國立交通大學 電子物理研究所 博士論文

有機半導體材料電子結構分析 與倒置式下發光有機電激發光元件之研究

Study of Electronic Structure of Organic Semiconductor Materials and Inverted Bottom-Emission Organic Light-Emitting Devices

- 研究生:朱達雅
- 指導教授:陳金鑫 博士
 - 陳振芳 博士

中華民國 九十五 年 九 月

有機半導體材料電子結構分析與倒置式下發光有機電激發光元件之研究

Study of Electronic Structure of Organic Semiconductor and Inverted Bottom-Emission Organic Light-Emitting Devices

研究生:朱達雅

Student : Ta-Ya Chu

指導教授:陳金鑫 博士

陳振芳 博士

Advisors : Dr. Chin Hsin Chen

Dr. Jenn-Fang Chen

A Dissertation Submitted to Institute of Electrophysics College of Science National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In

Electrophysics

September 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年九月

有機半導體材料電子結構分析與倒置式下發光有機電激發光元件之研究

研究生:朱達雅

指導教授:陳金鑫 博士

陳振芳 博士

國立交通大學電子物理研究所

摘 要

本論文研究分二部份,其一是藉由密度泛函理論為基礎之第一原理計 算研究有機半導體材料之電子結構,包括有機半導體分子結構、分子軌域 電子結構以及能階與能隙與材料特性之關係,我們計算有機半導體材料紅 外光振動光譜、單重態與三重態能隙、斯托克位移等都與實驗數據有一致 性的結果,不僅如此,我們更藉由計算結果解釋相關的物理機制,研究結 果有助於新型有機半導體材料之設計與發展。

另一方面為倒置式下發光型有機發光二極體的研究,其元件可搭配非 晶矽薄膜電晶體製作大尺寸主動驅動有機發光顯示器,本論文開發的倒置 式下發光型有機發光元件綠光螢光效率高達 22 cd/A,並且光色不會隨視角 改變,相較典型元件結構的效率高了二倍。我們也開發出高效率(13 cd/A、 10.6 lm/W)及高穩定性的白光有機發光二極體,元件初始亮度 400 cd/m² 時操作壽命可達 34000 小時,並且光色不會隨著操作時間而有改變。

有機半導體材料之電子結構分析,不僅可應用於有機發光二極體之研 究,也有助於有機薄膜電晶體、有機太陽能電池等研究之發展。倒置式有 機發光二極體之研究除了可製作全彩有機發光顯示器,亦可發展為省電照 明之用途,具有相當大的產業價值。

Study of Electronic Structure of Organic Semiconductor and Inverted Bottom-Emission Organic Light-Emitting Devices

Student : Ta-Ya Chu

Advisors : Dr. Chin Hsin Chen Dr. Jenn-Fang Chen

Institute of Electrophysics National Chiao Tung University ABSTRACT

This research is divided into two parts:

- [1] Electronic structure of organic semiconductor materials Study of electronic structure of organic semiconductor materials is based on the density functional theory calculations, which includes organic molecular structure, electronic structure of molecular orbital and energy levels and energy gap. The calculated of IR spectra, singlet and triplet gaps and stokes shift of selected materials are found to be in good agreement with the experimental data. This study contributed to the understanding the characteristics of organic semiconductor and the designing of new materials.
- [2] Inverted bottom-emission OLED (IBOLED) development Inverted OLED is best suited for the large n-channel TFT active matrix OLED display technology. We have developed one of the most efficient (22 cd/A) green fluorescent IBOLED which is more efficient than that of the conventional OLED. The efficiency levels of the white OLED achieved 13.0 cd/A and 10.6 lm/W. The projected half-lifetime under an initial luminance of 400 cd/m² is projected to be over 34,000 hours and the Commission International de l'Eclairage (CIE) coordinates are not affected by aging. The development of IBOLED is useful in fabricating AMOLED with high power efficiency and long device stability and is also expected to impact on the future development of low power solid-state lighting.

