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Abstract- In multiple-input multiple output (MIMO) systems, search approach. Thus the value ofK should be large enough,
maximum likelihood (ML) detection can provide good perfor- and the value K dominates the performance and computation
mance, however, exhaustively searching for the ML solution complexity.
becomes infeasible as the number of antenna and constellation
points increases. Thus ML detection is often realized by K-best In this paper, two modified K-best SD algorithms are pro-
sphere decoding algorithm. posed for reducing the computation complexity while remain-

In this paper, two techniques to reduce the complexity of ing the performance similar to ML detection. The K-best algo-
K-best algorithm while remaining an error probability similar rithm with predicted candidates, one of our proposed methods,
to that of the ML detection is proposed. By the proposed

r
. .

K-best with predicted candidates approach, the computation r t
complexity can be reduced. Moreover, the proposed adaptive paths before selecting the K best candidates. Moreover, an
K-best algorithm provides a means to determine the value K adaptive K-best algorithm is proposed, providing an adaptive
according the received signals. The simulation result shows that selection of K by observing the ratio of the second minimum
the reduction in the complexity of 64-best algorithm ranges from and minimum of all paths at the first decoding layer. According
48% to 85%, whereas the corresponding SNR degradation is
maintained within 0.13dB and 1.1dB for a 64-QAM 4 x 4 MIMO to our simulation results, the proposed techniques can achieve
system. at most 85% complexity reduction when comparing to con-

ventional 64-best SD algorithm.
I. INTRODUCTION

The rest of this paper is organized as the following. The
Recently, multiple-input multiple-out (MIMO) systems are system model, SD algorithm, and K-best SD algorithm are

applied in many wireless applications for better transmission briefly described in Section II. In Section III, the two proposed
efficiency and signal quality due to the inherent diversity gain detection schemes are presented. The bit error probabilities of
provided by the multi-path environment. Maximum-likelihood the proposed schemes are simulated in a 4 x 4 MIMO system
(ME) sequence detection is one of the detection schemes for of uncorrelated flat-fading channels, and the simulation results
detecting the received signals in MIMO systems By searching and comparisons are given in Section IV. Finally, Section VI
for the constellation point nearest to the received signal, concludes this work.
ML detection is optimized for minimizing the symbol error
probabilities, but exhaustive search becomes infeasible since
the computation complexity grows as the number of antenna 1. SPHERE DECODING FOR MIMO SYSTEM
or the constellation points increases. Sphere decoding (SD)
algorithm can reduce the computation complexity by confining
the number of constellation points to be searched, Fincke- For a MIMO system with NT transmit antennas and NR
Pohst [1] and Schnorr-Euchner [2] are two of the most com- receive antennas, the transmitted and received signals can be
mon computationally efficient search strategies for realizing represented by
the ML detection. Nevertheless, the difficulties in hardware
implementation arise because of the non-constant computation =Hs + ii, (1)
complexity and decoding throughput. Alternatively, K-best
SD algorithm [3], [4] simplifies the hardware implementation where yi is the NR x 1 received complex signals, H is an
of SD algorithm by keeping at most K best paths in each NR x NT matrix of independent and identical distributed
layer, leading to fixed-throughput and predictable complexity. (i.i.d.) circular Gaussian random variables (flat fading is as-
Note that the term layer refers to the signal constellations sumed), s is anNTx 1 complex vector representing the signals
of an transmit antenna. However, K-best SD algorithm can transmitted by each transmit antenna, and ni is the NR X 1
not guarantee ME performance since the ML path might i.i.d. complex Gaussian noise vector. Moreover, the complex
be eliminated due to the breadth-first nature of K-best SD model in (1) is often described by the equivalent real-valued
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representation, which is PED and the accumulated Euclidean distance corresponding
F Re{i} 1 to s(i+±), denoted by T(s'+1)), that is

[ Im{ } J T(s(')) = T(s(+)) + e(S)(7)
= F Re{} I {}lHj Re{} l +F Re{fi} The detection process starts from i=NT, resulting to a tree-

[ Im{H} Re{H} I [ Im{s} J [ Imfn}i structure, or called depth-first, search strategy. However, ex-
- Hs + n. (2) haustively searching for the ML solution becomes infeasible

This is also referred to as the real value decomposition. For [5] since the computation complexity grows exponentially
QAM signals, real value decomposition transforms the com- with Nt or the number of constellation points. Thus, sphere
plex constellation into two real-valued PAM constellations, decoding (SD) algorithm has been proposed and recognized
which can result to fewer computation. as a powerful means to solve the ML detection problems [6]

