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超導鐵磁薄膜系統的界面電阻與臨近效應

 

學生：黃斯衍 

 

指導教授：許世英博士 

李尚凡博士 

國立交通大學電子物理研究所 

摘 要       

 
鐵磁與超導這兩種材料都是自旋有序的相轉變系統，然而鐵磁有序驅使電子自旋同向排

列，超導體的庫珀電子對則是傾向自旋電子以相反方向來互相配對，因此彼此之間交互作用引

發出許多有趣的物理現象。而最直接和最有系統的研究方式來探討這互相競爭的有序參數，是

利用製作鐵磁與超導層狀結構(F/S)並進一步量測其傳輸性質例如超導臨界溫度,臨界磁場，和

臨界電流，在層狀結構中超導的波函數會滲透過鐵磁層，並受到鐵磁物質中多數自旋與少數自

旋能量不同的影響，而作空間上的修正，因此鐵磁與超導界面的臨近效應會誘導庫珀電子對波

函數在進入鐵磁性物質時產生振盪的行為。此量子效應吻合實驗上所量測到的統計行為，這些

因為鐵磁與超導的交互作用所引發的物理現象其實都是發生在 F/S 的邊界。由於在實驗上層

狀結構的界面相當的複雜甚至會影響所觀察到的物理特性，因此在本論文中，我們主要以電流

垂直膜面的量測技術定量的分析出塊材與界面的個別貢獻，這個重要且基礎的傳輸參數，在了

解與設定鐵磁超導臨近效應的邊界條件中扮演舉足輕重的角色。 

    我們將所有系列的樣品區分三組，這三組樣品的臨界溫度與臨界磁場對超導膜厚的行為，

都經由電流平行膜面的四點探針分式來量測得知，根據鐵磁超導臨近效應的理論分析，我們得

出每一系列樣品的臨界厚度，低於此厚度，超導特性會不存在。臨界磁場與溫度行為的量測中，

可以得知樣品維度的轉換行為與磁力線的釘扎機制。藉由電流垂直膜面的量測搭配電阻串聯模

型，我們可以經由超導膜厚的改變，定量分析出鐵磁超導在正常態與超導態的界面電阻。在第

一組樣品中我們量測與分析鐵磁物質鈷 Co 和不同比例的鈮鈦合金(NbxTi1-x, with x = 1, 0.6, 

and 0.4)之界面電阻，並將界面傳輸透明度的物理量，以界面電阻和其它物理參數來表達並作

系統性的分析與討論，我們的結果發現超導態的界面電阻會受到超導體的散射中心和滲透到超

導體逐漸消失的電子波函數的影響。第二組樣品，我們藉由製備鐵/鈮，鈷/鈮，鎳/鈮[Fe/Nb 

(bcc/bcc), Co/Nb (hex/bcc),  Ni/Nb (fcc/bcc)]層狀結構，利用不同結構和材料的強鐵磁

性物質，來研究其與超導的臨近效應，從結果發現鐵磁與超導的晶格常數匹配程度會影響其界
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面電阻。第三組樣品則是研究弱磁性銅鎳合金與超導鈮的臨界效應，藉由分析超導臨界溫度對

鐵磁與超導厚度的行為，我們發現其界面擁有高的傳輸透明度，這樣好的界面會造成弱的鐵磁

性擁有強的拆散效應，並影響臨界磁場對溫度的空間維度轉換厚度，進一步在電流垂直膜面 

量測中，我們證明界面電阻和傳輸透明度有高度的相依性。 
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Abstract 

 
The interplay between superconductivity and ferromagnetism results in many interesting 

physical phenomena. Both materials are phases of matter with ordered electronic spins. While 

ferromagnetic order forces the spins to align in parallel, the Cooper pairs in singlet superconductivity 

prefer an antiparallel spin orientation with total spin zero. The most straightforward way to study the 

competition of the two order parameters is to fabricate ferromagnet/superconductor (F/S) layered 

structure and to measure the transport properties such as critical temperature, critical field, and 

critical current in the superconducting state. The superconducting wavefunction penetrating inside 

the F is modulated by the energy difference between the minority and majority spin bands. Thus, the 

proximity effect at F/S interface would induce damped oscillatory behavior of the Cooper pair 

wavefunction within the ferromagnetic material. These physical phenomena of the proximity effect 

are related to the interplay between superconductivity and magnetism and occur at the boundary of 

F/S structures. However the character of the real interface in the F/S systems complicates the 

physical situation considerably. In this dissertation, we use current perpendicular measurement 

technique to quantitatively separate the interface and bulk contribution. The fundamental 

information of the transport properties given by this useful tool plays a dominant role in the 

boundary condition of the microscopic model within the proximity effect.    
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We divide a series of samples into three groups. The behaviors of superconducting transition 

temperature Tc
 and upper critical field Hc2 as a function of different superconductor thicknesses have 

been investigated in all groups with current flowing in the plane by a standard four-probe technique. 

We deduce superconductor critical thicknesses, below which superconductivity vanishes, by 

analyzing the data in terms of the proximity effect theory. The temperature dependence of Hc2 

measurement reveals the spatial dimensional crossover and the flux pinning mechanism in the 

superconductor. Using the current perpendicular to plane measurements (CPP) with a series resistor 

model, we can, by varying the thickness of S, extract the unit area resistance for one pair of F/S 

interface when S is in the superconducting and normal states. In Group 1, the quantitative interface 

resistance between polycrystalline ferromagnetic Co and NbxTi1-x, with x = 1, 0.6, and 0.4, are 

measured and analyzed. The interface transparencies in terms of the ratio between interface 

resistance and various physical quantities are discussed. Our results show that the superconducting 

state interface resistance is influenced by the scattering centers and the penetration depths of the 

electron evanescent wave into the superconductors according to the Pippard model. In Group 2, we 

study the proximity in Fe/Nb (bcc/bcc), Co/Nb (hex/bcc), and Ni/Nb (fcc/bcc) with a sputtered 

layered system. The influence of lattice mismatch on interface resistance is found to be important. In 

Group 3, we report the proximity effect between a weak ferromagnet Cu0.5Ni0.5 and a superconductor 

Nb. High interfacial transparency is derived from the behavior of the superconducting critical 

temperature as a function of the S and F layer thicknesses. A strong pair-breaking effect as a result 

of the high interface quality influences the spatial dimensional crossover in the temperature 

dependence of the upper critical magnetic field. Here, by using the CPP measurement with a series 

resistor model, a close correlation between the interfacial transparency and the interface resistance is 

demonstrated.  
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Chapter 1  

Introduction 

Interest has increased in ferromagnet/superconductor (F/S) heterostructures 

during the last decade. [1–3] This may probably be attributed to advances in 

experimental fabrication and deposition techniques as well as theoretical works. The 

main reason to study this kind of heterostructures is that future devices and 

applications will rely on manipulation of not only the electron charge but also its spin. 

Lying at the heart of the computer which the most important tool we are using today 

is a memory retrieval system based on the discoveries for which the 2007 Nobel Prize 

in Physics was awarded to Albert Fert and Peter Grünberg. They discover that a small 

magnetic change can make a major difference to an electrical current through 

sandwiches of metals built at the nanotechnology scale. This is the basis of a 

responsive sensor that uses giant magnetoresistance.  

The phenomenon called magnetoresistance (MR) is the change of resistance in a 

conductor first observed by W. Thomson [4] when the sample is placed in an external 

magnetic field. For ferromagnets such as iron, cobalt, and nickel, this property will 

depend on the direction of the external field relative to the direction of the current 

through the magnet. This difference in resistance between the parallel and 

perpendicular cases is called anisotropic magnetoresistance (AMR). [5] It is now 

known that this property originates from the electron spin-orbit coupling. The 

magnetoresistance effects are generally very small, at most of the order of a few 

percent.  

Therefore it was surprising when two independent research groups in 1988 both 
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discovered that magnetic layered structure showed considerably large 

magnetoresistance by using magnetic fields to evoke much greater increases in 

electrical resistance in specially constructed stacks made from alternating layers of 

very thinly spread iron and chromium. The widths of the individual layers were of 

nanometer size, i.e. only a few atomic layers thick. In the original experiments Peter 

Grünberg’s group [6] used a trilayer system Fe/Cr/Fe, while Albert Fert and his 

colleagues [7] created multilayers of the form (Fe/Cr)n where n could be as high as 60. 

The Fert group saw a magnetization-dependent change of resistance of up to 50 

percent, whereas the German group saw a 10 percent difference at most , as result of  

Fert’s use of many more layers and interfaces than Grunberg’s. However, the basic 

effect and the physics behind it were identical in both cases. Both groups realized that 

they had observed a totally new phenomenon. With traditional magnetoresistance, few 

researchers had registered more than a single percent or so of change in resistance. 

Albert Fert named it “giant magnetoresistance (GMR)” to describe the new effect, and 

in his first publication on this topic he pointed out that the discovery could lead to 

important applications. Peter Grunberg also realized the practical potential of the 

phenomenon and filed a patent at the same time as he was writing his first scientific 

publication. 

Giant magnetoresistance is essentially a quantum mechanical effect depending 

on the property of electron spin. Within the magnetic material and especially at the 

interface between the magnetic and the non-magnetic material, electrons with 

different spins are scattered differently. With an applied magnetic field which controls 

the direction of magnetization in different layers, the electrons scatter more if their 

spin is anti-parallel to the general direction of magnetization than those parallel to the 

direction of magnetization.  

    The advantage of obtaining well-behaved metallic multilayers is that the lattice 
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parameters for the different metallic layers could match each other and the two metals 

forming the multilayer could have the same crystal structure. This is the case for 

chromium and iron, where both metals adapt the bcc (body-centred cubic) crystal 

structure and they have very similar lattice parameters. Moreover, in order to exhibit 

the GMR effect the length of mean free path for the conduction electrons has to 

greatly exceed the interlayer separations, so that the electrons can travel through 

magnetic layers with spin information. The epitaxial layer structure used by both 

Grunberg and Fert was laborious and costly, better suited for a research laboratory 

than for a technological process on a larger scale. As a result, it was an important step 

when Stuart Parkin, [8] demonstrated that it was possible to achieve the same effect 

using a much simpler technology by sputtering. The GMR-effect actually proved not 

to depend on very perfect layers. Since this discovery of the GMR effect in metal 

multilayers in which the current was carried in the plane of the layers (CIP), GMR has 

also been observed when the current is carried perpendicular to the plane of the layers 

(CPP). [9] The CPP research area is a useful way to clear the fundamental science in 

the GMR effect with a quantitative analysis of the interface and bulk contributions. 

[9-12] 

The discovery of the GMR effect may also be regarded as the first step in 

developing a completely new type of electronics called spintronics. After GMR a 

similar system in which two ferromagnetic layers are separated by an insulating 

material has been constructed. If the insulating layer is thin enough, electric current be 

able to pass through the insulator by a quantum mechanical effect called tunnelling. 

This new system is called TMR, Tunnelling Magnetoresistance. In TMR system, an 

even larger difference in resistance can be created by very weak magnetic fields, and 

the newest generation of read-out heads uses this technology. [13,14]  

Based on these discoveries, a new research area known as superspintronics has 
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emerged, aiming at utilization of charge and spin transport in 

ferromagnet/superconductor heterostructures. The rich physics of interplay between 

ferromagnetism and superconductivity has recently attracted much theoretical and 

experimental attention (see Ref. [1-3] as reviews). The interest continues due to the 

progress in the preparation of both new materials and high quality heterostructures 

down to nanometer size. Singlet superconductivity prefers an antiparallel spin 

orientation of electrons to form the Cooper pairs, while ferromagnetic order forces the 

spins to align in parallel. In such systems the exchange field in the ferromagnet is 

expected to break the time-reversal symmetry in the superconductor and suppress 

singlet superconductivity. Because superconductivity and ferromagnetism are two 

competing orders, their coexistence is possible only in a narrow interval in phase 

space by the proximity effect, and their interaction is referred to as the LOFF state, 

explained by Fulde, Ferrell, Larkin, and Ovchinnikov. [15,16] The LOFF state means 

that nonzero total momentum pairing could occur when an exchange field Eex is 

present in the F/S layer structure. In recent years, advances in the fabrication of 

artificial layered structures have enabled the study of this effect from both the 

fundamental and the applied aspects when the two orders are spatially separated. In 

artificially fabricated layered systems, the proximity effect between superconductor (S) 

and normal metal (NM) manifests itself as exponentially decaying amplitude of the 

superconducting wavefunction, which penetrates across the interface into NM. [17] 

On the other hand, in ferromagnet/superconductor (F/S) layered structures, the 

superconducting order parameter exhibits spatial variation upon entering the 

ferromagnet, which arises from the energy shift between the quasiparticles of the pair 

in the presence of the exchange field. As a consequence, the superconducting 

wavefunction not only decays in the F layer but also oscillates over a certain length in 

the direction perpendicular to the interface. The properties of superconducting wave 
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functions under the influence of exchange field can be studied by changing the 

relative strengths of the two competing orderings.   

A considerable amount of attention has been devoted to the F/S bilayer in 

experimental laboratories where the interplay between ferromagnetism and 

superconductivity can be studied. The two long-range-order phenomena mix close to 

the interface, giving rise to interesting effects both from a basic physics perspective 

and from a perspective of potential applications. These effects include induction of 

unusual superconducting symmetry correlations and a highly nonmonotonic behavior 

of various physical quantities on the size of the system. This is a result of the 

nonuniform superconducting correlations that are induced in the ferromagnetic layer 

by means of the proximity effect. As a natural extension of the F/S bilayer, research 

has also focued on S/F/S systems, F/S/F, and multilayer systems, where the influence 

of ferromagnetism on the Josephson current and the critical temperature has been 

studied, respectively. For instance, the nonmonotonic oscillating superconducting 

critical temperature (Tc) [18, 19] and the critical current (Ic) [20-22], depending on the 

thickness of the F layer, dF, and reentrant superconducting behavior [23, 24] have 

been experimentally observed. To reliably control F thickness over a large range for 

the study of the S/F/S junction, it is essential to use a weak ferromagnetic metal. [20, 

21] In the study of quasiparticle-mediated coupling in the F/S/F spin valve structure, a 

thin S layer is required. [25-27] These phenomena mentioned above are related to the 

interaction between superconductivity and magnetism and occur around the boundary 

of the F/S structures.  

In order to study the transport properties, it is important to understand which 

boundary condition is applicable at the interfaces. The quality of the interface 

transparency will affect the coupling mechanism between the S and the F. Lately, 

interfacial transparency Ttran, has been included in the analysis of the interfacial 
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quality and has been considered to play a dominant role in the boundary condition in 

layered structures. [27-34] While Ttran =1 indicates a perfect interface, the value of 

Ttran < 1 signifies the decrease in the amplitude of the order parameter. It implies that 

the electrons are apt to be reflected rather than transmitted at the interfaces, which 

may reduce the strength of the proximity effect. [28, 29] It is known that the reduced 

transparency results from both extrinsic and intrinsic factors such as interface 

imperfection, Fermi velocity difference, and band-structures mismatch. By including 

the interfacial transmission coefficient in the proximity theory, the discrepancy 

between the experimental results and the theoretical prediction under a perfect 

interface assumption could be reconciled. It is common to find discussions in the 

literature that treats interfacial transparency in terms of the ratio of interface resistance 

to the product of bulk resistivity and the Cooper pair penetration depth in NM. [29~34] 

Studies on V/V1-xFex (x = 1 ~ 0.34) multilayers were performed with current in plane 

measurements by Aarts et al. who first discussed and derived different interface 

transparency from the result of theoretical fitting. [31] Attanasio et al. have studied 

interfacial transparency for different layered structures, which consist of Nb as a 

superconductor, Cu, Ag, and Pd as normal metals, and PdNi and Fe as ferromagnetic 

materials, to investigate the effect of the fabrication method on Ttran with sputtering 

and molecular beam epitaxy. Their results showed that the interfacial transparency 

was influenced by intrinsic factors related to the microscopic properties of the two 

metals across the interface rather than by the fabrication method. [30] Although 

interfacial transparency is important both from the theoretical and experimental points 

of view, interfacial transparency is usually treated as a fittable parameter due to the 

great difficulty in direct measurement. [27-34] Thus our motivation is to approach the 

F/S proximity effect by studying the transport property at the interface. In this 

dissertation, we directly and systematically investigate the influence of interface 
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resistance on the interfacial transparency between S and F, both when S is in the 

normal state and in the superconducting state, by varying the thickness of S with 

current perpendicular to plane (CPP) measurement. This tool is successful to explain 

the GMR effect by quantitatively analyzing the interface and bulk contributions. [9-12] 

Since the interface resistance must be considered as areas conduct in parallel, the unit 

area resistance we are interested in is AR, total sample area times the sample 

resistance. We discuss the unit area interface resistance between F and S both in the 

superconducting state and in the normal state with different kinds of superconductor 

and ferromagnetic materials (from strong to weak ferromagnetic metal) and compare 

these values to theoretic prediction quantitatively.  

The thesis is structured as follows. Chapter 2 gives an overview of the 

background and previous literatures of the F/S heterostructures. Chapter 3 outlines the 

experimental techniques including sample fabrication and measurement. Chapter 4 

introduces the theoretical models necessary for understanding the main mechanisms 

for describing F/S system. Chapter 5 gives experimental results of Co/ NbxTi1-x 

systems. By analyzing the data with the proximity effect model with high interface 

transparency assumption developed by Radovic [35], we can deduce the critical 

thickness below which superconductivity vanished. A one-band series-resistance 

model is used to analyze the CPP data. We compare and analyze the interface 

transparency in terms of the ratio between unit area interface resistance and various 

physical quantities in the Co/ NbxTi1-x systems. The influence of the interface 

resistance with strong ferromagnet Co and three superconductors, Nb, Nb0.6Ti0.4, and 

Nb0.4Ti0.6, which have various superconducting coherence lengths, are also discussed 

by the Pippard model. [36] In Chapter 6, we study and analyze the proximity effect 

between Nb and three strong ferromagnets Fe, Co, and Ni. The influence of lattice 

mismatch and the lattice structure on interface resistance is found to be important as 
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compared with Fe/Nb (bcc/bcc), Co/Nb (hex/bcc), and Ni/Nb (fcc/bcc) layered 

systems. The relevant first principle calculation for these systems is discussed.  In 

Chapter 7, we report a systematic investigation in thickness dependence of Tc for 

Cu0.5Ni0.5/Nb layered structures with weak ferromagnet Cu0.5Ni0.5. High interfacial 

transparency in this system is deduced. According to study of the dimensional 

crossover, high interfacial transparency also significantly influences the behavior of 

the temperature dependence of the critical magnetic field, Hc2, through the strong 

pair-breaking effect. To understand the transport characteristic at the interface, current 

perpendicular to plane measurement is also employed. The interfacial transparency 

between the S and the F is systematically studied by comparing experimental data 

with the result derived from the theoretical model developed by Fominov. [29] 

Eventually, we are able to determine the interfacial transparency quantitatively. 

Chapter 8 is a summary of all the results.  
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Chapter 2  

General Background and Previous Work 

 

2.1 The length scale of Superconductivity and 

Ferromagnetism 

 

There are many new phenomena that do not exist in the constituent materials in 

isolation. These behaviors come from the proximity of different materials with 

various functionalities and long-range orderings. For instance, Giant 

magnetoresistance in heterogeneous structures is due to interlayer coupling between 

two ferromagnetic layers across a non-magnetic spacer layer. [1.2] The interplay of 

superconductivity and magnetism is another area where proximity effects are of 

long-standing interest. Superconducting ordering and magnetic ordering are 

diametrically different and generally incompatible with each other. To analyze F/S 

multilayer structures, we must distinguish several different lengths in S and F. 

Under the basic assumptions of the Drude model, the molecules of a gas, which 

move in straight lines until they collide, is treated as identical solid spheres in the 

kinetic theory. [3] An electron experiences a collision with a probability per unit time 

1/τ and is assumed to achieve thermal equilibrium with its surroundings. According to 

Ohm’s law, the current, I, flowing in a wire is proportional to the potential drop V and 

follow V=IR. Here, the resistance of the wire, R, though depends on dimensions, is 

independent of the magnitude of either the current or potential drop. We can estimate 

the resistance by the Drude model. [4] The resistivity, ρ, is defined to be the 

proportionality constant between the electric field, E, and the current density, j, by the 

equation:  

E=ρj.   (2.1) 

If each electron carries a charge –e, then the total charge crossing area, A, will 

be –nevAdt with velocity, v, in the time dt, where n is electrons per unit volume.  

Hence the current density is 

j=I/A=-nev.    (2.2) 
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Because of the collision of electrons with impurities, lattice imperfections, and 

phonons, the displaced sphere may be maintained in a steady state in an electric field. 

In the presence of a field E, electrons are moving in an average electronic velocity, v, 

which is directed opposite to the field due to negative charge. Therefore 

m
eEv τ

−= ,    (2.3) 

τ is the relaxation time. So the current density is usually stated in terms of the inverse 

of the resistivity, the conductivity σ=1/ρ, by   

;
2

E
m

nej τ
=  

m
ne τσ

2

= .   (2.4) 

The electrical resistivity of most metals is dominated at room temperature by 

collisions of the conduction electrons with lattice phonons and at low temperature by 

collisions with impurity atoms and mechanical imperfections in the lattice. 

Qualitatively, electrons are pictured as moving ballistically between collisions, but 

making many collisions as they traverse a sample (diffusive transport). The mean free 

path, l , measures the average distance an electron travels between collisions 

associated with the elastic scattering processes. The distance is defined by  

τFvl = ,  (2.5) 

where Fv  is the velocity at Fermi surface, because all collisions involve only 

electrons near the Fermi surface. For thin films, l is usually limited by the size of 

grain boundaries, imperfections, sample roughness and dimensions, the limitation 

which is related to the finite size effect. [5] We can simply distinguish the diffusive 

regime from ballistic regime by a comparison between dimension of the system L, in 

the direction of transport and l, as shown in Fig. 2.1 

 

 

 

 

 

 

 

 

Figure 2.1: Overview of the F/S heterostructure in different regime. [6] 

L<<l

L>>l

L>l
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When L is much larger than l, an electron will experience several collisions before 

reaching the boundaries and will undergo random diffusion motion in the sample. 

Alternately, when the L of the sample size is smaller, the electron will reach the 

boundaries of the sample without losing its initial momentum. The ballistic regime is 

usually referred to the clean limit, whereas a system in which an electron undergoes 

diffusion motion corresponds to the dirty limit. Moreover, the product of ρ and l from 

Egs. (2.4) and (2.5) is a constant, and can be obtained by 

τ
ρ 2ne

mvl F= .  (2.6) 

Actually, superconductivity and magnetic ordering have very different intrinsic 

length scales. The coherence length, which is the appropriate correlation length for 

superconductivity, is of the order of several hundred Å for the low temperature 

superconductors. However the correlation lengths for the various types of magnetic 

(M) ordering are much shorter, typically § 20 Å. [7] There are two typical 

characteristic lengths, the London penetration depth and the coherence length in the 

theoretical and experimental investigations of superconductivity. The London 

penetration depth refers to the exponentially decaying magnetic field at the surface of 

a superconductor derived form London Equation. It is related to the density of 

superconducting electrons in the material, given by [3] 
2/122 )4/( nemcL πλ =  ,  (2.7) 

for particles of charge, e, and mass, m, with superconducting electron density, n. An 

independent characteristic length is the coherence length. The coherence length is best 

introduced into the theory through the Landau-Ginzburg equation. [4] It is related to 

the Fermi velocity for the material and the energy gap, Δ, associated with the 

condensation to the superconducting state, represented as  

Δ= πξ /20 Fv .  (2.8) 

The coherence length is a measure of the distance within which the superconducting 

electron concentration cannot change drastically in a spatially-varying magnetic field. 

The zero-temperature energy gap gives a fundamental formula independent of 

phenomenological parameters: [8] 

( ) CBTk76.10 =Δ .   (2.9) 

The elementary theory also predicts that the energy gap will vanish near the critical 

temperature; the behavior can be described as a function of temperature by  
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2/1)1(74.1
)0(
)(

CT
TT

−=
Δ
Δ .  (2.10) 

In F/S layered system, one of the challenges in the studies of proximity effects is 

that both layers are near the thin film limit, with thicknesses comparable to their 

respective correlation lengths. Thus, both are subject to strong "finite-size effects.  In 

general, the correlation length ξS(T) of a superconducting and ξF(T) of a magnetic 

system with long-range order diverge at TC,(Curie), which here denotes the bulk 

superconducting transition temperature and the bulk magnetic ordering temperature, 

respectively. Near TC,(Curie), ξS,F(T) has a power law temperature dependence [4] 

αξξ −−= )1)(0()(
)(,

,,
CuireC

FSFS T
TT ,  (2.11) 

where ξS,F(0) is the extrapolated correlation length at 0 K, and α is the critical 

exponent for the correlation length. The transition temperature TC(dS,F) of a function 

of layer thickness d is reduced from TC,(Curie) according to the "finite-size scaling 

relation [7] 

α

ξ
/1

,
)(,, )

)0(
1()(

FS
CurieCFSC

dTdT −= .  (2.12) 

Thus, TC(dS,F) is significantly reduced from TC,(Curie), when d is smaller than, or 

comparable to ξS, F(0). As for low TC superconductors, since the values of ξS(0) are 

long as mentioned above, the TC of S layers for several hundred Å thick is already 

reduced. Whereas the ξF(0) of magnetic systems is much shorter, no significant 

reduction of TCuire can be observed except in ultrathin layers of thickness d<50 Å. 

    The spin-diffusion length lSF is another important length scale to study F/S 

system due to an additional degree of freedom introduced by the spin of electron. The 

spin coherence can be maintained in an effective travel distance before the orientation 

of the spin is destructed by spin-orbit interactions and other mechanisms. [9] 

Moreover, the spin-flip length, λSF, which is the mean distance between spin-flipping 

collisions. Defined τSF as the mean time between spin-flipping events gives  

SFFv τλ = SF .  (2.13) 

In contrast, the spin-diffusion length, lSF, is the mean distance that electrons diffuse 

between spin-flipping collisions which obeys a diffusion equation. The standard form 
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is [10] 

    (1/ 3)   (1/ 3)SF SF F SF SFl D lv lτ τ λ= = = , (2.14) 

where D is the diffusion constant, and the usual ordering of lengths is l < lSF < λSF. 

We find the thermal conductivity of a Fermi gas, Kel, when taking into consideration 

the coefficient of electronic specific heat, γ, can be defined as [4] 

lTv
m

TnkK F
B

el γτπ
3
1

3

2

== .  (2.15) 

According to the Widmann-Franz law, for metals, the ratio of the thermal 

conductivity to the electrical conductivity is directly proportional to the temperature 

by using Eq. (2.4) for σ and Eq. (2.15) for Kel: [3, 4] 

T
e
k

mne
mTnkK BBel 2

2

2

2

)(
3/

3/ π
τ

τπ
σ

==   (2.16) 

This result supports the picture of an electron gas as the carrier of charge and energy. 

Furthermore, the diffusion constant is related to low temperature resistivity, ρ, and the 

to coefficient of electronic specific heat, γ, following the relationship by considering 

the Eqs. (2.15) and (2.16) 

21/ 3 ( )
3

B
F

kD v
e

π
γρ

= = . (2.17) 

Thus the diffusion constant can be estimated by measuring the specific heat. 

Non-magnetic pure metals, such as lSF of Cu, Ag, and Al are as long as a few 

hundred nanometers, whereas the values of ferromagnets like Fe, Ni, and Py, the 

values are all § 20nm. [9] The early analysis of the current-in-plane (CIP) 

measurements is relatively complex, in part because the mean free paths, l, for total 

scattering of electrons, are fundamental lengths. [11] The currents are mixed by 

transmission of electrons across interface. The variation of the CIP with layer 

thickness is mainly dominated by l<<lSF usually. In contrast, for the current 

perpendicular to plane (CPP) measurement [12, 13], currents of electrons with 

moments up or down relative to a fixed direction propagate independently through a 

simple two-current series resistor (2CSR) model, in which this model gives a total 
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specific resistance (sample area A times resistance R) that is just the sum of effective 

resistivities times layer thicknesses, plus effective interface specific resistances. For 

the CPP measurements, we emphasize that the important lengths in this model and the 

Valet-Fert theory [10] are the layers thicknesses and spin diffusion length, lSF, since 

the thickness is usually smaller than or comparable to l.      

It is of great interest how the spin accumulation signal is modified by replacing 

normal metals with a superconductor. Lately, a study predicts that the spin diffusion 

length in the superconducting state is the same as that in the normal state. [14] In 

proximity-effect F/S systems, effects of spin-flipping in the F metal have been seen in 

damped oscillatory behavior of the superconducting correlations. Expected 

longer-range penetration into the F-metal of triplet-state superconducting correlations 

is also predicted [15, 16] Triplet correlations may be affected by spin flipping at the 

F/S interfaces. But these predictions have yet to be confirmed and little reliable 

information is available, especially for an investigation of F/S interface. 

 

2.2 The coexistence of Superconductivity and 

Ferromagnetism in the LOFF state 

 

The rich physical phenomenon between ferromagnetic and superconductivity 

materials has recently attracted much attention due to the great progress in the 

preparation of high quality heterostructures (see Ref [17], [18] for a review). 

According to their incompatible nature, singlet superconductivity and ferromagnetic 

order do not coexist in bulk materials. Ginzburg [19] has first formulated the problem 

of the coexistence of magnetism and superconductivity considering an orbital 

mechanism by which superconductivity is suppressed. It then becomes clear that 
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superconductivity in the singlet state could be destroyed by an exchange mechanism 

based on the advent of the BCS theory by Bardeen, Cooper, and Schrieffer (1957). 

The exchange field in a magnetically ordered state tends to align spins of Cooper pairs 

in the same direction, thus preventing a pair-pairing effect. In early reports, there has 

been experimental evidence providing the coexistence between the magnetism and 

superconductivity, such as ternary compounds (RE)Rh4B4 and (RE)Mo6X8 (X=S, Se) 

[20] , and quaternary compounds (RE)Ni2B2C [21]. However, it has turned out that in 

many of these systems superconductivity coexists with antiferromagnetic order, and 

the Néel temperature TN < TCurie, the critical temperature. In fact, superconductivity 

and antiferromagnetism can coexist quite peacefully since, on average, the exchange 

and orbital fields are zero at distances of the order of the Cooper pair size or 

superconducting coherence length. 

Anderson and Suhl (1959) have predicted that a nonuniform magnetic order 

would appear at the Curie temperature and the period of this magnetic structure would 

be smaller than the superconducting coherence length but larger than the interatomic 

distance. [22] The coexistence phase is a domain like structure with very small period 

according to this theoretical analysis which takes orbital and exchange mechanisms as 

well as magnetic anisotropy into account. [23] Recently, UGe2 [24] and URhGe [25] 

have first discovered ferromagnetic superconductors but actually these systems have a 

triplet pairing character which permits the coexistence of superconducting with 

ferromagnetism. Apparently, the coexistence of singlet superconductivity with 

ferromagnetism is very unlikely in bulk compounds. Because of their competing 

nature, singlet superconductivity prefers an antiparallel spin orientation of electrons to 

form Cooper pairs, while ferromagnetic order forces the spins to align in parallel.  

However, the coexistence may be achieved in artificially fabricated layered 

ferromagnet/superconductor (F/S) systems. The probability of the coexistence of 
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superconductivity and magnetic order has been studied for several decades. Fulde and 

Ferrell (1964) [26] and Larkin and Ovchinnikov (1965) [27] have demonstrated that, 

in a pure ferromagnetic superconductor at low temperature, superconductivity may be 

nonuniform (FFLO state). In the FFLO state, a superconducting order parameter is 

generated in the presence of an exchange field, and it turns out that the distribution of 

the electrons is favorablly extended along one of the directions perpendicular to the 

exchange field than a spherically symmetric distribution. [28] So the Cooper pairs 

with shifted center of mass momenta appear, and an inhomogeneous distribution 

function is shown in Fig. 2.2. It means that nonzero total momentum pairing can still 

occur while an exchange field Eex is present. However, it is difficult to verify this 

prediction experimentally due to the incompatibility of ferromagnetism and 

superconductivity. In the layered system, the Cooper pairs can penetrate into the F 

layer and induce superconductivity there. In such a case we have a unique opportunity 

to study the properties of superconducting electrons under the influence of exchange 

field. Since we can change the relative strengths of two competing orderings by 

varying the layer thicknesses, it is possible to study the interplay between 

superconductivity and magnetism in a controlled manner. 

 

 

 

 

 

 

Figure 2.2: Cooper pair in superconductor and ferromagnet. Δp=h/vF. [28] 

 
 

PF+(-PF)=0. 

