

with

Bk ≡
〈
|φ0|2φkφ∗

k

〉
= βk + 4ηβ4

k + O
(
η2
)
, (4.34)

Gk ≡
〈
(φ∗

0)
2φ−kφk

〉
= γk + 4ηγ4

k + O
(
η2
)

(4.35)

The phonon spectrum dispersion functions ǫAk and ǫOk are:

ǫAk = 2
Bk

B0

− 1 − |Gk|
B0

, (4.36)

ǫOk = 2
Bk

B0

− 1 +
|Gk|
B0

(4.37)
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The energy of the acoustic branch vanishes at k = 0since they are the Goldstone bosons

associated with disappearance of the continuous translation symmetry at the homo-

geneous – vortex lattice transition. Note that expanding in η preserves the property

ǫAk=0 = 0.

The location of the SPT line is now obtained by minimization of the corrected free

energy Eq.(4.33). The results for several values of the disorder strength are given in

Fig.5. Square-to-rhomb transition line for different dimensionless disorder strength n

defined by R = nξ2
abξc. One observes again that the slope is positive.

4.5 Spectrum of rhombic lattice in a clean system

To go beyond the mean-field approach, we include the fluctuation of ψ close its minium Ψ.

In this section we will use study the thermal fluctuations influence on the structural phase

transition of clean system and disordered system. Before going to variational approach,

we will first study the One-loop perturbation. We expected that the low temperature

limit variational perturbation approach should consistent with perturbation approach.

The effective probability for each possible state ψ is base on the usual Boltzmann

probability distribution P [ψ] = 1
Z

exp (−βF [ψ]). To find an excitation spectrum in har-

monic approximation, one expands free energy functional around the Abrikosov solution.

In isotropic clean system, it has been done by [71][67] in LLL approximation. Recently

a low temperature perturbation theory around Abrikosov solution was developed and

shown to be consistent up to the two loop order in both 3D and 2D [112][82]. If the ther-

mal fluctuations were absent, the Abrikosov solution has the form Ψ(x) ≡ v0 ϕk=0(x)

. The normalization factor v0 is determined by minimizing the mean field free energy

f = aTv
2 + 1

2
βAv

4 where βA = 1.16. This results in v2
0 = − aT

βA
. Since all interest physics

are base on the variation from the minimum, namely it mean field solution 4.16, we sep-

arate the trail wavefunction to two parts: the main field solution part Ψ(x) and function

χ(x) describes the deviation due to thermal fluctuations at every point x. Parameter
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vcan be found by minimize the free energy.

ψ(x) = vϕ(x) + χ(x). (4.38)

First we diagonalize the quadratic term of free energy of Eq. (4.1) to obtain the

harmonic excitation spectrum. Instead of a complex field χk, two “real” fields O and A

(indicating as “optical” and “acoustic” phonon modes respectively) is used. The “real”

in the sense that it preserves the degree of freedom of a complex field χk. An additional

constrain between two complex fields O and A is included as O∗
k

= O−k and A∗
k

= A−k

. ( For example, one can think of it as Ok ≡ (χk + χ∗
−k

)/2 and Ak ≡ (χk − χ∗
−k

)/2.)

We choice a complete basis φk(x), the modified LLL basis 4.12, to expend the deviation

χ(x):

χ(x) =
∑

k=B.Z.

γkφk(x) (Ok + iAk) (4.39)

χ∗(x) =
∑

k=B.Z.

