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Abstract— In multiple-input multiple output (MIMO) systems,
maximum likelihood (ML) detection can provide good perfor-
mance, however, exhaustively searching for the ML solution
becomes infeasible as the number of antenna and constellation
points increases. Thus ML detection is often realized by K-best
sphere decoding algorithm.

In this paper, two techniques to reduce the complexity of
K-best algorithm while remaining an error probability similar
to that of the ML detection is proposed. By the proposed
K-best with predicted candidates approach, the computation
complexity can be reduced. Moreover, the proposed adaptive
K-best algorithm provides a means to determine the value K
according the received signals. The simulation result shows that
the reduction in the complexity of 64-best algorithm ranges from
48% to 85%, whereas the corresponding SNR degradation is
maintained within 0.13dB and 1.1dB for a 64-QAM 4 x 4 MIMO
system.

I. INTRODUCTION

Recently, multiple-input multiple-out (MIMO) systems are
applied in many wireless applications for better transmission
efficiency and signal quality due to the inherent diversity gain
provided by the multi-path environment. Maximum-likelihood
(ML) sequence detection is one of the detection schemes for
detecting the received signals in MIMO systems. By searching
for the constellation point nearest to the received signal,
ML detection 1s optimized for minimizing the symbol error
probabilities, but exhaustive search becomes infeasible since
the computation complexity grows as the number of antenna
or the constellation points increases. Sphere decoding (SD)
algorithm can reduce the computation complexity by confining
the number of constellation points to be searched, Fincke-
Pohst [1] and Schnorr-Euchner [2] are two of the most com-
mon computationally efficient search strategies for realizing
the ML detection. Nevertheless, the difficulties in hardware
implementation arise because of the non-constant computation
complexity and decoding throughput. Alternatively, K-best
SD algorithm [3], [4] simplifies the hardware implementation
of SD algorithm by keeping at most K best paths in each
layer, leading to fixed-throughput and predictable complexity.
Note that the term layer refers to the signal constellations
of an transmit antenna. However, K-best SD algorithm can
not guarantee ML performance since the ML path might
be eliminated due to the breadth-first nature of K-best SD
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search approach. Thus the value of K should be large enough,
and the value K dominates the performance and computation
complexity.

In this paper, two modified K-best SD algorithms are pro-
posed for reducing the computation complexity while remain-
ing the performance similar to ML detection. The K-best algo-
rithm with predicted candidates, one of our proposed methods,
reduces the computation by only computing a fraction of the
paths before selecting the K best candidates. Moreover, an
adaptive K -best algorithm is proposed, providing an adaptive
selection of K by observing the ratio of the second minimum
and minimum of all paths at the first decoding layer. According
to our simulation results, the proposed techniques can achieve
at most 85% complexity reduction when comparing to con-
ventional 64-best SD algorithm.

The rest of this paper is organized as the following. The
system model, SD algorithm, and K-best SD algorithm are
briefly described in Section II. In Section 111, the two proposed
detection schemes are presented. The bit error probabilities of
the proposed schemes are simulated in a 4 x 4 MIMO system
of uncorrelated flat-fading channels, and the simulation results
and comparisons are given in Section IV. Finally, Section VI
concludes this work.

II. SPHERE DECODING FOR MIMO SYSTEM

For a MIMO system with Np transmit antennas and Np
receive antennas, the transmitted and received signals can be
represented by

y = HS + a, (D

where ¥ is the Np x 1 received complex signals, H is an
Npr x Np matrix of independent and identical distributed
(1.1.d.) circular Gaussian random variables (flat fading is as-
sumed), § is an N7 x 1 complex vector representing the signals
transmitted by each transmit antenna, and n is the N x 1
1.1.d. complex Gaussian noise vector. Moreover, the complex
model in (1) is often described by the equivalent real-valued
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representation, which is
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This is also referred to as the real value decomposition. For
QAM signals, real value decomposition transforms the com-
plex constellation into two real-valued PAM constellations,
which can result to fewer computation.

For detecting the received signals, maximum likelihood
(ML) sequence detection is one of the MIMO system detection
technique that optimizes the symbol error probability. Accord-
ing to the system model described in, Fig.1 ML detection
is equivalent to searching for the vector § that minimizes
|ly — Hs||*. That is,

N . 2

= argmin [ly — Hs||", €)
where (2 is the set consisting of all possible 2/V;-dimensional
signal constellation points. Fig.1 shows the simplified block
diagram of a MIMO receiver. The channel estimator provides
the required channel state information H. By QR decomposi-
tion, the channel matrix H is decomposed by H = QR, and
(3) can be rewritten as

ly —Hs|” = (s —szr)"H"H(s — sr)
+ ¥ - HEYH)THT)y
and
§ = argmin(s — sye)THTH(s — s,¢)
seQ