Under a magnetic field  

(because of Zeeman’s splitting) 

P1=PF+ΔPF ; P2=-PF+ΔPF 
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2.3 General phenomenon in proximity effect 
 

As mentioned in Section 2.1, the contact of materials with different range 

ordering will modify their properties near the interface. Note that the conventional 

proximity effect is considered in the case of interface between superconductor and 

normal-metal. When a superconducting layer S is brought into contact with a normal 

metallic layer NM, the superconducting critical temperature Tc of S decreases with the 

thickness of the NM-layer increasing and the superconducting condensate penetrates 

into the NM-layer over a long distance. Therefore, superconducting like properties 

may be induced in the normal metal, and this phenomenon is called the conventional 

proximity effect. (see reviews [29], [30]) Thus, attractive electron-electron interaction 

may be absent in the NM-layer, and the Cooper pair wave function penetrates into NM 

over a distance ξNM, much exceeding the interatomic spacing. (See Fig. 2.3 (a) ) In a 

dirty limit, i.e. in a diffusive metal with an impurity concentration, the correlation 

length ξNM is given by the characteristic rate, 2NM D Tξ π= , where 3/lvD F= is 

the diffusion coefficient, Fv  is the Fermi velocity and τFvl = is the mean free path 

of the conduction electrons, where τ  is the momentum relaxation time. [31] 

Meanwhile, the Josephson effect in S/NM/S junctions is an absolute manifestation of 

the induced superconductivity in a normal metal. If the thickness of the NM layer, L, 

is the order of the correlation length ξNM, the critical current jc decays exponentially 

with L as jc ~ exp(−L/ξNM ). Due to this effect the Josephson critical current can still 

be observed even if the thickness of the NM-layer exceeds 1 μm. [15]  
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Figure 2.3: Schematic behavior of the superconducting order parameter near the (a) 
superconductor-normal metal and (b) superconductor-ferromagnet interfaces. The 
continuity of the order parameter at the interface implies the absence of the potential 
barrier. [2] 
 

   Now, replacing the normal metallic layer NM in an NM/S structure by a 

metallic ferromagnetic layer F, one comes to basically the same effect: The pair wave 

function from S penetrates into F and makes the F-layer superconducting. But the 

penetration depth into the ferromagnet is drastically reduced as contrasted to the NM 

layer given by the correlation length from the characteristic rate, 2F FD hξ =  in 

the dirty limit with the diffusion coefficient of the ferromagnet DF and the exchange 

field in the ferromagnet h. [31] For example, in strong ferromagnets like Fe, Co and 

Ni, the length Fξ  has a typical value of 0.7 nm. A reason for the nearly atomic 

length scale is that the exchange field h in the F-layer tends to align the spins of a 

Cooper pair and this leads to a strong pair breaking effect. However, there is another 

important difference in comparison with the normal metals, in addition to a faster 

decay of the superconducting condensate in the ferromagnet. Since in the F-layer the 

spin-up and spin-down bands are split by the exchange field h, the electrons of a 

Cooper pair at the Fermi energy have necessarily different k-vectors for the up and 
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down spins. The physical picture of the proximity effect in a ferromagnetic conductor 

is therefore very similar to the FFLO effect. [26, 27] For simplicity, we first consider 

the situation in which spin is a good quantum number without spin-orbit interaction. 

Imagine a Cooper pair being transported across an S/F interface with its electron 

momenta aligned with the normal interface. Upon entering the F region, where the 

pair is not an eigenstate, it becomes an evanescent state, decaying exponentially on 

the length scale. Thus, a Cooper pair in a ferromagnet, the up-spin electron, which 

defined the spin orientation along the exchange field, decreases its potential energy by 

h, while the downspin electron energy increases by the same value. To compensate 

this energy variation for conservation, the up-spin electron increases its kinetic energy, 

while the down-spin electron decreases its kinetic energy. As a result the Cooper pair, 

as shown in Fig. 2.2, entering into a ferromagnetic region results in acquiring a center 

of mass momentum Q=2ΔP=2h/vF . Here, the direction of the modulation wave 

vector must be perpendicular to the interface, because only this orientation provides a 

uniform order parameter in the superconductor. Combining the two pairs into a singlet 

combination we find that the overall effect of the exchange field in the F region on a 

singlet Cooper pair is to give it a spatial modulation, as shown in Fig. 2.3 (b). Hence 

if the wave function of the pair in a superconductor is Φ(x1-x2), where x1 and x2 are the 

coordinates of the two electrons in a ferromagnet the wave function becomes 

cos[Q(x1+x2)] Φ(x1-x2). This simply establishes the physical origin of the oscillations. 

[28]  

Superconducting/ferromagnet systems are in some ways analogous to the 

nonuniform superconducting state. The Cooper pair wave function extends from 

superconductor to ferromagnetic with damped oscillatory behavior. This leads to 

oscillations of the electron density of states, a nonmonotonic dependence of the 

critical temperature of F/S multilayers and bilayers on the ferromagnet layer thickness, 
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and the realization of “π” Josephson junctions in S/F/S systems. Spin-valve behavior 

in complex F/S structures gives another example of the interesting interplay between 

magnetism and superconductivity, an effect that is promising for potential 

applications. There are many effects behind this pairing amplitude oscillation. We 

shall discuss some effects later. 

In contrast to the proximity effect, the reverse effect, namely, the uniform 

magnetization into the superconductor is also possible. Theoretically, the induced 

magnetic moment of conduction electrons in the S layer at distances of the order of 

the Cooper pair size, ξs, from the F/S interface should exactly compensate the moment 

of conduction electrons in the F layer. This effect is called the inverse proximity 

effect. [32] Qualitatively, the physical origin of the ferromagnetism in the S layer can 

be explained by the spin-up electrons (the majority spins in the F-layer) residing with 

a higher probability in the F layer, and the spin down electrons, due to 

superconducting correlations, with a higher probability in the S layer. Thus, the 

magnetic moment in the S layer should be oriented antiparallel to the magnetization of 

conduction electrons in the F layer, as shown in Fig. 2.4. But experimental 

observation of this state is difficult. Only recently confirmed experiments have 

studied this state with the nuclear magnetic resonance (NMR) measurement in 

Pd1-xFex/V/Pd1-xFex and Ni/V/Ni heterostructures [33] and with the polar Kerr effect 

measurement using zero-area-loop Sagnac magnetometer in Pb/Ni and Al/(Co-Pd) 

bilayers system. [34]  
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Figure 2.4: Spatial dependence of the magnetization in the F/S system. Inset: 
Schematic view of the inverse proximity effect in a F/S system. [16] 

 

2.4 Oscillatory superconducting temperature in F/S layered 

structure 

 

In the F/S layered system, the damped oscillatory behavior of the 

superconducting order parameter in ferromagnet may produce commensurability 

effects between the period of the order parameter oscillation and the thickness of a F 

and S layer. It may be easier to achieve experimental observation by fabricating 

artificially hybrid layered F/S structures in different configuration as shown in Fig. 

2.5. These structures lead to oscillations of the superconducting transition temperature 

in F/S bilayers as well as trilayers and multilayers system. Actually there are 

qualitatively differences of physical behaviors between various layered structures. 

[17] 

The magnetic coherence length, which determines the oscillation length and the 

penetration depth of the pair amplitude in F, is given by ( )
2

ex F
F F F

ex

v
E

ξ ξ ι =  <  in the 
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clean limit, and ( )
2

ex F
F F F

ex

D
E

ξ ξ ι =  >  in the dirty limit, where FD  is the diffusion 

constant, Fv  the Fermi velocity and Fι  the mean free path in the F. [18,35] In such 

a case, we are able to study the properties of superconducting electrons under the 

influence of exchanging field, since we can change the relative strengths of two 

competing orderings by varying the layer thickness.   

 

Figure 2.5: Multilayered F/S systems that have been studied in experiments: bilayers, 
trilayers and superlattices. [17] 

 

Thus, most of the predicted phenomena in proximity effect found experimentally 

are based on the oscillatory superconducting wavefunction. For example, behaviors of 

the critical temperature versus thickness of magnetic or superconductor layer are the 

sign of the order parameter changes in the ferromagnet. In 1964 Hauser, Theurer, and 

Werthamer [36] first investigated the proximity effect in F/S layer systems by 

studying the reduction of the superconducting transition temperature TC in Pb/X 

systems in which X denoted various types of materials; ferromagnetic Fe, Ni, and Gd, 

antiferromagnetic Cr and dilute magnetic alloys like 1% Fe in Mo or 2.9% Gd in Pb. 

If the thickness of a superconducting layer was smaller than a critical one, the 

proximity effect totally suppressed the superconducting transition. In the beginning, 
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they tried to interpret theoretically their results in terms of the proximity effect. The 

methods were ignoring the fact that used metals were ferromagnetic and another 

hypothesis that iron has an effective electron-electron interaction as shown in the solid 

curve and dashed line, respectively. In Fig. 2.6, both methods were above the data 

curve and in disagreement with the measurements. In the best fit, they concluded that 

the ferromagnetism of the iron played an important role in determining the sandwich 

transition temperature, and it was necessary to combine the proximity effect with the 

Abrikosov-Gor'kov theory, in order to better agreement with the data in Fig. 2.6. 

According to the result, the depression of the transition temperature is identical when 

the iron thickness was larger than 1.5 nm.  

 

Figure 2.6: Transition temperature for glass-Pb-Fe sandwiches with a constant iron 
film thickness of 100 nm. The solid line represents a fit ignored the fact that the used 
metals are ferromagnetic. The effective electron-electron interaction for Fe has been 
taken into account in the dashed line. In the lower curve the proximity effect is 
combined with the Abrikosov-Gor'kov theory and is in fair agreement with the data. 
[36] 

 

Much interest in F/S proximity effects has been aroused since the theoretical 

work of Radovic et al. [37] and the experimental results of Wong et al. [38] , who 

studied the TC dependence of V/Fe multilayers as a function of the Fe thickness for 
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different fixed V thicknesses as shown in Fig. 2.7. It can be seen that TC decreases 

rapidly with the iron thickness increasing. They also noticed that an upturn of TC at 

large dFe for some V-thicknesses. This was the first indication on the nonmonotonic 

variation of TC versus the F layer thickness. The peculiarities in the 

TC(dFe)-dependence in the V/Fe system could be explained by the existence of the 

oscillatory transition from 0- to π-Josephson coupling between two superconducting 

layers separated through ferromagnetic layers. Radovic et al. concluded from their 

calculations that TC could be higher for the system with π-coupling rather than for the 

system with the phase difference equal to 0. 

 
Figure 2.7: Superconducting transition temperature of VmFen superlattices. [38]tively. 

 

Therefore, several experiments attempted to observe nonmonotonic behavior of 

the transition temperature in S/F layered system. However, in subsequent experiments 

of Koorevaar et al. [39], no oscillatory behavior of TC was found in V/Fe system. The 

transition-metal ferromagnets, such as Fe, have a strongly itinerant character of the 

magnetic moment that is very sensitive to the local coordination. In thin Fe layers, the 

magnetism may strongly decrease and even vanish. The best choice was to use the 

rare-earth ferromagnetic metal with localized magnetic moments. Two groups have 
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studied Nb/Gd multilayers. Strunk et al [40] observed a step-like behavior of TC as a 

function of the Gd thickness for the samples prepared by molecular beam epitaxy 

(MBE) technique (Fig. 2.8). They explained the step-like behavior of TC in terms of 

the Gd layers by changing of the magnetic state. It was found that due to initial island 

growth, long-range magnetic order occurred above dGd = 2 nm. However, Jiang et al. 

[41] clearly observed oscillatory behavior of TC for the Nb/Gd multilayers at larger 

thickness of Gd prepared by the sputtering technique (Fig. 2.9). They concluded that 

the obtained results provided the first experimental evidence for the predicted π-phase 

shift in F/S multilayers. An increase of TC implied the transition from the 0 phase to 

the π phase. As a result, the experimental results from different groups were 

contradictory. In particular, the rapid initial decrease in TC with an increase in dF was 

replaced by the subsequent plateau, but in other experiments with same systems the 

plateau was preceded by an oscillating behavior of TC. 

Figure 2.8: Resistively determined transition temperature TC as a function of dGd in 
several series of MBE triple Nb/Gd layers that have been prepared in a single 
evaporation run. [40] 
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Figure 2.9: Superconducting transition temperature TC versus dGd in sputtered 
Nb/Gd multilayers with (a) dNb = 60 nm and (b) 50 nm. Different symbols correspond 
to different sample series. Dashed line in (a) is a fit by Radovic's theory. [41] 
 

The other unusual behavior observed by Mühge et al [42, 43] who studied TC 

dependence on the Fe thickness dFe with fixed dNb for Fe/Nb/Fe trilayers prepared by 

sputtering. The non-monotonic TC behavior (Fig. 2.10) was very similar to that in 

Nb/Gd multilayers reported by Jiang et al. [41] The explanations related to 0 to π 

phase transition could not be used in this case because in the Fe/Nb/Fe trilayers only 

one superconducting layer existed while for the π-junction to occur it was necessary 

to have at least two superconducting layers. According to their results, there was a 

magnetically dead layer close to the Nb/Fe interface with the thickness 0.7 nm which 

resulted in the TC(dFe) sharply drops up to 0.7 nm. It was concluded that 

non-monotonic TC-behavior occured in this system due to the strong modification of 

the properties of magnetically dead Fe layer coupled with the onset of ferromagnetic 

order.  
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Figure 2.10: Superconducting transition temperature Tc as a function of dFe as 
determined by ac susceptibility solid symbols and resistivity opened symbols 
measurements. The triangles, circles, and squares correspond to different sample sets. 
The dashed lines are guide for the eyes. [42] 
  

 

For MBE samples the thickness of the magnetically dead Fe layer was smaller 

than 0.5 nm but a step-like behavior of TC versus Fe layer thickness (Fig. 2.11) was 

observed. [44] A comparative analysis of sample preparations showed that the 

molecular beam epitaxy grown samples did not reveal TC oscillations, whereas 

magnetron sputtered samples did. [45] This difference might be attributed to the 

appearance of a magnetically “dead” interdiffused layer at the F/S interface and initial 

island growth of the ferromagnetic layers, which played an important role for the 

molecular beam epitaxy grown sample.  
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Figure 2.11: Superconducting transition temperature Tc versus dFe for three series of 
samples. The broken lines are guides for the eye. [44] 

 

 

All of these controversial results listed above made it necessary to consider the 

transport property at F/S interface. Aarts et al [46] were the first to study interface 

transparency in order to understand the pair-breaking mechanism in Fe/V1-xFex 

multilayer system. They used the V-Fe alloy with different Fe composition to 

continuously change the average magnetic moment in the ferromagnetic layer. They 

presented experimental evidence that the transmission coefficient of the F/S interface 

for the Cooper pairs could be restricted by the average magnetic moment in the 

ferromagnetic material. Later Lazar et al. experimentally studied the Fe/Pb/Fe system 

which had a much smaller intermixed layer at the interface. [47] According to their 

report, the inconsistency between the oscillating Tc(dFe) behavior and Radvoic’s 

model [48] with an assumption of highly transparent interface could be solved by 

reducing interface transparency from Tagirov’s model [35] (Fig. 2.12). It implied that 

the discontinuity in the pairing wave function actually occured in real systems. The 

result might be caused by quantum mechanical reflection of the conduction electrons 
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at the interface due to electron energy band mismatch. 

 

 
Figure 2.12: Dependence of the superconducting transition temperature on the 
thickness of the Fe layer as determined by resistivity measurements. The dashed and 
solid lines are the best fits using the theory by Radovic´ et al. and the theory by 
Tagirov, respectively. [47] 
 

Recently, the interface transparency has been included in the analysis of the 

interface quality and considered to play a dominant role in the boundary condition in 

layered structure. For the F/S bilayers, even though the transitions between 0 and π 

phases are impossible, the proximity effect at interface can still lead to a 

nonmonotonic dependence of Tc on the F layer thickness. Fominov et al. [49] 

performed a detailed analysis of the nonmonotonic critical temperature dependence of 

F/S bilayers for arbitrary interface transparency and compared the results of different 

approximations with exact numerical calculations. Such model was used to analyze 

experimental result by fitting the behavior of the superconducting critical temperature 

TC depended on ferromagnetic thickness with finite interface transparency in 

Nb/Co60Fe40, Nb/Ni, and Nb/Cu40Ni60 bilayers. [50] In Fig. 2.13, the parameter γb 
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characterizes the interfacial transparency, which can be obtained by being treated it as 

a fittable value in terms of the interface resistance. This important parameter can help 

to understand which boundary condition is suitable at interface. The model of 

proximity effect which considered interface transparency have also successful 

explained the TC behavior with weak ferromagnet, such as Nb/Pd81Ni19 bilayers 

fabricated by sputtering system in Fig. 2.14. [51] Moreover, this fitting procedure 

even could describe the reentrant behavior for Nb/Cu1-xNix bilayers that fabricated in 

a wedge-shaped sample in order to obtain a series of varying Cu1-xNix thickness in Fig. 

2.15 [52]. However, the interfacial transparency is still difficult in direct measurement 

but can be obtained through the fitting parameter. 

 

 
Figure 2.13: TC of Nb (26 nm)/Co60Fe40 bilayers as a function of dCoFe. The different 
symbols mean two different sets of data. The solid line is a fit. [50] 
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Figure 2.14: Critical temperature TC versus PdNi thickness dPdNi in Nb/Pd0.81Ni0.19 

bilayers with constant Nb thickness dNb=14 nm. Different lines are the theoretical fit 
in the single-mode approximation for different values of γb. Inset: comparison 
between the single-mode and the multimode calculations. [51] 
 

 
Figure 2.15: Nonmonotonous TC(dF) dependence for Nb/Cu41Ni59 bilayers: (a) dNb = 
8.3 nm; (b) dNb = 7.3 nm. The solid and dashed lines are theoretical curves for the 
clean and dirty cases, respectively. The inset shows TC(dNb) for a top layer Cu41Ni59 of 
constant thickness with the solid line calculated for the clean case. [52] 



 35

2.5 Superconductor-Ferromagnet-Superconductor π 

junction 

 

   In the previous literatures, the thickness dependence of the critical temperature TC 

indicates a qualitatively different behavior between various layered structures but is 

based on proximity effect at interface. Using weak ferromagnetic layers is 

advantageous to achieving appropriate exchange energy in a suitable window of 

experimental phase space. It is considered as an unambiguous proof of π phase shift 

when the formation of current perpendicular to plan (CPP) Josephson junction with 

ferromagnetic barriers (S/F/S) measurement by Ryazanov, et al. [53] For the same 

reason, in Josephson junctions with an S/F/S structure, where the insulating barrier of 

a conventional tunnel junction is replaced by a ferromagnetic layer, the condensate 

function may change sign when crossing the F-layer, this junction which leads to 

so-called π-type coupling of the two S-layers. The CuxNi1−x alloy used in Ryazanov’s 

experiments has a Curie temperature 20–30 K and results in a small exchange field, 

which provides the strong nonmonotonic temperature dependence of IC.  

The π state in S/F/S Josephson junctions can be described by the anomalous 

current-phase relation sin( ) sinS C CI I Iϕ π ϕ =  + = −  with negative critical current. 

The Josephson critical current IC in S/F/S junction would change sign from positive to 

negative corresponding to a phase shift of π in the Josephson ground sate and, in turn 

there is a damped oscillatory dependence of the singular pair wavefunction in the F 

layer. Therefore, at certain ferromagnetic layer thicknesses the superconducting 

pairing function at two sides of the ferromagnetic layer has opposite phases, i.e. the 

phase difference is equal to π, as shown in Fig. 2.16. The physical origin of the 

oscillations is the exchange splitting of spin-up and spin-down electron subbands in F. 
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Recently, experiments by Ryazanov et al. (2006) have reported the first experimental 

observation of the two-node thickness dependence of the critical current in Josephson 

junction with F layer thickness up to 7 nm. [54] In Fig 2.17, nodes of the critical 

current correspond to the transition into the π state and back into the conventional 0 

state. This means that now it is also possible to fabricate the π junctions with a 104 

times higher critical current. A natural explanation for such strong thickness 

dependence is the magnetic scattering effect, which is inherent to ferromagnetic alloys. 

The phase sensitive experiments are also performed by using dc SQUID [55]. If the 

dc SQUID consists of a π junction and a 0 junction, a spontaneous phase shift of the 

diffraction pattern is observed. Recently, Bauer et al. have measured the 

magnetization of a mesoscopic superconducting loop containing a PdNi ferromagnetic 

π junction with the micro-Hall sensor technique [56]. The results provided a direct 

evidence of spontaneous current induced by the π junction. 

 
Figure 2.16: Critical current IC as a function of temperature for Cu0.48Ni0.52 junctions 
with different F layer thicknesses 2dF. The temperature mediated transition between 
the 0 and π phase occurs when the thickness of the F layer is 27 nm. [53] 
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Figure 2.17: Critical current IC at T=4.2 K of Cu0.47Ni0.53 junctions as a function of 
the F layer thickness. Two 0-π transitions are revealed. The solid line is theoretical fit 
taking into account the presence of magnetic scattering. The inset shows the 
temperature mediated 0-π transition for a F layer thickness of 11 nm. [54] 

 

2.6 Density of states oscillations 

  

Superconductivity creates a gap in the electronic density of states (DOS) near the 

Fermi energy EF. The induced superconductivity in N/S structures decreases DOS at 

EF near the interface. However in the F/S structure, the damped oscillatory 

dependence of the Cooper pair wave function in a ferromagnet suggests that similar 

behavior may be expected for the DOS variation due to the proximity effect. 

Indeed, the DOS N (ε), where ε=E−EF is the energy calculated from the Fermi 

energy, is directly related to the normal Green’s function in the ferromagnet Gf_(x,ω) 

[57]. In the dirty limit, the DOS of the Fermi energy in a ferromagnet can be obtained 

by 

1 2 2( 0) (0)[1 exp( )cos( )]
2F

F F

x xN Nε
ξ ξ

= ≈ − −   (2.18) 

at the distance x > ξF, where N(0) is the DOS of the ferromagnetic metal. Thus, at 



 38

certain distances the DOS at the Fermi energy may be higher than that in the absence 

of superconductor. This is in contradiction with the proximity effect in S/NM systems. 

The result of the proximity effect on the DOS is generally measured by tunneling 

spectroscopy experiments. The differential conductance of a tunnel junction as a 

function of voltage V is proportional to the DOS at energy eV. This is based on the 

fact that sweeping the voltage changes the difference in the chemical potentials 

between the normal metal and superconductor separated by an insulator. The 

conduction is a tunneling process from the occupied states of one material to the 

empty levels of the other which is dependent on the number of the available states. 

Kontos et al. [58] are the first to measure DOS with planar-tunneling spectroscopy in 

Al/Al2O3/PdNi/Nb junctions (F/S bilayers). In order to increase the penetration length 

of the Cooper pair inside the ferromagnet, the PdNi is used to reduce exchange energy. 

As shown in Fig. 2.18, the DOS decreases inside the gap charctering a normal 

BCS-like behavior for a 50 Å thick PdNi layer. However, for a 75 Å thick PdNi layer , 

the DOS becomes larger than its normal state value. They observe spatial oscillations 

of electron density of state for ferromagnets of different thicknesses from tunneling 

spectroscopy. The transition from a normal to an inverted DOS is analogous to the 

transition from a 0-state to a π-state in a Josephson junction. 
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Figure 2.18: The differential conductance for two Al/Al2O3/PdNi/Nb junctions with 
two different thicknesses ferromagnetic PdNi. Tunnel junction areas were defined by 
the 50 nm thick SiO2 evaporated through masks. [58] 

  

2.7 Ferromagnet-Superconductor-Ferromagnet spin-valve 

sandwiches 

 

Recently, researchers observed that the strong proximity effect of 

superconductor/metallic ferromagnet structures can lead to the phenomenon of 

spin-orientation dependent superconductivity in F/S/F spin valve sandwiches; see Fig. 

2.19. The parallel orientation of the magnetic moments is more harmful for 

superconductivity due to the presence of the nonzero averaged exchange field acting 

on the surface of the superconductor. This effect has been experimentally observed 

[59, 60] in a Cu1-xNix/Nb/Cu1-xNix system, where a weak ferromagnet has been used 

because it is less devastating to superconductivity. The largest difference in TC 

observed between the antiparallel (AP) and parallel (P) states of the F-layer mutual 

magnetizations is only 6 mK when TC is 2.8 K. In 2006, Birge et al. have measured 
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the superconducting transition temperature TC of Ni/Nb/Ni trilayers with the 

magnetizations of the two outer Ni layers are parallel (P) and antiparallel (AP). [61] 

The largest difference ΔTC occurs when the Nb thickness is just above the critical 

thickness at which superconductivity disappears completely. As shown in Fig. 2.20, 

they have observed a difference ΔTc between the P and AP states as large as 41 mK. 

A significant increase is over earlier results in samples with higher TC and with a 

CuNi alloy in place of the Ni. Their result also demonstrates that strong elemental 

ferromagnets are promising candidates for future investigation of 

ferromagnet/superconductor heterostructures.  

 

 

Figure 2.19: Schematic structure of a F/S/F/AF proximity switch device. [59] 
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Figure 2.20: Resistance vs temperature for the P and AP states of a ds =17 nm sample 
measured in 100 Oe. Two distinct transitions are observed, with ΔTC = 28 mK. Inset: 
Resistance vs applied field at T= 0.51 K (dotted line in main graph). [61] 

   

However, the experimentally observed magnitude of change in TC for F1/S/F2 

spin valve structures has been 2 orders of magnitude smaller than the expected value 

from calculations. Thus, the asymmetry of interface transparency caused by different 

boundaries between F1/S and S/F2 is also considered to account for the discrepancy. 

[62] Moodera et al. have studied the spin valve effect in fully epitaxial bcc-Fe/V/Fe 

heterostructures. [63] In Fig. 2.21, the transition temperature is spin dependent in the 

presence of the proximity effect and infinite magnetoresistance with clear remanence 

state is obtained. They conclude that the intrinsic interface impedance is revealed as a 

result of the band symmetry mismatch. The absence of Δ2 Bloch states at the Fermi 

level in the Fe spin majority channel results in symmetry mismatch and leads to spin 

selectivity and reduced transparency at the interface. 

Thus, the TC shift, which depends on the magnetization orientation of a 

superconducting spin-valve system, gives another example of the interesting effect. 

The interface transparency is an important factor again, controlling the spin-valve 
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effect in F/S/F structure. Experimental observation of the TC behavior is difficult to 

realize the transport characteristic at interface with current in the plane, because the 

interface property and competition between the exchange energy and the 

superconducting condensation energy are extremely sensitive.  

 

 

Figure 2.21: (a) Superconducting spin valve effect in the structure (in nm): MgO 
(10)/Fe(6)/V(40)/Fe(6)/CoO, and the sample is fully submerged in superfluid He4 
which has infinitely thermal conductivity to avoid heating complications. (b) 
Superconducting transition of the same sample in its spin P and AP configurations. 
Inset: Thickness dependence of the S spin valve effect; solid line is only for visual 
guidance. Example of the MR loop with 50 nm V is also shown. [63] 
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Chapter 3  

Experimental Techniques and Measurement 

System 
 

3.1 The sputtering system  

 

We fabricated several series of NbxTi1-x/Co, Nb/Co, Nb/Fe, Nb/Ni and 

Nb/CuxNi1-x trilayer and multilayer samples by dc magnetron sputtering onto Si (100) 

substrates. The system was evacuated using a cryopump which provided a high 

pumping power equipped with no oil vapor contamination. The system was first 

roughly pumped to 0.02 torr with a mechanical pump which had an oil trap and then 

pumped to < 2×10-7 torr with the cryopump. The sputtering gas came from a cylinder 

of ultrahigh purity Ar (99.999%) and was further purified by passing through a liquid 

N2 cold trap. It was held at approximately 100 K to freeze out impurities such as 

water vapor and others, as shown in Fig. 3.1. Then, deposition was made under the 

pressure of 1 m Torr with high purity Ar sputtering gas, and the temperature of the 

substrate was between 20  and 30  during fabrication ℃ ℃ of the CPP and CIP samples. 

Figure 3.1: The schematic view of the sputtering system. 
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To obtain samples with comparable quality for different F and S layer 

thicknesses, up to twelve different CIP samples and eight different CPP samples were 

fabricated in the same run to minimize deviation in uncontrolled preparation 

conditions. The substrates were (100) orienated silicon crystal wafers, cleaned in 

acetone, and then were given a final ultrasonic rinse in alcohol. The CIP-type samples, 

in which current flows in the plane, were produced by mechanical masks as shown in 

Fig. 3.2. The metal mask divided the sample into two parts for transport and 

magnetization measurements. 

 

 
Figure 3.2: Metal mask of CIP-type sample to produce a 4-terminal device for 
transport measurements and a rectangular film for magnetization measurement.  

 

For the CPP-type samples with current perpendicular to the plane, the substrates 

were held in circular stainless steel plate which was located about 7 cm above the 

sources. Up to eight samples can be mounted on holders which can be rotated above 

the sputtering sources, as seen in Fig 3.3 (a). The CPP samples were sputtered using 

multiple-sequence mechanical masks which required three contact metal masks in 

different shapes. Figure 3.3 (b) shows our multiple mask system, which is rotated to 

expose the Si substrate sequentially. The samples are covered with mask by the rotary 

plate of masks which is connected with a linear-rotary feedthrough. The mask plate 

accommodating three different shapes could be changed without opening the vacuum 

chamber so that the interfaces between the superconductor and ferromagnetic layer 
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would not be contaminated.  

  

(a) (b)(a) (b)

 

 

Figure 3.3: (a) Top view of CPP samples plate (b) Bottom view of CPP masks plate.  

 

The CPP sample design was illustrated in Fig. 3.4. They were made by 

depositing a Nb strip on the substrate first, unloaded the bottom strip mask, changed 

to the multilayer mask, depositing the multilayer film, and finally a similar sequence 

for the top Nb strip perpendicular to the first one. Each strip was approximately 150 

nm thick in order to become a superconductor at 4.2 K. They could be both used as a 

current and as a voltage lead. In this procedure, the exposure times of both the bottom 

Nb and the multilayer surface were less than 3 minutes. Our targets were bought form 

commercial companies (Silicon Development International Corporation A Technology 

Materials Company, SDIC). Depending on the materials, one needs to pre-sputter for 

several minutes in order to eliminate oxide layers formed in the targets during 

exposure to the atmosphere. For instance, Nb requires a minimum of 20-30 minutes 

for good quality superconducting properties and needs even more time for new target.     

Furthermore, we had another special design in which the sputtered multilayer 

was sandwiched between circular superconducting electrodes. There were several 

advantages using this sample construction with circular superconducting leads. First, 
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it eliminated Joule heating in the current leads to make it have stably thermal 

condition at 4.2 K. Secondly, it kept the resistance of the SQUID circuit small so that 

we could achieve high precision measurement of resistance. Thirdly and the most 

importantly, the superconducting circular leads provided equipotential surfaces at the 

top and bottom of the CPP sample, thus allowing uniform current through the whole 

multilayer sample when the circular CPP sample is in the superconducting state. 

 

Figure 3.4: Geometry of a current perpendicular to plane sample on a substrate. The 
middle part of the circular shape is the multilayer. 

 

3.2 Magnetic property measurement (SQUID) 

 

The Superconducting Quantum Interference Device (SQUID) is one of the most 

important parts for a standard technique in detecting small magnetic flux nowadays. 

We use a commercial Quantum Design MPMS (Magnetic Property Measurement 

System) to measure magnetization of sample.  

 

3.2.1 Josephson Effect: SQUID 

 

The device was made of a superconducting loop with one or two Josephson 

junctions for RF SQUID and DC SQUID, respectively. The junction consisted of two 

superconductors separated by thin insulation layer as a weak link. As shown in Fig. 
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3.5, if this S/I/S junction was placed in an external magnetic field parallel to the plane, 

a screening current would be generated close to the surfaces. This current circulated 

within a surface of thickness λ and had to cross the weak link. [1] The critical current 

density across the junction would be smaller than typical critical currents for single 

specimens, because the paired electrons must cross a gap of nonsuperconducting 

material. Josephson made a remarkable prediction that superconducting tunnel current 

should be determined by the change in phase of the order parameter across the 

junction, ϕΔ . By using gauge invariance with the value of an applied vector 

potential to relate the phase of the order parameter, the tunneling current in the 

presence of a magnetic field should have the form, [2,3] 

ϕΔ= sinCS II   (1). 

Here the critical current IC is the maximum supercurrent that the junction can support. 

If a voltage difference V is maintained across the junction, the phase difference ϕΔ  

would evolve according to 

/2/)( eVdtd =Δϕ ,  (2) 

so that the current would be an alternating current of amplitude IC. This is the basic 

effect for the dc and ac Josephson effects. It is clear now that the effects are much 

more general through various weak links such as S/I/S, S/NM/S, S/F/S, and S-c-S 

junctions, where the S, I, NM, F and c denote superconductor, insulator, normal metal, 

ferromagnet, and constriction, respectively. [2]  
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Figure 3.5: Tunnel Josephson junction in a magnetic field H. The distribution of the 
screening supercurrent is shown by lines with arrows. 

 

    A DC SQUID has two Josephson junctions a and b in parallel in a 

superconducting loop as shown in Fig. 3.6. This device can be utilized in sensitive 

magnetometers. A dc magnetic field applied through a superconducting circuit 

containing two junctions causes the maximum supercurrent to show interference 

effects as a function of magnetic field intensity. It is based on the dc Josephson Effect. 

When a small amount of external flux is applied to the superconducting loop, the 

screening currents would generate the magnetic field to cancel this applied external 

flux. Thus, when the current in any one of the branches exceeds the critical current for 

the Josephson junction, the superconducting ring becomes resistive and a voltage 

appears across the junction. [4, 5]  
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Figure 3.6: Superconducting interferometer with two Josephson junctions, a and b, 
are connected in parallel. The interior of the SQUIO loop is threaded by a magnetic 
flux Φ. [2] 

 

We need to know that the maximum zero-voltage current Imax through the device , 

which depends on the total magnetic flux Φ enclosed in the SQUID loop. The current 

through the junction a is 

aCa II ϕsin= ,  (3) 

and through the junction b, 

bCb II ϕsin= ,   (4) 

where 0/2 ΦΦ=− πϕϕ ba , and ec /0 π=Φ  is the magnetic flux quantum. 

The total current is the sum of Ia and Ib: 

)sin(sin baCII ϕϕ += .  (5) 

If the magnetic flux in the SQUID is an integer number of the flux quantum, the 

maximum current of the device is [1,6] 

)/cos(2 0max ΦΦ= πCII .  (6) 

Thus the critical current oscillates with a function of the applied flux as illustrated in 

Fig. 3.7.  

 

a b
Φ

a ba b
Φ
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Figure 3.7: Dependence of the maximum supercurrent through the two-junction 
interferometer on the total magnetic flux through its interior. 

 

If the input current is more than IC, the SQUID would operates in the resistive 

mode and the the SQUID voltage, VS, as a function of the applied flux Φ, is sinusoidal 

with the period of a flux quantum Φ0 as shown in Fig. 3.8. The SOUID is a linear 

response to the applied flux through the flux-locked loop mode, where an addition 

modulated applied flux is used to maintain the voltage at an extreme in the VS versus 

Φ curve. 