首先我要特別感謝指導老師陳金鑫教授與陳振芳教授,如果我是千里 馬,陳金鑫老師和陳振芳老師就是我的伯樂,韓愈說:「世之千里馬常有, 伯樂不常有。」或許我不是最優秀的千里馬,但是老師給予的指導和鼓勵 卻是使我能有不斷向前的動力,尤其是陳金鑫老師經常提醒我們不要只和 自己競賽,也不要只看到台灣,要和全世界競賽並且要把握每一次的機會。 回顧碩士班李明憲老師以及中研院化學所的趙奕姼老師都是在我學術研究 學習路程中的伯樂,實在非常感謝這幾位老師的提攜與教誨。

我也要感謝中華映管的湯舜鈞博士在這幾年產學合作計畫的支持,因 為有中華映管提供的獎學金使我能在經濟上沒有後顧之憂,也要感謝實驗 室的所有夥伴,能和大家一起討論與學習才能順利完成研究工作,感謝實 驗室的思邑、孟寰、曜杉、孟庭、超榮、世男、圃成、嘉偉、志鴻、家銘、 孝文、展晴、世文、士峰、治明、榮安,並感謝實驗室助理俊雄及美貞的 幫忙,非常謝謝大家。

最後,我要特別感謝我的太太和家人,因為你們的支持才使我能完成博 士學位,聖經的一句話是,「但那等候耶和華的,必從新得力,他們必如鷹 展翅上騰。」畢業不是研究學習的終點,我會繼續努力、不斷的向前。

朱達雅 謹誌

中華民國九十五年九月

中文摘要I
英文摘要Ⅱ
謝誌
目錄V
表目錄
圖目錄
第一章 緒論1
1-1. 有機半導體材料3
1-2. 有機電激發光元件
第二章 有機半導體材料電子結構.896
2-1 理論方法
2-2 有機分子結構最佳化16
2-3 分子軌域能階與能隙18
2-4 調控能階或能隙21
2-5 斯托克位移 (Stokes Shift)28
2-6 三重態能隙
第三章 倒置式有激電激發光元件40
3-1 提高載子由電極注入有機層之效率40

	3-2 元件效率與壽命	.51
	3-3 高效率與穩定型白光元件	.63
第四	1章 結論	.71
參考	文獻	.73
附錡	《一:本論文研究成果發表	.80

表目錄

表 1-1.	a-Si TFT 與 LTPS TFT 特性比較	8
表 2-1.	計算 Alq3 與 BAlq 分子能階位置與實驗結果有一致趨勢	19
表 2-2.	計算 Alq3 衍生物之能階與能隙	22
表 2-3.	NPB 的 biphenyl 平面夾角改變時的能量與鍵長之差別	24
表 2-4.	BAlq 與 Alq3 的 Stokes Shift 計算值與實驗值	29
表 2-5.	Alq3 基態與激發態的結構鍵長差別	30
表 2-6.	BAlq 基態與激發態的結構鍵長差別	33
表 2-7.	TRZ1-TRZ4 能隙與能隙的計算值與實驗值	38

圖目錄

圖 1-1.	理論計算發現mer-Alq3有較fac-Alq3穩定的分子能量6
圖 1-2.	Curioni等人發表理論計算mer-Alq3基態的電子態密度和Soft X-ray
	Photoelectron Spectroscopy (SXPS) 實驗值得到一致的結果6
圖 1-3.	Ruani等人發表Alq3分子的紅外線振動光譜及拉曼光譜理論計算和
	實驗有相當一致的結果7
圖 1-4.	OLED 搭配 a-Si TFT 或 LTPS TFT 驅動之面板壽命比較12
圖 1-5.	左圖為 Hwok 等人發表的上發光 IOLED 元件結構,右圖可觀察到
	元件的放光光譜隨視角而改變12
圖 2-1.	Alq3分子紅外線振動光譜,上下圖分別為我們計算值與實驗的數據
圖 2-2.	BAlq 分子之振動光譜,第一原理計算結果(虛線)與實驗值(實
	線)一致。17
圖 2-3.	由態密度分析 BAlq 分子得到不同基團在不同能態的貢獻20
圖 2-4.	電子佔據在 BAlq 分子 HOMO、LUMO 的量化分佈圖20
圖 2-5.	能階調控示意圖(中研院化學所陳錦地教授繪製)
圖 2-6.	Alq3 分子結構25
圖 2-7.	Alq3 原子投影之部份能態圖26
圖 2-8.	Alq3衍生物分子結構