= argmins”"R"Rs. )
sEQ
Note that the matrix R derived from QR decomposition is an
upper triangular matrix with non-negative diagonal elements,
and HTH=RH" R. Moreover, s,¢ is the zero-forcing (ZF)
solution that can be derived by s = HTy for H is the
pseudo-inverse of H. It is perceived that § = s — s,¢ is the
distance from the candidates of signal to the ZF solution.
Due to the triangular form of R, we can rewrite (4) as

2
Ny Nu
$ = argmin E Yi — E Rijs(»l) ,
s} 4 e J
=1 j=t

where R;; and s; denote the ¢-th row, j-th column of R and
the j-th element of s. Moreover, we can define e(s(”}), the
partial square Euclidean distance(PED) of the i-th layer, by
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where sV = [s;" s} - - s n,]" and s( 7 is the j-th element of
s(2 Then the accumulated Euchdean distance corresponding
to the candidate s can be derived recursively from the

e(st) = (6)
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PED and the accumulated FEuclidean distance corresponding
to s(+1) | denoted by T'(s*t1)), that is

TE) = (D) + efs). ™

The detection process starts from i=Np, resulting to a tree-
structure, or called depth-first, search strategy. However, ex-
haustively searching for the ML solution becomes infeasible
[5] since the computation complexity grows exponentially
with N, or the number of constellation points. Thus, sphere
decoding (SD) algorithm has been proposed and recognized
as a powerful means to solve the ML detection problems [6]
[4]. SD algorithm reduces the computation by restricting the
search range. Instead of searching all candidates in €2, SD
algorithm constrains a much smaller search range Qgp =
{s : 8 RH¥R5 < r?}; only the candidates in Qgp will be
compared. By the aforementioned procedure, the candidate
of the smallest T'(s(")) is always the ML solution as long
as r is properly defined. However, not only the value r,
but the computation varies with SNR, leading to a non-
constant decoding throughput. Hardware implementation of
SD algorithm becomes complicated.

K -best SD algorithm is an alternative method that improves
the decoding throughput. It simplified the original SD algo-
rithm and maintains a constant throughput by keeping only
the K smallest accumulated PED at each layer. However,
K-best SD algorithm can not guarantee the performance of
ML detection since the ML solution may be eliminated when
it is not of the K best accumulated PEDs. Thus, larger K
is required and the value K becomes a tradeoff between
complexity and error performance.
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Fig. 1. Block diagram of MIMO detection

Fig. 2 illustrates the bit error rate of a 4 x 4 MIMO detector
of different values of K, and there is performance degradation
when K is chosen too small.

III. PROPOSED K-BEST SD ALGORITHM WITH PREDICTED
CANDIDATES

Although K -best SD algorithm remains constant throughput
and computation, its computation complexity is not necessarily
lower than the conventional SD algorithm since all the PEDs
of each layer still need to be calculated. However, only the
K PEDs resulting to the K best accumulated PEDs can affect
the PED calculation in the next decoding layer. That is, part
of computations of the PEDs are unnecessary. A method to
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predict the more likely PEDs is presented in the following.
Only a fraction of the PEDs are computed, and thus, the
computation can be greatly reduced.
At decoding layer ¢, the point §; resulting in the smallest
PED for a given s“*1) can be derived by
s (1) _ YiT Z}N:Tz‘ﬂ RiJSE’LH)
50D = it , @®
(2
i+1)

and only the L — 1 points nearest to §;( will be computed
for e(s{”). That is, the sgl) of the vector s(? will be &)
and its . — 1 nearest constellation points. Only L PEDs from
e(s(+1)) should be calculated instead. Accordingly, we can
always have the PED values computed in an ascending order,
and the first L smallest PEDs will contribute to more likely
candidates. Fig.3 is a 64-QAM example with L = 3. The
constellation corresponds to the ¢-th layer is denoted as S;, as
the figure shows, the points with of cross mark is the §0+1),
and only the three constellation points (linked by solid lines)
will be computed. Thus, the computation complexity can be
reduced, especially when Nt is large.

IV. PROPOSED ADAPTIVE K -BEST SPHERE DECODING
ALGORITHM

In the previous section, a scheme was proposed to predict
the more likely PEDs. Instead of K, only L PEDs are
required to be computed for the given s(it1). However, the
error probability arises when L is chosen too small, and L
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should be increased to reduce this degradation. Alternatively,
determining a proper K value is another way to reduce
complexity and error probability. Due to fading, the signals
suffer from low SNR when they are in deep fades, and K
should be chosen larger. Contrarily, smaller K is sufficient
when the signal strength is high. Dynamic K implies an signal
quality indicator is required.

A technique for supporting dynamic K which is referred as
adaptive K -best algorithm , provides a means to observe the
required signal quality. For a MIMO system of Ny transmit
antennas, this indicator can be acquired by the ratio

R = R ©)
where M5 and M, are the second minimum and minimum of
the N;-th decoding layer, respectively. It can be observed that
when the value R is below some threshold, the probability
of the ML path being eliminated during the K-best SD
processing increases.