 
Figure 3.8: (a) V-I characteristic curve of dc SQUID with integer and half integer 
flux quantum, Φ, of applied flux. (b) To bias the SQUID above the critical current 
with applying an external flux results in a sinusoidal behavior of the Vs versus Φ. 
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3.2.2 Magnetic measurement 

 

   For all our magnetic measurements, we used a MPMS XL5 system with the 

magnetic moment resolution of 10-7 emu. MPMS XL includes amplifier control 

electronics, sensing pick-up loops, and specially designed filtering with computer 

control. (see Fig. 3.9 [7] )The temperature control system regulates the sample in the 

range of 1.8-400 K and the maximum magnetic field using the superconducting 

magnet is 5± T.  

 

 

 

 

 

 

 

 

Figure 3.9: The superconducting pick-up coil couples the external flux to the input 
terminal of the SQUID. [7] 

 

   The sample is usually placed in a straw, tied by cotton thread, and the straw is 

attached to the sample rod. The measurement is performed by moving the sample 

vertically through superconducting detection coils. The detection coils consist of 

superconducting wire wrapped in a second-order gradiometer configuration, The 

orientation of coil 2 and 3 are opposite to that of coil 1 and 4 to reduce the spacing 

gradient ( ZH ∂∂ / ) and the higher order gradient ( ZH 22 /∂∂ ) of the magnetic field as 

shown in Fig. 3.10. [7, 8] The signal of coils induced by the magnetic moment of the 
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sample is inductively coupled to the SQUID by an input coil. So the current variations 

in the detection coils produce corresponding variations in the SQUID output voltage, 

which are proportional to the net magnetic moment of the sample as a linear 

flux-to-voltage convert. Before measurements, there is a function in the MPMS to 

ensure that the sample measurement path is symmetric with respect to the pick-up coil 

that couples to the SQUID and positioned at the center of the magnet. Fig. 3.10 

illustrates the typical response as a function of the position of the sample with respect 

to the center of the gradiometer. We can then get the magnetic moment of sample by 

fitting the SQUID response curve. Moreover, the procedure of demagnetization for 

weak signal of a sample is necessary due to the large remnant field in the 

superconducting magnet. 

 

 
Figure 3.10: Voltage signal profile when a magnetic sample is moved through a 
detection pick-up coils. [7] 
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3.3 CPP with low resistance measurement    

 

Presumably, the CPP (current flowing perpendicular to the plane) resistance 

measurement in metallic multilayer can give fundamental information of the transport 

properties. To study giant magnetoresistance (GMR) in magnetic multilayers, it is 

easier to analyze the CPP resistance by using two-channel series resistance model 

than the CIP one. [9,10] Moreover, the CIP measurement always gives zero resistance 

in the F/S multilayers unless we drive the samples to normal state by warming or 

applying magnetic fields. Consequently, we can quantitatively analyze the interface 

and bulk contributions by using CPP resistance measurement.  

In general, for a sample with a constant resistivity, the resistance depends on the 

geometry of the sample l/A, where l is the length parallel to current and A is the 

cross-sectional area. A typical structure of our CIP sample is l =10 ㎜  in the plane of 

the layer and 1 μm thick in the direction of layer growth. If the current flows along 

the plane of the layers, we would obtain l/A=103 ㎜-1, whereas for CPP one we would 

obtain l/A=10-3 ㎜-1. The resistance of CPP is one million times smaller than that of 

CIP for the same sample just simply because of its measurement geometry (see Fig. 

3.11).  Our CPP sample consists of a bottom S strip, the multilayer of interest, and a 

top S strip as shown in Fig 3.4. The effective CPP resistance is the area of the circular 

electrode with diameter about 3 mm to ensure the uniformity of current density. Thus, 

CPP samples have currents flowing perpendicular to the several nm-thick layers, with 

resistane as small as a few nΩ. A typical current of 100 mA yields 10-9~10-10 volt, 

which requires special techniques for precision measurement. 
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Figure 3.11: Cross section of a CIP and CPP structure with current traveling in the 
plane and perpendicular to the plane, respectively. 

 

A very useful application for the SQUID’s sensitivity to small changes in 

magnetic flux is its ability to detect extremely small resistance. A schematic drawing 

of the circuit is shown in Fig. 3.12 with the multilayered structure incorporated as part 

of a SQUID-based picovolt meter which balances a low temperature potentiometer by 

supplying a current into a reference resistor. [11,12] The DC currents which pass into 

the Nb strips are provided up to 100 mA from a battery-powered source and give 

voltage bias much less than the Nb superconductor energy-gap voltage. At our CPP 

measuring temperature of 4.2 K as shown in Fig. 3.13, the Nb strip and circular 

electrode remained superconducting, and thus ensured a uniform current distribution. 

The effective sample areas A for both normal and superconducting Nb are thus the 

same. The circular S electrodes ensure uniform measuring current throughout the 

whole multilayer sample. According to Ref. [13], since our circular Nb electrode 

defines the effective sample area, the ratio of sample’s thickness divided by the width, 

about 3×10-4 (1 um/3.4 mm), can make fringing currents negligible. The resulting 

resistance RT due to the 3.4 mm diameter circular area and the thickness, ranging from 

20 nm to about 1 mm is less than 10 nV. This small resistance was measured by a 
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superconducting quantum interference device (SQUID) based picovolt meter and a 

battery-powered dc current source. The small CPP resistance R ≈ 10-8 Ω of our 

samples was measured by a SQUID based picovolt meter. [14] The low noise DC 

current is provided to the unknown sample resistance. Furthermore, the signal can be 

detected by the SQUID through the inductor connected in parallel and the SQUID 

electronic supplies a current to the reference resistor (30 μΩ). When the circuit is 

balanced, the voltage across the sample would be equal to the one across the reference 

resistance. Thus, the ratio of the resistance is the inverse of the current ratio at balance. 

Therefore, the CPP resistance of the metallic multilayers can be measured by using a 

bridge circuit with SQUID device detector to balance the voltage V between the 

samples against a current I that pass through a reference resistance used to amplify the 

signal to 108. The total thickness of the CPP samples and the diameter W of circular 

electrode were checked with a stylus surface profiler. The deviation of thicknesses 

was found to be within 5% of the intended values. The small gap between the contact 

masks and the substrates resulted in rounded edge of the films. This edge effect 

contributes to the largest systematic error in this experiment. The uncertainty in the 

unit area total resistance ART of our multilayer samples was dominated by the 

uncertainty in A = π(W/2) 2, which is about 10% for the S samples and 15% for the 

NM samples. 
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Figure 3.12: Simplified circuit for the precision measurement with SQUID based 
picovolt meter.   
 

We use two steps to get minimum contact resistance in which the 

superconducting solder joints to the Nb strips at leads of I and V. First a thin layer of 

In is put on by ultrasonic soldering to break through the oxide on the Nb surface. 

Then the superconducting wire is soldered on with Ostalloy 158 which has a low 

melting point about 343 K and a superconducting transition temperature around 9 K 

with alloy of bismuth, tin, lead, and cadmium. The bond between Ostalloy 158 and 

Nb by In is strong and useful for soldering items which can not be subjected to high 

temperature. Because, in the four-terminal measurement, there is no current flowing 

in the voltage circuit at balance, so the thin layer of In resistance does not produce any 

voltage drop. The sample is placed inside a small superconducting magnetic coil that 

produces a field (up to 800 Oe) in the layer plane, perpendicular to the current 

direction. The magnet was hand-wound by NbTi superconducting wires with Cu 

cladding and potted with epoxy to prevent any wire movement. To reduce field 

fluctuation due to the high frequency noise produced by the Kepco's bipolar BOP dc 

power supplies, we added a small piece of thick Cu wire as a resistor between the 

magnet leads to increase the circuit time constant. [15] A pure lead sheet of TC =7 K 
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are wrapped outside the magnet’s supporting rods as superconducting magnetic 

shields to protect the SQUID from magnetic fields. At our measuring temperature of 

4.2 K, the 150 nm-thick Nb strip and circular electrode remain superconducting, thus 

ensuring a uniform current distribution.  

 

 
Figure 3.13: CPP sample measured by by a superconducting quantum interference 
device (SQUID) based picovolt meter at 4.2 K. 

 
In a homogeneous sample with a uniform current distribution, the resistivity is 

the quantity to be used for comparison between different bulk materials. For CPP 

samples, since the interfaces are two dimensional, the equivalent quantity is the 

product of resistance and effective area. As shown in Fig. 3.14, if we write the 

conductance per unit area as 1/Rα and consider the conduction in parallel with 

perpendicular transport, then the total conductance 1/Rb of a boundary can be 

described as 

1 1( )i
ib

AA
R R Rα α

δ= =∑    (7) 

by summing over the total sample area A. Thus, the interface resistance per unit area 

in equation (7) is Rα= ARb, representing the sample area times the boundary resistance. 

ARb is the useful quantity for comparing between different materials with CPP 

transport. 
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In the present experiment, the influence of the conventional superconducting 

proximity effect on our perpendicular measurement was insignificant. Clearly, this 

effect arose from the presence of the Nb electrodes. If the sample was a nonmagnetic 

normal metal, the system might become superconducting below some temperatures 

due to the Cooper pairs could penetrate through NM. For example, a 2.8 μm film of 

Ag beside Nb layer became superconducting at ~1.6 K [16]. However, the F/S 

multilayer could kill the proximity effect because of the pair-breaking effect of the 

ferromagnetic such as Co, Fe and Ni. Therefore, the bottom and the top of the 

multilayer was always F film in our CPP samples. Each sample had N F/S repeated 

bilayers plus one layer of F, indicated as [F(dF)/S(dS)]N/F(dF), where thickness was in 

nm, dF, (S) was the thickness of the F and S layers.      

 
 

 
Figure 3.14: Interface resistance representing the sample area A times the boundary 
resistance Rb in the CPP sample. 
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3.4 Electric property measurement with CIP structure 
 

All of the CIP resistivity measurements in our study were performed in the 

Quantum Design physical property measurement system (PPMS). The PPMS can 

provide an experimental environment in the temperature range of 1.9 to 400 K and 

magnetic field of 9T by low noise bi-polar power supply. In the DC Resistivity option, 

the current range is from 5 nA to 5 mA and voltage sensitivity is 20 nV. Moreover, the 

option of AC Transport measurement system (ACT) contains a precision current 

source and voltage detector providing four different types of automated, electrical 

transport measurements: AC resistivity, five-wire Hall effect, I-V curve, and critical 

current. 

The critical temperature TC and the critical field Hc2 are resistively measured by a 

standard four-probe technique with the current larger than 1 mA. The geometry for the 

measured sample is 5 mm long and 1 mm wide between the voltage contact pads, as 

shown in Fig. 3.15. The current density is about 2×102 A/㎝2 for layer thickness of 

500 nm. We defined the TC as the temperature at which the resistance of the samples 

reached 90% of the normal state resistance at 10 K. In the Hc2 measurement, we take 

advantage of Horizontal Rotator to obtain information about angular dependence of 

upper critical field with high angular resolution 0.0045˚.  

 

 

Figure 3.15: A 4-terminal device for transport measurement in the CIP sample. 
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Chapter 4  

Theoretic Description for Data Analysis 
 

4.1 Radovic’s Theory: single-mode approximation  

 

Because of the possibility for engineering heterogeneous 

superconductor-ferromagnet metallic systems, studies of their antagonistic orderings 

and mutual influence with alternately stacked S and F layers are of considerable 

interest. These F/S heterostructures may exhibit phenomena such as coexistence of 

superconductivity and magnetism, reentrant behavior, and oscillation of the critical 

current with temperature in the absence of an external magnetic field. In the theoretic 

work, Radović et al. only study the influence of the ferromagnet on the 

superconductivity in F/S superlattice, with the magnetic ordering being unperturbed 

by the proximity of S layers. [1, 2] The exchange field in the ferromagnet tends to 

polarize the conduction election spins, thus breaking the Cooper pairs, which 

penetrate from the superconducting order parameter in the vicinity of an F/S interface. 

[3] As a consequence, the superlattice transition temperature TC becomes much lower 

than the superconductor’s bulk transition temperature TCS and the phase transition can 

become of first order. They also found that below a certain critical thickness of S 

layers there is no superconductivity at all, even for short-period superlattice with thin 

F layers. In addition to these destructive consequences of the F/S proximity effect, a 

nonmontonic oscillatory variation of TC with F layer thickness, related to “π-contact” 

superconducting interferometer, was observed. [4] On the characteristic ground-state 

configurations, the phase difference between two neighboring S layers can be not only 

φ=0, as is always the case in superconductor-normal-metal superlattice, but also φ=π, 
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as in the case [5] of S/F/S Josephson junction. Or it can take intermediate values, 0 < 

φ < π, depending on the superlattice characteristics.  

To study the normal to superconducting state transition, Radović et al model the 

behavior of an F/S superlattice by assuming a position- and temperature-independent 

exchange field in the F layers. Assuming both metals are dirty [5], they use Usadel’s 

[7] dirty-limit version of the quasiclassical theory of superconductivity to derive the 

boundary conditions that connect the quasiclassical propogation near magnetically 

active interfaces. [8, 9] 

Using Usadel’s equation, the quascilassical theory can be reduced to the linear 

equation between the order parameter Δ(x) and the pair amplitude F(x, ω) as follows: 

),()(
),(

2 2

2

ωω
ω

xFx
dx

xFdD
SS

SS −Δ=−            (4.1) 

0),(sgn)(),(
2 2

2

=+−=− ωωω
ω xFiI

dx
xFdD

F
FF             (4.2) 

Where DS, (F) are the diffusion coefficients in the superconductor and ferromagnet, I is 

the exchange energy, and ω is the Matsubara frequency given by ћω=πkT(2n+1) with 

integer n. For one S layer embedded between two F layers, the condensate of pairs 

can be given by F(x, ω). The Gorkov’s Green function integrates over energy and 

averages over the Fermi surface with the Matsubara frequency ω. Near the 

second-order phase transition at Hc2(T) we have for the S layer and F layer, 

respectively, [1]  
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∏

   (4.3) 

where 02 i AπΠ = ∇ + Φ  is the gauge-invariant gradient with vector potential A and 

flux quantum Φ0 . The propagation momentum KS corresponds to the effective pair 

breaking parameter ρ(t) by  

2 2 ( ) / 2
S St K tρ ξ( ) =       (4.4) 
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with the reduced temperature t=TC /TCS and the bulk critical temperature TCS. The S 

coherence length is given by 1/ 2( 2 )S S B CD k Tξ π =  with the diffusion coefficient DS 

and the Boltzmann constant kB . On the other hand, it relates to the Ginzburg–Landau 

coherence length via 1 2( ) (1 / )GL S CST T Tξ ξ −= − . The characteristic inverse length is 

given by 

2( )B ex
F

FM

K T iEK
D

π +
=  (4.5) 

where Eex is the exchange energy and 3FM F FMD υ=  is the diffusion constant in 

the F layer with the Fermi velocity Fυ  and the mean-free-path FM . In the case of 

strong ferromagnets Eex >>KBTcS, KF can be taken as temperature independent and Eq. 

4.5 becomes  

2 2(1 )ex
F

FM F

iE iK
D ξ

+
= =       (4.6) 

The penetration length of the superconducting pair function in the F layer is 

introduced as: 

4 FM
F

ex

D
E

ξ = .   (4.7) 

Within the single-mode approximation of Eq. (4.1) for FS and Eq. (4.2) for FF, the 

reduced temperature is connected to the pair-breaking parameter by 

1 1ln ( ) Re ( )
2 2

t
t
ρ

= Ψ − Ψ +  ,        (4.8) 

where ReΨ represents the real part of the digamma function. ρ can be obtained by the 

boundary conditions, [10] 

SC FM

bdbd

dF dF
dx dx

η= ,    (4.9) 

SC FMF F  =      (4.10) 

with the η as a phenomenological parameter characterizing the F/S interface. In the 
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dirty limit, η = σFM/σSC is the ratio of the normal state conductivities of the F and S 

layers to influence the propagation momentum at the interface. Equation (4.10) 

implies a high quantum mechanical transparency of the F/S interface, that the 

probability of transport at interface is equal, as represented by 2 2
S FF F= . Moreover, 

the absence of the pairing function current through the outer surface of the trilayer 

implies that at x= ± (dS/2+dF) for the F/S/F trilayer system 

0FdF
dx

= .   (4.11) 

Using the boundary conditions (4.9), (4.10), and (4.11) in Equations (4.4) and (4.8) 

the equation for computing KSdS can be derived: 

2(1 )tan( ) tanh 2(1 )
2

sc sc sc FM
sc sc

sc FM

K d d diK d i
ε ε ε

⎡ ⎤+
= +⎢ ⎥

⎣ ⎦
   (4.12) 

with FM SCε ξ ηξ= . The numerical results show the TC behavior of F/S is very 

sensitive to the ferromagnet influence. For typical values of parameters DS, DF, TCS 

and η, Fig. 4.1 illustrates the result by the example ε = 1 for the strong magnet 

influence.  

                                                               

(a)                                (b) 

Figure 4.1: The reduced transition temperature as a function of the reduced (a) S film 
thickness and (b) F film thickness for ε=10. The tricritical points T*/TCS are shown as 
thin curves. Dashed cures show solutions that are physically unstable. [2] 
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For relatively thin S and F layers, TC decreases rapidly with decreasing dS/ξS as shown 

in Fig. 4.1 (a), or increasing dF/ξF as in Fig. 4.1 (b). For a given dF/ξF, the 

superconductivity persists only for dS larger than a certain critical thickness dcrit. 

Moreover, below the tricritical temperature T*, the TC curves become doubly valued, 

but the solutions are physically unstable as shown the dashed cures in Fig. 4.1. 

    For thicker S layers and dF/ξF ~1, significant oscillations arise on the TC versus 

dF/ξF curves. In the region of strong oscillations new ground states appear with finite 

phase difference φ≠0 between neighboring S layers, which is never the case for S/NM 

superlattices. On the whole transition curve, the states with 0 phase and with π phase 

are dominant. As shown in Fig. 4.2, the interchange of their stability domain is due to 

the interplay of two oscillating TC curves. Although the transition between the 0 and π 

phase is continuous, the intervals of dF/ξF corresponding to o < φ < π are very narrow. 

 

 

Figure 4.2: The calculation for the phase difference φ=0, dot-dashed line, and φ=π, 
dashed line. The ground state oscillations where o<φ<π, solid line. Inset: groune state 
φ vs dF/ξF. [2] 

 

 



 72

Figure 4.3 [11] shows the spatial variation of the real part of the pairing wavefunction 

near the interface. At the S side the ReFs decreases slightly as the interface is 

approached; however, when crossing the interface the derivative of function decreases 

by a factor η, giving a steep decreases of FF at the F side of the interface. At larger 

distances from the interface, FF exhibits the oscillatory behavior with a change of sign 

at dF ~0.5ξF. This is achieved by the assumption that the pairing function is 

continuous at the interface, i.e. assuming a perfectly transparency interface. 

 

High-quantum-mechanical transparency

2(1 )tan( ) tanh 2(1 )
2

sc sc sc FM
sc sc

sc FM

K d d diK d i
ε ε ε

⎡ ⎤+
= +⎢ ⎥

⎣ ⎦

0FdF
dx

=

SC FM

bdbd

dF dF
dx dx

η=

SC FMF F  =

High-quantum-mechanical transparency

2(1 )tan( ) tanh 2(1 )
2

sc sc sc FM
sc sc

sc FM

K d d diK d i
ε ε ε

⎡ ⎤+
= +⎢ ⎥

⎣ ⎦

0FdF
dx

=

SC FM

bdbd

dF dF
dx dx

η=

SC FMF F  =

 

 

Figure 4.3: Spatial variation of the real part of the pairing function near the interface 
in the models by Radovic´ et al with dPb=730 Å and dFe=4 Å (a), 9 Å (b), and 20 Å (c) 
with the parameters ξS=170 Å, ξF=16 Å, and ε =3.4. [11] 
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4.2 Tagirov’s Theory 

 

    Considering with imperfect interface, Aarts et al. was the first to discuss the 

important role of the interface transparency and present experimental evidence of the 

intrinsically reduced interface transparency in the V/V1-xFex multilayer system. [12] 

They analyzed their experimental results using the boundary conditions in the dirty 

limit for the F/S interface, which have been developed by Tagirov et al, with the finite 

transparency taken into account. [13] The first boundary condition is the same as 

Equation 4.9, which ensures the continuity of the electric current associated with the 

charged quasiparticles crossing the interface. The second boundary equation is 

replaced by 

( . ) ( )
2

F m
F F F S F

V TD n F F F− ∇ = − ,   (4.13) 

where nF is the unit vector perpendicular to the interface and Tm is the dimensionless 

interface transparency parameter. (Tm [ ]∞∈ ,0 ). The key qualitative difference between 

the boundary condition Eq. 4.10, used by Radovic et al. [2], and Eq. 4.13, is that the 

latter allows a jump of the anomalous Green function at interface. Using this 

boundary condition and taking renormalization of the diffusion coefficient in the F 

layer into account, we may obtain a new equation for finite transparency 

3 tanh( )tan( )
tanh( )

S F F F F
S S S S

s S S F F F F

d N v k dK d K d
l N v i k k dξ

=
+

 .  (4.14)                         

Here NF and NS is the density of states of the conduction electrons at the Fermi level 

in the ferromagnetic and superconducting layer, respectively. The numerical results 

and parameters are given in Fig. 4.4. It is clear to observe that the main difference 

between the behavior of the pairing function within the perfect interface transparency 

assumption and the Tagirov’s model is the defined jump of the F-function at the 

interface.  
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3 tanh( )tan( )
tanh( )

S F F F F
S S S S

s S S F F F F

d N v k dK d K d
l N v i k k dξ

=
+

Low-quantum-mechanical transparency

0FdF
dx

=

SC FM

bdbd

dF dF
dx dx

η=  

( . ) ( )
2

F m
F F F S F

V TD n F F F− ∇ = −

3 tanh( )tan( )
tanh( )

S F F F F
S S S S

s S S F F F F

d N v k dK d K d
l N v i k k dξ

=
+

Low-quantum-mechanical transparency

0FdF
dx

=

SC FM

bdbd

dF dF
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η=  

( . ) ( )
2

F m
F F F S F

V TD n F F F− ∇ = −

 

 

Figure 4.4: Spatial variation of the real part of the pairing function near the interface 
in the model by Tagirov with dPb=730 Å and dFe=4 Å (a), 9 Å (b), and 20 Å (c) with 
the parameters ξS=170 Å, ξF=7.7 Å, lF=15 Å, NFvF /NsvFs=1.3 and Tm=0.4. [13]  

 

4.3 Fominov’s Theory: single-mode and multi-mode solution 

  

    In Section 4.2, according to the Tagirov’s theory, the transparency Tm entering in 

the proximity theory may vary within the range [0, ∞]. However, it is unsuitable to 

compare it with the quantum mechanical transmission coefficient obtained via S/F 

tunneling or point contact spectroscopy, which lies in the range [0, 1]. Therefore, 

Fominov et al. [14] study the critical temperature of F/S bilayers by choosing a more 

general theory valid at arbitrary temperature with quasiclassical approach. [15] Near 

TC the quasiclassical equations become linear with the help of the single-model 

approximation, the way which is argued to be qualitatively reasonable in a wide 

region of parameters. Moreover, they also study an exact solution of the linearized 

quasiclassical equation when this method fails. 
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4.3.1 single-mode solution 

 

In the dirty limit conditions, the critical temperature TC of the bilayer is 

calculated within the framework of the linearized Usadel equation for the S and F 

layers. Fig. 4.5 shows the domain of 0 < x < ds and –df < x < 0 which are occupied by 

the S and F meal, respectively. Near TC the normal Green function is G=sgnωn, and 

the Usadel equations for the anomalous function F take the form 
2

2
2 0S

S cS n S s
d FT F x d
dx

ξ π ω− + Δ =  ,    0 < <      (4.14) 

*
2

2
2 ( sgn ) 0 0F

F cS n ex n F f
d FT iE F d x
dx

ξ π ω ω− + =  ,   − < <    (4.15) 

ln ( )
n

cs

n

T T F
T ω

π
ω
Δ

Δ = −∑     (4.16) 

Here the pairing potential Δ is nonzero only in the S part. / 2S S CSD Tξ π= and 

/ 2F F CSD Tξ π= are the coherence lengths, while the diffusion constants DS,F can be 

expressed via the Fermi velocity and the mean free path by DF = Vl/3 . The other 

parameters are already described in Section 4.1.  

Figure 4.5: SF bilayer. The F and S layers occupy the regions –df < x < 0 and 0 < x < 

dS, respectively. 

At the outer surfaces of the bilayer, Eq. (4.14) to (4.16) must be supplemented 

with boundary conditions at the outer surfaces of the bilayer, 

F S

-df     0     ds
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( ) ( ) 0S S F FdF d dF d
dx dx

−
= = ,   (4.17) 

as well as at the SF boundary, [16] 

*
*

(0) (0) ,S S SF
S F

F F

dF dF
dx dx

ρ ξξ γξ γ
ρ ξ

=    =    (4.18) 

[ ]*
*

(0) (0) (0) , bF
F b S F b

F F

R AdF F F
dx

ξ γ γ
ρ ξ

= −    =   (4.19) 

Here Rb is the resistance of the SF boundary, and A is its area. The parameter γ is a 

measure of the strength of the proximity effect between the S and F metals while γb 

describes the effect of the interface transparency Ttran, define as: 

*

12
3

tranF
b

F tran

T
T

γ
ξ

−
= .  (4.20) 

Ttran is 0 for the completely reflecting interface, large resistance of the barrier Rb. It is 

equal to one for a completely transparent interface. It is useful to compare this 

definition to the Tm present in Tagirov’s model as discussed in Section 4.2 by the 

expression: 

                         
1

tran
m

tran

TT
T

=
−

,  (4.21) 

where the Tm can vary between zero, negligible transparency and infinity, perfect 

interface. It is important to note that the boundary condition (4.19) determines a jump 

of the pairing function at the interface, and this characteristic is similar to the Eq. 

(4.13) developed by Tagirov. However, it is in contrast with Radovic’s picture, in 

which the pairing wavefunction varies continuously due to the perfect boundary 

assumption.   

The Usadel equation in the F layer is readily solved, 

sgn1( )cosh( [ ]), n ex n
f n f f f

f cS

iE
F C k x d k

T
ω ω

ω
ξ π

+
= +    = .  (4.22) 

And the boundary condition at x=0 can be written in closed form with respect to FS: 
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1(0) (0), [ tanh( )]
( )

S
S S f f f f f

b f

dF F K K d
dx B v

γξ ξ
γ

−=    Β =
+

    (4.23) 

This boundary condition is complex. In the single-model approximation, the critical 

temperature of the bilayer is then determined by the equation 
21 1ln( ) ( ) ( )

2 2 2
cS cS

c c

T T
T T

ψ ψΩ
= + −    (4.24) 

where ψ  is the digamma function. Ω  can be derived from the boundary conditions 

of matching the pairing function at x=0, as given by 

tan( ) ( ), (2 1)S
n n c

S

d W T nω ω π
ξ

Ω Ω =   = +   (4.25) 

with 

2

( Re )( ) ,
( Re )

S b F
n

S b F b F

A BW
A B B

γ γω γ
γ γ γ

+ +
=   

+ + +
  (4.26) 

1tanh( 2), n
S S S S S S

S B cS

A K K d K
K T
ωξ

ξ π
=     =   (4.27) 

 

4.3.2 multi-mode solution-method of fundamental solution 

 

    According to Fominov’s report, the single-mode approximation is correct only if 

the parameters are such that W can be considered ωn independent. Although this 

method is popular, it is often used without considering the limits of its applicability. 

An example for this limitation is the case when  fb B>>γ , hence W=γ/γb. The 

condition can be written in a simpler form, bcSex TE γπ /1/ >>  as one of 

experimentally relevant cases.  The single-model approximation implies that one 

takes the only real root Ω of Eq. (4.24). An exact method for solving the problem is 

obtained when the imaginary roots are taken into account. Thus, there is infinite 

number of solution in a multi-mode method. The parameters are determined by the 
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self-consistency equation: 
2

01 1ln( ) ( ) ( )
2 2 2

CS CS

C C

T T
T T

ψ ψΩ
= + − , 

21 1ln( ) ( ) ( ), 1, 2,...
2 2 2

CS m CS

C C

T T m
T T

ψ ψΩ
= + −    =    (4.28) 

Numerically, it is complicated to solve this matrix equation. Fominov developed the 

fundamental solution G(x, y; ωn), which is also called the Green’s function, to satisfy 

the same equation, but with the delta function “source”, 
2

2
2

( , ) ( , ) ( )S CS n
d G x yT G x y x y

dx
ξ π ω δ− = − − ,  (4.29) 

( , )(0, ) ( ) (0, ), 0S
S n

dG d ydG y W G y
dx dx

ξ ω=   =   (4.30) 

This equation can be expressed in an operator form:  

0
0

( )( ) ln 2 [ ( , ; ) ( ) ]S

n

dCS
C n

C n

T xx T G x y y dy L
T ω

π ω
ω>

Δ
Δ = −  Δ = Δ∑ ∫ .   (4.31) 

Then the condition that Eq. (4.31) has a nontrivial solution with respect to Δ is 

expressed by the equation 

det( 1ln ) 0CS

C

TL
T

− = .    (4.32) 

This critical temperature TC is determined as the largest solution of this equation. 

Numerically, the operator L  becomes a finite matrix by putting equations (4.31) and 

(4.32) on a spatial grid. 

In the general case, as shown in the Fig. 4.6, there are there characteristic types 

of TC(df) behavior: (1) At a large enough γb, TC decays nonmonotoically to a finite 

value exhibiting a minimum at a particular df. (2) At a moderate γb, TC demonstrates a 

reentrant behavior which makes TC vanish in a certain interval of df and is finite 

otherwise. (3) At a small enough γb, TC decays monontonically, vanishing at finite df.  

These characteristics can be explained by the fact that the suppression of 

superconductivity by a dirty ferromagnet is only due to the effective F layer with a 

thickness on order of λex, adjacent to the interface. The wavelength of the oscillations 
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λex is the layer of explored and felt by quasiparticales entering from the S side due to 

the proximity effect. 

    The single-mode approximation is a popular method widely used in the literature 

for calculating the critical temperature of FS bilayers and multilayers. However, the 

condition of its validity is limited according to Fomonov’s report. In order to estimate 

the actual accuracy in the single-mode approximation, we compare sigle-mode and 

mutil-mode methods in the Fig. 4.6. In the general case, the results of the single-mode 

and multi-mode methods are close. However, when γb < 0.1, they are quantitatively 

and qualitatively different, the single-mode method somewhat underestimates the 

minimum value of TC and overestimates the amplitude of TC oscillation. Thus the 

single-mode approximation can be used for quick estimates, but reliable results should 

be obtained by one of the multi-mode techniques. 
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Figure 4.6: Comparsion between single- and multimode methods. Generally speaking, 
the results of the single-mode and multimode methods are close: (a) and (f). However, 
at some parameters are different: (b), (c), (c), (d), and (e). [14] 

 

Based on the interference of quasiparticles in the ferromagnet, the thickness of 

the F layer, at which the minimum of Tc(df ) occurs, can be estimated from qualitative 

arguments. [14] According to Feynman’s interpretation of quantum mechanics, [17] 

the quasiparticle wave function may be represented as a sum of wave amplitudes over 

all classical trajectories. Consider a point x inside the F layer, as shown in Fig. 4.7. 
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The anomalous wave function of correlated quasiparticles, which characterizes 

superconductivity, is equivalent to the anomalous Green function F(x). We sum over 

trajectories that (i) start and end at the point x, and (ii) change the type of the 

quasiparticle converting an electron into a hole, or vice versa through the Andreev 

reflection.  

 

Figure 4.7: Four types of trajectories contributing in the sense of Feynman’s path 
integral to the anomalous wave function of correlated quasiparticles in the 
ferromagnetic region. The solid lines correspond to electrons, and the dashed lines to 
holes; the arrows indicate the direction of the velocity. [14] 

 

 

Hence, there are four kinds of trajectories that should be taken into account. In 

Fig 4.7, the trajectory 1 and 2 start in the direction toward the FS interface as an 

electron and as a hole, respectively, experiencing the Andreev reflection and returning 

to the point x.  The other two trajectories denoted 3 and 4 start in the direction away 

from the interface, experiencing normal reflection at the outer surface of the F layer, 

moving toward the FS interface, experiencing the Andreev reflection there, and 
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finally returning to the point x. The corresponding actions can be represented as:  

1 ,S Qx α= − −  

2 ,S Qx α= −  

3 (2 ) ,fS Q d x α= − + −  

and 

4 (2 )fS Q d x α= + − .   (4.33) 

Where Q is the difference between the wave numbers of the electron and the hole, and 

α=arccos(E/Δ) is the phase of the Andreev reflection. Here, we assume that the 

ferromagnet is strong, the FS interface is ideal, and consider the clean limit first:   

2 ( ) 2 ( ) 2 /e h ex ex exQ K K m E E m E E E vμ μ= − = + + − − − + ≈ , (4.34) 

where E is the quasiparticle energy, μ is the Fermi energy, and v is the Fermi velocity. 

Thus the anomalous wave function of the quasiparticles is 
4

1

( ) exp( ) cos( ) cos( [ ])n f f
n

F x iS Qd Q d x
=

∝ ∝ +∑ .  (4.35) 

The suppression of Tc by the ferromagnet is determined by the value of the wave 

function at the F/S interface: 2(0) cos ( )fF Qd∝ . The minimum of Tc corresponds to 

the minimum value of F(0) which is achieved at df=π/2Q. In the dirty limit the above 

expression for Q is replaced by 

2ex

f ex

EQ
D

π
λ

= ≡  (4.36) 

Thus, the minimum of Tc(df ) in terms of the wavelength of the oscillations takes 

place at: 

min 2 4
f ex

f
ex

D
d

E
λπ

= ≡ .  (4.37) 

For the bilayer of Nb/Cu0.43Ni0.57, the calculation obtains dfmin ~7 nm, whereas the 
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experimental value is 5 nm [14]. Thus the qualitative estimate is phenomenologically 

related to min 0.7 / 2dirty
Fd πξ= . It is possible to estimate dirty

Fξ  directly from the 

position value of the minimum in TC(df) curve. The way is examined in 

Nb/Pd0.86Ni0.14 [18] and Nb/Pd0.81Ni0.19 bilayer system [19] has been proven valid by 

obtaining reasonable quantity. 