γ∗kφ
∗
k
(x)
(
Oa

−k
− iAa−k

)
, (4.40)

Moreover, the coefficient γk is defined as γ2
k ≡ 1

2

G∗

k

|Gk| to diagonalize the quadratic part

of the FGL. In clean isotropic system, η = 0 and r = 0, the eigenvalues first found by

Eilenberger in [71] are ǫ3DA (k) = ǫA (k) + k2
z/2 correspond to the acoustic phonon mode

and ǫ3DO (k) = ǫO (k) + k2
z/2 correspond to the optical phonon mode, where

ǫA (k) = −aT
(

2
βk
β0

− 1 − |ζk|
β0

)
, (4.41)

ǫO (k) = −aT
(

2
βk
β0

− 1 +
|ζk|
β0

)
. (4.42)

The function βk ≡ 〈ϕ∗
0ϕ0ϕ

∗
kϕk〉 and ζk ≡ 〈ϕ∗

0ϕ
∗
0ϕkϕ−k〉 . Note that the energy of the

acoustic branch vanishes at k = 0.The acoustic phonons are the Goldstone bosons as-

sociated with the disappearance of continuous (gauge) symmetry at the normal state –

vortex lattice transition. When k → 0,

ǫA (k) ≈ −0.12aT |k|4 . (4.43)
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The optical mode ǫO (k) has a finite gap. However the Goldstone mode is much softer,

namely at small momentum they behave like powers of k, |k|4 instead of |k|2.This ex-

ceptional ”softness” apparently should lead to an instability of the vortex lattice against

thermal fluctuations. Indeed naive calculation of the correlator in perturbation theory

shows that certain quantities including superfluid density are infrared (IR) divergent.

This was even considered an indication that the vortex lattice does not exist. One could

argue that real physics is dominated by the small mass 1/κ2 of the shear mode, acting as

a cutoff that prevents IR divergencies, but basic physical properties related to thermal

fluctuations near Hc2 (T) seemed to be independent of the cutoff, especially for high

Tc superconductors. In the IR divergencies were reconsidered and it was found that

they all cancel exactly at each order in physical quantities like free energy,magnetization

etc.This means apparently that for the infinite infrared cutoff fluctuations destroy the

inhomogeneous ground state, namely the state with lowest energy is a homogeneous

liquid.

To produce result for the anisotropy, one can replace the β and ζ function with

Bk 4.34and Gk.4.35 respectively. In the presence of anisotropy, ǫA (k = 0) = 0 is pre-

served. The spectrum is positive for triangular lattice in isotropic system and a rhombic

lattice in anisotropic system.

While including the fluctuations of lattice motion around it’s static solution, the es-

sential requirement is the rhombic lattice solution is stable, namely it’s spectral function

ǫA (k) is positive. It is our criterion that for the existence of solid solution. The finite

part for the Gibbs free energy to one loop (finite parts of the integrals were calculated

numerically). Up to two loops the calculation (extending the one carried in ref.[112] to

umklapp processes) gives:

f (θ) = − a2
T

2B0

+

∫
d2k

(√
ǫAk +

√
ǫOk

)
. (4.44)

The integration is angle dependent and is proportion to
√
aT .For θ = 60◦,

f (60◦) = − a2
T

2B0

+ 2.848
√
aT . (4.45)
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4.6 Hartree-Fock-like approximation and Replica

trick in disordered system

In disorder system, the functional F [ψ,W ] has a random potential W which increase

the complicity of disorder system. Since it is not trivial how to calculate the ensemble

average lnZ over all possible state. The replica method is a useful tool to do the ensemble

average. The manipulation are greatly facilitated by a mathematical identity

lnZ = lim
m→0

1

m
(Zm − 1) (4.46)

One prepares m replicas of the original system, evaluates the ensemble average of the

product of their partition functions Zm, and then take the limit m → 0. A problem

in actual replica calculation is that one often evaluate Zm with positive integer m in

mind and then extrapolates the result to m → 0. The discussion of the significance of

the replica calculations can be fine in [78] . Applying it to the disorder average of the

statistical sum one obtains:

Zm =

∫

ψ

exp

[
1

2

(rah
T

)2
∫

x

m∑

i,j

∣∣ψi
∣∣2 ∣∣ψj

∣∣2 − 1

T

m∑

i

FGL
[
ψi
]
]

(4.47)

where ψi are the i th replica and it will interact with different filed ψj.