For detecting the received signals, maximum likelihood [4]. SD algorithm reduces the computation by restricting the
(ML) sequence detection is one of the MIMO system detection search range. Instead of searching all candidates in Q, SD
technique that optimizes the symbol error probability. Accord- algorithm constrains a much smaller search range QSD =

ing to the system model described in, Fig.1 ML detection {s s R Rs < r2}; only the candidates in QSD Will be
is equivalent to searching for the vector s that minimizes compared. By the aforementioned procedure, the candidate
IY- Hsl12. That is, of the smallest T(s(1)) is always the ML solution as long

as r is properly defined. However, not only the value r,
s = argmin IY- Hsll2, (3) but the computation varies with SNR, leading to a non-

SGE2 constant decoding throughput. Hardware implementation of
where Q is the set consisting of all possible 2Nt-dimensional SD algorithm becomes complicated.
signal constellation points. Fig. 1 shows the simplified block K-best SD algorithm is an alternative method that improves
diagram of a MIMO receiver. The channel estimator provides the decoding throughput. It simplified the original SD algo-
the required channel state information H. By QR decomposi- rithm and maintains a constant throughput by keeping only
tion, the channel matrix H is decomposed by H = QR, and the K smallest accumulated PED at each layer. However,
(3) can be rewritten as K-best SD algorithm can not guarantee the performance of

IlY- Hsl2 = (s - sZf)HHHH(s - szf) ML detection since the ML solution may be eliminated when
+ y-ff (I -H(HHH)-'HT)Y it is not of the K best accumulated PEDs. Thus, larger K

is required and the value K becomes a tradeoff between
and complexity and error performance.

- argmin(s-szf)HHTH(s - szf) Transmit Channei

arg min sHRHRS. (4) Symbols (H)

Note that the matrix R derived from QR decomposition is an Estimation Decomposition st

upper triangular matrix with non-negative diagonal elements,
and HHH=RHR. Moreover, Szf is the zero-forcing (ZF)
solution that can be derived by Szf = H+y for H+ is the Detect Maxmum Likdelihood
pseudo-inverse of H. It is perceived that s - szf is the Symbols Aithm
distance from the candidates of signal to the ZF solution.
Due to the triangular form of R, we can rewrite (4) as

Fig. 1. Block diagram of MIMo detection
2

NR NT
arg min E - 1 Rijs> (5) Fig. 2 illustrates the bit error rate of a 4 x 4 MIMO detector

i=1 j=i of different values of K, and there is performance degradation

where Ri and sj denote the i-th row, j-th column of R and when K is chosen too small.
the j-th element of s. Moreover, we can define e(s(')), the III. PROPOSED K-BEST SD ALGORITHM WITH PREDICTED
partial square Euclidean distance(PED) of the i-th layer, by CANDIDATES

NT 2 Although K-best SD algorithm remains constant throughput
e(s() = Yi-E Rij , (6) and computation, its computation complexity is not necessarily

lower than the conventional SD algorithm since all the PEDs
of each layer still need to be calculated. However, only the

where s(i) - [sis ).*s.)] and sKi) is the j-th element of K PEDs resulting to the K best accumulated PEDs can affect
s() Then the accumulated Euclidean distance corresponding the PED calculation in the next decoding layer. That is, part
to the candidate s(i) can be derived recursively from the of computations of the PEDs are unnecessary. A method to
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I------ 64-best SD complexity and error probability. Due to fading, the signals
0-2 ~~~~~~~~~~sufferfrom low SNR when they are in deep fades, and K

.........:.when the signal strength is high. Dynamic K implies an signal
.......q lity.............in tor................is.....re ire d.nd to ir

10-3____~~~~~~

........................adaptive.... ...K -best......algorithm,.........provides.. .....a...m eans......to...observe.......the..

i ~~~~~~~~~~antennas, this indicator can be acquired by the ratio
... .. .... ..... .. ..... .. .. .... ... ...... ..... .. ..... .. .. ... .. .. .. .... ... .... .... ..... ......

Fi.2. Cmprsoso M ndKbetS aloihmowhee MLndMpath tbein selim natd duingmu the K-bestmSD

-7 -5 3 5 7 processing increases.
o Q - 0 (1± 1) -th Fig.4 is an illustrative example of a 4 x 4 64-QAM system,

4:::-: _zz- ~~layer which shows the relation between T and the symbol error
probability conditioned on the value T. The curve stands for

i -t the probability Pr(R < T), and the histogram shows the
---- ~~~~~~~~~ayr the conditional symbol error probability. It is perceived that

symbol error probability is small as T increases. Thus, the

Fig. 3. K-best with predicted candidates value K can be determined by first computing ft in (9), then