 

4.4 Global Fit 

 

In this section, we will describe the detail of Global Fit procedure which is used 

to simultaneously fit different sets of results with same parameters in the CPP 

measurement. Assume we have l common unknowns, c1, c2…cl, in different sets of 

data. We want to fit these sets of data simultaneously to get the unknowns. Each set of 

data can be described by a theoretical relation y = Y (x), where y and x are 

experimentally measurable quantities. The unknowns c1, c2...cl appear in the 

coefficients of the x's. Y must be linear in c's to do this global fit the way we describe 

here. In set p we have n(p) pairs of data (xi, yi), each of which is theoretically related 

to yi = Y (xi, c1, c2..., cl, p). The deviation of the measured yi from the theoretical value 

is given by  

, 1( ,..., , ) .i i ly Y x c c p−      (4.38) 

The root mean square χ2 (p) for this set of data is then  

[ ]
( )

22

1

( ) ( , 1, 2,..., , )
n p

i i
i

y p Y x c c cl pχ
=

= −∑ .   (4.39) 

Since each set has same unknown parameter, we can do a global fit to all sets of data 

and minimize 2 2 ( )tot
p

pχ χ= ∑ . 

We limit the calculation to the case that all functions of Y are linear in the c's. 
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Thus we can write , 1
1

( ,..., , ) . ( , )
l

i l k k
i

Y x c c p c g x p
=

= ∑ , where gk(xi, p) are functions of xi 

in different sets p. Note that if there is a constant term independent of the c's on the 

right side, we can move it to the left and redefine the Y 's. We have now,  
( )

2
, 1

1

( ) ( ,..., , )
n p

tot i i l
p i

y p Y x c c pχ
= 

=

⎡ ⎤= −⎣ ⎦∑ ∑ ,   (4.40) 

where C* denotes all l unknowns. To get the best values c* for all the unknowns, we 

minimize χ2 (p) with respect to the c’s: 
2

( )

, 1
1

( )
*

1 1

0

2 ( ) ( ,..., , ) ( , )

2 ( ) ( , ) ( , ). ( , )

j

n p

i i l j i
p i

n p l

i j i j i k k i
p i k

c

y p Y x c c p g x p

y p g x p g x p c g x p

χ

=

= =

∂
=

∂

⎡ ⎤= − − ×⎣ ⎦

⎡ ⎤= − × − ×⎢ ⎥⎣ ⎦

∑∑

∑∑ ∑

    (4.41) 

Define the data vector  
( )

1

( ) ( , )
n p

j i j i
p i

U y p g x p
=

= ×  ∑∑     (4.42) 

and the symmetric matrix  
( )

1

( , ) ( , )
n p

jk j i k i
p i

M g x p g x p
=

= ×∑∑ .    (4.43) 

We then write *

1

l

j jk k
k

U M C
=

= ⋅∑  .  

The best fit values for the unknown are solved by * 1C M U−= ⋅ . M-1 is known as 

the “error matrix”. Its diagonal elements are the squares of the errors, and the 

off-diagonal elements are the covariance, which are the correlations between the best 

fit value C*. The degree of freedom, dfree, equal the number of the data points minus 

the number of unknown parameters in the fit. Thus, all of the uncertainties can be 

adjusted by 
1 2

freeM dχ−
. The global fit has been performed by comuter oprogram 

in Mathematica, which can be modified for different numbers of unknowns and 

different sets of data.  
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4.5 Andreev reflection and the Blonder, Tinkham, and 

Klapwijk model  

 

While discussing F/S transport property, spin effects play an important role in the 

Andreev reflection at the F/S interface. The behavior occurring at a clean and metallic 

N/S interface is a conversion of normal currents to superconducting currents, as was 

first proposed by Andreev. [20] The opening of a superconducting gap, Δ, at the 

Fermi energy, and the decrease in population of quasiparticles, make S a low carrier 

system for spin transport. At voltages lower than the energy gap Δ, there are no 

available quasiparticle states in the superconductor. However, currents can flow 

through the sample in response to a small voltage less than Δ through the Andreev 

reflection in the metallic junction. As shown in Figure 4.8, a spin-up electron injected 

from a normal metal is retroreflected at the interface as a spin-down hole in order to  

 

Figure 4.8: (a) Schematic diagram of energy versus momentum of a normal 
metal-superconductor contact (b) the conductance versus voltage for metallic contact 
(down) and tunnel junction (up) in NM/F structure. 
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form a Cooper pair in the superconductor. [21] In this process, the superconducting 

conductance at bias voltage smaller than Δ is twice the normal state conductance 

value. 

    In a previous report, Blonder, Tinkham and Klapwijk (BTK) proposed a theory 

for the I-V curves of NM/S microconstriction contact in which the contact diameter is 

smaller than the mean free path within the ballistic regime. [22] The calculation 

describes the crossover from metallic behavior with a perfect transparent interface to 

tunnel junction with an insulating barrier.  

The BTK model is calculated within the Bogoliubov equations to treat the 

transmission and reflection of quasiparticle at the NM/S interface. The Bogoliubov 

formalism can be described as a two-element column vector: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=〉+〉=Ψ

),(
),(

|),(|),(),(
txg
txf

htxgetxftx      (4.44) 

Here, the quasiparticle is considered as the two base-states “electron-like” and 

“hole-like”, denoted as 〉e|  and 〉h| , respectively. f(x,t) and g(x,t) are the probability 

amplitudes of the quasi-particle in 〉e|  and 〉h| , respectively. In the calculation of 

Bogoliubov equation, the Andreev reflection proceeds as the presence of interface 

barrier. In the Fig 4.9, consider that an electron incident on the interface from the 

normal state with energy E > Δ, as indicated by the arrow at the state labeled 0, while 

the outgoing particles are located at points 6, 5, 4, and 2, respectively. Here, the 

excitations at +± k  are predominantly electronlike, whereas those at −± k are 

predominantly holelike.  
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Figure 4.9: Schematic diagram of energy vs momentum at an NM-S interface. The 
open circles denote holes, the closed circles electrons, and the arrow point in the 
direction of the group velocity. The figure in the right hand side simply describes the 
process of transmitted and reflected electron at F/S interface. [21] 

 

By matching the slope and the value of the wave functions across the interface, BTK 

model considers the probabilities A(E), B(E), C(E), and D(E) for four processes. A(E) 

is the probability of Andreev reflection as a hole on the other side of the Fermi surface, 

while B(E) is the probability of ordinary reflection. C(E) is the probability of 

transmission through the interface with a wave vector on the same side of the Fermi 

surface (i.e., ++ → kq  in Fig. 4.8), while the probability of transmission in D(E) is 

crossing through the Fermi surface (i.e., −+ −→ kq  in Fig. 4.8). Table 4.1 lists these 

transmission and reflection as functions of energy and barrier strength by solving the 

Bogoliugov equation with suitable boundary condition. According to the conservation 

of probability, it is important to require that 

1)()()()( =+++ EDECEBEA .  (4.45) 

It is useful to simplify the expression for energies below the gap, where there are no 

transmitted quasiparicles and that C=D=0. The barrier strength is dimensionless 

described as Z=Hδ(x)/ћvF, where the repulsive potential Hδ(x) located at the 

interface represents the effect of the oxide layer such as in a point contact 
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measurement. The significant transmission coefficient in the normal state is simply 

(1+Z2)-1, and corresponding reflection coefficient is Z2/(1+Z2). 

    Because the current must be conserved, it can be calculated in any plane. Under 

ballistic assumption without scattering, it is convenient to do so on the N side of the 

interface, where all current is carried by single particles, not supercurrent. We 

consider the current inside the metal and separate it into the right-flowing part (S to 

NM) and left-flowing part (NM to S). When a voltage is applied, it causes an energy 

shift between NM and S, described by the shift of the equilibrium Fermi-Dirac 

distribution in the 1D model. Thus, the incident current from the NM-side can be 

obtained by integrating the distribution over E given by 

dEeVEfEBEAEEeA )()]()(1)[()( −−+∫ ρυ ,   (4.46) [ SN → ] 

where υ and ρ are the electron velocity and density of states of the normal metal, 

respectively. While the current coming in from S-side is given by 

dEEfEBEAEEeA )()]()(1)[()(∫ −+ρυ .    (4.47) [ NS → ] 

We can simply obtain the total current as 

[ ][ ]dEEfeVEfEBEAEEeAI )()()()(1)()( −−−+= ∫ ρυ .   (4.48) 

Thus, the conductance is obtained by taking derivative of the bias voltage:  

[ ] dEeVEfEBEAAe
dV
dIGNS )(')()(12 −−+−= ∫υρ .  (4.42) 

Furthermore, it can be normalized as 

[ ] dEeVEfEBEAZGNS )(')()(1)1( 2 −−++−= ∫ .  (4.49) 
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Table 4.1: Transmission and reflection coefficients. A gives the probability of 
Andreev reflection、B of normal reflection probability、C of transmission probability 
without branch crossing、D of transmission probability with branch crossing. [21] 

 

Since the Andreev reflection is spin-dependent behavior, in fully spin-polarized 

metals that all carries have the same spin and the Andreev reflection would be totally 

suppressed. The spin polarization can be probed based on the fact that the subgap 

conductance drops from twice the normal-state conductance value to a small value for 

highly polarized metal (see Fig. 4.10). Consequently, the spin-up and spin-down 

bands of electron in a ferromagnet are involved in this process. The major influence 

of spin polarization in a ferromagnet on the conductance of the F/S interface has been 

first demonstrated by de Jong and Beenakker (1995) theoretically. [22] Subsequent 

experiments of spin polarization with Andreev point-contact spectroscopy permit us 

to measure the spin polarization by a modified BTK model. [23] In general, the 

current is divided into an unpolarized part, P, and a completely polarized part, 1-P, 

given by [24, 25] 
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PIIPIII Pu +−=+= )1( .  (4.50) 

The spin polarization can be simply obtained in the absence of the interface scattering 

by the zero-bias conductance and the normal state conductance through the relation, 

)1(20 P
G
G

N

−=   (4.51) 

where GN  is the normal state conductance, G0  the zero-bias conductance and P the 

spin polarization. However, the interpretation of the Andreev reflection data on the 

conductance of the F/S interface is complicated. There are many investigations going 

on such as studies of band-structure effect [22], Fermi velocity mismatch of metals 

[26], and spectra broadening effect [27], etc. These investigations allow us to achieve 

a reliable determination of spin polarization. 

 

Figure 4.10: (a) Schematic diagram of energy versus momentum of a 
ferromagnet-superconductor contact (b) the conductance versus voltage for metallic 
contact with different polarization of ferromagnet in F/S structure.  
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Chapter 5  

Results and Discussion-Conventional 

Ferromagnet: Co/NbxTi1-x System 
  

Almost every physical phenomenon mentioned in the previous chapters is related 

to the interaction between superconductivity and magnetism which occurs at the 

boundary of F/S structures. In order to study the transport properties, it is important to 

understand the influence of interfaces. The main idea of this series of samples is to 

study electric transport properties between strong ferromagnet and different 

superconductor alloys. In this section, the dependence of critical temperature, TC, on 

the superconductor thickness for the F/S trilayers with strong ferromagnet Co and 

three kinds of superconductors, Nb, Nb0.6Ti0.4, and Nb0.4Ti0.6, are studied by the 

electrical resistivity measurement. For a fixed Co layer thickness, the behavior of TC 

with decreasing S layer thickness can be described in terms of pair breaking by the 

proximity effect. By current perpendicular to plan measurement, quantitative analysis 

of the interface resistance between F and S both in the superconducting state and in 

the normal state is firstly presented by one-band series-resistance model. In 

comparison with three kinds of superconductor alloys, the interface resistance follows 

the Pippard model with partial quenching of Andreev reflection due to impurities in 

the superconductor. Moreover, the interface transparency in terms of the ratio between 

interface resistance and various physical quantities are discussed. 
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5.1 Thickness dependence of superconducting transition 

temperature in Co/S trilayers with S = Nb, Nb0.4Ti0.6, and 

Nb0.6Ti0.4. 

 

In this section, the dependence of transition temperature on the superconductor 

thickness for Co/S trilayers is discussed. Deposition was done under 1 mTorr Ar gas, 

with 0.05 nm/s rate for Co and 0.12 nm/s for Nb and NbxTi1-x. Twelve samples were 

fabricated in the same run. Nb and Co can form alloys at high temperature, but they 

should be immiscible around room temperature. [1] Series of samples of Nb/Co 

bilayers and Co/Nb/Co trilayers as well as NbxTi1-x /Co bilayers and Co/ NbxTi1-x /Co 

trilayers were prepared for the present study. The thickness of the Co layer for both 

systems was kept to 2 nm and that of the S layers ranged from 20 to 300 nm for the 

former and from 10 to 100 nm for the latter. We checked the structure of our 

multilayers with low angle and high angle θ-2θ x-ray scans. X-ray diffraction showed 

crystalline structures of bcc (110) for Nb and fcc (111) or hcp (0001) for thick Co, not 

distinguishable from theta-two theta scan. Our data confirmed that sputtered 

multilayers were polycrystalline. [2, 3]  

The superconducting transition temperatures were determined by the electrical 

resistivity as well as magnetic susceptibility. Both results show the same dS 

dependence of TC. With decreasing dS, TC shows a continuous reduction down to a 

critical thickness S
critd , below which superconductivity vanishes. Single S layers of 

comparable thickness showed only minor TC depressions due to disorder as shown in 

Fig. 5.1 (a), (b) and (c). However, the decrease in TC with decreasing Nb layer 

thickness is clearly seen for the Co/Nb/Co trilayers and that of Co/Nb bilayers with 
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dCo=2 nm as a function of Nb layer thickness in Figure 5.1. In much the same way, the 

thickness dependent TC of Co/ Nb0.4Ti0.6./Co and Co/ Nb0.6Ti0.4/Co trilayers with dCo 

=2 nm decrease sharply when the thickness of S is smaller than 50 nm. The decrease 

in TC results from the depression of the amplitude of the Cooper pair wavefunction. 

The pair-breaking effect near the F/S boundary is due to the strong exchange field Eex 

in Co. Here we observed that the TC showed a monotonically rapid decrease with 

decreasing NbxTi1-x thickness for the case of bilayers and trilayers structure. The 

experimental data can be fitted by theoretical model related to the proximity effect, as 

will be discussed in detail in the next section. In Figure 5.1, the solid lines are fitted 

by the model proposed by Radovic´ et al. [4] It can be seen that the experimental 

points are well described by this model, and the TC value decreases with decreasing 

NbxTi1-x thickness down to the critical thickness dcrit, where the superconductivity 

vanished. 
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Figure 5.1: Dependence of the superconducting transition temperature on the 
thickness of the (a) Nb,(b) Nb0.4Ti0.6 and (c) Nb0.6Ti0.4 contained layers. The solid 
curves are obtained by fitting Eq. (1). 
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5.2 Theoretical fitting in term of Radovic’s model 

 

A microscopic theoretical model for the interpretation of experimental results 

with F/S trilayers has been proposed by Radović et al. The detail of theoretical model 

is presented in Chapter 4. The reduced TC with decreasing dS is associated with the 

pair-breaking effect within the single-mode approximation. In the framework of this 

model, the TC is given by Eq. (4.8). The effective pair-breaking parameter, *ρ  (T) 

can be calculated in Eq. (4.12) by Usadel’s equation for the pair amplitude FS in the 

superconductor by making use of the boundary condition from Eqs 4.9 to 4.11. [5] 

This condition implies a high-quantum-mechanical transparency of the F/S interface. 

The diffusion coefficient DF of Co can be estimated in terms of the low-temperature 

conductivity σ and the coefficient of the electronic specific heat γ  from the Pippard 

relation [6] 

2 2( ) ( )F Bv l k eπ σ γ= .  (5.1) 

For a single-Co film prepared at conditions identical to the Co layer in our layered 

structures, the low-temperature resistivity was determined to be 87 10 cmρ −= ×  Ω . 

Using 3 24.73 10 J Kγ − = ×   mole for Co [7] the diffusion coefficient is derived from 

DF = 5 cm2/s. From the spin splitting energy 2I0=1.55 eV [8], the penetration depth of 

the superconducting pairing function in Co is estimated to be 1.3F nmξ  =  .  

The experimental results can be fitted well by equation (4.12) in terms of the 

Radovic’s model shown as the solid curves in Fig. 5.1. We can extract a critical 

thickness 30crit
Nbd nm =   by extrapolating the fit to TC = 0. The parameters for the 

calculation are TC = 9.1 K, 16S nmξ  =  , and 9.2 ( 0.01)ε η=  = , For comparison, the 

superconductor coherence length deduced from the temperature-dependent 

upper-critical field measurement Hc2⊥(T) is 12S nmξ  =  . [3] This value is smaller than 
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the fitted result from proximity effect and should be a result of pair breaking effect.  

The bulk resistivities at 10 K measured on sputtered single film of Nb0.4Ti0.6 and 

Nb0.6Ti0.4 were 40 μΩ cm and 80 μΩ cm, respectively, with errors of about 10 %. The 

residual resistance ratios (RRR) were larger than 2 for Nb, ~1.25 for Nb0.4Ti0.6 and 

less than 1.06 for Nb0.6Ti0.4 films, indicating the quality of our Nb0.6Ti0.4 films is not 

as good as the others. The electron mean free paths estimated from these resistivities 

were 4.7 nm for pure Nb, 0.9 nm for Nb0.4Ti0.6, and 0.5 nm for Nb0.6Ti0.4 with an 

assumption that the product 6 23.75 10 cmlρ μ− = ×  Ω  remained unchanged. [9, 10] 

Moreover, the bulk NbxTi1-x have Tc = 8.8 and 7.0 K for x = 0.4 and 0.6, respectively. 

In the same strategy, the critical thickness for the case of Co/ Nb40Ti60, and 

Co/Nb60Ti40 trilayers are 
40 60Nb Ti 20critd nm≈  and 

60 40Nb Ti 27critd nm≈  , respectively, when 

deduced from fitted results, as the solid lines in the Fig. 5.1 (b) and (c) show. Here, 

the data are within the range of 2crit
S Sd ξ  ≥ ; this ensures the usage of the 

single-mode approximation, since higher-order modes are substantially short-range 

modes and strongly damped at S Sd ξ> . [5] 

We looked up the literature and found that the large resistivity and low TC are 

most likely due to the structure variation as explaining following. Although the 

critical temperature peaks towards the niobium-rich side of the compositions, i.e. in 

the range 50-70 at.% Nb, The most widely used superconducting materials are based 

on Nb-Ti alloys with Ti contents ranging from 46-50 weight % Ti. These alloys of Nb 

and Ti have both high strength and ductility and can be processed to achieve high 

critical current densities that make them ideal candidates for magnet and applications. 

Nb-Ti based superconductors are commercially produced in long uniform lengths and 

cost significantly less to produce than other superconductors. [11] The main 

drawbacks of this material are a low critical temperature, typically requiring cooling 
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by liquid helium, and a low upper critical field which limits the applied field at which 

they can be used to below 12 T. 

The variations of TC, ρn and the upper critical field Hc2 as a function of alloy 

composition are plotted in Figure 5.2. The data were adapted from [11] and [12]. The 

critical temperature shows a mild variation between pure Nb (9.23 K) and Nb50Ti50 

(8.5 K), with a weak peak at about Nb70Ti30 (9.8 K). Addition of Ti is more potent at 

reducing TC for alloys with Ti content above 50 mass%. The critical temperature 

drops continuously over this range with increasing Ti content. The rate of resistivity 

increase is concave upward, tending towards the Mott localization limit ( > 100 μΩ 

cm) for more than 70 at%Ti. Thin-films were used to show that these trends continue 

for higher Ti content [13], where bulk samples are difficult to make, as shown in the 

Fig 5.3. Resistivity increases with increase in Ti content. The resistivity of the thin 

film is found to be larger than typical values found in the corresponding bulk alloy as 

much as 20 μΩ cm. Except near the endpoints (pure Nb or pure Ti) where higher 

resistivity ratios can be obtained, residual resistivity ratios of these alloys are close to 

1. (see Fig. 5.3) 
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Figure 5.2: The variation in Hc2 at 4.2 K , TC and resistivity are plotted as a function 
of the mass fraction of Ti across the binary Nb-Ti alloy system. Hc2 is defined as the 
linear extrapolation of the high field pinning force to zero. [11] 

 

 

 

Figure 5.3: (a) Variation in resistivity as a function of Ti content in Nb-Ti films for 
300 K and 10 K, respectively. (b) Variation in resistivity ratios with Ti content in 
Nb-Ti films for 300K/77K and 300K/10K, respectively. (c) Variation in TC with Ti 
content in Nb-Ti films. [13] 

 

The upper critical field at 4.2 K exhibits a broad dome-like curve in the range of 

40 weight % Ti to 60 weight % Ti with a maximum of about 11.6 T at a composition 

of 44 weight % Ti. The peak results from a balance of the trends for the resistivity and 

critical temperature, where the zero-temperature value can be predicted by 

(a) (c) (b) 
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3

0 2 (0) 3.11 10c CH Tμ ργ= × .    (5.2) 

The above equation is an extension of the Ginzburg–Landau theory [14]. The value of 

Hc is linked to TC via the condensation energy of the superconducting state and the 

scattering value of ρ. Thus, the reason for this Hc2 behavior is basically from the 

anomalous increase in the normal-state resistivity. This increase in ρn is more than 

compensating for the slight decrease in γ, the electronic specific heat coefficient, and 

TC, resulting in an enhancement of the upper critical fiels Hc2 for Ti-rich alloys. 

The atomic volume difference between Ti and Nb is only about 2 % resulting in 

a isomorphous system where the β phase has a body-centered cubic structure with a 

lattice parameter of approximately 0.3285 nm. An important property of the Nb-Ti 

phase diagram, shown in the Figure 5.4, is that the β phase starts to decompose only 

well below the melting temperature. [11] The β phase is favored at high temperature, 

and can be retained by quenching to room temperature. Many β alloys are good 

superconductors [15], as would be expected from the high transition temperatures of 

V, Nb and Ta. The other stable α phase in this system is the titanium rich phase which 

has a low solubility and low-temperature hexagonal close-packed (HCP) structure. 

The low Nb content of the α-Ti phase suggests that α-Ti precipitates should have a 

low TC (approaching the 0.39 K TC of pure Ti) and should be non-superconducting 

under practical operating conditions. The alpha phase is only stable below 882 °C (at 

atmospheric pressure) and for the alloy composition range of interest Ti is only stable 

below 570 °C to 600 °C. In Figure 5.4 the widely used high temperature phase 

boundaries of Hansen et al. [16] are combined with the calculated low temperature 

boundaries of Kaufman et al. [17] modified by Moffat and Kattner [18] to provide a 

composite equilibrium phase diagram that generally reflects production experience. 

The competition between these phases and the incipient phase transition of a 

quenched β alloy to α+β is the origin of many observed physical properties of Nb–Ti 
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alloy. Thus at room temperature and below, the standard alloy consists of metastable 

β phase and any phase transition is latent. 

In the previous report, the resistivity increases with increasing in Ti content. In 

our system, even though the TC decreases with increase resistivity following the 

expected tendency, the resistivity of Nb0.6Ti0.4 is larger than Nb0.4Ti0.6. A. Main et al. 

reported that the incipient instability of the β-phase (bcc lattice) in the Ti rich 

composition region resulting in the dynamical fluctuation of the diffuse phase 

(ω-phase) and leads to the anomalous increase in the resistivity. [13] In our system, 

this increase in the resistivity may be due to the stress developed in the film between 

substrate or ferromagnet layer which influenced the instability in the direction of 

relieving it in favor of a structural transformation. Another possibility is that the 

increase in resistivity is due to the small grain size of our polycrystalline films.  

 

 
 
Figure 5.4: A hybrid equilibrium phase diagram for Nb-Ti combining the 
experimentally determined high temperature phase boundaries of Hansen et al [16] 
with the calculated low temperature phase boundaries of Kaufman and Bernstein [17] 
modified by Moffat and Kattner. [18] Also shown is the martensite transformation 
curve (Ms) of Moffat and Larbalestier. [19] 
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5.3 The behavior of upper critical field for Co/Nb 

multilayers 

 

In the Hc2 measurment, As the thickness of an S layer is reduced, the 

temperature dependence of Hc2 changes from three-dimensional (3D) behavior to 

two-dimensional (2D) one. This dimensional crossover is due to the difference of 

anisotropic coherence lengths parallel and perpendicular to the film. From the 

Ginzburg-Landau (G-L) theory, HC2 for layered S/F structures can be written as  

0 0
2|| 2 2

|| ||

1 1( ) , ( ) ,
2 ( ) ( ) 2 ( )c cH T H T

T T T
φ φ
π ξ ξ π ξ⊥

⊥

=   =  (5.3)   

where ||2CH  and ⊥2CH  are upper critical fields with applied field parallel and 

perpendicular to layer planes, respectively, 0φ  is the flux quantum, and ξ ’s are G-L 

coherence lengths. Near TC, )(Tξ  has 2/1)/1( −− CTT  temperature dependence and 

diverges at TC. When the wavefunction of one S layer is restricted by the adjacent F 

layers, the maximum )(T⊥ξ  is limited by the layer thickness plus penetration depths 

into F layers and becomes constant near TC. Thus, though for a 3D superconductor, 

)/1(2 CC TTH −∝  for all field directions, for a 2D superconductor, 

CC TTH /1||2 −∝ , and )/1(2 CC TTH −∝⊥ . When the S layer thickness is reduced, 

the dependence of HC2||(T) on temperature changes from 3D to 2D, i.e., from a linear 

to some square-root dependence.  

Figure 5.5 shows Hc2|| versus reduced temperature, T/TC, for a series of 

[Co(dCo)/Nb(dNb)]N/Co(dCo) samples with fixed dCo = 20nm and bilayer numbers N = 

6. A clear separation between 2D and 3D behavior is not seen but only a gradual 

transition from 2D to 3D behaviors as dNb increases from 145 to 185 nm. All HC2⊥ 

versus temperature behaved linearly as expected.  

When the Nb layer is in the 2D regime and the Co thickness is reduced, as shown 

in Figure 5.6, multilayers with dCo as thin as 0.6 nm still shows 2D behavior. This 

indicates our nominal 0.6 nm Co is magnetically ordered and is capable of separating 

the S wavefunctions.  
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Figure 5.5: Upper critical field, ||2cH , versus reduced temperature for series of 
multilayers [Co(20nm)/Nb(dS)]6/Co(20nm), with dS = 135, 145, 160, and 185 nm. 
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Figure 5.6: Upper critical field, ||2cH , versus reduced temperature for series of 

multilayers  [Co(dF)/Nb(60)]10/ Co(dF), with dF = 0.6, 2, and 4 nm. 

 

 

Another criterion to determine the difference between 2D and 3D behaviors is 
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the dependence of upper critical field on the angle of external field to the surface. For 

a 3D, Josephson coupled superconductor, from the Lawrence-Doniach equation [20] 

we have 1
cos)(sin)(
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Tinkham pointed out that, [21] 1
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. From these two 

equations, we can see that the slope of upper critical field versus field angle is 

continuous for 3D behavior, but discontinuous for 2D one around θ=0. This has been 

observed in Nb/CuMn multilayers [22] and high TC Bi2Sr2CaCu2O8 materials.[23] 

The angular dependence of upper critical field was measured at 4 K for selected 

samples. The parallel upper critical field can change very sharply, with angle variation 

of less than 0.1 degree, when field is parallel to the layer plane. This also indicates the 

above-presented parallel upper critical field could very well be under-estimated. 

Figure 5.7 shows our results on HC2 versus angle. We found that samples all have a 

cusp shape when the thickness of Nb is less than 136 nm, with discontinuous slopes at 

θ = 0. The bell shape, with continuous slope, applies to samples thicker than 160 nm. 

This agrees with the result from HC2 versus temperature behavior.  
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Figure 5.7: Angular dependence of upper critical field of a series of samples.  
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5.4 The result of CPP measurement for Co/NbxTi1-x 

multilayers 

 

The CPP resistance measurement in metallic multilayer thin films is known to 

give fundamental information of the transport properties. For the study of giant 

magnetoresistance (GMR), the CPP resistance was analyzed by two-channel series 

resistance model to quantitatively separate the interface and bulk contributions. [24, 

25] In the F/S multilayers we studied here, the current in plane (CIP) standard 

four-point measurement always gave zero resistance unless the samples were driven 

to normal state by warming and applying magnetic fields or currents larger than the 

critical values. For the deposition, 99.99% pure Co and Nb were used as sources. The 

deposition rates for CPP sample were 0.7 nm/s for Co and 1.1 nm/s for Nb. 

Simple planar multilayers were also made for magnetization measurements, 

which were performed at 10 K using a SQUID magnetometer. The resistivities at 10 

K measured on thick Nb and Co films no less than 500 nm were 8 and 7 μΩ cm, 

respectively, with an error of around 10%. Figure 5.8 shows the hysteresis loop of a 

multilayer [Co (20)/Nb (30)/Co (2)/Nb (30)]5/Co (20), with all numbers in nm. When 

the direction of the external field was reversed, the 20 nm Co layers switched around 

620 Oe and the magnetization changed roughly 12/13 of the total variation. Around 

±250 Oe, the 2 nm layers started to rotate and reached saturation. Thus, the 

magnetization rotation in different layers can be distinguished.  
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Figure 5.8: Hysteresis curves measured at 10 K of [Co (20)/Nb (30)/Co (2)/Nb 
(30)]5/Co (20) multilayers with all numbers in nm. 

 

We fabricated similar samples [Co (20)/Nb (t)/Co (2)/Nb (t)]10/Co (20) for CPP 

magnetoresistance measurement. Figure 5.9 shows the CPP resistance versus the 

magnetic field of two similar samples of Fig. 5.8 with the Nb thickness fixed at 20 

and 80 nm, respectively. There is no change in resistance within our experimental 

uncertainty of 0.1%. 

 

 
Figure 5.9: CPP resistance vs magnetic field of two samples [Co (20)/Nb (t)/Co 
(2)/Nb (t)]10/Co (20) with Nb thicknesses of 20 and 80 nm, respectively. 
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Our sputtered bulk Nb has a superconducting transition temperature of TC = 9.2 

K. For thin Nb films, TC decreases with a decrease in thickness due to finite size effect. 

When Nb films are sandwiched between Co, we found from our CIP results in Fig 5.1 

that there is a critical thickness of 30 nm, below which no superconducting transition 

could be found. We make series of samples with the Nb thickness fixed at 20 and 80 

nm. When the Nb thickness is 20 nm we have normal metal F/NM multilayers. When 

Nb is 80 nm, we have F/S multilayers.  

Parkin reported antiferromagnetic coupling of Co through 0.9 nm of Nb, but no 

further coupling for larger thicknesses. [26, 27] Theory predicts that F could couple 

through S layers. However the conditions required are that coupling must exist when S 

is in its normal state and that the interface roughness must be small. [28] The large 

coherence length of Nb plus the proximity effect of Co makes the thickness required 

for Nb to be superconducting very large. Thus we do not expect any 

magnetoresistance when Nb is superconducting as the experimental result shown in 

Fig. 5.9. The absence of MR when Nb is normal indicates that the spin diffusion 

length is short in Nb. Park et al. [29] reported a ∞
−525 nm of this length. Our result 

implies that it is even shorter in our samples. The absence of Giant magnetoresistance 

indicated that there was no spin memory across Nb layers. For Nb in NM state, bulk 

Nb was reported to have long spin diffusion length. Strong spin mixing was present at 

the Nb/Cu interface. [30] According to the fact, our results suggest that there is strong 

spin mixing at the Co/Nb interface. As the spin up and spin down electron channels 

cannot be distinguished from the electric transport, we shall apply a one-band model 

to describe our CPP data. For systematic analysis, a series of samples with Nb 

thicknesses fixed at 20 and 80 nm, Co fixed at 20 nm, and an increasing number of 

bilayers were made. We found the CPP resistance is linearly proportional to the 
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number of bilayers for both Nb thicknesses, as shown in Fig. 5.10. Linear least square 

fits to individual sets of data and a simultaneous global fit to both sets gave best-fit 

values of the coefficients to the equation ART=C1+C2N, listed in Table 5.1. 

 

 

Table 5.1: Linear least-square fits to the two sets of data in Figure 5.10. The fits are 
independent of the model. 

 

5.4.1 Two parameters Globl Fit for Co/Nb mulilayers 
 

According to the one-band model, the linear behavior of AR vs N in Fig. 5.10 

permits us to write  

/ ( ) / ( )2 ( 2 )T Co Nb S Co Co Co Co Nb Nb Co Nb NMAR AR t N t t ARρ ρ ρ= + + + +    (5.4) 

for normal Nb and 

/ ( ) / ( )2 ( 2 )T Co Nb S Co Co Co Co Co Nb SAR AR t N t ARρ ρ= + + +   (5.5) 

for superconducting Nb. Here RT is the measured total resistance of multilayers, t the 

thickness, ρ the resistivity, and RCo/Nb(NM),(S) the interface resistance between NM and S 

Nb, and Co layers. Here we assumed that all S/F and F/S interface resistance is 

identical, the same as for NM/F and F/NM, however we always write 2AR for one pair 

of interfaces. Strictly speaking, the resistivity of Co can also be different when the Nb 

layer in the multilayer is NM or S, we do not consider this possibility here since we 

have S electrodes. For an individual fit to the data set of Nb=80 nm as shown the 
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dashed line in Fig 5.8, our model gives C1=C2=2ARCo/Nb(S)+ ρCotCo . From Table 5.1, 

we see C1 and C2 for this set are within mutual uncertainty. Another way to analyze 

this set of data according to our model is to plot ART vs N+1 and force the best fit to 

go through the origin. The result of doing this is a slope of 7.8 ± 0.1 fΩ m2, again 

within the uncertainty of the above numbers. For Nb=20 nm, the intercept C1 should 

be the same as for Nb=80 nm. However, the N=1 data point is clearly much lower 

than the expected linear behavior, resulting in C1 being too small and C2 too big. 