Fig.4 is an illustrative example of a 4 x 4 64-QAM system,
which shows the relation between 7' and the symbol error
probability conditioned on the value T'. The curve stands for
the probability Pr(R < T), and the histogram shows the
the conditional symbol error probability. It is perceived that
symbol error probability is small as T increases. Thus, the
value K can be determined by first computing R in (9), then
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The probability of R < T and the conditional symbol error

The value R can be regarded as a signal quality indicator
of the visited signals. In fact, at each decoding layer, there 1s
always a corresponding R, and the layer number in which
R is determined becomes a tradeoff between computation
complexity and performance. If R is determined at the first few
decoding layers, the computation of the rest of the decoding



layers can be reduced if K = K> is chosen. However, if
R is determined earlier, there are chances that R cannnot
provide sufficient information to report the signal quality and
the performance will degrade.

V. SIMULATION RESULTS

In this section, a 4 x 4 MIMO system is simulated for com-
paring the proposed schemes and the conventional SD and K -
best algorithms (K = 64), whereas the ML detection provides
a performance baseline. The signal is modulated by 64-QAM
and the MIMO channel is assumed to fade uncorrelatedly and
independently. Totally 10° bits are simulated when the SNR
is below 30dB, and 107 bits are simulated for SNR > 30dB.

The proposed adaptive K -best algorithm can be applied
with the above mentioned candidate prediction technique,
whereas the K7 and Ko can have distinct 1.; and Lo values,
respectively. Fig.5 presents the error probabilities versus SNR
for different detection methods. It is perceived that for SNR
lower or equal to 30 dB, all the proposed schemes can provide
performance very close to that of the ML detection. When
SNR is greater than 30dB, a slight degradation is shown, and
the value I dominates the degradation. As shown in Fig. 5,
for K1 = Ky = 64, the one with I.; = L, = 8 outperforms
the one with L; = Ly = 3.
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Fig. 5. BER comparisons of different detection schemes

The value T provides a tradeoff between the complexity and
error probability. Since smaller K> may lead to performance
degradation in high SNR, a larger 7' will be required. On
the other hand, Fig. 4 shows that symbol error probability
drops when 7" > 10. Accordingly, we compare the two cases
Ky, = 64,Ky = 32,7 = 15 with L; = 8Ly = 3 and
Ky = 64, Ky = 28T = 30 with I.; = Ly = 8, whereas
the parameters chosen will result to similar computation
complexities. As Fig. 5 shows, the latter results to slightly
smaller error probabilities. Thus, it can be observed that the
value L affect error probability. The maximum value of L
is the dimension of the PAM constellation. Smaller L will
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reduce computation effort, however, the performance will also
degrade since some computation is ignored.
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W K1=64,L1=8 64.46% 58.82% 48.63%
Fig. 6. Reduce computation effort in SNR = 30, 32, and 34dB for T = 30.
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Fig. 7. Reduce computation effort in SNR = 30, 32, 34dB for T = 15.

Fig.6 and Fig.7 shows the percentage of K; and K
are selected for SNR = 30, 32, and 34 dB. As the SNR
increases, the percentage of K5 being selected also increases,
and more computation complexity can be reduced. For all
detection schemes, sorting always contributes the most to the
overall computation complexity. Thus, the number of sorting
operations are recorded and shown in TABLE I for comparing
the complexities. The normalized sorting complexity refers to
the number of sorting operation af all methods normalized
to that of the conventional 64-best SD algorithm. The table
shows that the reduction in the complexity of 64-best algorithm
ranges from 48% to 85%, whereas the corresponding SNR
degradation is maintained within 0.13dB and 1.1dB for a 64-
QAM 4 x 4 MIMO system.

VI. CONCLUSION

Two techniques reducing the complexity of K-best SD
algorithm for signal detection in MIMO systems are presented.
By the proposed K -best algorithm with predicted candidates
reduces the number of sorting operation. Moreover, the pro-
posed adaptive K-best SD algorithm provides a means to



TABLE I

COMPARISON OF ML AND K-BEST SPHERE DECODING AND RATIO SPHERE DECODING DESIGN

Method ML Ki=Ky=64 | K1 =64,K2 =28 | K1 =64,Ko =32 | K1 = K2 =64
Li=Ly=28 L1 =1,=238 Ly =8,L,=3 Li=Ly=3
Number of
et o8 1.19 x 10'% | 6.59 x 1010 3.43 x 1010 1.9 x 1010 9.39 x 10°
Sorting Operations
N lized Sorti
ormalize .0 ng 1.8 % 108 100% 52.04% 28.83% 14.2%
Complexity
SNR (dB) for 32.64 32.72 32.85 33.24 33.82
BER = 5 x 1074

determine the value K by observing the received signals.
These two schemes can be applied at the same time when
considering the error probability and complexity, providing
flexibility and tradeoff between system performance and im-
plementation cost. According to our simulation results, the
reduction in the complexity of 64-best algorithm ranges from
48% to 85%, whereas the corresponding SNR degradation is
maintained within 0.13dB and 1.1dB for a 64-QAM 4 x 4
MIMO system.
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