圖 2-10	分別將NPB 原本的Phenyl 與 Naphthyl 與的Biphenyl橋接而設計
	的新 NPB 衍生物27
圖 2-11.	Stokes Shift 示意圖
圖 2-12.	Alq3 基態分子軌域 HOMO(a)、LUMO(b)、LUMO+1(c) 和
	LUMO+2(d) 的電子分佈,吸收躍遷機率最大的是由 HOMO 至
	LUMO+2
圖 2-13.	BAlq 分子基態時不同分子軌域的電子佔據分佈
圖 2-14.	BAlq 分子激態時不同分子軌域的電子佔據分佈
圖 2-15.	CBP 與 mCP 的分子結構
圖 2-16.	TRZ1-TRZ4 分子結構
圖 3-1.	(a)典型 OLED 與 (b) IBOLED 元件結構及能階示意圖45
圖 3-2.	電子傳導元件之電流密度與電壓關係圖(a) Al或ITO作為下陰極 (b)
	ITO 作為下陰極並比較有無Alq3-LiF-Al 電子注入層45
圖 3-3.	不同 LiF 厚度在下陰極與 Alq3 之間作為電子注入層的電流密度
	與電壓關係圖(a)Al 作為下陰極時 (b)ITO 作為下陰極時。46
圖 3-4.	比較不同電子注入層的電流密度與電壓關係圖 (a) trilayer, LiF 或
	Mg 作為電子注入層 (b) 不同 Mg 的厚度。46
圖 3-5.	ITO/Alq ₃ 和 ITO/Mg/Alq ₃ 能階示意圖 (a) ITO和Alq ₃ 的電子注入

能障約為 1.7 eV (b) 能障因為界面偶極而障低。......47

圖 3-6.	IBOLED	元件結構	ITO/Mg/Alq ₃ /NPB/WO ₃ /Al	17
				• •

- 圖 3-7. IBOLED 電流密度、亮度與電壓之關係圖,元件結構為:
- 圖 3-9. IBOLED 元件(ITO/EIL/Alq₃/NPB/WO₃/Al, EIL分別為 Mg,

圖 3-11. 典型 OLED 元件 (Device A)、Cs₂O:Bphen IBOLED (Device B)和

Li:Bphen IBOLED (Device C)......56

圖 3-13. 原子力顯微鏡量測之表面結構(a) Bphen 加熱前 (b) Bphen 加熱後

(c) Cs₂O:Bphen 加熱前 (d) Cs₂O:Bphen 加熱後......57

圖 3-15. 在 20 mA/cm² 定電流密度驅動下電壓與時間關係圖。......58

圖 3-16. IBOLED 與典型 OLED 電流效率與電流密度關係圖。..........59

圖 3-17. 綠光(C545T:Alq₃) IBOLED元件之 (a)電流密度、亮度與電壓之關係

第一章 緒論

有機半導體材料的研究是有機發光二極體發展中相當重要的一環, 1963年Pope等人¹發現膜厚約 0.1~0.2 mm的 Anthrancene可在電壓驅動下而 發光,但是所需的電壓卻高達 400 伏特以上,直到 1987 年柯達公司鄧青雲 等人²在低真空腔體內以熱蒸鍍方法得到有機非晶質 (Amorphous) 薄膜, 並 在小於10伏特的驅動電壓下使有機薄膜發光,其量子效率大於1%。這種 藉由電極在有機半導體薄膜兩端分別注入電子與電洞,使電子與電洞在有 機薄膜內傳送並在薄膜中再結合而產生激發放光,被稱為有機電激發光元 件 (Organic Electroluminescence Devices) 或稱為有機發光二極體 (Organic Light-Emitting Diodes, OLEDs)。在OLED被發表的前一年, 鄧青雲博士也發 表了一篇雙層有機薄膜太陽能電池的研究報告3,使用二層有機薄膜製作的 太陽能電池轉換效率可達到約1%。近年來有機半導體材料的應用除了 OLED與薄膜太陽能電池等,更拓展至有機薄膜電晶體⁴、有機光檢測元件⁵等 應用,因此對於有機半導體材料的電子結構分析對相關研究領域都是相當 重要的。本篇論文共分為二大部份,第一部份是藉由架構在密度泛函理論 (Density Functional Theory) 的第一原理計算來探討有機半導體材料的電子 結構,並藉由對有機材料特性的了解進而設計高效率及高穩定性的 OLED 元件。