Since the two sets of data share the same parameter, we performed a global fit to all 

the data simultaneously which is presented as the solid lines in Figure 5.10. Using the 

bulk resistivities at 10 K for Co and normal Nb layers, we extracted 

2ARCo/Nb(NM)=3.5 ± 0.7 fΩ m2 and 2ARCo/Nb(S)=6.3 ± 0.9 fΩ m2. The latter value is 

within experimental error of that reported by the Michigan State University group. 

[31] 

In the case of F/S tunnel junction and point contact experiments, fitting the 

whole I –V (or dI/dV–V) spectrum above and below the Fermi energy is important to 

determine the barrier strength Z and the polarization P of the F metal. In our CPP 

setup, the drop in voltage across the sample is at most 1 nV for a constant measuring 

current of 100 mA, six orders of magnitude smaller than the S Fermi energy of several 

mV. To drive the metallic contact CPP samples into normal state would require 

another experimental setup. Since all of our samples have been made in situ in a 

vacuum chamber, there is no barrier at the interfaces, that is, all our samples have Z 

close to zero. Although we cannot drive each individual S sample normal by high 

enough current density, we can do it by warming the sample or, as in the present study, 

we can compare different samples with various Nb thicknesses to get the F/S and 

F/NM unit area interface resistance. In the F/S point contact experiment, resistance is 

of the order 1–100 Ω and the contact area was estimated to have a diameter of 4–60 
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nm.[32] This corresponds to AR=1–3 fΩ m2, which agrees well with our values. 

 

 

 

Figure 5.10: Unit area resistance, ART vs N number of bilayers for two sets of 
samples with Nb thicknesses fixed at 20 and 80 nm, respectively. The dashed lines are 
linear least-square fits to individual sets. The solid lines are global fits to two sets of 
data simultaneously. 

 

The theoretical models used to explain metallic F/S point contacts results were 

based on the BTK model as described in Chapter 4. The BTK model solved the 

Bogoliubov equations for a NM/S interface in the ballistic regime. It was modified for 

the F/S interface by dividing the current into polarized and unpolarized parts. [32, 33] 

For our large area CPP case, a diffusive regime model should be applicable. From the 

relation [34]  

)1/(/)( 22
/// PPRRR NMFNMFSF −=   (5.6) 

for the diffusive regime in the F layer and infinite thick S layer, we deduced 

P=(66±12)% for Co. This is large compared to most values found in tunnel junction 

and point contact experiments (<45%). We suggest that normal conductance at high 
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bias in those cases involves all states above the Fermi energy. This would enhance the 

weight of the unpolarized part of the current, thus reducing the P derived.  

Unlike spin-resolved photoemission, which measures the P of the electronic 

density of states (DOS), our measurements determine transport P. As in the tunnel 

junction and point contact cases, P derived this way is related to the weighted average 

of the DOS, and is not sensitive to the sign of intrinsic polarization. In our analysis, 

the use of bulk resistivities of Nb and Co to obtain the interface resistance is not 

justified. More data that include various Nb and Co thicknesses are needed to treat the 

resistivities as fitting parameters as well, which is presented in the next section. 

 

5.4.2 Two parameters Globl Fit for Co/Nb0.4Ti0.6 and Co/Nb0.6Ti0.4 

mulilayers 
 

In the Co/Nb0.4Ti0.6 multilayers, the Nb0.4Ti0.6 normal layer thickness was chosen 

8 nm and superconducting thickness was 80 nm. The CPP resistance was also linearly 

proportional to the number of bilayers. Plots of the product of sample area A and total 

resistance R against bilayer number N are given in Fig. 5.10 for Co/ Nb0.4Ti0.6 

multilayers. The dash lines in Fig. 5.11 are least-squares fits to each set of data. 

According to a one-band model, the linear behavior of AR against N are described by 

Eqs. (5.4) and (5.5) with RF/S(NM),(S) ’s represent the interface resistances between Co 

and Nb(x)Ti(1-x) layers for normal and superconducting states, respectively. For an 

individual fit to the data set of Nb0.4Ti0.6=80 nm, we can write 1 2TAR C C N= +  with 

0.4 0.61 2 Co/Nb Ti ( )2 S Co CoC C AR tρ= = + . In Table 5.2, we also see the value of 1C  and 2C  

are within mutual uncertainties. Because of the two sets of data share the same 

parameter, we can perform a global fit to all data simultaneously. This gives 
2

1 2 11.3 1.3 C C f m= = ± Ω  for Nb0.4Ti0.6=80 nm, 2
1 11.3  1.3 C f m= ± Ω  and 

2
2 6.9 0.6 C f m= ± Ω  for Nb0.4Ti0.6=8 nm. Used the bulk resistivities at 10 K for Co 

and normal Nb0.4Ti0.6 layers, we extracted 
0.4 0.6

2
Co/Nb Ti ( )2 9.9 1.3SAR f m= ± Ω  and 

0.4 0.6

2
Co/Nb Ti ( )2 2.3 0.8NMAR f m= ±  Ω . 
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Figure 5.11 shows a plot of ART versus N for Nb0.6Ti0.4. The Nb0.6Ti0.4 normal 

layer thickness was chosen 15 nm and superconducting thickness was 80 nm 

according to the phase diagram in Fig. 5.1 (c). The linear behavior also permitted us 

to use the above equations. The S electrodes in these sets were pure Nb because it had 

higher TC. The lines of individual fit intercept the ordinate axes at non-zero values, 

which represent the Co/Nb interface resistance plus ρCotCo. But in Table 5.2, we see C1 

from Nb0.6Ti0.4=15 nm and from Nb0.6Ti0.4=80 nm individual fits are different. To get 

the quantitative analysis, we also performed a global fit to both sets of data 

simultaneously. When we put in the bulk resistivities at 10 K for normal Nb0.6Ti0.4 

layers and the Co/Nb interface resistance we have presented, the best value for 

0.6 0.4/ ( )2 Co Nb Ti SAR  is 22.6±1.7 fΩ m2 and for 
0.6 0.4/ ( )2 Co Nb Ti NMAR  is 5.6±1.5 fΩ m2 derived 

from the fit. When superconducting layer was composed of alternating 0.5 nm thick 

layers of Nb and Ti, 2
/2 12.4 0.7Co NbTiAR f m= ± Ω  was reported in the literature. [35] 

We have smaller value in Nb0.4Ti0.6 and bigger value in Nb0.6Ti0.4 when 

superconductor layer is NbTi alloy materials. 

 

 

 

Table 5.2: Linear least-square fits to the two sets of data in Figure 5.11 and Figure 
5.12. The fits are independent of the model. 
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Figure 5.11: Unit area resistance, ART versus bilayer number N of two sets of samples 
with Nb0.4Ti0.6 thicknesses fixed at 8nm and 80nm, respectively. The dashed lines are 
linear least square fits to individual sets. Solid lines are global fit to two sets of data 
simultaneously. 
 

Figure 5.12: Unit area resistance, ART versus bilayer number N of two sets of samples 
with Nb0.6Ti0.4 thicknesses fixed at 15nm and 80nm, respectively. The dashed lines are 
linear least square fits to individual sets. Solid lines are global fit to two sets of data 
simultaneously. 
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5.4.3 Four parameters Global Fit for Co/Nb multilayers 
    

In the analysis of section 5.3.1, the use of bulk resistivities of Nb and Co to 

obtain the interface resistance may cause the deviation of interface resistance. More 

data that include various Nb and Co thicknesses are needed to treat the resistivities as 

fitting parameters. In this section, we report a more appropriate model for the F/S 

multilayer case. The thicknesses were chosen by the phase diagram of Fig. 5.1. Below 

the Nb
critd , no superconducting transition was found down to 1.8 K.  

Two more series of CPP samples were made for each S material. We use t to 

indicate that the thickness is fixed in the series of samples and d when the thickness is 

varied. For Nb, the total four series are: 

1. Co(20)/[Nb(20)/Co(20)]N with tNb fixed at 20 nm (< Nb
critd ) for normal state, tCo 

fixed at 20 nm, and the numbers of bilayers were varied; 

2. Co(20)/[Nb(80)/Co(20)]N with tNb fixed at 80 nm (> Nb
critd ) for superconducting 

state, tCo fixed at 20 nm, and the numbers of bilayers were varied; 

3. Co(dCo)/[Nb(20)/Co(dCo)]6 with tNb fixed at 20 nm, 6 bilayers, and varying Co 

thickness;  

4. Co(20)/[Nb(dNb)/Co(20)]6 with tCo fixed at 20 nm, 6 bilayers, and varying Nb 

thickness but smaller than Nb
critd . 

The first and second series have been discussed in Section 5.4.1. Each series of 

samples can be individually fitted with the model as the first way of analyzing our 

data. But results for the same quantity from different series are different. The second 

way is that we can apply the bulk resistivities of Nb and Co at 10 K to derive the two 

interface resistances as parameters from all series, as in section 5.4.1 of two 

parameters Global Fit. The third way is that we treat all resistivities and the interface 

resistances as fitting parameters to perform four-parameter global fit.  

Figure 5.10 (a) presents the plots of ART against bilayer number N for the first two 

series of samples. ART is linearly proportional to the number of bilayer for Nb both in 

normal and superconducting states. We can write out Eq. (5.4) and Eq. (5.5) explicitly 
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to a general form for such linear behavior as  

/ ( ) / ( )2 ( 2 )T F S S F F F F S S F S NMAR AR t N t t ARρ ρ ρ= + + + +   (5.7) 

 for normal Nb and 

/ ( ) / ( )2 ( 2 )T F S S F F F F F S SAR AR t N t ARρ ρ= + + +   (5.8) 

for superconducting Nb. Here RT is the measured total resistance of multilayers, t’s 

are the thicknesses, ρ ’s are the resistivities, and ARF/S(NM),(S) ’s are the interface 

resistances between normal state Nb and Co layers; and superconducting state Nb and 

Co layers, respectively. Since there is a mutual deviation using the individual fits, we 

add two series of samples and then examine whether we can perform global fitting 

procedure without using bulk resistivities.  

Figure 5.13 (b) and (c) show the ART behavior of the Co/Nb multilayers as 

functions of Co and Nb thickness, respectively, with dNb smaller than Nb
critd  and N=6. 

The dash lines show the individual fit results. The CPP resistance is linearly 

proportional to the thickness for both varied Co and Nb thickness ranges. With the 

one-band model, the linear behavior of ART versus thickness can be explicitly written 

as  

/ ( ) / ( )2 12 6 7 , (5.9)T F S S F S NM S S F FAR AR AR t dρ ρ= + + +                          

for varying Co thickness (dF) with Nb thickness fixed at 20 nm and 

/ ( ) / ( )2 12 6 7 , (5.10)T F S S F S NM S S F FAR AR AR d tρ ρ= + + +                      

for varying Nb thickness (dNb) with Co thickness fixed at 20 nm. The individual linear 

least square fits of ART versus dCo and dNb samples yield a slope ρCo of 5.4±0.4 μΩ cm 

and the other slope ρNb of 17±2 μΩ cm, respectively. If we calculate interface 

resistance by putting the best fit values of resistivities from the slopes into Eq (5.9) 

and Eq (5.10), we find ARCo/Nb(S) = 5.8 ± 1.3 fΩ m2and ARCo/Nb(NM)) = 3.4 ±1.2 fΩ m2 

differing from the previously calculated values using bulk resistivities of Nb and Co. 

Therefore, we perform a four-parameter global fit to all the data simultaneously. The 

four parameters are 2ARCo/Nb(S), 2ARCo/Nb(NM), ρNb, and ρCo. Accordingly, we can 

rewrite  

Eq. (5.7) as 1 2 3 Nb 4( 1)T CoAR g Ng N t g Nt g= + + +  + , 

Eq. (5.8) as 1 Co 3( 1) ( 1)TAR N g N t g= + + + , 

Eq. (5.9) as 1 2 3 Nb 46 7T CoAR g g d g t g= + +  + 6 , 
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and 

Eq (5.10) as 1 2 3 Nb 46 7T CoAR g g t g d g= + +  + 6 .  

Here g1 is Co/Nb( )2 SAR , g2 is Co/Nb( )2 NMAR , g3 is Coρ , and g4 is Nbρ . The solid lines 

in Fig. 5.13 (a), (b), and (c) are global fits for four parameters to all the data 

simultaneously. We list the best fit values in Table 5.3. The interface resistance 
2

Co/Nb2 6.7 0.3AR f m= ±  Ω  for pure Nb in superconducting state is within the 

mutualexperimental error of that reported by the Michigan State University group. 

[35] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: (a) Specific resistance ART vs bilayers number N of two sets of samples 
with Nb thicknesses fixed at 15 and 80 nm, respectively. The dot lines and solid lines 
are global fit for two and four parameters, respectively. 
 

 

 

 

 

 

 

 

 

 

0 2 4 6 8 10
0

20

40

60

80

100

120

 

 

A
R

T (f
Ω

m
2 )

N

  Nb superconducting state
  Nb normal state
  two-parameter global fit
  four-parameter global fit  

(a)



 118

0 15 30 45 60 75 90
0

20

40

60

80

 

(b)

dCo(nm)

A
R

T (
fΩ

m
2 )

 

 

 dCo
  individual fit
  four-parameter global fit

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13: (b) Specific resistance ART vs Co thinkness with Nb thickness fixed at 
15 nm and N = 6. The dot lines and solid lines are global fit for four parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.13: (c) Specific resistance ART vs Nb thickness with Co thickness fixed at 
20 nm and N = 6. The dot lines are linear least squares fit to individual sets. The solid 
lines are global fit for four parameters to the data simultaneously. The dot-dashed 
lines used the bulk CIP resistivities as the slope and the two interface resistances from 
two- and four-parameter fits as upper and lower limits, respectively. 
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5.5. The result of CPP measurement for Co/Nb0.4Ti0.6 and 

Co/Nb0.6Ti0.4 multilayers with four parameter Global Fit and 

comparison 

 

In comparison to the Co/Nb system, we also fabricated several series of 

Co/Nb0.6Ti0.4, and Co/Nb0.4Ti0.6 CPP multilayer samples. For the deposition, 99.99% 

pure Co and Nb0.6Ti0.4, and 99.97% Nb0.4Ti0.6 alloy targets were used as sources. The 

deposition rates for CPP samples were 0.7 nm/s for Co, 1.1 nm/s for Nb0.6Ti0.4, and 

1.0nm/s for Nb0.4Ti0.6, respectively. The linear behavior of CPP resistance is 

reproduced when we use either Nb0.4Ti0.6 or Nb0.6Ti0.4 as a superconducting metal with 

tCo = 20 nm. When NbxTi1-x films were sandwiched between Co, we deduced 

0.4 0.6Nb Ti 20critd nm≈   and 
0.6 0.4Nb Ti 27critd nm≈   from fitting the Tc versus S thickness data 

according to the Radovic’s model in the Figs. 5.1 (b) and (c). Detailed analysis has 

been presented in Section 5.1. We varied the Co and Nb0.4Ti0.6 thickness while the 

numbers of bilayers were fixed at 6 to treat CPP resistivities as fitting parameters to 

all data. These parameters, as shown in Table 5.3, yielding the solid lines in Figure 

5.14(a), (b), and (c) provide a satisfactory prediction in comparison with experimental 

data.  
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Figure 5.14: Data for Co/Nb0.4Ti0.6 multilayers. (a) Unit area resistance, ART, plotted 
against bilayer number N of two sets of samples with Nb0.4Ti0.6 thickness fixed at 8 
nm and 80 nm, respectively. The dot lines are fits for two parameters. (b) ART versus 
Co thickness with Nb0.4Ti0.6 thickness fixed at 8 nm and N = 6. The dashed lines are 
linear least square fits to individual sets. The solid lines in (a) and (b) are global fits 
for four parameters to the data simultaneously. 
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Figure 5.14: (c) ART versus Nb0.4Ti0.6 thickness with Co thickness fixed at 20 nm and 
N = 6. The dashed lines are linear least square fits to individual sets. The dot-dashed 
lines used the bulk CIP resistivities as the slope and the two interface resistances from 
two- and four-parameter fits as upper and lower limits, respectively. The solid lines in 
(c) are global fits for four parameters to the data simultaneously. 
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Figure 5.15: Data for Co/Nb0.6Ti0.4 multilayers. (a) Unit area resistance, ART, plotted 
against bilayer number N of two sets of samples with Nb0.6Ti0.4 thickness fixed at 15 
nm and 80 nm, respectively. The dot lines are fits for two parameters. (b) ART versus 
Co thickness with Nb0.6Ti0.4 thickness fixed at 15 nm and N = 6. The solid lines in (a) 
and (b) are global fits for four parameters to the data simultaneously. 
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Figure 5.15: (c) ART versus Nb0.6Ti0.4 thickness with Co thickness fixed at 20 nm and 
N = 6. The dashed lines are linear least square fits to individual sets. The dot-dashed 
lines used the bulk CIP resistivities as the slope and the two interface resistances from 
two- and four-parameters fits as upper and lower limits, respectively. The solid lines 
in (c) are global fits for four parameters to the data simultaneously. 
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Table 5.3: The derived values and parameters of different fitting procedures for the 
Co/NbxTi1-x multilayers with x=1, 0.6, and 0.4. 

 

In order to compare the interface and the bulk properties in the multilayers, we 

examine in the following two quantities, which are found in the literature as useful 

indicators. The relative contributions to CPP resistance can be found in the ratio 

between the interface resistance RF/NM and the bulk resistance in F within a spin-flip 

length F
sfl  or mean free path l . For 3d metals, the mean free path l  is about 10 

times shorter than the spin-flip length F
sfl  at low temperature. [36, 37] To estimate the 

contribution of bulk resistance of the ferromagnet within its spin-active part, we 

choose F
sfl  instead of l . Thus, the quantity we are interested in is 

/ ( )/ F S NMF NM
F F
sf Co sf

ARR
R lρ

=  as described in the theoretical work of Ref. [38]. The interface 

resistance ARF/S(NM) from our four-parameter fits are used in the following analysis. 

The spin-diffusion length was reported in Ref. [37] for electrodeposited Co F
sfl = 59 ± 
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18 nm at 77 K. The spin-diffusion length is an extrinsic quantity. It depends on the 

elastic mean free path and the spin flip length. The spin diffusion length should be 

larger in our case because our Co film has smaller resistivity and the measuring 

temperature was 4.2 K. Thus, we can calculate the upper limits / 0.2F
F NM sfR R  ≈  for 

Nb/Co, / 0.2F
F NM sfR R  ≈  for Nb0.6Ti0.4/Co, and / 0.1F

F NM sfR R  ≈  for Nb0.4Ti0.6/Co, 

respectively. These ratios mean that the interface resistances are smaller than the 

relevant bulk resistances. The dominant contribution to the resistance comes from the 

bulk of Co, and with fair approximation to neglect the interface resistance with S in 

the normal state according to the theoretical work of Morten. et. al. [38] 

   However, the ARF/S(S) interface resistance is found to be larger than ARF/S(NM)  and 

would give / 0.8F
F S sfR R  > . The increase in the CPP total resistance with spin 

injection can be most dramatic if the NM region is taken to be a superconductor [39], 

as shown in Figure 5.13, 5.14, and 5.15. This means the interface resistance ARF/S(S) 

with the superconductor in the superconducting state has a greater contribution. 

Therefore, the interface resistance of the F/S system is larger than that of the F/NM 

system with the materials we chose. The spin accumulation is a candidate for causing 

an additional voltage drop across the interface due to reduced spin transport into S. 

When spin-polarized current are injected onto the F/S interface from F, spin 

accumulation is established in the range of the spin diffusion length in F. In S, the 

spin polarized quasiparticle wave function decays because there are no available 

states. There are reports on conductance by subgap residual density of states and by 

crossed Andreev reflection [40-42]. However, the longest length scale these 

phenomena can happen is the superconducting coherence length. Our S state samples 

have much larger thickness than ξS at the measuring temperature. In F, the spin 

accumulation decays because of spin-orbital scatterings. This causes an additional 
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voltage drop associated with the interface. In the Giant Magnetoresistance effect in 

F/NM multilayers, similar spin accumulation at the interface is responsible for the 

extra voltage drop. [25] It could be detected by a second F layer, which is parallel or 

antiparallel to the first one, placed within spin diffusion length of NM. In our F/S 

multilayers, the S layers were much larger than the penetration length and we did not 

observe the spin accumulation effect.  

Our quantitative results clearly show that RF/S is larger than RF/NM in Co/NbxTi1-x 

systems, where the S materials are in the ‘dirty limit’ ( Sl ξ< , see below). Electrons’ 

wave functions decay exponentially when penetrating from a metal into a 

superconductor if their excitation energy with respect to the Fermi level is below the 

superconducting gap. In our CPP setup, the drop in voltage across the sample is at 

most 10 nano-volt for a maximum constant current of 100 mA, much smaller than the 

Nb energy gap Δ = 1.76 kBTc ~ 1.4 meV. Current flows through the sample in response 

to a small applied voltage V less than Δ by means of the Andreev reflection. A spin-up 

electron from a normal metal is retro-reflected at the interface as a spin-down hole in 

order to form a Cooper pair in the superconductor. This property makes a distinction 

between superconducting and normal states. The classical work of Blonder, Tinkham, 

and Klapwijk (BTK) [43] have described the Andreev reflection and the elastic 

scattering process at the N/S interface of a nanocontact. It interpolates between a 

perfect transparent interface and an insulating barrier at the interface with a barrier 

strength z varying from zero to infinity. The Andreev current at F/S interface is 

partially suppressed by the exchange splitting of the conduction band in the 

ferromagnet, and this behavior has been demonstrated theoretically by de Jong and 

Beenakker [44].  
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5.6 Interface transparency 

 

To study the transport through NM/S [45] or F/S [46] bilayers, the Usadel’s 

equation is used in the dirty limit. By considering the coherence length ξF in F metal, 

which is determined by exchange energy Eex, the NM/S bilayer can be easily adapted 

to the F/S case. In the general situation, the exchange energy is much large than the 

superconducting gap, and this situation makes ξF virtually independent of temperature. 

From the current continuity requirement, the boundary conditions for the anomalous 

Green’s functions at interface are derived by Kuprianov and Lukichev. [47] The 

interface transparency parameter 

)/( *
)(/ FFNMSFB AR ξργ =   (5.11) 

is proportional to the interface resistance when superconductor is in the normal state. 

The boundary conditions are justified only when the exchange field in the F is much 

smaller than the Fermi energy. For strong F like Co in our case, appropriate boundary 

conditions for the Usadel’s equations need to be worked out. [48] Recently, the 

quasiclassical formalism, or the Eilenberger’s equations, has been employed for the 

Andreev conductance of NM/S [49] and F/S [50] interfaces. Vodopyanov and Tagirov 

have derived boundary conditions for strong F case. [50] The quantum mechanical 

transmission and reflection coefficients for the two spin channels were discussed in 

the normal and superconducting states. However, the interface transparency was not 

taken into account. 

Perfect transmission coefficient T=1 of the boundary conditions to the Usadel’s 

equations was assumed in the work of Radovic et al. [4] Lots of experimental works 

on the F/S junctions in the CIP geometry has applied the theory of Radoic et al. to the 

explanation of the data. However, more and more reports have pointed out that the 
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inconsistency between data and calculation could be traced back to the assumption of 

continuity of the wave functions at the F/S interface. Analyses and procedures for 

fitting experimental results have to take the finite transparency into account. For 

example, Aarts et al. were the first to observe the importance and presented 

experimental evidence of the intrinsically reduced interface transparency in the 

V/VxFe1-x multilayers. [51] They have explained the non-monotonic behavior in Tc as 

the competing effects of increasing attenuation depth ξF of the order parameter in the 

F material and the decreasing transparency of the F/S interface for the penetration of 

Cooper pairs. Lazar et al. have fitted their results by introducing interface 

transparency and pointed out its relation to the angular average of the transmission 

coefficient. [52] Kim et al. [53] have reported the F layer thickness dependence of the 

Tc behaviors in bilayer F/S structures, determined with CIP resistance measurements. 

Quantitative analyses were made form these literatures. For example, the interface 

resistance at the Ni/Nb and Cu0.4Ni0.6/Nb boundary estimated from the best fit γB 

values were 2AR ~ 2.4 fΩ m2 for both Ni and Cu0.4Ni0.6. The estimated values are 

comparable to our CPP measurements with S in the normal state. Experimentally, γB is 

usually treated as an adjustable parameter to describe and modify the behavior of 

critical temperature dependence on the thickness for S or F.  

We can estimate the interface transparency parameter γB without spin-flip 

scatterings directly from our results. The characteristic spatial scale is given by 

*

2
F

F
B C

D
K T

ξ
π

= , where / 3F F FD V l=  is the diffusion constant in F layer with the 

Fermi velocity FV  and the mean-free path Fl . Here, *
Fξ  is different from ex

Fξ  

which corresponds to the actual penetration depth of the Cooper-pairs in the F. While 

*
Fξ  is the Cooper-pairs penetration depth in normal metal without considering the 

exchange field. Both diffusion constant and ex
Fξ  of Co were derived to be 
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25 /FD cm s=   and 1.2
F

ex nmξ =  . [3] These quantities allow us to obtain the 

following parameters in our F/S CPP multilayers: characteristic spatial length 

* 8.1F nmξ ≈   and transparency parameter 1.6Bγ ≈  for Co/Nb, * 8.3F nmξ ≈   1.2Bγ ≈  

for Co/Nb0.4Ti0.6, and * 9.3F nmξ ≈   1.6Bγ ≈  for Co/Nb0.6Ti0.4 when S is in the 

normal state. These finite transparency parameters justify the boundary conditions we 

used to describe the TC dependence on S thicknesses with current parallel to plane by 

Radovic’s model. [3, 4] Numerical studies also showed insignificant discrepancy of 

the Tc(dS) behavior when using the boundary condition of high-quantum-mechanical 

transparency and of finite transparency introduced by Lazar et al. [39] and Tagirov 

[54] as Bγ  is small. For comparison,  0.7Bγ =  for Ni/Nb bilayers [53], and 

0.5Bγ =  and 1.15 in CoFe/Au and Au/Nb interface, respectively [55], for 

CoFe/Au/Nb trilayers, were derived by fitting TC(dF) curves. The given values for Bγ  

depend on the way by which *
Fξ  is extracted from the TC that may be somewhat 

different in multilayers or in single films. We know that the transmission coefficient 

for the Cooper pairs in the F/S proximity effect theory is close to the smaller one 

between the transparency coefficients T↓  for spin-down and T↑  for spin-up for 

quasiparticles to form Cooper pairs. [52, 56] But this is not the only mechanism, since 

from our study the transparency can be varied by adjusting x as a result of changing 

compositional disorder or the changing lattice parameter between the Co and NbxTi1-x 

interface. The spin-flip scattering is another mechanism which can lead to a large 

interface resistance. The interface spin-flips physically come from the following 

mechanisms: (1) inelastic electron scattering in the intermixed level between the 

magnetic and non-magnetic layers; (2) the direction of magnetization changed locally 

near the interface; and (3) spin-orbit scattering at the interface induced by the 

polarization in magnetic layer. The spin triplet symmetry can also be induced in a 



 130

superconductor surrounded by ferromagnets with non-collinear magnetizations and 

spin flip processes. [57, 58] Thus, the value of interface resistance between the 

ferromagnet and the superconductor both in normal and superconducting states can 

provide a lot of physical information in F/S heterostructures.  

 

5.7 Pippard model 

 

Table 5.3 shows that the Nb0.6Ti0.4 has the largest resistivity in the normal state, 

and the largest interface resistance in both superconducting and normal states. 

According to Pippard’s model [59] of partial quenching of Andreev reflection by 

impurities in the superconductor, the residual NM/S boundary resistance can be 

written as:  

))(
2

(
2 NN

ss

as
NN

s

a l
l

ll
l

lAR ρ
ρ

ρρ == ,  (5.12) 

where 2/2/ SFa vl πξ=Δ=  is the amplitude decay length in S for the electron 

evanescent mode from NM, Fv  is the Fermi velocity, Δ is the superconducting 

energy gap, ξS is the intrinsic coherence length, 00lρ  is the product of bulk 

resistivity 0ρ  and the mean free path 0l , and sslρ  is the product of sρ  and sl , 

when S is in the normal state just above Tc. Since 2/ nemvl F=ρ  is a constant for 

each material, the equation shows that ARNM/S should be proportional to ρsξS. [31] For 

the case of F/S interface, we can write the unit area conductance for two independent 

channels as: 
)()()(
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↓↑↓↑↓↑

=
ll

l
AR a

s

ρ
. The sum of the two spin channel shows that the 

same relation holds and the Pippard model can be extended to ferromagnetic materials. 

In a prior work [60], the data were compatible with linear dependence on the 
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resistivity up to at least 20 μΩ cm. Therefore, we want to test the linear dependence of 

AR on ρSlS predicted on Eq. (5.12). The Ginsburg-Landau (GL) coherence length at 

zero temperature can be written as cGL Tβπφξ ⋅= 2/)0( 0 , where dTdHc /2−=β  

close to Tc. We have deduced the ξNb ≈ 12 nm, 
0.4 0.6Nb Ti 4 nmξ ∼  , and 

0.6 0.4Nb Ti 4.5 nmξ ∼   from the temperature-dependent upper-critical field measurements 

which will be discussed in the next chapter. [61] In the table 5.4, we list all 

parameters which needed for Eq. (5.12). We find that the ARF/S derived from 

two-parameter fit is indeed proportional to ρsξ, which conformed very well to 

Pippard’s model. Thus, Eq. (5.12) held for ρS as large as 80 μΩ cm in our S samples. 

But the experimental values of AR in the linear regime were smaller than prediction 

by Eq. (5.12). Pippard proposed the effect of Fermi surface mismatching between the 

S and N metals of the sandwich as a partial explanation for the discrepancy. [59] The 

star symbol in Fig. 5.16 shows this linear relation between ARF/S and ρsξ. Good 

agreement between our results and the theory suggests that the scattering centers and 

the penetration depths of the electron evanescent wave into the superconductors give 

rise to the interface resistance.  

 

 

Table 5.4. The best derived values (two global fit) and parameters for the Co/Nb, 
Co/Nb40Ti60, and Co/Nb60Ti40 multilayers. 
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Although our two- and four-parameter fit result in different values of S resistivity, 

the ARF/S(S) values of our samples do not change much. The extracted interface 

resistances Co/NbxTi1-x of our multilayers when the S materials are in their normal 

states are much larger than normal metal interface resistances such as Co/Cu and 

Co/Ag interfaces that had values ~ 0.5 fΩ m2 or smaller. [20] Nb/Cu has been reported 

to have large interface resistance of ~ 1 fΩ m2. [30] Whether these large values are 

due to alloys at the interfaces or the crystalline mismatch (bcc for S to fcc or hcp for F) 

[62] remains to be investigated. However, the dependence of ARF/S(S) on ρsξS is 

inconsistent with a linear behavior using the values of ARF/S and ρs from 

four-parameter global fit, as shown in Fig. 5.16. The CPP resistivity of Nb derived 

from four-parameter global fit is more than twice the CIP bulk value. 

The CPP resistance in normal metal multilayers can be described by the 

theoretical work of Zhang and Levy. [63] For the CPP geometry, the current is 

constant throughout, while internal electric field varies from one layer to the next. In 

the CIP case, the voltage drop across the sample is the same but the current density in 

each layer is different. Zhang and Levy have shown that the CIP resistivity is an 

average of the conductivities // // ( )
L

L z dzρ σ=  ∫ while the CPP resistivity is the 

average of the resistivities ( )
L

z dz Lρ ρ⊥ ⊥= ∫ , where L is the total thickness of 

multilayers. [64] In other words, the total CPP resistance can be thought of as a series 

of different resistances of length d. And the average of CPP resistivity removes the 

length scale by self-averaging. When the mean free path ( l ) is much larger than the 

thickness (d), the ρ|| and the ρ⊥ are the same because the local conductivity is 

independent of position z. For large /d l  they are quite different. Notice that when 

the scattering from the interface is much weaker than that from the bulk, ρ⊥ is always 

greater than ρ||, because the resistivity is dominated by the high conductivities layers 
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for the in-plane geometry. In our case, the thicknesses of normal Nb, Nb0.6Ti0.4, and 

Nb0.4Ti0.6 are between these two limit situations. The ρ⊥ derived from the CPP 

measurements is larger than the ρ|| with parallel current.  

 

Figure 5.16: Unit area resistance, ARF/S(S), plotted against ρSξS for alloy NbxTi1-x 
superconductor with x=1, 0.6, and 0.4. The solid line is linear least squares fit to the 
results of two-parameter fits. 

 

The apparently large CPP resistivities for Nb and NbTi alloys derived in the 

four-parameter global fits could be explained by that the interface resistance ARF/S(NM) 

is not constant when the superconductor is in normal state. When layer thicknesses are 

systematically changed in the narrow window thinner than Nb
critd , thickness fluctuation 

might increase interface roughness in the thicker samples. By assuming a series 

resistance model, we attribute part of the extra interface resistance to the CPP 

resistivity. To verify this assumption, we plot the dot-dashed lines in Figs.5.13(c), 
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4nm, Nb0.4Ti0.6 and Nb0.6Ti0.4 >2 nm), while thinner samples can be fitted by small 

ARF/S(NM). Thus, thickness fluctuation could be a possible explanation for the 

resistivities discrepancy, while the other NbTi alloys have less deviation. We can 

modify the global fit by assuming the ARF/S(NM) is linearly proportional to Nb (NbTi) 

thickness in the normal state and write ARF/S(NM) = a + b dS. The global fit becomes a 

five-parameter fit. But b and ρS become strongly dependent and cannot be determined 

independently. The small thickness range for Nb and NbTi being normal metals 

prevent us from more detailed studies of the thickness fluctuation. An appropriate 

model or more experimental data are needed. Another possible reason for the smaller 

AR values for thinner Nb (NbTi) samples is the presence of pin-holes. The lack of 

interfaces through the pin-holes makes the total resistance smaller. Even with the 

complication for ρS and ARF/S(NM), the influence on the extracted values of ARF/S(S) is 

small, as shown in Table 5.3.  
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Chapter 6  

Results and Discussion-Conventional 

Ferromagnet:  

Fe/Nb and Ni/Nb System as Compared with 

Co/Nb System 
 

 6.1. Fe/Nb system 

 

There are many controversial experimental results, in Fe/Nb system. For 

example, the experimental results from Mühge et al. [1] found a nonmonotonous 

dependence of superconducting transition temperature TC on Fe layer thickness (dFe). 