We consider the case on the ground state. After the “LLL scaling” , one parameter

aT ≡ (btω/ω0)
−2/3

(
1 − t− b

2

)
(4.48)

is left ( ω0 = 4π
√

2). One get

Zm =

∫

ψ1,...,ψn

exp

{
1

ω0

[
R

2

∫

x

n∑

i=1

n∑

j=1

∣∣ψi
∣∣2 ∣∣ψj

∣∣2 (4.49)

−
∫

x

n∑

i=1

(
1

2
|∂zψi|2 − aT

∣∣ψi
∣∣2 +

1

2

∣∣ψi
∣∣4
)]}

(4.50)

where R = (raT )2

Tre
.

To go beyond perturbation, one can calculate the partition function via Hartree-

Fock approximation. In solid phase, it is more complicate to optimize the quadratic
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part since our system doesn’t have translation symmetry. Moreover, with disorder we

take into account the interaction between two replica system. Here we assume that

two phonon modes will not couple together. Instead of a single variational parameter

in liquid phase, there are four variational functions. We introduce variational matrix

G−1 and expand

Zm ≈
∫

O,A

(
1 − η

(
G−1

0 −G−1
)
ηT − quartic

)
exp

[
−ηG−1ηT

]
. (4.51)

For each ηk =
(
O1

k
... Om

k
, A1

k
... Am

k

)
in η and G−1

0 = aT

4π
√

2
δijδk1,k2 . The variational

matrix
(
G−1
k

)
2m×2m

is defined as

G−1
k,OO,i=j =

1

4π
√

2

(
ǫO (k) +

k2
z

2

)
(4.52)

G−1
k,AA,i=j =

1

4π
√

2

(
ǫA (k) +

k2
z

2

)
(4.53)

the coupling between replica fields are

G−1
k,OO,i 6=j =

1

4π
√

2
hO (k) , (4.54)

G−1
k,AA,i6=j =

1

4π
√

2
hA (k) . (4.55)

Since optical mode has a finite gap, thus we assume the coupling between two phonon

mode is negligible in a replica field and therefore it is reasonable to assume that the

coupling between two phonon mode of two different field is zero. We have

G−1
k,OA = 0, G−1

k,AO = 0. (4.56)

For simplify the notation, the inverse matrix element of G−1
k are defined:

pO (k) =
1√

ǫO (k) − hO (k)
− hO (k)

2 (ǫO (k) − hO (k))3/2
, (4.57)

qO (k) =
−hO (k)

2 (ǫO (k) − hO (k))3/2
. (4.58)

To calculate the average over disorder free energy we recalled the mathematical identity,

f ≡ −4π
√

2 lnZ = −4π
√

2 lim
m→0

Zm − 1

m
. (4.59)
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After carry out the integration over kz and drop the constant term in the free energy,

we get the free energy density with variational functions ǫA, ǫo, hO, hA and v , and the

external parameter aT which is b and t dependent, and the effective anisotropy η which

dependent on b, and n is disorder density per unit cell:

f (aT , η, n; θ, v, ǫA, ǫo, hO, hA) = f0 + ftr log + f2 + f4 (4.60)

where the “mean field” part is

f0 = aTv
2 +

1

2
v4B0, (4.61)

the trlog term is

ftr log = −
〈√

ǫO (k) − hO (k) +
√
ǫA (k) − hA (k)

〉
k

(4.62)

−
〈

hO (k)

2
√
ǫO (k) − hO (k)

+
hA (k)

2
√
ǫA (k) − hA (k)

〉

k

, (4.63)

the quatradic part is

f2 = aT 〈pO (k) + pA (k)〉k
+v2 (2 −R) 〈Bk (pO (k) + pA (k))〉k
+v2 (1 −R) 〈|Gk| (pO (k) − pA (k))〉k
+v2R 〈Bk (qO (k) + qA (k))〉k + v2R 〈|Gk| (qO (k) − qA (k))〉k

the interaction part is

f4 =
1

2
〈g1 −Rg2〉k,l

where the “clearn” part is

g1 = 2Bk−l (pO (k) + pA (k)) (pO (l) + pA (l))+
|Gk| |Gl|
B0

(pO (k) − pA (k)) (pO (l) − pA (l))

and the “disorder” part is

g2 = Bk−l (pO (k) + pA (k)) (pO (l) + pA (l)) −Bk−l (qO (k) + qA (k)) (qO (l) + qA (l))