OLED 被視為下一世代顯示技術的主角,因為OLED顯示技術具有高亮度、高色彩對比度、廣視角、超快反應速度、低驅動電壓及省電等優點,

由於是自發光元件因此在製程上與現有的液晶顯示器(Liquid Crystal Displays, LCDs)比較,有機發光二極體平面顯示器不需要背光板而使顯示 器的重量與厚度都更輕薄。雖然如此,LCD 技術在近年也不斷的快速進 步,其技術已可使 LCD 擁有高對比及廣視角等優點,韓國三星電子也在 2006 年的國際顯示器會議中報告 LCD 的價格在未來幾年的下降輻度將 達到每年 30%,因此雖然 OLED 的元件效率在近年已有大輻的提升,然而 如何降低 OLED 的成本使其與 LCD 競爭將是相當重要的研究方向,因此 本論文的第二部份是研究適用於非晶矽電晶體驅動的倒置式 OLED 元 件,我們開發的倒置式白光OLED 元件效率高達 13.0 cd/A、10.6 lm/W,元 件操作壽命在初始亮度為 400 cd/m² 時可達 34000 小時,將可配搭非晶矽 電晶體製作更具有價格競爭力的大尺寸 OLED 顯示器。

有機半導體材料在基礎科學的研究上相當令人感到興趣,相關的研究報 告多不勝數。由於此技術涉及化學材料合成與分析、物理電荷傳導與放光 機制、元件製作等技術,因此不論是化學、物理或材料等研究群都相繼投 入相關研究中,跨領域研究在有機半導體材料及元件之研究中更是不可或 缺的。本論文研究有機半導體材料之電子結構分析,並研發出高效率之倒 置式 OLED 元件,對於基礎科學研究及產業應用均有卓越之貢獻,研究成 果不僅發表多篇國際期刊,也已在進行相關專利申請。

1-1 有機半導體材料

由於不同有機半導體材料特性的差異,對於 OLED 元件發光效率、功 率效率或是元件壽命都有相當大的影響,因此自從 1987 年鄧青雲等人發表 可在低電壓驅動的 OLED,許多研究群相繼投入相關的有機材料合成研 究,以獲得更高效率與更長壽命的 OLED 元件並應用於平面顯示器。

鄧青雲等人發表的綠光OLED發光材料為tris(8-hydroxy-quinoline) Aluminium (Alq₃)分子,此材料仍為目前最廣泛被使用的發光層主體材料與 電子傳輸層材料,相關的基礎研究也最為廣泛,實驗上觀察到Alq₃分子有 二種同分異構物(Meridional and Facial)⁶(圖 1-1),紅外光譜分析⁷和X光單晶 繞射儀⁸的實驗結果顯示在非晶質薄膜和固態時是 mer-Alq₃為主,雖然也有 文獻⁹觀察到少量的fac-Alq₃,但是Andreoni等人¹⁰以密度泛函理論(Density Functional Theory)為基礎之理論計算研究Alq₃ 此二種異構物的分子結構與 電子特性,發現 fac-Alq₃分子較 mer-Alq₃高 5 kcal/mol, mer-Alq₃有較穩 定的分子能態,因此解釋了實驗為何主要觀察到 mer-Alq₃的結構。

理論計算mer-Alq3基態的電子態密度和Soft X-ray Photoelectron Spectroscopy (SXPS)實驗值得到一致的結果¹¹ (圖 1-2),而與分子結構有關的 紅外線振動光譜及拉曼光譜的理論計算也和實驗有相當一致的結果¹² (圖 1-3),另外也有文獻藉由理論計算分析Alq3分子帶正電或帶負電時的電子結 構¹³,解釋了為何 Alq3 對電子的傳導率較電洞的傳導率大,理論計算Alq3分