Another research reported by Verbanck et al. [2] has demonstrated a sudden drop of 

TC when dFe is increased up to 1.5 nm for epitaxial Fe/Nb multilayer systems. 

However, in studies on coexistence of S and F, a thin F layer, due to the reduction of 

the exchange energy, shows nonmagnetic behavior. [1, 2] In order to learn the 

proximity effect between S and F in the decoupled regime, we study the critical 

temperature TC and upper critical field Hc2(T) with a constant dFe = 20 nm, which is 

much large than the coupled regime of 1.2 nm [2] and a variety of Nb thicknesses. 

The dependence of TC on S thickness and the temperature dependence of Hc2(T) can 

be well described by the theory of Radović et al. [3] and Ginzburg-Landau theory, 

respectively. We also compare the Fe/Nb with Co/Nb system of Chapter 5. [4, 5]  
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6.1.1 The behavior of critical temperature for Fe/Nb trilayers 

 

In this section, we report a series of samples as follows: Fe/Nb/Fe trilayers and 6 

Fe/Nb repetitions multilayers denoted as (Fe/Nb)6/Fe. The thickness of the Fe layer 

for both systems was kept 20 nm while that of S layers varied. As shown in Figure 6.1, 

the good quality and smooth interface could be verified by TEM image. Electrical 

resistance, TC, and Hc2 were measured by four-point measurement. 

 

Figure 6.1: TEM image of a [Fe(20 nm)/Nb(50 nm)]6/Fe(20 nm) multilayer sample. 

 

Simple planar multilayers were also made for measuring temperature and 

magnetic field dependence of resistivity. X-ray diffraction showed crystalline 

structure of bcc (110) for Nb and Fe. Higher-order satellite peaks were observed to 

confirm a good coherence in Fe/Nb multilayer system, as shown in Fig. 6.2. 
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Figure 6.2: High-angle x-ray diffraction of [Fe(0.2 nm)/Nb(0.3 nm)]60 multilayer. 
Satellite peaks around Nb (110) are indicated by arrows. 

 

Figure 6.3 shows the TC as a function of the Nb thickness for the trilayers. With 

decreasing dNb, Tc exhibits a continuous reduction down to a critical thickness crit

SCd , 

below which superconductivity vanishes. We also using Radović’s model, a 

microscopic theoretical model, to interpret the experimental results for F/S trilayers 

from Eq. (4.12). [3] The diffusion constant FD  of Fe can be estimated by the 

Pippard relation [6] with the low temperature resistivity 6.4 cmρ μ=  Ω  for dFe = 300 

nm and the coefficient of the electronic specific heat 3 24.98 10 J K moleγ −= ×  [7]. 

The characteristic distance in Fe is derived to Fe
FMξ  = 1.2 nm from the diffusion 

coefficient and splitting energy I0 = 1 eV. Fe
FMξ , for Fe is slightly smaller than Co

FMξ  = 

1.3 nm for Co film (Chapter 5). 

The solid line in Figure 6.3 was obtained by fitting Eq. (4.12) to the data with 
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parameters of 10ε =  and S 12 nmξ =  . By extrapolating the fit to TC=0, we see that 

the critical thickness for superconductivity is about 34 nmcrit
Nbd = . The critical 

thickness is similar to the 30 nmcrit
Nbd =  for Co/Nb system [4], consistent with 

stronger pair breaking effect in Fe. 

 

 

Figure 6.3: Dependence of the superconducting transition temperature on the 
thickness of the Nb layer, the solid line is the best fit with Eg. (4.12). 
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6.1.2 The behavior of upper critical field for Fe/Nb multilayers 

 

We also performed measurements of anisotropic uppercritical field 2||cH  and 

2cH ⊥  for Fe/Nb multilayers, where 2||cH and 2cH ⊥  denote the field parallel and 

perpendicular to layer planes, respectively. Samples with [Fe(20 nm)/Nb(dS)]6/Fe(20 

nm) and with dS ranging from 500 nm to 20 nm, were systematically measured. 

Figure 6.4 shows 2cH  versus reduced temperature t for dNb =100, 120 and 140 nm. 

The solid lines correspond to Ginzburg-Landau (G-L) relation. 

By using the G-L formulas for anisotropic superconductors, we can determine 

the dimensionality. The temperature dependence of the upper critical field can be 

expressed as follows: 

0 0
2|| 2 2

|| ||

1 1( ) , ( ) ,
2 ( ) ( ) 2 ( )c cH T H T

T T T
φ φ
π ξ ξ π ξ⊥

⊥

=   =   (6.1) 

where ||ξ  and ξ⊥  are the temperature dependent coherence lengths, and 0φ  is the 

flux quantum. Near TC, || ( ) and ( )ξ ξ⊥Τ   Τ  have 1 2(1 )t −− temperature dependence. For 

a 3D superconductor, the relation between Hc2 and reduce temperature t is given by 

2|| 2( ) (1 ) and ( ) (1 ).c cH T t H T t⊥∝ −   ∝ −  However, in the case of two dimensional (2D) 

superconductivity, the perpendicular coherence ξ⊥  is limited by the layer thickness 

and becomes constant near TC. In this case, the temperature dependence of Hc2 is 

expressed as 1 2
2|| ( ) (1 ) andcH T t∝ −  2 ( ) (1 )cH T t⊥ ∝ − . The superconducting 

dimensionality can be investigated by the parallel critical field measurement 

according to the nonlinear behavior to linear temperature dependence. 

In the Hc2 measurement, the 2cH  is sensitive to the angle between applied 
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magnetic field and the film plane due to a cusp shape around 0 degree in the 2D 

sample, that behavior can be described by Tinkham’s formula [8] 

2

2 2

2 2||

( )sin ( )cos 1c c

c c

H H
H H
θ θ θ θ

⊥

⎡ ⎤
+ =⎢ ⎥

⎢ ⎥⎣ ⎦
,  (6.2) 

Therefore, the best resolution of the angle is o0.1  has used to carefully measure in 

order to reduce the deviation. Hc2 was defined as the applied field at 90 % point of the 

residual resistance in the normal state. The applied field was swept at a constant 

temperature. It can be clearly seen the linear behavior of 2cH ⊥  for all thickness of 

Nb. Comparing Figure 6.4(a) with Figure 6.4(c), we find that the dependence of 

2||cH on temperature changed gradually from 2D to 3D, i.e., from a square-root 

dependence to a linear dependence. The extrapolation in Figure 6.4 yields a coherence 

length GL (0) 10 nmξ =  from the function
0

(0) 2
GL c

Tξ φ πβ= with 2cdH dTβ = − . The 

superconducting coherence length scξ  is related to GL coherence length GLξ  via 

1 2
GL sc(T) (1 t) 2ξ πξ −= − . This gives S 7 nmξ ≈   which is the same with the value 

estimated by 2 3.4sc s B BCSD k T lξ π ξ= =  with the electron mean free path l ; 

the values were obtained from the product 6 23.75 10l cmρ μ−= × Ω  for bulk Nb. [5]  
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Figure 6.4: Hc2 versus reduced temperature t for [Fe (20nm)/Nb (dNb)]6/Fe (20nm) 
multilyers with dNb =100 (a), 120 (b) and 140 nm (c).  
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6.1.3 Fe/Nb interface resistance by CPP measurement 
 

In this section, we investigated the electron transport properties of interface 

between ferromagnet and superconductor with current flowing perpendicular to plan 

(CPP) at 4.2 K in Fe/Nb multilayers. When the bulk scattering is negligible in a 

ballistic contact, the transport properties are directly connected to the probabilities of 

scattering at the interface. In a ferromagnet with different numbers of spin-up and 

spin-down conduction channels, only a fraction of the majority channels can be 

Andreev reflected. However, experimental studies of F/S contacts in the diffusive 

limit are more intriguing and are more complex in unconventional proximity effects. 

[9] The resistance can either decrease or increase when cooling from above the critical 

temperature of superconductor. [10-12] Transport properties are governed by interplay 

between spin accumulation close to the interface and the Andreev reflection at the 

interface. 

Each sample has N Fe/Nb repeated bilayers plus one layer of Fe, indicated as 

(Fe/Nb)N/Fe. The superconducting energy gap ∆ of Nb is smaller than the energy of 

the exchange fields in Fe by several orders of magnitude. Thus, the conventional 

proximity effect in ferromagnetic metals is negligible. All changes induced by the 

contact to a superconductor depended on the properties of the interface itself.  

From the results of Section 6.1.1, the sputtered bulk Nb has a superconducting 

transition temperature of TC = 9.2 K. When Nb films are sandwiched between fixed 

Fe thickness, TC decreases with decreasing Nb thickness. We have deduced the 

Nb 34critd nm≈   from the analysis of our experimental data within the Radović’s model 

under the single mode approximation.[13, 14] This means when Nb thickness is 

thinner than Nb 34critd nm≈  , Nb is always normal, otherwise the Nb could become 
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superconductor in Fe/Nb multilayers based on the phase diagram of Fig. 6.3. 

In the present CPP experiment, two series of samples were made with Nb 

thickness fixed at 15 and 80 nm separately, Fe thickness fixed at 20nm, and increasing 

numbers of bilayers. Plots of the product of the sample area A and total resistance RT 

against bilayer number N are given in Fig. 6.5. The unit area CPP resistance ART is 

linearly proportional to the number of bilayers for both Nb thicknesses. The dash lines 

in Fig. 6.5 are least–squares fit to each set of data. Shukla et al.[15] calculated the 

interlayer exchange coupling between Fe layers when separated by Nb space layers, 

using a self-consistent full-potential linear augmented plane-wave (FLAPW) method. 

They observed an oscillating exchange coupling as a function of Nb spacer thickness 

with a period of 0.6 nm. However, we found that the Fe layer was not coupled across 

Nb in the Fe/Nb multilayer thin film with Nb thickness varied from 0.5 nm to 4 nm. 

[16] Since there is no antiferromagnetic coupling of Fe through Nb film, a one-band 

model could be applied. Therefore, the linear behavior of AR against N can be 

described as  

Fe/Nb( ) Fe Fe Fe Fe Fe/Nb( )2 ( 2 (6.3)T S SAR AR t N t ARρ ρ= + + + ) ,       

for superconducting Nb and 

Fe/Nb( ) Fe Fe Fe Fe Nb Nb Fe/Nb( )2 ( 2 ) (6.4)T S NMAR AR t N t t ARρ ρ ρ= + + + +  ,       

for normal Nb. Here t is the thickness, ρ  is the resistivity, and RFe/Nb(NM),(S) is the 

interface resistance between Fe and Nb layers for normal and superconducting states, 

respectively. According to individual fit, the equation is easy to be simplified as 

1 2TAR C C N= +  for normal Nb and 1( 1)TAR N C= +  for superconducting Nb, with 

1 Fe/Nb( ) Fe Fe2 SC AR tρ= +   and 2 Fe/Nb( ) Fe Fe Nb Nb2 NMC AR t tρ ρ= + +   . Similar analysis on 

Co/Nb multilayers has been presented in Chapter 3. [17] There is mutual uncertainty 

between C1 and C2. We can perform a global fit to all data simultaneously since the 
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two sets of data share the same parameters. As shown in Fig. 6.5, the straight line 

gives 2
1 7.1  1.3 C f m= ± Ω  and 2

2 5.2  0.6 C f m= ± Ω . The specific unit area 

resistance of one pair of interfaces can be derived to be 

2
/ ( )2 5.9 0.3Fe Nb SAR f m= ± Ω  and 2

/ ( )2 2.8 0.4Fe Nb NMAR f m= ± Ω  by putting bulk 

resistivities 6.2 cmμ Ω  and cmμ8 Ω  for 500 nm thick Fe and Nb at 10 K into Eq. 

(6.6). and Eq. (6.7). From the Pippard’s model of partial quenching of Andreev 

reflection by impurities in the superconductor, the residual (S/NM) boundary 

resistance can be written as 2 s aAR lρ∝ , where ( )
2a Sl π ξ=  is the extinction length 

in S of the electron evanescent wave from NM, Sξ  is the intrinsic coherence length 

in S, and sρ  is the bulk resistivity when S is in the normal state just above Tc. [18, 19]  

The value  2
Co / Nb( )2 6.3 0.9SAR f m= ± Ω  for Co/Nb multilayer reported in Chapter 

5 [17] is close to 2
Fe/Nb( )2 5.9 0.3SAR f m= ± Ω  for Fe/Nb multilayer. This is 

expected from Pippard’s model due to that AR is only proportional to the coherence 

length and resistivity in superconductor film.  

Instead of using bulk resistivity, we also varied the Fe and Nb thickness while 

the numbers of bilayers were fixed at 6 and 12, respectively, to treat the CPP 

resistivities as fitting parameters. The CPP resistance is linearly proportional to the 

thickness for both Fe layer and Nb layer. Using one-band model, the linear behavior 

of AR against thickness can be written as    

Fe/Nb( ) Fe/Nb( ) Nb Nb Fe Fe2 12 6 7 (6.5)T S NMAR AR AR t dρ ρ= + + +  ,                    

for varying Fe thickness (dFe) with Nb thickness fixed at 15 nm, and  

Fe/Nb( ) Fe/Nb( ) Fe Fe Nb Nb2 24 13 (6.6)T S NMAR AR AR t dρ ρ= + +  +12 ,                     

for varying Nb thickness (dNb) with Fe thickness fixed at 20 nm. As shown in Figure 
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6.6(a) and (b), individual linear least-square fits of AR versus dFe and dNb samples 

yield a slope Feρ  of 6.2 cmμ Ω and Nbρ of cmμ12 Ω , respectively. However, all 

the above equations share the same parameters. Therefore, we can perform a global fit 

to all data simultaneously to reduce the deviation. We can rewrite  

Eq. (6.3) as 1 2 3 3( 1)T Fe NbAR g Ng N t g Nt g= + + +  + ,  

Eq. (6.4) as 1 3( 1) ( 1)T FeAR N g N t g= + + + ,  

Eq. (6.5) as 1 2 3 36 7T Fe NbAR g g d g t g= + +  + 6 ,  

and 

Eq (6.6) as 1 2 3 312 13T Fe NbAR g g t g d g= + +  + 6 .  

Here g1 is the Fe/Nb( )2 SAR , g2 is the Fe/Nb( )2 NMAR , g3 is the Feρ , and g4 is the Nbρ . The 

results in Table 6.1 are two-parameter and four-parameter best fit values by using 

global fit. From the studies of transport properties of normal metal-superconductor 

(NM/S) structures, it is established that the difference between the superconducting 

and normal state conductance / /( )NM S NM NG G Gδ = −  is negative for large NM/S 

interface resistance (RNM/S) and changes sign with decreasing RNM/S. [20] In Table 6.1, 

we can find the Fe/Nb( )2 SAR  is larger than Fe/Nb( )2 NMAR . The spin accumulation 

causes an additional voltage drop across the interface due to reduced spin transport 

into S. Therefore, the interface resistance of the F/S system should be larger than that 

of the F/NM system. We also observed that the CPP resistivity of Nb is bigger than 

bulk resistivity. This probably shows that the conduction electron scattering at grain 

boundaries is the main scattering process in our sputtered samples.  
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Figure 6.5: Specific resistance, ART, versus bilayer number N of two sets of samples 
with Nb thicknesses fixed at 15 nm and 80 nm, respectively. The dashed lines are 
linear least square fits to individual sets. The solid lines are global fit for two 
parameters and dash dot lines are global fit for four parameters to two sets of data 
simultaneously. 
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Figure 6.6: (a) Specific resistance, ART, versus Fe thickness with Nb thickness fixed 
at 15 nm and N=6. (b) Specific resistance, ART, versus Nb thickness with Fe thickness 
fixed at 20 nm and N=12. The dashed lines are linear least square fits to individual 
sets. The solid lines are global fit for four parameters to the data simultaneously. 
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Table 6.1: The best derived values and parameters for the Fe/Nb multilayers 
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6.2 Ni/Nb system 

 

Rich interesting phenomena have been found in hybrids of superconductors (S) 

and ferromagnets (F) due to the proximity effect between competing orders in the 

interface. Many studies have been devoted to investigating both fundamental and 

applicative aspects of this field. [21] Recently, the unit area interface resistances, AR 

(area A times resistance R), for both lattice-matched and lattice-mismatched pairs 

have become feasible to be calculated with no free parameters. [22] We study the 

proximity effect between fcc Ni and bcc Nb with mismatched lattice constant about 

6.7 %. Current perpendicular to plan (CPP) measurement is used to determine 

interface resistance between Ni and Nb, in both superconducting and normal states. 

The quantitative values of ARNi/Nb obtained from the current work allow us to 

determine the interface transparency of the Ni layer without introducing any arbitrary 

fitting parameter.  

 

6.2.1 The behavior of critical temperature for Ni/Nb trilayers 

 

The details of sample preparation, sample geometry, and measuring techniques 

are reported in Chapter 3. [23] Figure 6.7 shows the TC for Ni/Nb/Ni trilayers as a 

function of Nb thickness. The resistivities of bulk Nb and Ni, thicker than 500 nm, 

were 8 and 4 μΩ cm at 10 K. [24] However, the low-temperature resistivity of the 

film drastically increased with reducing thickness, as shown in the inset of Fig. 6.7. 

The thickness dependence of pure Ni resistivity could be described by the 

Fuchs-Sondheimer relation 3( ) 1
8B

ld
d

ρ ρ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, where ρB is the bulk resistivity. [25] 

The fit yields ρB = 4 μΩ cm and the mean free path l  about 180 nm. The TC for Ni 
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(50 nm)/Nb(dS)/ Ni (50 nm) trilayers as a function of Nb layer thickness is shown in 

Fig. 6.7. The monotonically rapid reduction in TC down to a critical thickness was 

fitted by Radovic’s model. [26]  

The spin splitting energy 0 100 meVI ≈  for Ni [27], 

2
F J K moleγ −3≈ 7.02×10  [28], and 

0

4 4.1nmF
F

D
I

ξ = ≈  are input parameters to 

model TC(dF). Due to the fact that Ni has smaller splitting energy, 4.1nmFξ ≈  is 

longer than the values ξFe ∼ 1.2 nm and ξCo ∼ 1.3 nm obtained in Fe/Nb/Fe discussed 

in Section 6.1.1[29] and Co/Nb/Co [30] trilayer discussed in Chapter 5, respectively. 

A good fit for 19 nmSξ ≈  and 0.1γ  ≈ is shown as a solid line in Fig. 6.7. Moreover, it 

gives a critical thickness dcrit(Ni) = 45 nm by extrapolating the fit to TC=0. 

Figure 6.7: The superconducting critical temperatures for Ni/Nb/Ni trilayers as a 
function of dNb. The solid line is obtained from the theoretical fitting with parameters 
of ξS = 19 nm, and γ = 0.1. Inset: thickness dependence of the low temperature 
resistivity as a function of the single Ni layer fitted by the Fuchs-Sondheimer relation. 
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6.2.2 The behavior of upper critical field for Ni/Nb multilayers 

 

Another parameter to investigate the coupling phenomenon is the upper critical 

field Hc2, which gives the information on the coherence length and the dimensionality 

since Hc2 reveals the role of the pair-breaking effect. According to the 

Ginzburg-Landau (G-L) theory, the perpendicular critical magnetic field for a 

superconducting film with thickness dS shows linear temperature dependence, 

0
2 2

//

(1 ).
2 (0)c

c

TH
T

φ
πξ⊥ = −    (6.7) 

Here 0φ  is the flux quantum, and ξ//(0) (ξ⊥(0)) is the zero temperature value of the 

G-L coherence length parallel (perpendicular) to the sample plane. The behavior of 

the parallel critical field Hc2// (T) can be described by a similar expression where ξ//
2 is 

replaced by ξ//(0)*ξ⊥(0). In the 3-dimensional (3D) regime, the temperature 

dependence of Hc2// (T) is described by 0
2//

//

(1 ),
2 (0) (0)c

c

TH
T

φ
πξ ξ⊥

 = −   while in the 

2-dimensional (2D) regime, the perpendicular coherence length ξ⊥ is larger than the 

thickness of the films, and Hc2// (T) is described by the Tinkham expression [31] 

0
2//

//

12 (1 )
2 (0)c

S c

TH
d T

φ
πξ

 = −  .   (6.8)    

Samples with (Ni (50nm)/Nb(dS))6/Ni (50nm), with dS ranging from 20 to 600 

nm, were measured. Figure 6.8 shows the temperature dependence of the Hc2// and 

Hc2⊥ for dNb=60, 80, 100, and 130 nm. Data for the dNb = 60, and 80 are shifted to the 

left by T/Tc = 0.1 and 0.2; dNb =130 nm are shifted to the right by T/Tc = 0.1 in the 

x-axis for clarity. The solid lines are theoretical curves based on the G-L relation. The 

Hc2⊥ follows a linear behavior for all thicknesses of Nb. It can be clearly seen that a 

gradual transition occurs from 2D to 3D behaviors as dS increases from 100 nm to 130 

nm, i.e., from a square-root behavior to a linear relation for the Hc2//. The 
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extrapolation yields a superconductor coherence length ξGL(0) =12 nm from the 

function 
0

(0) 2
GL c

Tξ φ πβ= , where β = -dHc2/dT.  

For comparison with other ferromagnets, the dimension crossover is 120 ~ 140 

nm for Nb/Fe [29] and 145 ~ 185 nm for Nb/Co [30]. These values are listed in Table 

6.2, confirming that the small crossover thickness is related to the relative weak 

pair-breaking effect since I0(Co) > I0(Fe) > I0(Ni). The influence of the pair breaking 

effect is also observed from different values of critical thickness and related to 

interfacial transparency in the behavior of TC dependence on S thickness. Detail 

discussion about critical thickness and interfacial transparency will describe in 

Chapter 7.  

 

 

Figure 6.8: Temperature dependence of the parallel (open circles, triangles, squares, 
and stars) and perpendicular (filled stars) upper critical fields for Ni/Nb multilayers 
with dNb = 60, 80, 100, and 130 nm. Data for the dNb = 60, and 80 are shifted to the 
left by T/TC = 0.1 and 0.2; dNb =130 nm are shifted to the right by T/TC = 0.1 for 
clarity. The lines are least-square fit to describe the 3D to 2D crossover using the 
Gizburg-Landau relation.  
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 Co Fe Ni 

Dimension 
crossover 

145~185 nm 120~140 nm 100~130 nm 

 

Table 6.2: The dimension crossover thickness for Co/Nb, Fe/Nb and Ni/Nb. 

 

6.2.3 Ni/Nb Interface resistance by CPP measurement 
 

For CPP measurement, the sample is sandwiched between two circular Nb 

electrodes in order for the current uniformity to flow through the whole sample. In the 

insert of Figure 6.9 is the top view of geometry of CPP configuration where the top 

and bottom Nb strips are used for the four-point measurement. Each Nb strip and 

circular electrode is 200 nm thick in order to superconduct at the measuring 

temperature of 4.2 K. The total thickness and sample area A were verified with a 

stylus surface profiler.  

According to the phase diagram of Fig. 6.7, when Nb thickness was thinner than 

dcrit, we had F/NM system; when Nb was thicker, we had F/S systems. In the present 

study, four series of CPP samples were made: 

1. Ni(58 nm)/[Nb(108 nm)/Ni(58 nm)]N with the numbers of bilayers varied for 

superconducting state Nb; 

2. Ni(78 nm)/[Nb(12 nm)/Ni(78 nm)]N with the numbers of bilayers varied for 

nomal state Nb; 

3. Ni(dNi)/[Nb(27 nm)/Ni(dNi)]7 with 7 bilayers, and various Ni thickness;  

4. Ni(78 nm)/[Nb(dNb)/Ni(78 nm)]7 with 7 bilayers, and various Nb thickness. 

Figure 6.9 presents the total resistance ART, the unit area resistance on multilayer, 
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versus bilayer number, N, for the first two series of samples. The ART is linearly 

proportional to the number of bilayers for Nb both in the normal and superconducting 

state. Since there is no exchange coupling between Ni through Nb film, a one-band 

model would be sufficient to describe the linear behavior of ART versus N as follows  

/ ( ) / ( )2 N( 2 )T F S S F F F F S S F S NMAR AR t t t ARρ ρ ρ= + + + +  (6.9) 

for normal Nb and 

/ ( ) / ( )2 N( 2 )T F S S F F F F F S SAR AR t t ARρ ρ= + + +  (6.10) 

for superconducting Nb. Here t’s are the thicknesses, and ARF/S(NM),(S) ’s are the 

interface resistances between  Ni and Nb layers for the normal and the 

superconducting state, respectively.  From the series 3 and 4, the CPP resistivities 

can be determined by measuring the CPP resistance with varying layer thicknesses of 

Nb and Ni. Figure 6.10 and 6.11 show the ART  behavior as a function of Ni and Nb 

thickness, respectively, for dNb is smaller than dcrit(Ni) and 7 bilayers. Following 

Ohm’s law, the total resistance is proportional to the thickness. When the Nb and Ni 

resistivities are independent of the layer thickness, the one-band model gives the 

linear behavior of ART versus thickness as  

/ ( ) / ( )2 14 7 8 ,T F S S F S NM S S F FAR AR AR t dρ ρ= + + +   (6.11) 

for varying Ni thickness with Nb thickness fixed at 27 nm and  

/ ( ) / ( )2 14 7 8 ,T F S S F S NM S S F FAR AR AR d tρ ρ= + + +   (6.12) 

for varying Nb thickness with Ni thickness fixed at 78 nm. The individual linear least 

square fits of ART versus dNi and dNb yield slopes ρNi of 4.5 and ρNb of 10 μΩ cm and 

are plotted as the dashed lines in Figure 6.10 and 6.11, respectively. Even though each 

series of samples could be individually fitted with the model, there is mutual 

uncertainty between different sets, as discussed earlier. Since the four sets of data 
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share the same parameters, we treat all resistivities and the interface resistance as 

fitting parameters to perform four-parameter global fit in order to reduce the 

discrepancy of interface resistance. The solid lines in Figures 6.9 to 6.11 are the best 

global fits for four parameters to all data and give ρNi=4.2±0.3 μΩ cm, ρNb= 11±1.0 

μΩ cm, 2ARNi/Nb(NM)=1.5±0.4 fΩ m2, and 2ARNi/Nb(S)= 4.2±0.2 fΩ m2. The latter value 

is within experimental error of 4.8±0.6 fΩ m2 that reported by Fierz et al. [32] 

However, only recently the quality of interface has been added to model the 

interaction between the S and F layers. An important parameter of interface 

transparency, γb, has been used to describe the role of the boundary condition among 

different layers depending on interface imperfections, Fermi velocities, and band 

structure mismatch. [33] Here γb is defined as the ratio of interface resistance to the 

product of resistivity and the Cooper pair penetration depth in the F. It is usually 

treated as an adjustable parameter due to difficulties in direct measurements. [34] The 

transparency parameter was then calculated with γb = (ARF/S(NM)/ρFξ*
F) without 

spin-flip scattering, where ARF/S(NM) is the unit area resistance at normal state, and ρF 

is the resistivity of F. *

2
F

F
B C

D
K T

ξ
π

=  is the penetration length which corresponds to 

the actual penetration depth of the Cooper-pairs in the F without considering the 

exchange field. We deduced the γb = 2.0 for Ni/Nb as S is in the normal state. 

When Nb is in the superconducting state, the ARNi/Nb(S) is larger than ARNi/Nb(NM) 

in the Ni/Nb system. A spin-up electron injected from a normal metal is retroreflected 

at the interface as a spin-down hole in order to form a Cooper pair in the S, which is 

described as the Andreev reflection. [35] If the normal metal is replaced by F, the 

Andreev current at S/F interface is partially suppressed by the exchange splitting of 

the conduction band in the ferromagnet. Moreover, the spin accumulation in the 

boundary of F leads to an additional voltage drop across the interface due to reduced 
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spin transport into S. This accounts for the finding that the interface resistance of 

Ni/Nb is larger in superconducting state than in the normal state. 

 

 

Figure 6.9: Unit area resistance, ART, versus bilayer number N measured at 4.2 K. 
The two sets of samples have Nb thickness fixed at 12 nm and 108 nm, respectively. 
The solid lines are global fits for four parameters to the data. Inset: the top view 
geometry of the current perpendicular to plane (CPP) configuration. Sample is 
sandwiched between the two circular Nb electrodes. The top and bottom Nb strips are 
used for the four-point measurement. 
 
 

4 6 8 10 12
0

20

40

60

80
Ι-

 

 Nb superconducting state
 Nb normal state
 four parameter global fit

 

A
R

T(
fΩ

m
2 )

Number of bilayers(N)

Ι+

V+

V-



 161

Figure 6.10: Unit area resistance, ART, versus Ni thickness with Nb thickness fixed at 
27 nm and N = 7 measured at 4.2 K. The dashed-line is linear least-square fit. The 
solid line is global fit for four parameters to the data. 
 

Figure 6.11: Unit area resistance, ART, versus Nb thickness with Ni thickness fixed at 
78 nm and N = 7 measured at 4.2 K. The dashed-line is linear least-square fit. The 
solid line is global fit for four parameters to the data. 
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6.3 Co/Nb, Fe/Nb, and Ni/Nb interface resistance calculated 

by First-Principle calculation 

 

For comparison of interface resistances amoung different ferromagntes, Table 6.3 

shows the interface resistance of Fe/Nb, Co/Nb and Ni/Nb from experimental values 

in the normal and superconducting state and list the lattice mismatch and lattice 

structure between S and F. When S is in the normal state, the smallest ARF/S(NM) 

surprisingly comes from different lattice structures, bcc of Nb and fcc of Ni. We 

believe that this small ARF/S(NM) should result from the less mismatch in lattice 

constant, even though the difference of interface resistance between Co, Ni and Fe is 

small.. A similar result has also been observed on /2 0.9Pd CuAR ≈  with 8% lattice 

mismatch in contrast to /2 0.7Pd AgAR ≈ and /2 0.5Pd AuAR ≈  with 5 % lattice 

mismatch. [36] Furthermore, the results of previous reports on the ab initio 

calculation imply that the structure distortion and interface disorder are important for 

lattice mismatch systems. [37]  

 

 
2ARS 

(fΩ m2) 
2ARNM 
(fΩ m2)

Lattice 
structure 

Lattice
mismatch

Calculation 
(fΩ m2) 

Nb/Fe 6.0±0.4 2.0±0.9 bcc / bcc ~13.0 % 2.20 

Nb/Co 6.7±0.3 1.9±0.7 bcc/ bcc(hcp) ~6 % 2.25(A), 1.58(B)

Nb/Ni 4.2±0.2 1.5±0.4 bcc / fcc ~1 % 2.11 

 

Table 6.3: The interface resistance in superconducting and normal state for the Fe/Nb, 
Co/Nb, , and Ni/Nb. 

 

Dr. K. Xia and W. Shuai have studied the Nb(110)/Fe(110), Nb(110)/Ni(111), 
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and Nb(110)/Co(111) interface resistance by ab initio calculation. In the 

Nb(110)/Fe(110) system, they construct a scattering system using 6x6 supercell Nb 

bulk and 7x7 Fe bulk for matching the interface. The lattice constants are 3.3 (Nb) 

and 2.83 (Fe) angstrom. Here they use the bulk potential for calculating the interface 

resistance. The majority interface resistance is 2.25 fΩ m2 and the minority is 2.12 fΩ 

m2. In the Nb(110)/Co(111) system, here they build the system referring Ref. [38] and 

construct a unit cell. They deform BCC(110) and FCC(111) structure for matching 

BCC(110) and FCC(111) interface without considering the relaxation. The potentials 

are based on the bulk calculation. The lattice constants are 3.3 (Nb) and 3.5 (Co) 

angstrom. They use two types deformation for the Co/Nb system. One is the best for 

Nb atom the type A and the other one is for Co atom the typer B, as shown Table 6.4. 

 

Type 
Nb/Co 

(Majority) interface 
resistance fΩ m2 

(Minority) interface 
resistance fΩ m2 

A 2.05 2.25 
B 2.5 1.58 

 

Table 6.4: The interface resistance of Nb/Co by ab initio calculation. 

 

For the Nb(110)/Ni(111) system, the configuration is similar to Nb(110)/Co(111). 

The lattice constants are 3.3 (Nb) and 3.5 (Ni) angstrom for matching interface. Here 

They only consider one configuration because the real Ni bulk lattice constant is 3.52 

angstrom. The mismatch is less than 1%. The majority of the interface resistance is 

2.2 fΩ m2 and the minority is 2.0 fΩ m2. The results are listed in Table 6.3. These 

calculation values agree well with those by CPP measurements on sputtered 

polycrystalline multilayers. We conclude that the influence of the lattice mismatch is 

found to be more sensitive than the influence of the lattice structure on the interface 
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resistance when S in the normal state.  