+
|Gk| |Gl|
B0

(pO (k) − pA (k)) (pO (l) − pA (l)) − |Gk| |Gl|
B0

(qO (k) − qA (k)) (qO (l) − qA (l)) .
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Note the intergration Bk = Bk (θ, η) and Gk = Bk (θ, η) are function of angle. We

numerically minimize the free energy f with respect to θ and those variational functions

to obtained the SPT line.

Optimizing 4.60 has been solved numerically with the help of what we called mode

expansion. For n = 0 case, thermal fluctuations influence in pure sample, the amoeba

method is used to minimize the free energy f with respect to variational parameter v

and variational functions ǫA, ǫO, hO, hA. For the case n 6= 0, both disorder and thermal

fluctuation are taken into account, iteration method is used to solve the set of equation

obtained from functional derivatives df (aT , η; θ) /dΩ = 0 , Ω ∈ {v, ǫA, ǫO, hO, hA}. An

important external parameter aT depends on b and t. The effective anisotropy, η, is

proportional to b; and effective disorder strength,R, is b and t dependent. ( Material

parameters Gi characterize the thermal fluctuation strength and η̃ present anisotropy

and n is disorder density. ) In both case, to locate the structural phase transition line,

we need to locate the boundary between square and rhombic lattice phase.

To understand how to simplified the functional problem to algebra problem by mode

expansion, one can observe the gap equations. Minimize with respect to variational

functions we got a set of equations, so called gap equations:

v2 = −aT
B0

− (2 −R)
1

B0

〈Bk (pO (k) + pA (k))〉k −R
1

B0

〈Bk (qO (k) + qA (k))〉k

−R 1

B0

〈Gk (qO (k) − qA (k))〉k − (1 −R) 〈Gk (pO (k) − pA (k))〉k (4.64)

and

ǫA/O(k) = E (k) ∓Gk∆, (4.65)

hA/O (k) = H (k) ∓Gkδ, (4.66)

where

E (k) = aT + v2 (2 −R)Bk + (2 −R) 〈Bk−l (pO (l) − pA (l))〉l (4.67)

H (k) = −R
(
v2Bk + 〈Bk−l (qO (l) + qA (l))〉l

)
(4.68)
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and

∆ = (1 −R)

(
v2 +

〈
Gl

B0

(pO (l) − pA (l))

〉

l

)
(4.69)

δ = −R
(
v2 +

1

B0

〈Gl (qO (l) − qA (l))〉l
)
. (4.70)

To effectively solve the gap equations, we simplified it to algebra equations in the fol-

lowing way. By observing the equations, we found that E (k) has the same periodicity

as Bk. Two major contributions of Bk, βk and β4,k, has the same periodicity in k

space. In general, we can expand βN,k ≡
〈
|ϕ0|2ϕkϕ∗

N,k

〉
of arbitrary landau level N in

exp[ik • Xn] ≡ β̃n (k), namely

βN,k =
∑

n

κ
N
n β̃n (k) . (4.71)

The integer set n ≡ (n1, n2) ∈ Z2 determines the distance of a points on lattice from

the origin, Xn=n1d1 + n2d2.k can be present with reciprocal lattice constants d̃1 =(√
4π/ tan θ, 0

)
and d̃2 =

(
−
√
π/ tan θ,

√
π tan θ

)
, k = k1d̃1 + k2d̃2 where ki ∈ (0, 1).

The coefficient κ
N
n is different for each Landau level N ,

κ
N
n =

(
1√
2

)N
1√
N !

∑

n

(−iX∗)N exp[−|Xn|2
2

]. (4.72)

The first 6 mode are listed in the table of Fig.4.1. (We denote two dimension vector

(x, y) by bold latter X. Normal latter X denote x+ iy.)