K K, if R< T; IK2 otherwise. (0
predict the more likely PEDs is presented in the following.
Only a fraction of the PEDs are computed, and thus, the
computation can be greatly reduced.07

At decoding layer i, the point k'j resulting in the smallest Pr(symbolerror occursIR =T)
PED for a given s('±l) can be derived by 0.6-

~(±)-Yi
NT

P+1 Rijs05'k j=i~~f (8) .-

and only the L - 1 points nearest to s~i±l)will be computed
for e(s(')). That is, the s$') of the vector s(') will be ki(i±1)
and its L - 1 nearest constellation points. Only L PEDs from 0.3-

e(s(i±1)) should be calculated instead. Accordingly, we can
always have the PED values computed in an ascending order, 0.2-

and the first L smallest PEDs will contribute to more likely
candidates. Fig.3 is a 64-QAM example with L =3. The 0.1

constellation corresponds to the i-th layer is denoted as Si, as
the figure shows, the points with of cross mark is the 0(±1
and only the three constellation points (linked by solid lines)T

willbe cmputd. Tus, he ompuatio com lexiy ca be
Fig. 4. The probability of R < T and the conditional symbol errorreduced, especially when NT is large. probability.

IV. PROPOSED ADAPTIVE K-BEST SPHERE DECODING The value R can be regarded as a signal quality indicator
ALGORITHM ofC the- visited signals Infat -aec decoding layer,4there is



layers can be reduced if K =1K2 is chosen. However, if reduce computation effort, however, the performance will also
R is determined earlier, there are chances that ft cannnot degrade since some computation is ignored.
provide sufficient information to report the signal quality and
the performance will degrade. 120.00%

V. SIMULATION RESULTS
0.%

80.00%-
In this section, a 4 x 4 MIMO system is simulated for com-

paring the proposed schemes and the conventional SD and K- 60.00%
best algorithms (K =64), whereas the MEI detection provides 40.00%
a performance baseline. The signal is modulated by 64-QAM
and the MIMO channel is assumed to fade uncorrelatedly and 20.00%

independently. Totally 106 bits are simulated when the SNR. .0
is below 30dB, and i7bits are simulated for SNR > 30dB. SNR(dB)/Adaptiv Kbest 30 32 34

The proposed adaptive K-best algorithm can be applied w- K2=28,L2=8 35.54% 41.18% 51 .37%
with the above mentioned candidate prediction technique, * Kl=64,L1=8 64.46% 58.82% 48.63%
whereas the K, and K.2 can have distinct L, and L2 values,
respectively. Fig.5 presents the error probabilities versus SNR Fig. 6. Reduce computation effort in SNR 30, 32, and 34dB for T 30.
for different detection methods. It is perceived that for SNR
lower or equal to 30 dB, all the proposed schemes can provide _______________________
performance very close to that of the MEI detection. When 120.00%
SNR is greater than 30d, a slight degradation is shown, and 100.00%
the value L dominates the degradation. As shown in Fig. 5,
for K1 K2 =64, the one with L, 2 8 outperforms 80.00%-
the one with L, = -2 3. 60.00%-

.....F... ........F. .0

-- K1=64,K2=32,L1=8,L2=3.20.00%

-I--Kl=K2=64, Ll=L2=8.2( ~~~~~~~~~~~~~~~~~~~~0.00%
102 - -..--.K.K2..4.L..2=3.SNR(dB)/Adaptiv K-best 30 32 34

.e--K1=64, K2=28.L1=L2=8__- K23L23 517580%35%

.* K l=64,L1=8 47.83% 41.98% 26.48%
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TABLE I
COMPARISON OF ML AND K-BEST SPHERE DECODING AND RATIO SPHERE DECODING DESIGN

Method ML K1=K2=64 K1=64,K2=28 K =64, K2 =32 K1 K2 = 64

Number of LL = L2 = 8 L = L2 = 8 |L = 8,L2 3 L1 L2 = 3
Number of 1.19 x 1019 6.59 x 1010 3.43 X 1010 1.9 x 101O 9.39 x 109

Sorting Operations
Normalized Sorting 1.8 X 108 100% 52.04% 28.83% 14.2%

Complexity 2
SNR (dB) for 32.64 32.72 32.85 33.24 33.82

BER - 5 x 10-4k 326

determine the value K by observing the received signals.
These two schemes can be applied at the same time when
considering the error probability and complexity, providing
flexibility and tradeoff between system performance and im-
plementation cost. According to our simulation results, the
reduction in the complexity of 64-best algorithm ranges from
48% to 85%, whereas the corresponding SNR degradation is
maintained within 0.13dB and l.1dB for a 64-QAM 4 x 4
MIMO system.
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