 

6.4 Transport polarization  

 

When Nb is in the superconducting state, the ARF/Nb(S) is lager than ARF/Nb(NM) (for 

instance in the Ni/Nb system). The modified BTK theory [39] used  to explain the 

spectrum of metallic F/S point contact is based on the suppression of Andreev 

reflection by the spin imbalance of electron density of state in Ferromagnet. In the 

limit of a clean and ballistic contact, the spin polarization P is simply related to the 

conductance at zero bias, G(0), and is normalized by the normal-state conductance, 

G(n), as G(0)/G(n) = 2(1-P). [40] In contrast, in our CPP samples, the thickness of 

single layer is smaller than the mean free path, but the number of transverse modes is 

enormous due to large area. From the theoretical calculation, the interface resistance 

can be explicitly described as 

/ 2

1 1 1 1[ ( )]
2A B

A B

AhAR
e T N Nμν

= − +
∑

,   (6.13) 

where Tμν are the probabilities for eigenstate μ in material A to be transmitted 

through the interface into the eigenstate ν in material B, and e2/hNA(B) is the Shrvin 

conductance of material A(B). [41] Here, no coherent scattering exists between 

adjacent interfaces along the current direction. The interface transmission can be 

described as a conductance GA/B = e2/h ∑Tμν. [42] Our measurement can be used to 

derive the transport P of Ni, about 49 % through the ratio of interface transmission 

between the superconducting and the normal state, if  

/ ( )/

/ / ( )

( ) 2(1 )
( )

sf sf
F S N F F S SA B S

sf
A B N F S S F F

ART P
T AR

ρ ρ
ρ

+ +
= = −

+
   (6.14) 
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is assumed, where 6/)( sfN
sf

FS l λ=   is the spin diffusion length and we take 

+∞
−= 525sf

Nbl nm and 221±=sf
Ni nm for experimental result by CPP-MR using 

superconducting cross strips and exchange-biased spin valves. [43] sf
FS )(  is the 

dominated length scale in the CPP measurement with current perpendicular to the 

plane as described in Section 2.1. [44] This value is larger than 46.5 % [45] for Ni foil 

and 37 % [46] for Ni thin film from the Nb/Ni point contact in the PACR 

measurement. Table 6.5 list the polarization of Co, Fe and Ni calculated by Eq. 6.21 

through the normal and superconducting state interface resistance. We argue that the 

transport polarization is overestimated due to the assumption of zero barrier strength 

Z between interfaces. The Andreev reflection suppressed by spin-polarized metals is 

not the only mechanism to affect the ration of transport probabilities. More theoretical  

works on a more approximate mode to fit the barrier strength Z and distinguish the 

contribution of spin accumulation in the F/S interface are needed. 

 

 Co Fe Ni 

Spin diffusion length 59±18 nm 8.5±1.5 nm 21±2 nm 

Transport polarization 0.54 % 0.56 % 0.49 % 

 

Table 6.5: The transport polarization of Co, Fe and Ni extracted from interface 
resistance. 
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Chapter 7 

Results and Discussion-Weak Ferromagnet:  

Cu0.5Ni0.5/Nb System 
 

Recent discovery of superconductivity with a relatively high transition 

temperature in the iron-based layered structure has generated tremendous interest in 

the superconductivity and ferromagnetism fields, though the question of the existence 

of the ferromagnetic phase in this system is still open. [1] Nevertheless, the 

coexistence of superconductivity and ferromagnetism has been investigated at the 

junction of a superconductor (S) and a ferromagnet in terms of bilayers, trilayers, and 

multilayers structure, which have been discussed in Chapter 2. [2] The controversy in 

such system is that the exchange field in the ferromagnetism is expected to break the 

time-reversal symmetry of a Cooper pair and suppress superconductivity. The singlet 

superconductor (S) prefers an antiparallel spin orientation to forming Cooper pairs, 

while the order of ferromagnet (F) forces the spins to align in parallel. Because 

superconductivity and ferromagnetism are two competing orders, their coexistence, as 

explained by Fulde, Ferrel, Larki, and Ovchinnikov, is only possible in a narrow 

interval in phase space by proximity effect. [2-4] Recently, advances in the fabrication 

of artificial F/S layered structure enable researchers to study this effect from both the 

fundamental and the applicative aspects when the two interaction orders are spatially 

separated. In the layered structure, the spatial variation of the superconducting order 

parameter in the ferromagnet arises from the energy shift between the quasiparticles 

of the pair caused by the presence of the exchange field Eex. As a consequence, the 

superconducting wavefunction not only decays in the F layer but also oscillates over a 

length scale, in the direction perpendicular to the interface. Striking effects in the F/S 
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layered structure include the nonmonotonic oscillation for the dependence of 

superconducting critical temperature (TC) [5, 6] and critical current (IC) [7-9] on the 

thickness of the F layer, dF, and even the reentrant superconducting behavior [10, 11]. 

Various unusual phenomena occur in the CuNi/Nb system due to the oscillation of the 

S pairing wave function in F (see [2, 12] for recent reviews). In order to reliably 

control ferromagnetic thickness over a large range to study S/F/S junction, it is 

essential to have a weak ferromagnetic metal. [7,8] In addition, to study the possibility 

of quasiparticles mediated coupling in the F/S/F spin valve structure, the S layer is 

expected to be thin. [13-15]  

The quality of the interface is important for understanding the coupling 

mechanism between the S and the F.  Lately, interfacial transparency Ttran, has been 

included in the analysis of the interfacial quality and is considered to play a dominant 

role in the boundary condition in layered structures. While Ttran =1 indicates a perfect 

interface, the value of Ttran < 1 signifies the decrease in the amplitude of the order 

parameter. It implies that the electrons are apt to be reflected rather than transmitted at 

the interfaces, which may reduce the strength of the proximity effect [16,17] It is clear 

that the non-perfect transparency depends on both extrinsic and intrinsic factors such 

as interface imperfection, Fermi velocities, and band-structure mismatches. By 

including the interfacial transmission coefficient in the proximity theory, the 

discrepancy between the experimental results and the theoretical prediction under a 

perfect interface assumption would be reconciled. Attanasio et al. have studied the 

interfacial transparency for different layered structures, with Nb as a superconductor, 

Cu, Ag, and Pd as normal metals, and PdNi and Fe as ferromagnetic materials to 

investigate the effect of the fabrication method on Ttran by sputtering and molecular 

beam epitaxy. Their results showed that the interfacial transparency was influenced by 

intrinsic factors related to the microscopic properties of the two metals across the 
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interface rather than by the fabrication method. [18] Although the interfacial 

transparency is important both from the theoretical and experimental points of view, it 

is usually treated as an adjustable parameter γb, in terms of the ratio of interface 

resistance to the product of resistivity and the Cooper pair penetration depth in the F, 

due to great difficulties in direct measurements. [15-22] 

In this section, we attempt to analyze the F/S proximity effect accounting for the 

interfacial transparency both qualitatively and quantitatively. The study reports the 

proximity effect between a weak ferromagnet (F) and a superconductor (S) in a 

sputtered Cu0.5Ni0.5/Nb layered system. Weak ferromagnetic layers of Cu0.5Ni0.5 are 

essential to achieve appropriate exchange energy in a suitable window of 

experimental phase space. We deduced superconductor critical thickness, below 

which superconductivity vanishes, by analyzing the data in terms of proximity theory. 

High interfacial transparency is derived from the behavior of the superconducting 

critical temperature as a function of the S and F layer thicknesses. Strong pair 

breaking effect as a result of the high interface quality influences the spatial 

dimensional crossover and the flux pinning mechanism in the temperature dependence 

of upper critical magnetic field, Hc2. Using CPP (the current perpendicular to plane 

measurement) with a series resistor model, the unit area resistance for one pair of 

Cu0.5Ni0.5/Nb interface can be extracted when Nb is in the superconducting and 

normal states by varying its thickness. The interfacial transparency related to the 

interface resistance is quantitatively discussed. Close correlation between the 

interfacial transparency and the interface resistance is demonstrated. 
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7.1 The behavior of critical temperature fitted by Radovic’s 

model 

 

Several series of Cu0.5Ni0.5/Nb trilayers and multilayers samples were fabricated. 

In order to investigate the proximity effect between Nb and Cu50Ni50 in a decoupled 

regime, we would discuss the series of samples as follows: (1) Cu0.5Ni0.5/Nb(dS)/ 

Cu0.5Ni0.5 trilayers with Cu50Ni50 thickness fixed at 50 nm and (2) Cu0.5Ni0.5/Nb 

multilayers denoted as (Cu0.5Ni0.5/Nb(dS))6/ Cu0.5Ni0.5 with Cu0.5Ni0.5 thickness fixed 

at 20 nm. The critical temperature TC and the critical field Hc2 as a function of 

temperature were resistively measured in a 4He cryostat.  

    The TC for Cu0.5Ni0.5/Nb(dS)/ Cu0.5Ni0.5 trilayers as a function of dNb are shown in 

Fig. 7.1. With decreasing dNb, TC exhibited a monotonically rapid reduction down to a 

critical thickness dcrit. We first analyzed the behavior of TC(ds) in the framework of the 

theoretical model developed by Radvoić et al. [23] In this way, using the electronic 

specific heat coefficients γ (Cu0.5Ni0.5) ≈ 4.2×10-3 J/K2 mole [24], ρF ≈ 61 μΩ cm, and 

the spin splitting energy I0 ≈ 6 meV, the Cu0.5Ni0.5 coherence length is evaluated to be 

ξF = 4.9 nm. The result of the theoretical simulations obtained for the trilayer system 

with γ = 0.1, ξS = 16 nm, and TCS = 8.7 K is shown as the solid line in Fig. 7.1. By 

extrapolating the fit to TC = 0, the critical thickness is dcrit(Cu0.5Ni0.5) = 35 nm. For the 

purpose of comparison, the critical thicknesses were about 30 nm and 34 nm for 

Co/Nb/Co [25] and Fe/Nb/Fe [26] trilayers, respectively. It is found that the critical 

thickness for the weak ferromagnet is not smaller than those for the strong 

ferromagnet. For weak magnetic V1-xFex system, the large critical thicknesses have 

also been observed. [19] We then investigated the physical mechanism that caused 

this large thickness in the Cu0.5Ni0.5/Nb system with weak ferromagnet.  
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Figure 7.1: Superconducting critical temperatures for Cu0.5Ni0.5/Nb/Cu0.5Ni0.5 
trilayers as a function of dNb. The solid line is obtained from the theoretical fitting 
with parameters ξS = 16 nm, γ = 0.1, and Tc0 = 8.7 K. 

 

    Aarts et al. [19] proposed that the behavior of the critical thickness for the F/S/F 

case was a function of the parameters γ and γb. The parameter γb described the quality 

of the interface barrier. When γ was as small as in our case, the “proximity leak” was 

large. It required a low barrier (high Tr, small γb ) to increase the critical thickness. 

Potensa et al. [27] reported γb = 0.6 and Fominov et al. obtained a value of 0.3 when 

fitting the TC behavior of CuNi/Nb bilayer data. [28] These values for CuNi/Nb were 

much smaller than γb = 1.6 for Co/Nb system obtained from direct interface resistance 

measurements in Chapter 5. [29] In the next section, we tried to analyze and study the 

F/S proximity effect that accounted for the interfacial transparency both qualitatively 

and quantitatively. 

 

0 100 200 300 400 500 600 700
0
1
2
3
4
5
6
7
8
9

T c
 (K

)

dNb(nm)

 

 

 CuNi/Nb/CuNi

  ξs =16 nm, γ =0.1 ,

Tc0=8.7 K, ξF= 4.9 nm



 175

7.2 Fitted by Fominov’s model in terms of interface 

transparency 

 

To characterize the properties of the F films, magnetic moment measurement 

was performed on a series of Cu0.5Ni0.5 single layers using a commercial SQUID 

magnetometer with magnetic fields applied parallel to the sample surface. Figure 7.2 

shows the Curie temperature TCurie versus the Cu0.5Ni0.5 thickness, which was derived 

from the temperature dependence of the magnetization M with field-cooled and 

zero-field-cooled measurement at 30 Oe. The TCurie was about 80~110 K in agreement 

with the results reported for bulk samples at this concentration. [30] The saturation 

magnetization Msat of Cu0.5Ni0.5 estimated from the hysteresis loop at 5 K was about 

0.1 μB/atom as shown in the right inset of Figure 7.2. There was no clear indication of 

thickness dependence on Tcurie and Msat as dCuNi larger than 7 nm.  

Based on the weak ferromagnetic nature of Cu0.5Ni0.5 ascertained by magnetic 

measurement and the good quality of the interface verified by the transmission 

electron microscopy (TEM) image shown in the left inset of Fig. 7.2, the rather large 

critical thickness for the Cu0.5Ni0.5/Nb/Cu0.5Ni0.5 trilayers could be attributed to the 

high interfacial transparency at the F/S interface. We know the solid line in Fig. 7.1 

could be fitted under a perfect interface assumption developed by Radvoic et al. [23], 

as described in Section 7.1. Although the solid line described well the critical 

temperature, the approximation of a perfect interface was hardly fulfilled because the 

Cooper pair with opposite spins could not match the Fermi momentum of the 

energy-split subbands in a ferromagnet. This mismatch of Fermi vector might reduce 

the transmission across the interface. The interfacial transparency between two metals 

with different Fermi energies was a quantum mechanical problem of reflection and 
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transmission of charge which was carried at the interface. [31] 

 

 

 

Figure 7.2: Curie temperature versus Cu0.5Ni0.5 layer thickness. The solid line is 
meant to guide the eye. Inset (right): magnetic hysteresis loop for Cu0.5Ni0.5 thickness 
of 300 nm at T= 5 K. Inset (left): the cross-section TEM image of a [Cu0.5Ni0.5 20 nm/ 
Nb 100 nm]6/ Cu0.5Ni0.5 20 nm] multilayer sample. 
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superconductor embedded between two Ferromagnet layers within the linearized 

Usadel equation. The boundary condition for trilayer system is given by   

Kupriyanov and Lukichev [32]: 

     *
*

ifif

,S S SF
S F

F F

dF dF
dx dx

ρ ξξ γξ γ
ρ ξ

=    = ,       (7.1) 

[ ]*
*if

if

(0) (0) , bF
F b S F b

F F

R AdF F F
dx

ξ γ γ
ρ ξ

= −    = .     (7.2) 

Here the physical meaning of γ  was the strength of the proximity effect between the 

F and S metals. Sρ  and Fρ  were the low temperature residual resistivities of S in 

the normal state and F, respectively.  

*

2
F

F
B CS

D
K T

ξ
π

=     (7.3) 

was a spatial scale related to the diffusive motion of the Cooper pair in the F layer 

without considering the exchange field, where kB was the Boltzmann constant. A was 

the sample area and Rb was the normal-state resistance of S/F boundary. If we wrote 

the conductance per unit area as 1/Rα and considered the conduction in parallel with 

perpendicular transport, the total conductance of a boundary could be described as 

1 1( )i
ib

AA
R R Rα α

δ= =∑  by summing over the total sample area A. The value of ARb 

represented the interface resistance per unit area, since in the case of CPP transport 

the conduction was in parallel. Thus, the interfacial transparency parameter bγ  in Eq. 

(7.9) was proportional to ARb, when the superconductor is in the normal state. It 

should be essential to note that Radovic’s model adopted a boundary condition of 

high-quantum-mechanical transparency at the F/S interface, so the pairing function 

varied continuously at the interface, as indicated by FS=FF. In the present work, the 

boundary condition implied a jump of the pairing function depending on the 

magnitude of bγ . Furthermore, the boundary conditions at the outer surfaces were 
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0S F

osos

dF dF
dx dx

= = , accounting for the absence of the pairing function current 

through the outer surface of the trilayer. In the single-mode approximation, we 

obtained Tc as a function of ds and dF for the F/S/F trilayer systems in the following 

form: 

0 0 2

( Re )tan( )
2 ( Re )

S S b F

S S b F b F

d A B
A B B

γ γγ
ξ γ γ γ

+ +
Ω Ω =

+ + +
, 
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1*
*

sgn1tanh( ) , n ex n
F F F F F F

F B CS

iE
B K K d K

K T
ω ω

ξ
ξ π

− +
⎡ ⎤=     =⎣ ⎦ , 

            1tanh( 2), n
S S S S S S

S B CS

A K K d K
K T
ωξ

ξ π
=     = .  (7.4) 

Practically, only the real root of 0Ω was taken into account, while all imaginary 

roots were neglected. The F thickness-dependent TC was fitted by the previously 

outlined model, and the results were shown in Fig. 7.3. Most parameters could be 

derived, except for *
Fξ , which is calculated by equation (7.3). The obtained result for 

*
Fξ = 6 nm was consistent with the values for the Ni composition of both 0.54 and 0.58 

in the literature. [33] The exchange energy Eex and the interfacial transparency 

parameter bγ  were taken as free parameters in the fitting. Notice that we first 

proceeded with the data of TC(dCuNi) with Nb thickness fixed at 37 nm, (the reason for 

doing this would be discussed later), and we used the following parameters deduced 

from experimental measurements to model TC(dF). For a single 37 nm thick Nb film, 

TC was 7 K and the resistivity was about 300 nΩ m at 10 K. The Nb coherence length 

ξS, which was related to the Ginzburg-Landa (GL) coherence length ξGL(0), could be 

determined by upper critical field measurement, as later discussed in Section 7.3. 
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According to this relation, 1/ 2
GL S (T)= (1 )

2 C

T
T

πξ ξ −− , we obtained ξS = 7 nm.  

      TC as a function of dCuNi is shown in Fig. 7.3. As can be seen, the theoretical 

fits are rather sensitive to the value of bγ  than that of Eex. The value of Eex is 

determined mostly by this regime that TC starts to saturate with respect to dCuNi, 

whereas bγ  is used to distinguish the vertical shift of TC. Our fitted procedure is 

similar to previous studies. [17, 20, 33] The optimal value for Eex is between 80 K and 

120 K and for bγ between 0.2 and 0.4. If we assume Eex =kBTCurie, then the value of 

Eex is in agreement with the measurement of TCurie in the single Cu0.5Ni0.5 films, as 

seen in Fig. 7.2. The nonmonotonic behavior of TC(dF) exhibits a minimum Tc around 

3.3 nm. The occurrence of a minimum of TC (dF) can be qualitatively explained by the 

interference of quasiparticle wavefunctions in the F layer, which can be either 

constructive or destructive depending on the dF. According to the work of Fominov et 

al. [17], dirty
Fξ  is related to the minimum of Tc(dF) by min 0.7 / 2dirty

Fd πξ≈ , where dmin 

is the thickness corresponding to the minimum of Tc(dF). Moreover, dirty
Fξ  related to 

the exchange energy within the dirty limit denotes the actual decay length of the 

superconducting Cooper pairs in the F. Notice that dirty
Fξ  should not be confused with 

*
Fξ , for the latter is associated with superconducting diffusion length in the normal 

metal. Using the value of dmin extracted from Fig. 7.3, we obtained 

3.0dirty
F nmξ ≈  < *

Fξ  as expected, since dirty
Fξ  is inversely proportional to the square 

root of the Curie temperature through the exchange energy whereas *
Fξ  is inversely 

proportional to that of the superconducting transition temperature. In addition, this 

result yields 2 19dirty
F F nmλ πξ≈ =   for the oscillation of the anomalous wavefunction 

in the dirty limit. [17] 
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Figure 7.3: The superconducting critical temperature versus Cu0.5Ni0.5 thickness for 
Cu0.5Ni0.5/Nb/Cu0.5Ni0.5 trilayers with constant Nb thickness dNb= 37 nm: (a) different 
lines are the results of theoretical fit for different values of Eex and for γb=0.3, (b) 
different lines are the results of theoretical fit for different values of γb and for Eex 
=120 K. 
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    The behavior of TC(dS) can be characterized with the same set of equations that 

describes the behavior of TC(dF). Here, the critical temperature depending on the 

thickness of a single Nb layer is considered. In Fig. 7.1, the dotted lines are given by 

the model calculation with fixed parameters TCS=8.8 K, ρNb=80 nΩ m, and ρCuNi= 300 

nΩ m, whereas the values of bγ , *
Fξ , and Eex are taken from the Tc(dF) fit of Fig. 

7.3(b). As can be clearly seen, all calculated curves are able to reproduce the 

experimental trend of TC(dS) and are comparable to Radovic’s model with the perfect 

transparency assumption. Despite the consistency between the theory and the 

experimental data, we notice that the effect of a small variation of bγ  is barely 

distinguishable in the behavior of TC(dS). As a result, the behavior of TC(dF) should be 

the key that enables a theoretically quantitative investigation of the interfacial 

transparency regarding the F/S proximity effect.  

The uncertainty associated with the variation in the measured data of TC(dS) from 

the fitted curve occurs most obviously in the region of the small dF as shown in Figure 

7.4, where the TC declines due to the pair breaking effect. The discrepancy may imply 

that some uncontrolled factors in the thinnest films are not considered in the model 

and that the restriction of the model is caused by the simplified assumption that 

neglects the imaginary roots of Eq. (7.10). In the theoretical work described by 

Fominov et al., the single-mode approximation is applicable for b FBγ >> , for other 

cases one should apply the multimode method for the exact solution. This condition 

can be given in a simpler form as / 1ex C bE Tπ γ>> from the view of the 

experimentally relevant case. [17] When TC(dF) exhibits neither reentrant behavior 

nor monotonic decay to TC = 0 at a finite dF, but a nonmonotonic decay to a finite TC 

with a minimum at a particular dF, the results of the single-mode and multimode 

methods are quite close, save that the former somewhat underestimates the minimum 



 182

value of Tc [17]. For instance, the single-mode approximation is applied well to the 

analysis of the Nb/CuxNi1-x bilayer system of x= 0.58 and 0.54 with 2≈Cex TE π  

and 11 ≈bγ , and to the Nb/Pd0.86Ni0.14 system with 3≈Cex TE π  and 21 ≈bγ [33] 

although the requirement is just satisfactory. On the contrary, for the Nb/Pd0.81Ni0.19 

bilayers, the condition no longer holds since / ( 3) 1 ( 7)ex C bE Tπ γ≈ < ≈ . Nevertheless, 

the data are well fitted by the single-mode calculation, and the results indeed provide 

substantial information about the microscopic parameters related to the proximity 

effect. [20] For the Cu0.5Ni0.5/Nb/Cu0.5Ni0.5 trilayers presented in this work, we 

adopted the single-mode approximation to study the behaviors of TC(dF) as well as 

that of TC(dS) in spite of 2≈Cex TE π  and 31 ≈bγ ; this condition is closer to the 

need for the limitation. The validity of these proceedings may rest on the fact that the 

amplitude of the multimode calculation has only a slight reduction in comparison with 

the single-mode approximation when bγ  is larger than 0.1 [17]. Although there is a 

minor discrepancy between the calculated curves and the experimental data, it is 

clearly seen that the TC(dF) dependence cannot be properly described by the larger 

value of bγ .  

Aarts et al. have first discussed the importance of interface transparency and 

present experimental evidence of the intrinsically reduced interface transparency in 

the V/V1-xFex multilayer system. [19] Their results show that, for a fixed γ, the critical 

thickness increases as γb decreases. Accordingly, bγ <0.4 obtained for the 

Cu0.5Ni0.5/Nb structure studied in this work reveals a small potential barrier, leading to 

relatively strong pair-breaking and in turn a larger critical thickness. This factor of 

high interfacial transparency is in agreement with the result of the critical field Hc2 

and CPP measurement, which will be discussed in the following section. 
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Figure 7.4: The superconducting critical temperatures as a function of dNb for 
Cu0.5Ni0.5/Nb/Cu0.5Ni0.5 trilayers with constant Cu0.5Ni0.5 thickness dCuNi= 50 nm. The 
solid red line is the theoretical fitting with high interfacial transparency assumption. 
The other different lines are the results of the theoretical calculation for different 
values of γb and for Eex=120 K obtained in Figure 3. The inset is an enlargement of 
the region between 40 nm and 160 nm close to the corner.  
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7.3 Pair breaking ratio by upper critical magnetic field 

measurement 

 

We also investigate the influence of the interfacial transparency by studying the 

temperature dependence of the upper critical magnetic field Hc2(T) for F/S multilayers. 

The study of Hc2 can provide us substantial information on the coherence length and 

the role of the pair-breaking effect from the occurrence of the dimensionality 

crossover. To this end, measurement of the temperature-dependent parallel critical 

field, Hc2//(T), as well as the perpendicular critical field, Hc2⊥(T), have been performed. 

The samples have been prepared with fixed dF = 20 nm and 6 bilayers, and various dS 

from 50 to 600 nm, denoted as [Cu0.5Ni0.5 (20 nm)/Nb(dS)]6/ Cu0.5Ni0.5 (20 nm)]. The 

jump of the amplitude of the S wavefunction at the F/S boundary is constant on the 

ground that the TC(dF) is already saturated at dF = 20 nm, as shown in Fig. 7.3. From 

the theoretical point of view, the critical field oscillations dependent on the F layer 

thickness arising from the different phases between the two adjacent superconductors 

can be neglected when dS/ξS >2. [34] The thicknesses of our samples are well within 

this regime. Thus we can compare the results obtained from different samples in terms 

of the barrier quality and exchange force of the F layer for the S wavefunction in  

this system. 

    According to the Ginzburh-Landau (GL) theory, the temperature dependence of 

Hc2//(T) for the 3D regime is described with the equation  

0
2//

//

(1 )
2 (0) (0)c

CS

TH T
T

φ
πξ ξ⊥

( ) = − .      (7.5) 

While in the 2D regime, ξ⊥(T) is limited by the layer thickness and Hc2//(T) shows a 

square-root like behavior by the Tinkham expression [30] 
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12 (1 )
2 (0)c
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TH T
d T

φ
πξ

( ) = − .        (7.6) 

The 0φ  is the flux quantum and ξ//(0) and ξ⊥(0) are the GL coherence lengths for 

fields parallel and perpendicular to the sample plane at 0 K, respectively. Apparently, 

the dependence of Hc2//(T) on temperature would change from 3D to 2D when the 

thickness of S film is continuously reduced. On the contrary, the Hc2⊥(T) dependence 

on temperature always presents a linear relation with arbitrary superconducting 

thickness, described by [36] 

0
2 2

//

(1 )
2 (0)c

CS

TH T
T

φ
πξ⊥ ( ) = − .          (7.7) 

Figure 7.4 shows the temperature dependence of the Hc2//(T) and Hc2⊥(T) for  

Cu0.5Ni0.5/Nb multilayer samples with dNb=140, 160, and 180 nm. The data for dNb= 

160 and 180 nm are shifted by 0.05 and 0.1 respectively in the horizontal axis for 

clarity. The Hc2⊥(T) has a linear behavior and constant slope for all thicknesses of Nb, 

as expected. The GL coherence length at zero temperature is about 11 nm, which is 

deduced from the relation 0(0) 2GL CTξ φ πβ= , where the slope β= -dHc2/dT is 

derived from the Hc2⊥(T) curves by a linear least square fit as the dashed line shown in 

Figure 7.6.  

    To study the 2D-3D crossover behavior, Hc2//(T) data as the consequence of the 

GL formulae with anisotropic superconductors have been fitted by 

2// ( ) 1 / (1 / )c C CH T a T T b T T= − + − , a combination of Eqs. (7.12) and (7.13). The 

results are plotted as solid lines in Fig. 7.4. A gradual transition from 2D to 3D is 

evolving from square root behavior to a linear relationship, when dS increases from 

140 nm to 180 nm. In comparison with strong ferromagnetic case reported earlier in 

Chapter 6, the thickness of two-dimensional to three-dimensional (2D-3D) crossover 
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takes place at about 120~140 nm in the Nb/Fe [26], and 145~180 nm in the Nb/Co 

layered structure.  The comparable dimensional crossover thickness for this 

relatively weak ferromagnetic Cu0.5Ni0.5 can be attributed to the high interfacial 

transparency between the S and the F. To make a quantitative characterization, we 

adopt a strategy inspired from earlier reports in which the dimensional crossover 

temperature was shifted toward a lower value in the system exhibiting high interfacial 

transparency. [33, 37] 

 

Figure 7.5: The superconductor coherence with 12 nm of Nb dependent on the 
temperature. 
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dNb. However, ξ⊥(T) tends to diverge when the temperature is sufficiently close to Tc, 

causing ξ⊥(T) > dNb, and 2D behavior is observed [33]. In Figure 7.6, Hc2//(T) for dNb 

=140 nm at higher temperatures is well described by a GL square-root fit down to 

T/Tc = 0.92, whereas at lower temperatures Hc2//(T) exhibits linear behavior. This 

result could be regarded as single superconducing films with smaller effective 

thickness deff = 96 nm estimated by ( )effd Tξ⊥≈  where the superconductivity of Nb 

is weakened through pair breaking effect at F/S interface. Consequently, with the 

introduction of the pair-breaking ratio ( ) /S eff effd d dχ = − , the values of χ  in 

different systems are calculated to be 0.31, 0.28,Co Feχ χ=  =  and 0.34CuNiχ =  for 

comparison. Comparable values of χ  regardless of the thickness in the 2D regime 

confirm that the higher the transparency of the barrier, the stronger its pair-breaking 

effect would be. This is consistent with the results of the TC measurement. 
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Figure 7.6: In the top part, reduced parallel uppercritical fields versus reduced 
temperature for Cu0.5Ni0.5/Nb multilayers with dNb=140, 160, and 180 nm. Data for the 
dNb = 160 and 180 nm are shifted to the right by T/TC =0.05 and 0.1, respectively, for 
clarity. The solid lines are least-square fit using the Ginzburg-Landau relation. The 
filled circle symbol is perpendicular upper critical fields for dNb=140 nm and the 
dashed line is a linear fit. In the down part is parallel upper critical fields as a function 
of the reduced temperature for the Cu0.5Ni0.5/Nb multilayers with dNb = 140 nm. It can 
be categorized into two groups according to the 3D and 2D behavior as shown the 
solid line fitted by Tinkham expression.  
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7.4 Interface resistance by CPP measurement 

 

Since the interface between different metals is never entirely transparent, it 

screens the proximity effect and is treated as a potential barrier accounting for the 

lattice mismatches, interface imperfection, the difference of Fermi velocities, and 

band structures. The interfacial transparency Ttran in the free electron model denotes 

the projection of Fermi wave vector onto the direction perpendicular to the interface. 

[19] In this model, Ttran is defined as a parameter to describe the resistance 

encountered by the electron across the barrier between two metals, given by  

*

12
3

tranF
b

F tran

T
T

γ
ξ

−
= .           (7.8) 

The behavior of TC(dF) can be classified into three categories according to the values 

of γb which is proportional to the interface resistance: 1. TC decays non-monotonically 

at a finite interface resistance: 2. TC exhibits a reentrant behavior at a moderate 

interface resistance: 3. TC decays monotonically at low enough interface resistance. 

Practically, the value of γb is often deduced from the fitting result because of the 

difficulty in directly measuring interface resistance. In the conventional transport 

measurement with current in the plane, CIP provides a direct access to the critical 

current and critical magnetic field in the F/S system by driving S to the normal state. 

Unfortunately, CIP tends to give zero resistance in this configuration when S is in the 

superconducting state. In this section, we present the measurement of interface 

resistance between Nb and Cu0.5Ni0.5 with current perpendicular to plane. That is the 

information of resistance inaccessible to the CIP configuration. 

    In order to minimize the deviation in the preparatory condition and obtain 

comparable physical quality in a specific set, we fabricated 8 different samples in the 

same deposition run for CPP cases which were achieved by a movable substrate 
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holder. The construction for CPP samples which required three changes of contact 

masks in situ to assure clean interfaces was more complicated than that of CIP ones. 

The deposition conditions used for CPP samples were similar to those used for 

studying the Co/NbxTi1-x multilayers in Chapter 5. [29] 

    To analyze quantitatively the interface resistance in the superconducting and 

normal states, two sets of samples with different numbers of bilayers were made. The 

Cu0.5Ni0.5 thickness was fixed at 50 nm and Nb thicknesses were 15 and 80 nm, 

respectively. The thickness of Nb was chosen according to the phase diagram of Fig. 

7.4. When Nb thickness was thinner than the critical thickness, the S was in the 

normal state (NM) and we had NM/F multilayers; otherwise we would obtain S/F 

multilayers. Figure 7.7 represents the plot of the product of sample area A and total 

resistance RT against bilayer number N for the two series of Cu0.5Ni0.5/Nb multilayers. 

The unit area resistance ART is linearly proportional to the number of bilayer for both 

sets of samples. The fact that the resistance remains the same when an external 

magnetic field is applied implies that the spin-up and spin-down electron channels 

cannot be distinguished. As a result, we infer that there is strong spin mixing at the 

Cu0.5Ni0.5/Nb interface and in the Nb layer. [38, 39] A one-band model can be applied 

to analyzing our CPP data. The linear behavior of ART against N can be explicitly 

written as  

/ ( ) / ( )2 N( 2 )T F S S F F F F S S F S NMAR AR t t t ARρ ρ ρ= + + + +     (7.9) 

for normal state Nb and    

/ ( ) / ( )2 N( 2 )T F S S F F F F F S SAR AR t t ARρ ρ= + + +     (7.10) 

for superconducting state Nb. Here t’s are the thicknesses, ρ ’s are the resistivities, 

ARF/S(NM)’s is the unit area interface resistances between normal state Nb and 

Cu0.5Ni0.5 layers and ARF/S(S)’s is the unit area interface resistances between 
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superconducting state Nb and Cu0.5Ni0.5 layers. Recently, theoretical research has 

asserted that the asymmetry of interface transparency in the F/S/F structure originates 

mainly from the unequal interfacial transparencies of the F/S and S/F. This 

asymmetry can be observed from the Tc dependence on the relative magnetization 

orientation between two adjacent ferromagnetic layers by varying the F thicknesses in 

the F1/S/F2 structure. [40] Even though we assume that interface resistances of the 

S/F and F/S are identical as well as that of NM/F and F/NM based on the fact that the 

F thickness is the same in all of the CPP multilayer samples, there is still always 

2ARF/S(NM) and 2ARF/S(S) for every pair of interfaces in Eqs. (7.9) and (7.10), 

respectively. In Figure 7.7, the dashed lines are the linear least square fits to 

individual sets of data. According to the one band model [41], the equations of 

ART=C1+C2N for normal state Nb and ART= C1(N+1) for superconducting state Nb 

give C1=2ARs+ρFtF and C2=2ARNM+ρFtF +ρStS, respectively. Each series of samples 

can be individually fitted with the model to extract the fitting parameters. In this 

manner, however, the quantities deduced from the fitting are sample series dependent. 

To overcome this difficulty, global fit is performed to analyze the two sets of data 

with the same fitting parameters. The results of the two-parameter global fit are 

shown in Fig. 7.7 as dotted lines.  
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Figure 7.7: Unit area resistance, ART, versus bilayer number N measured at 4.2 K. 
The two sets of samples have Nb thickness fixed at 80 nm and 15 nm, respectively. 
The dashed-lines are linear least-square fit. The dotted lines and the solid lines are 
global fits for two and three parameters, respectively, to the data.  