Expand the E (k) and H (k) in β̃n(k), where χn = κ
0
n + ηκ4

n, one get

E (k) = E0 + E1χ1β̃1(k) + ...Enχnβ̃n(k)...+ (4.73)

H (k) = H0 +H1χ1β̃1(k) + ...Hnχnβ̃n(k)...+ (4.74)

where

En = aT δn0 + (2 −R) v2 +
(2 −R)

Cn
〈(pA(l) + pO(l)) βn(l)〉 (4.75)

Hn = −Rv2 +
R

Cn
〈(pA(l) + pO(l)) βn(l)〉 (4.76)
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n lattice site n = (n1, n2) modes β̃n = exp[−ik · X] |X|2

0 (0, 0) 1 0

1 (1, 0) , (−1, 0) , (1,−1) , (−1, 1) cos 2πk1, cos 2π(k1 − k2). 2πσ + π
2σ

2 (0, 1) , (0,−1) cos 2πk2
2π
σ

3 (2,−1) , (−2, 1) cos 2π(2k1 − k2) 8πσ

4 (−2, 2) , (2,−2) , (2, 0) , (−2, 0) cos 2π (2k1 − 2k2) , cos 4πk1
2π
σ

+ 8πσ

5 (1, 1) , (−1,−1) , (1,−2) , (−1, 2) cos 2π (k1 + k2) , cos 2π (k1 − 2k2)
9π
2σ

+ 2πσ

Figure 4.1: For triangle lattice, 2 modes is sufficient: β1
0 (θ = 60◦) = 1 + 0.0265 × 6 +

12 × 10−19 = 1.159; for square lattice, 5 modes gives β1
0 (θ = 45◦) = 0 − 4 × 0.348239 +

2 × 0.0601951 + 2 × 0.0601951 − 4 × 0.000449644 + 4 × 8.5010 × 10−6 =−1. 153 9. The

coefficients decrease exponentially with n.

where Cn is the number of points with same|X|2. One way to do the functional minimiza-

tion of the free energy for a given angle is to simplified it to algebra equations, namely

to solve interactively (4.75) and (4.64)with (4.73), (4.69), (4.70), (4.65), (4.66), (4.57)

and (4.58). Another way we used to seek for minimum is so called Amoeba method.

4.7 Results

For clean sample, in the mean field approach, for a given effective anisotropy η, the

system will prefer a rhombic lattice with apex angle θ. The numerical results of transition

condition (4.22) are presented in Figs.4.2. We found that for a given ηm, the magnetic

field enhance the anisotropy strength η,the apex angle θ deviates from 60◦ and decrease

to 45◦ continuously and situate till the magnetic field destroy the superconductivity.

The system undergo a second order phase transition.

The free energy with disorder correction 4.33 is plotted in Fig. 4.3. The system

undergo a 1st order phase transition, square lattice is not stable while dimensionless

temperature t increasing. When effective anisotropy is stronger, it suppresses the barrier

between two angle, the phase transition became continuous. The phenomenon happens
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Figure 4.2: Evalution of rhombic lattice in magnetic field. In mean field approach, the

square to rhomb phase transition occure at η = η̃b = 0.02932. After the critical field,

the vortex exhibits perfect square vortex lattice till the upper critical field.

at the vicinity of the S-N phase transition line, one notice that the square lattice is

not stable while temperature increase. The SPT transition happen at ∂2
θF (θ) |45◦ = 0,

where F are free energy of clean sample plus disorder correction , F = Fclean + Fdis.

Thus, it is convenient to collect the all the coefficients to p (t, b) = nγ
4π
b
√

1 − t− b ,

such that (∂2
θF

′
clean + p (b, t) ∂2

θF
′
dis)45◦ = 0 . The notation F ′

clean = 1
B0

and F ′
cleanis the

integration in F . One found that ∂2
θF

′
dis has different sign as ∂2

θF
′
clean. The structural

phase transition line with various disorder n are plotted in Fig. 4.4. Unlike the case in

a clean sample where SPT line is t independent, at low temperature, disorder enhance

the anisotropic effect. Near the S-N transition line where the microscopic fluctuation

coupled with disorder smear out the effect of anisotropy, the system restores the rhombic

lattice from square lattice. Indeed, when near the S-N phase transition, the higher order

correction in free energy functional, the D4 symmetric correction, is less important then

its isotropic part. However, due to the applicability of the perturbation approach, the
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theoretical line failed when in strong disorder.

Figure 4.3: Energy difference between θ = 44 and other angle. The material paramter

for anisotropy η̃ = 0.5, disorder stength n = 0.8 . Mangetic field is fix at b = .5, system

undergo 1st phase tranistion while decreasing temperature: the preference angle jump

from rhombic (θ˜52◦) to perfect square (θ = 45◦) .

Now we turn to the thermal fluctuations influences on structural phase transition in

clean system. In fig. 4.6 we show both perturbation (one loop ) result and Gaussian

variational approach. The laster approach is minimizing the free energy f (θ, n = 0, η̃)

with respect to variational functional which we use the mode expansion to simplified

the functional equation to algebra equations. It is interesting that at low temperature

two method shows the same tendency, however, while temperature increasing, two SPT

line depart from each other and result in totally different curvature. In both methods,

they doesn’t cross the melting line before the acoustic spectrum become negative. In

spite of the different curvature, both of them show that for strong Gi the influence area

increases. It is know that at the vicinity of critical the perturbation method is not

valid. Moreover, for strong anisotropy case, the system undergo SPT at low field and
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Figure 4.4: The phase diagram of structural phase transition. The voretx lattice struc-

ture of the system with b, t at the upper plane of the diagram are square lattice, while

at the lower plan are rhombic lattice. The material anisotropy η̃ = 0.5. System with

stonger disorder depart further from the SPT line for clean sample (n = 0).

the thermal fluctuation influence is suppressed.

When disorder influence are considered via ensemble average over all possible state,

we expected that the variational method will be able to give better result then pertur-

bation.

4.8 Discussion

We analyze the rhombic to square vortex lattice phase transition in anisotropic super-

conductors using a variant of Ginzburg-Landau theory. The mean-field phase diagram

is determined to first order in the anisotropy parameter, and shows a reorientation tran-

sition of the square vortex lattice with respect to the crystal lattices. introduce both

74



Figure 4.5: Comparison with experiment Dewhust’s experimend. The fitting parameter

n = 3.7 amd η̃ = .5.

thermal fluctuation effect and disorder effect by both perturbation and variational ap-

proach to show that thermal fluctuations and disorder produce a reentrant rhombic to

square lattice transition line at the vicinity of S-N phase transition line, similar to recent

studies which used a nonlocal London model. Moreover, we show that for material with

small Gi the reentrant rhombic is due to the quench disorder.

An in-plane anisotropic superconductor has a potential to have vortex lattice config-

uration other then hexagonal lattice. The coupling strength between vortex lattice and

the underlying material properties depend no only on the material anisotropy coefficient

ηm but also strongly depends on the external magnetic field. For a given anisotropy ma-

terial with 4-fold symmetry, the field induced structural distortion will eventually reach

a square lattice at high field (H > H2). It should be noted that at low temperature,
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Figure 4.6: Structual Phase Transition with thermal fluctuations influece at η̃ = .1.

Result of both one loop perturbation result (P ) and variational gaussian (G) are shown.