 

    The S/F/S structure can be seen as a Josephson junction in that superconductor 

couple weakly through ferromagnetic barrier. It has been shown that the critical 

current of ferromagnetic Josephson junction, IJc, would change sign from positive to 

negative under certain conditions, in correspondence to a phase shift between two S 

layers in the Josephson ground state. [2] This phase change in the Cooper pair 

wavefunction is induced in the F layer by the proximity effect. As has been reported, 

IJc exhibited a non-linear IV characteristic, even for the thickness of the ferromagnet 
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larger than *
Fξ . The largest spacer layer in the literature was 28 nm for CuNi [7, 8], 

11 nm for Ni, and 5 nm for Co. [9] In order to normalize the data, IJC was usually 

multiplied by RNM to give the characteristic voltage V=IJcRNM. Here, IJc was taken at 

the point where the dV/dI(V) increased above the value of zero bias current. RNM was 

measured by applying a sufficient large bias current so that the nonlinear part of the 

current voltage curves could be ignored. Yet, the current was kept small enough to 

ensure the Nb electrodes remained in the superconducting state. The non-linear 

IV-characteristic could be well described by the expression 2 2
JcV R I I= −  because 

a supercurrent can be sustained even through a ferromagnet. 

    The voltage drop across the sample in the CPP measurements performed for the 

current study is less than 10 nV for a maximum current of 100 mA provided by the 

battery-powered DC current source. This voltage is six orders of magnitude smaller 

than the energy gap 1.4 meV of Nb. Under these circumstances, the measured 

non-linear I-V curve can be attributed to the supercurrent in the F layer. As shown in 

Fig. 7.8, non-linear I-V behavior can be observed when the thickness of Cu0.5Ni0.5 is 

less than 40 nm. To characterize the penetration of the supercurrent from the Nb layer 

into the Cu0.5Ni0.5 layer, we introduce a leakage length, Sδ , that characterizes the 

penetration of the supercurrent from the Nb layer into the Cu0.5Ni0.5 layer. By fitting 

the data in which the I-V characteristic is in the ohmic region, it is found that 

15.8Sδ ≈ nm. This leakage length should be included in the one-band model. 

Accordingly, the one-band model is revised to 

/ ( ) / ( )2 2 N( 2 )T F S S F F S F F F S S F S NMAR AR t t t ARρ δ ρ ρ ρ= + − + + +     (7.11) 

for Nb in the normal state and      

/ ( ) / ( )2 2 N( 2 2 )T F S S F F S F F F F S S S FAR AR t t ARρ δ ρ ρ δ ρ= + − + + −    (7.12) 
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for Nb in the superconducting state. They account for the fact that Cu0.5Ni0.5 

contributes no resistance within the leakage length. From the results of the 

two-parameter global fit, the resistance of one-pair interfaces can be obtained by 

substituting the values of the bulk resistivities of Nb and Cu0.5Ni0.5 into Eq. (7.17) and 

(7.18). 

 

Figure 7.8: In the top right side part: the linear I-V characteristic as a function of 
Cu0.5Ni0.5 thickness for CPP Cu0.5Ni0.5/Nb multilayer. The different lines are linear 
least-square fit. In the down right side part: the non-linear I-V characteristic as a 
function of Cu0.5Ni0.5 thickness for CPP Cu0.5Ni0.5/Nb multilayer. The solid line is 
meant to guide the eye.  
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dominated by the large resistivity of Cu0.5Ni0.5 alloy. To get through this limitation, 

the CPP resistivity measurement is carried out by varying the thickness of a single 

Cu0.5Ni0.5 film sandwiched between two Nb strips. The top view geometry for the 

measurement is illustrated in the inset of Fig. 7.9. The effective area is confined to the 

overlapped square of the strips. [42] As shown in Fig. 7.9, the unit area CPP resistance, 

ART, is linearly proportional to the thickness of Cu0.5Ni0.5 layer. The individual linear 

least square fit yields a slope of CPP resistivity ρCuNi = 380±20 nΩ m. This linear 

behavior can be described by the one-band series-resistor model given by 

/ ( )2 ( 2 )T F S S F F SAR AR tρ δ= + − .  (7.13) 

From the best fit, we obtain 2ARCuNi/Nb(S)=19.8±0.5 fΩ m2 and 2ARCuNi/Nb(NM) =0.6±0.1  

fΩ m2. We also performed a three-parameter global fit to all the three data sets with 

the same set of parameters. The solid lines in Figure 7.7 and 7.9 are the best global 

fits with ρCuNi=390±10 nΩ m, 2ARCuNi/Nb(S)=19.9±1.5 fΩ m2, and 

2ARCuNi/Nb(NM)=0.7±0.3  fΩ m2. Correspondingly, the interfacial transparency 

parameter * 0.2b
b

S F

R Aγ
ρ ξ

= ≈  can be deduced. The small γb strongly supports the 

conclusion of high interfacial transparency between Nb and Cu0.5Ni0.5. This result is 

consistent with that of γb < 0.4 from the analysis of the thickness-dependent TC and 

with that of the large pair-breaking ratio χ  from the behavior of the Hc2 dimensional 

crossover. 

    It is of interest how the interface resistance changes when S becomes 

superconductive. The opening of superconducting gap, Δ, at the Fermi energy and 

the decrease in population of quasiparticles, make S a low carrier system for spin 

transport. However, current can flow through the sample in response to a small 

voltage less than Δ by means of the Andreev reflection in the metallic junction. For 

instance, a spin-up electron injected from a normal metal is retroreflected at the 
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interface as a spin-down hole in order to form a Cooper pair in the superconductor. 

[43] On the other hand, the exchange splitting of the conduction band in F would 

suppress the Andreev current at F/S interface and leads to the necessity of the spinless 

current inside S. [38] Furthermore, the spin accumulation and spin flipping scattering 

at the interface bring about additional voltage drop across the interface and a 

reduction of spin transport into S. [44] All of the phenomena mentioned above can be 

responsible for the larger interface resistance of Cu0.5Ni0.5/Nb in the superconducting 

state than in the normal state. Since the individual effect on interface resistance cannot 

be differentiated based on the results obtained here, a quantitative analysis of the 

distinctive contribution to interface resistance is beyond the scope of this work.  

Figure 7.9: Unit area resistance, ART, versus Cu0.5Ni0.5 thickness measured at 4.2 K. 
The dashed line is a linear least-square fit. The solid line is a global fit for three 
parameters to the data. Inset: the top view geometry of the current perpendicular to 
plane (CPP) configuration for this series sample. Sample is sandwiched between two 
superconducting electrodes of Nb stripes used for the four-point measurement. 
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Chapter 8  

Summary 
 

The proximity effect between a superconductor and ferromagnet produces 

damped oscillatory behavior of the Cooper pair wave function in the ferromagnet. The 

proximity effect can couple through the interfaces between the layers where the 

superconducting and ferromagnetic regions are spatially separated. Superconductivity 

in such a heterogeneous system is a superposition of the superconductivities of the 

Bardeen-Cooper-Schrieffer (BCS) type in S layers and of the 

Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) type in F layers. This effect results in a 

nonmonotonic TC behavior depending on the layer thickness, which can be 

theoretically described by a boundary-value problem for Cooper pair amplitude 

(Usadel function). This dissertation attempts to quantitatively study the transport 

property at F/S interface resulting from the proximity effect.  

    The samples used in this dissertation were prepared by sputter deposition system. 

We have designed three different kinds of formation to study the proximity effect in 

the F/S layer system including superconductor alloy, strong ferromagnet, and weak 

ferromagnet. Interface transparency is an important parameter to study the proximity 

effect, since the quality of the interface transparency would affect the coupling 

mechanism between the S and the F.  However, it is usually treated as a fitting 

parameter for suitable boundary condition associated with the non-monotonic or the 

monotonic behavior of the superconductor critical temperature TBC B as functions of 

layer thicknesses. Here, we can quantitatively derive the interface transparency in 

term of interface resistance for different types of F/S layer system by CPP 

measurement and compare to the theoretical parameter of proximity effect from the 
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fitting procedure for the TBC B behavior.  

In Chapter 5, we have experimentally studied the proximity effect in Co/Nb, 

Co/NbB0.6 BTi B0.4 B, and Co/NbB0.4 BTiB0.6 B trilayer and multilayer samples by the measurement 

of thickness-dependent superconducting transition temperature. The critical thickness, 

the superconducting coherence length, and the proximity strength have been deduced 

from the analysis of experimental data within the framework of the Radovic´ model 

under the single mode approximation. By performing the CPP measurement, we have 

presented the linear behavior of the CPP resistance in both normal and 

superconducting states of three different S materials in F/S multilayers. The best fits 

by the one-band model to normal and superconducting states data give quantitative 

values of interface resistance. The normal state interface resistances are unexpectedly 

large. These direct measurements of the metallic interface resistance demonstrate that 

the interface transparency can be extracted and discussed quantitatively. We have also 

discussed the superconducting state interface resistance with the Pippard model. The 

AR between S and F is proportional to ρBs Bl BaB, which suggesting that the scattering 

centers and the penetration depths of the electron evanescent wave into the 

superconductors give rise to the interface resistance that conforms to the Pippard 

model. These analyses are important in understanding the transport properties 

between strong ferromagnets and superconductors in the diffusive regime.  

In the Fe/Nb and Ni/Nb layer system, we have studied the proximity effect and 

the superconducting properties of Fe/Nb and Ni/Nb trilayers and multilayers. First, 

the critical thickness, and the superconducting coherence length are deduced from the 

analysis of experimental data by analyzing the Nb thickness dependence of TBC Bin 

terms of the Usadel’s equation. Secondly, a gradual transition from 2D to 3D 

superconductivity crossover corresponding to the Ginzburg-Landau relation, 

determined from the temperature-dependent HBc2 B, occurs around Nb thickness between 
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120 and 140 nm for Fe/Nb system, 145 and 185 nm for Co/Nb system, and around 

100 and 130 nm for Ni/Nb system . The best fit by the one-band model can derive the 

absolute value of interface resistance in the diffusive samples within CPP 

measurement. The unit area resistance of Fe/Nb interface is 2ARBFe/Nb(NM)B=2.0±0.9 fΩ 

mP

2
P for normal Nb and 2ARBFe/Nb(S)B=6.0±0.4 fΩ mP

2
P for superconducting Nb with bias 

voltage much less than the superconducting gap. The unit area resistances of one pair 

of the Ni/Nb interface are 4.2±0.2 and 1.5±0.4 fΩ mP

2
P at superconducting and normal 

Nb states, respectively. The spin accumulation leads to enhanced resistance whereas 

Andreev reflection can lead to decreased resistance. The diffusive interface resistance 

between F and S should account for the competition between these two mechanisms. 

The interface transparency parameter and transport polarization can be directly 

extracted from the interface resistance. The influence of lattice mismatched is found 

to be important, and proved by the first principal calculation. Our result suggests that 

the interface resistance is sensitive to the lattice mismatched metal pairs in Nb/Ni, 

Nb/Fe, and Nb/Co system, and this observation is consistent with the first principle 

calculation.   

For the weak ferromagnetic system as shown in Chapter 7, we have investigated 

the influence of interfacial transparency on the critical temperature and the upper 

critical magnetic field in the CuB0.5 BNi B0.5 B/Nb layered system. An analysis of the TBcB 

dependence of the S and F layer thicknesses within the framework of the proximity 

theory shows that the large S critical thickness originates from the high transparency 

of the CuB0.5 BNi B0.5B/Nb interface. The critical temperature is studied based on the 

solutions of the Usadel equations subject to the boundary conditions developed by 

Fominov. We have noticed that the effect of a small variation of bγ  is barely 

distinguishable in the behavior of TBC B(d BSB) but is sensitive to the behavior of TBC B(dBFB) 
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which can be achieved more easily by reliably controling F thickness over a large 

range due to weak exchange energy. From the temperature dependence of HBc2 B, we 

have found that the rather high interfacial transparency results in a strong 

pair-breaking effect, which in turn influences the thickness at which the 2D to 3D 

crossover takes place. In the CPP measurements, the resistance increases linearly with 

the number of bilayers in both the normal and superconducting states. The interface 

resistance is then deduced from the best global fit with the one-band model. We have 

demonstrated that the interfacial transparency ( 0.2bγ ≈ ) can be quantitatively 

extracted from experimental measurements, and that it corresponds to the quantity 

used in the boundary condition in the microscopic model. With both the qualitative 

and the quantitative approaches performed in this study, the strong pair-breaking 

effect in the weak ferromagnetic layer is understood to result from the high interfacial 

transparency between the Cu B0.5 BNi B0.5 B and Nb interface. 

In this dissertation, the use of current perpendicular measurement to study the 

F/S proximity effect can provide important and useful information for understanding 

complex interfacial transport in F/S heterostructures. The spin accumulation, the 

Andreev reflection, spin polarization, lattice mismatch, and interfacial transparency 

are all included in the interface resistance for the superconducting state or normal 

state. We can quantitatively analyze the interfacial transport of F/S heteroestructure by 

CPP measurement. 
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Appendix A 

Calculating TC 

 

A.1 Rodivic’s model: TC(dS) 

 

(* **************************************************** *) 

(* Program dsepsln                                       *) 

(*                                                     *) 

(* Tc vs ds of PRB61-3711                                 *) 

(* **************************************************** *) 

 

Needs["Statistics`NonlinearFit`"]; 

SetDirectory["d:"]; 

SetDirectory["a"]; 

Print["Set current working directory to ",Directory[]]; 

 Set current working directory to  D:\a 

(*  dm:thickness of magnetic layer                   *) 

(*  xis:superconducting coherence length              *) 

(*  xim:penetration depth of Cooper pairs in F layer      *) 

(*   tc:maximum superconducting transition temperature  *) 

(*epsln:                                           *) 
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(* ************************* *) 

(* input data and parameters     *) 

(* ************************* *) 

 

 

infilename="a.txt";  

dm=20; 

xim=1; 

tc0=8.5; 

thexis=1; 

nk=400; 

incrmk=10.; 

epsln=1; 

nj=200; 

incrmj=10.; 

dsfit=Range[10,700,2]; 

(* ************ *) 

(* End of input *) 

(* ************ *) 

 

plt[x_,y_]:=ListPlot[Thread[Join[{x},{y}]]]; 

plt[x_]:=Module[{xtemp,ytemp}, 

   If[Length[x]==4, 

   xtemp=Part[x,1];ytemp=Part[x,2]; 

   ListPlot[Thread[Join[{xtemp},{ytemp}]]], 
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   ListPlot[x]] 

   ]; 

g[z_]:=PolyGamma[z]; 

thephi:=FindRoot[phi Tan[phi]==rhs,{phi,1+I},MaxIterations->500]; 

thetc:=FindRoot[Log[tc]==g[0.5]-Re[g[0.5+ rho/tc]], 

       {tc,0.1,1},MaxIterations->500]; 

thetcfit:=tc0 tc/.Part[thetc,1]; 

 

outfilename=StringJoin[StringDrop[infilename,-3],"fit"]; 

{dsdata, tcdata}=Transpose[ReadList[infilename, {Number, Number}]]; 

step=Length[tcdata]; 

(* dsdata=dsdata 2.5; *) 

 

tcfit=Table[1,{step}]; 

eps=Table[1,{nj}]; 

xiss=Table[1,{nk}]; 

chi=Table[1,{nk},{nj}]; 

 

For[k=1,k<=nk,k++, 

   xis=thexis+(k-1)/incrmk; 

   Part[xiss,k]=xis; 

   For[j=1,j<=nj,j++, 

      epsilon=epsln+(j-1)/incrmj; 

      Part[eps,j]=epsilon; 

      For[i=1,i<=step,i++, 

         ds=Part[dsdata,i]; 
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         rhs=(1+I)/epsilon ds/xis Tanh[2(1+I)dm/xim]; 

         rho=2 phi^2/(ds/xis)^2/.Part[thephi,1]; 

         Part[tcfit,i]=thetcfit; 

      ]; 

      chi2=Apply[Plus,(tcdata-tcfit)^2]; 

      If[chi2  Reals,Part[chi,k,j]=chi2,Part[chi,k,j]=10^10];　  

   ]; 

]; 

 

{mink,minj}=Position[chi,Min[chi]][[1]]; 

xis=Part[xiss,mink]; 

epsilon=Part[eps,minj]; 

Print["xis=", xis, ", epsilon=", epsilon,  

", Tc=", tc0, ", xim=", xim, ", chi^2=", Part[chi,mink,minj]]; 

Print["{k,j}=", mink, ",", minj]; 

  

  

(* *************** *) 

(* Display results    *) 

(* *************** *) 

 

outfile=OpenWrite[outfilename,FormatType -> OutputForm]; 

tcfit=dsfit; 

step=Length[dsfit]; 

For[j=1,j<=step,j++, 

   ds=Part[dsfit,j]; 
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   rhs=(1+I)/epsilon ds/xis Tanh[2(1+I)dm/xim]; 

   rho=2 phi^2/(ds/xis)^2/.Part[thephi,1]; 

   Part[tcfit,j]=thetcfit; 

   Write[outfile,ds," ",Part[tcfit,j]]; 

]; 

Close[outfile]; 

 

SetOptions[ListPlot, Frame->True, PlotRange->All, AspectRatio->1.2, 

   FrameLabel->{"ds (A)", "Tc (K)"}, RotateLabel->True, 

PlotJoined False,PlotStyle　 ->PointSize[0.025],DisplayFunction->Identity]; 

p1=plt[dsdata,tcdata]; 

SetOptions[ListPlot,PlotStyle->RGBColor[0,0,1],PlotJoined  　

True,DisplayFunction->Identity]; 

p2=plt[dsfit,tcfit]; 

s1=Show[p1,p2,DisplayFunction->$DisplayFunction]; 

 

 

 

 

 

 

 

 

 

 

 



 209

A.2 Fominov’s model: TC(dF) 

 

(* **************************************************** *) 

(* Program fominov-dffit                                  *) 

(*                                                     *) 

(* Tc (df) of A. Armonio et. al PRB76-024515                 *) 

(* **************************************************** *) 

 

Clear["@"]; 

Needs["Statistics`NonlinearFit`"]; 

SetDirectory["G:"]; 

SetDirectory["df-rb-fitting test different"]; 

Print["Set current working directory to ",Directory[]]; 

 

(* ************************* *) 

(* input data and parameters     *) 

(* ************************* *) 

infilename="dCuNi.dat"; 

fitex=0; (* "1" for E_ex, "2" for gamma_b, "3" for large range fitting, and "0" for non 

of them *) 

ex=80 kb; (* meV *) (* the starting point of E_ex *) 

exend=80 kb; (* the end point of E_ex *) 

increx=1 kb; (* the increment of E_ex *) 

gammab=0.1; (* the starting point of gammab *) 

gaend=0.1; (* the end point of gammab *) 
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incrga=0.1; (* the increment of gammab *) 

ds=37; (* nm *) 

tc0=6.5; (* K *) 

rhos=30; (* \mu\Omega cm *) 

xis=12; (* nm *) 

rhof=60; (* \mu\Omega cm *) 

xif=6; (* nm; it's xif* in the paper *) 

kb=0.08617; (* meV/K *) 

gs=7 10^-4; (* J/K^2 cm^3 *) 

vs=2.73 10^7; (* cm/s *) 

q=1.60219 10^-19; (* C *) 

kj=1.38062 10^-23; (* J/K *) 

hbar=6.6262 10^-34/(2 Pi); (* J s *) 

 

(*Get[StringReplace[infilename,"dat"->"pmt"]]; *) (* read input data file *) 

(* end of input *) 

 

rl:=<</win/2007-08/iopas/fominov-dffit; 

 

plt[x_,y_]:=ListPlot[Thread[Join[{x},{y}]]]; 

plt[x_]:=Module[{xtemp,ytemp}, 

   If[Length[x]==4, 

   xtemp=Part[x,1];ytemp=Part[x,2]; 

   ListPlot[Thread[Join[{xtemp},{ytemp}]]], 

   ListPlot[x]] 

   ]; 



 211

g[z_]:=PolyGamma[z]; 

 

theomega:=FindRoot[x Sin[x ds/xis]==rhs Cos[x ds/xis],{x,.5 Pi 

xis/ds},MaxIterations->500]; 

 

thetc:=FindRoot[Log[tc0/y]==g[0.5+0.5 omega^2 tc0/y]-g[0.5], 

       {y,tci},MaxIterations->500]; 

 

gamma:=rhos xis/(rhof xif); 

ks:=(1/xis)Sqrt[tci/tc0]; 

as:=ks xis Tanh[ks ds]; 

kf:=(1/xif)Sqrt[(Pi kb tci+I exl)/(Pi kb tc0)]; 

bf:=1/(kf xif Tanh[kf df]); 

rhs:=gamma (as(gal+Re[bf])+gamma)/  

(as Abs[gal+bf]^2+gamma(gal+Re[bf])); 

 

caltc:=Module[{}, 

lf=1/(vs gs rhos) (Pi kj/q)^2; 

dif=vs lf/3; 

xis=Sqrt[hbar dif/(2 Pi kj tc0)] 10^10; 

rhs; 

omega=x/.theomega; 

tc=y/.thetc; 

 

count=0; 

While[Abs[tci-tc]>0.01, 
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count+=1; 

tci=tc; 

rhs; 

If[count>20,x0=0.1]; 

omega=x/.theomega; 

tc=y/.thetc; 

]; 

]; 

 

fitloop:=Module[{}, 

For[i=1,i<=step,i++, 

df=Part[xdata,i]; 

tci=Part[tcdata,i]; 

If[tci>tc0,tci=2tc0-tci]; 

caltc; 

Part[tcfit,i]=tc; 

]; 

chi2=Re[Apply[Plus,(tcfit-tcdata)^2]]; 

Print["E_ex=",exl,"   ","gammab=",gal,"   ","chi2=",chi2]; 

]; 

 

longfitting:=Module[{}, 

jmax=1+(exend-ex)/increx; 

kmax=1+(gaend-gammab)/incrga; 

mchi=Table[10^6,{jmax+.1},{kmax+.1}]; 

outname=StringReplace[infilename,"dat"->"log"]; 
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outfile=OpenWrite[outname,FormatType->OutputForm]; 

Write[outfile,"E_ex gammab chi2"]; 

For[j=1,j<=jmax,j++, 

gal=gammab; 

exl=ex+(j-1)increx; 

For[k=1,k<=kmax,k++, 

  gal=gammab+(k-1)incrga; 

  fitloop; 

  Part[mchi,j,k]=chi2; 

  Write[outfile,exl," ",gal," ",chi2]]; 

]; 

Close[outfile]; 

minchi=Min[mchi]; 

{{j,k}}=Position[mchi,minchi]; 

ex=exl-(jmax-j) increx; 

gammab=gal-(kmax-k) incrga; 

Print[]; 

Print["Min[chi2]=",minchi,"   at   E_ex=",ex,"   gammab=",gammab]; 

]; 

 

(* *************** *) 

(* Display results    *) 

(* *************** *) 

displ:=Module[{}, 

SetOptions[ListPlot, Frame->True, PlotRange->All, AspectRatio->1.2, 

   FrameLabel->{"df (nm)", "T_c (K)"}, RotateLabel->True, PlotJoined->False, 



 214

   PlotStyle->RGBColor[0,0,1], DisplayFunction->Identity]; 

p1=plt[xdata,tcdata]; 

SetOptions[ListPlot, PlotJoined->True,PlotStyle->RGBColor[1,0,0]]; 

p2=plt[xdata,tcfit]; 

Show[p1,p2,DisplayFunction->$DisplayFunction, 

PlotLabel->FontForm[" ",{"Courier",8}]]; 

]; 

(* end of displ *) 

 

(* ********* *) 

(* save data  *) 

(* ********* *) 

savedata:=Module[{}, 

outx=outy=Range[0.1,Ceiling[Max[xdata]]+5,0.1]; 

step=Length[outx]; 

For[i=step,i>0,i--, 

df=Part[outx,i]; 

(* If[i==step,tci=tc0-0.1,tci=Part[outy,i+1]]; *) 

If[i==1,tci=tc0-.5,tci=Part[outy,i-1]]; 

If[tci>tc0,tci=2tc0-tci]; 

caltc; 

Part[outy,i]=tc; 

]; 

outfilename=StringReplace[infilename,"dat"->"fit"]; 

outfile=OpenWrite[outfilename,FormatType->OutputForm]; 

For[i=1,i<=step,i++, 
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Write[outfile,Part[outx,i]," ",Part[outy,i]] 

]; 

Close[outfile]; 

SetOptions[ListPlot,DisplayFunction->$DisplayFunction]; 

plt[outx,outy]; 

]; 

(* end of save data *) 

 

(* ********* *) 

(* Main loop *) 

(* ********* *) 

{xdata, tcdata}=Transpose[ReadList[infilename, {Number, Number}]]; 

step=Length[tcdata]; 

tcfit=Table[1,{step}]; 

exl=ex; 

gal=gammab; 

Switch[fitex, 

0,fitloop;displ;savedata, 

1,For[j=1,j<=11,j++,fitloop;displ;exl+=increx], 

2,For[j=1,j<=11,j++,fitloop;displ;gal+=incrga], 

3,longfitting]; 

(* end of main loop *) 
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A.3 Fominov’s model: TC(dS) 

 
(* **************************************************** *) 

(* Program fominov-ds                                    *) 

(*                                                     *) 

(* Tc (ds) of A. Armonio et. al PRB76-024515                 *) 

(* **************************************************** *) 

 

Clear["@"]; 

Needs["Statistics`NonlinearFit`"]; 

SetDirectory["M:"]; 

SetDirectory["fitting-rb-Tc-CuNi"]; 

Print["Set current working directory to ",Directory[]]; 

 

(* ************************* *) 

(* input data and parameters     *) 

(* ************************* *) 

infilename="NbCuNi Tc.dat"; 

fitex=0; (* "1" for fitting E_ex, "2" for gamma_b, and "0" for non of them *) 

ex=8.6; (* meV *) 

gammab=0.1; 

df=50; (* nm *) 

(* tc0:=8.8(1-8.78/ds); *)(* K *) tc0=8.8; 

(* rhos=17; (* \mu\Omega cm *) *) 

(* f[x_]:=37.88297/(1+0.00435 x); *) (* rhos *)f[x_]:=8; 

rhof=75; (* \mu\Omega cm *) 
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xif=8.3; (* nm; it's xif* in the paper *) 

kb=0.08617; (* meV/K *) 

gs=7 10^-4; (* J/K^2 cm^3 *) 

vs=2.73 10^7; (* cm/s *) 

q=1.60219 10^-19; (* C *) 

kj=1.38062 10^-23; (* J/K *) 

hbar=6.6262 10^-34/(2 Pi); (* J s *) 

t[x_]:=9.1789(1-24.858/x); (* tci for estimating thex0 *) 

(* theomega fitted in the range (1.7,2.4) Pi xis/ds *) 

 

(*Get[StringReplace[infilename,"dat"->"pmt"]]; *) (* read input data file *) 

(* end of input *) 

 

 

rl:=<</win/2007-08/iopas/fominov-ds; 

 

plt[x_,y_]:=ListPlot[Thread[Join[{x},{y}]]]; 

plt[x_]:=Module[{xtemp,ytemp}, 

   If[Length[x]==4, 

   xtemp=Part[x,1];ytemp=Part[x,2]; 

   ListPlot[Thread[Join[{xtemp},{ytemp}]]], 

   ListPlot[x]] 

   ]; 

g[z_]:=PolyGamma[z]; 

theomega:=FindRoot[x Sin[x ds/xis]==rhs Cos[x ds/xis],{x,1.0 Pi 

xis/ds},MaxIterations->500]; 
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thetc:=FindRoot[Log[tc0/y]==g[0.5+0.5 omega^2 tc0/y]-g[0.5], 

       {y,tci},MaxIterations->500]; 

(* thex0:=FindRoot[Log[tc0/tci]==g[0.5+0.5 x^2 

tc0/tci]-g[0.5],{x,0.01},MaxIterations->500]; *) 

 

gamma:=rhos xis/(rhof xif); 

ks:=(1/xis)Sqrt[tci/tc0]; 

as:=ks xis Tanh[ks ds]; 

kf:=(1/xif)Sqrt[(Pi kb tci+I ex)/(Pi kb tc0)]; 

bf:=1/(kf xif Tanh[kf df]); 

rhs:=gamma (as(gammab+Re[bf])+gamma)/  

(as Abs[gammab+bf]^2+gamma(gammab+Re[bf])); 

 

caltc:=Module[{}, 

rhos=f[ds]; 

lf=1/(vs gs rhos) (Pi kj/q)^2; 

dif=vs lf/3; 

xis=Sqrt[hbar dif/(2 Pi kj tc0)] 10^10; 

rhs; 

(* x0=Abs[x]/.thex0; *) 

omega=x/.theomega; 

tc=y/.thetc; 

 

count=0; 

While[Abs[tci-tc]>0.01, 

count+=1; 
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tci=tc; 

rhs; 

If[count>20,x0=0.1]; 

omega=x/.theomega; 

tc=y/.thetc; 

]; 

]; 

 

(* *************** *) 

(* Display results    *) 

(* *************** *) 

displ:=Module[{}, 

SetOptions[ListPlot, Frame->True, PlotRange->All, AspectRatio->1.2, 

   FrameLabel->{"ds (nm)", "T_c (K)"}, RotateLabel->True, PlotJoined->False, 

   PlotStyle->RGBColor[0,0,1], DisplayFunction->Identity]; 

p1=plt[xdata,tcdata]; 

SetOptions[ListPlot, PlotJoined->True,PlotStyle->RGBColor[1,0,0]]; 

p2=plt[xdata,tcfit]; 

Show[p1,p2,DisplayFunction->$DisplayFunction, 

PlotLabel->FontForm[" ",{"Courier",8}]]; 

]; 

(* end of displ *) 

 

(* ********* *) 

(* save data *) 

(* ********* *) 
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savedata:=Module[{}, 

If[Max[xdata]>20,dx=1.;xstart=Floor[Min[xdata]];xend=Ceiling[Max[xdata]]+1,dx=

0.1;xstart=Min[data];xend=Ceiling[Max[xdata]]]; 

If[xend<200,outx=outy=Join[Range[xstart,100,1],Range[102,xend+5,2]], 

outx=outy=Join[Range[xstart,100,2],Range[105,200,5],Range[210,xend+10,10]]]; 

step=Length[outx]; 

For[i=step,i>0,i--, 

ds=Part[outx,i]; 

(* If[i==step,tci=tc0-0.1,tci=Part[outy,i+1]]; *) 

tci=t[ds]; 

If[tci>tc0,tci=2tc0-tci]; 

caltc; 

Part[outy,i]=tc; 

]; 

outfilename=StringReplace[infilename,"dat"->"fit"]; 

outfile=OpenWrite[outfilename,FormatType->OutputForm]; 

For[i=1,i<=step,i++, 

Write[outfile,Part[outx,i]," ",Part[outy,i]] 

]; 

Close[outfile]; 

SetOptions[ListPlot,DisplayFunction->$DisplayFunction]; 

plt[outx,outy]; 

]; 

(* end of save data *) 

 

(* ********* *) 
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(* Main loop *) 

(* ********* *) 

{xdata, tcdata}=Transpose[ReadList[infilename, {Number, Number}]]; 

step=Length[tcdata]; 

tcfit=Table[1,{step}]; 

Print["E_ex=",ex,"   ","gamma_b=",gammab]; 

 

For[j=1,j<=10,j++, 

If[fitex==0,j=10,If[fitex<2,ex+=0.1,gammab+=0.01]]; 

 

For[i=1,i<=step,i++, 

ds=Part[xdata,i]; 

tci=t[ds]; 

If[tci>tc0,tci=2tc0-tci]; 

caltc; 

Part[tcfit,i]=tc; 

]; 

 

chi2=Re[Apply[Plus,(tcfit-tcdata)^2]]; 

displ; 

If[fitex==0,savedata]; 

Print["E_ex=",ex,"   ","gammab=",gammab,"   ","chi2=",chi2]; 

]; 

(* end of main loop *) 
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Appendix B 

The Activation Energy in Ni/Nb Layered System 
 

The temperature dependence of Hc2 contains the information of the flux pinning 

mechanism in superconductor, which can be revealed by analyzing the activation 

energy of the thermally assisted flux flow (TAFF). TAFF can be detected through the 

resistivity versus temperature curves for different applied fields. The activation energy 

U0 is estimated by the Arrhenius law, [1] ρ = ρ0 exp(-U0 / kBT), where ρ0 is a 

field-independent pre-exponential factor. For comparison, a monolayer of 240 nm Nb 

film and a 2D (Cu50Ni50/Nb) multilayer with the same total Nb thickness have been 

prepared. Figure 7.7 shows the activation energy of flux flows versus applied field H. 

The difference of activation energy between the parallel and perpendicular field are 

relatively small in the pure Nb film, while for the dNb = 40 nm of multilayer sample, 

the U0 for parallel field are four times the value for perpendicular field, which 

implying an easier TAFF due to vertex decoupling across Cu50Ni50 interlayers in 2D 

system. In the MgB2/Mg2Si multilayer, U0 for parallel field are significantly larger 

than the pure MgB2 film due to the vortices trapping in the non-superconducting 

Mg2Si layers. [2] Thus, in Figure 7.7, the U0 for parallel field show the same level of 

flux pinning between our Cu50Ni50/Nb multilayer and pure Nb can be attributed to the 

high interface transparency between Nb and Cu50Ni50. Therefore, the Hc2 

measurement provides a lot of useful information such as the strength of pair breaking 

and flux pinning in studying the proximity effect in F/S system. 
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Figure B.1: Activation energy U0 of flux flow versus parallel and perpendicular 
applied field for (Cu50Ni50/Nb)6/Cu50Ni50 multilayer with dNb = 40 nm and monolayer 
Nb with dNb = 240 nm. Open symbols are for monolayer and solid symbols for 
multilayers. Data for parallel field are in triangles and for perpendicular field in 
circles. 
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