The insert shows material with different Gi.

the structural phase transition is hardly depend on temperature. In the presence of dis-

order which is introduced as a random pinning potential ,ahW (x) |ψ (x)|2, the system

has irregularity of minority vortices. We average all possible configuration of disorder,

namely we take into account all possible system with different disorder distribution in

space, W (x) , and make ensemble average. The result shows the temperature depen-

dency appear on the SPT line. The physical interpretation is that the disorder coupled

with microscopic thermal fluctuations in the quadratic term smears out the field induced

anisotropy. Hence, the vortices rearranged themselves according to the effective coupling

with underlying crystal which now has temperature dependency. This model works suc-

cessfully explain the SPT characteristic line for low temperature superconductors (with

small Gi ).
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Figure 4.7:

Considering the thermal motion of vortices, at low temperature, the system appears

to follow the symmetry of Hamiltonian, therefore, at the vicinity of SPT line, rhombic

lattice could become square lattice due to the thermal fluctuation. And indeed, with

largerGi which characterize the thermal fluctuations strength of a material, the influence

area on the phase diagram is larger. However, at high temperature when it approach

the melting line, the dramatic vibration of vortex smear the anisotropic effect from the

symmetry of underlying structure, the repulsion force became less anisotropic and restore

the rhombic lattice structure and the apex angle increase as temperature increase. The

anomaly in the dynamic magnetic susceptibility and paramagnetic [20] on borocarbides

crystals is associated with a structural transition in the vortex lattice and satisfied with

this picture. Theoretical results proposed by Dorsey et al [24], Kogan et al [20] proposed

that the appear of rhombus at the vicinity of Hc2 line is due to the thermal fluctuation

smear out the anisotropic effect of underlying vortex. For borocarbides the Gi˜10−5, it
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is questionable if the thermal fluctuations plays the major role.
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Chapter 5

Summary

Mesoscopic vortex motions influence the thermodynamic properties of superconducting

state dramatically. Reduced symmetries of the underlying material lead non-trivial and

complicate phenomena. Thermodynamic phase diagram of vortex matter includes: liquid

state, solid state, glass state and other subregion. The complexity mainly depends on

the intrinsic material properties ( Gi, Hc2, Tc and κ) and the density of disorder of a

system. In a GL model, various approaches are proposed to understand the physics. In

a liquid state, one can start from a solvable “noninteracting” field theory at very high

temperatures and develop a theory of liquid by resummation of Feynman diagram and

other resummation technique [90] [118] [63]. In solid state, one can study the“harmonic”

solid at low temperatures and trace its destruction by fluctuations [48][113][112]. These

two approaches are consequently the one phase theories. Direct numerical simulation

can provides a valuable information on both the liquid and the solid side of the transition

line.

In this work, by considering the thermal fluctuations and quenched disorder, we show

non-trivial consequence of anisotropic effects on vortex matters. The anisotropic effect

of layered superconductor ruins the high field scaling behavior in liquid phase because

the effective dimensionality of the layered superconductor have crossover between 2D to

3D which can be influenced by the external field. For strongly 2D system, the thermal

fluctuations excitation can go beyond lowest Landau level. We show that the higher
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landau level contribution around Tc is important, it is responsible for the failure of the

LLL scaling.

The microscopic theory for a system with 4-fold in-plane anisotropy is not yet estab-

lished, and nor does the direct link from non-Local Landon model to 4-fold symmetric

Ginzburg-Lanau model. From the phenomenological GL we adopted here, at certain

point in parameter space, a structural phase transition between rhombus and square

can occur. The field dependent coupling between vortex lattice and atomic crystalline

lattice will be enhanced by increasing magnetic field. At high field it will saturate with

square lattice before Hc2 (T ). In our theory we assume the coupling ηm between vortex

lattice and atomic lattice is temperature independent, for a clean low-Tc superconductor

which mean field approach is valid, we show that the temperature dependence of SPT is

not expected. The temperature dependency of SPT for small Gi material is not a result

of mesocopic thermal fluctuations, but due to the microscopic fluctuations from quench

disorder.

Because of the ability to tune the interaction forces between individual vortex can be

easily done by changing applied magnetic field and temperature of the system, I believe

that the physics of structure phase transition can be study in vortex lattice while lack of

the ability to control the interaction between atoms in materials. Such a system is very

interesting, and due to possible realization of the system it may serve as an excellent

experimental tool to examine well-developed theories with experiment.
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