子的單重態能隙與三重態能隙分別為 $3.3 \text{ eV}^{14} \cdot 2.1 \text{ eV}^6$,與實驗值 $2.8 \text{ eV} \cdot$ 2.05 eV也有一致的結果,吸收波長與放光波長差值的Stokes Shift理論計算 Alq3分子為 123 nm 也與實驗值 126 nm有相當一致的結果¹⁵, 理論計算不僅 得到與實驗一致的結果,更提供了許多的相關的資訊讓我們可以對材料有 更多的了解,進而研發新的材料,例如從理論計算的分子軌域之電荷分佈, Alq3分子的最高佔據態(Highest Occupied Molecular Orbital, HOMO) 與最低 未佔據態(Lowest Unoccupied Molecular Orbital, LUMO) 軌域電子分別分佈 在 phenoxide、pyridyl ligands, 從分子設計的經驗知道, 若在HOMO位置接 上推電子基團則會使能隙變小,或是在HOMO位置接上拉電子基團則是使 能隙變大,同理也可在LUMO位置接上推電子基或拉電子基來調控能隙, 因此能隙的調控可設計出不同發光顏色的相關衍生物,或是藉此方法調控 能階位置,Thompson等人¹⁶利用此方法將原本放光為 532 nm的Alq3 分子, 設計出可放紅光 580 nm與放藍光 440 nm的Alq3衍生物。

關於OLED的有機分子電子結構的文獻報告大多數在探討最普遍被使 用的Alq₃,鄧青雲等人於 1996 年所¹⁷發表 N,N'-phenyl-N,N'-bis (1-naphthyl)-1,1'-biphenyl-4,4''-diamine (NPB) 分子作為電洞傳輸層材料可 有效的提高元件壽命,NPB則是目前最廣為使用於電洞傳輸層的材料, Zhang等人^{18,19}曾對Alq₃與NPB分子的電子結構態密度作詳細的探討,在實驗 方面Deng 等人²⁰報告NPB分子的電洞傳導率為 8.8x10⁻⁴cm²V⁻¹S⁻¹, Halls 等 人²¹用紅外光譜儀(IR)分析NPB分子結構並與計算結果比較,但是關於NPB 分子或是其它用於OLED的有機半導體材料基礎研究在文獻中的數量仍然 相當有限。國內外研究群仍積極研發新的有機半導體材料,因為不同的有 機材料可在 OLED 元件中扮演不同的角色,因此也需要不同的材料特性, 例如Copper phthalocyanine (CuPc) 的 HOMO 較 NPB 高,因此 CuPc 可 作為電洞注入層材料,使電洞由陽極 ITO 注入 NPB 電洞傳輸層時可以降 低能障,又例如 aluminum(Ⅲ)bis(2-methyl-8-quninolinato)-

4-phenylphenolate (BAlq)的 HOMO 比 Alq3低,而被用於電洞阻隔層材料,使電洞被限制在發光層而增加發光效率,因此研發更適合的材料對OLED的發光效率、功率效率或是元件壽命都有相當大的影響,因此理論計算分析有機半導體材料的電子結構成為相當重要的研究方法。

近年才發現的磷光(phosphorescent) OLED 內部量子效率可達100 %²²,較螢光 (fluorescent) OLED高了三至四倍,磷光 OLED 的發光機制與 螢光 OLED 主要差別在於躍遷能階主要是由磷光發光材料的三重態能隙 躍遷,然而磷光發光材料必需掺雜在螢光主體材料中,才能得到100%的發 光效率,文獻研究結果顯示用於磷光掺雜用的主體材料的三重態也必需比 客體磷光材料的能隙大,才能使能量轉移至客體材料而得到高效率的發 光,因此必需配合磷光客體材料設計適合的主體材料,主體材料的三重態 能隙大小是相當重要的,在文獻中相關的基礎研究仍然相當少,尤其是在 三重態的電子結構分析方面更是缺乏。

圖 1-1:理論計算發現mer-Alq3有較fac-Alq3穩定的分子能量

圖 1-2: Curioni等人發表理論計算*mer*-Alq3基態的電子態密度和soft x-ray photoelectron spectroscopy (SXPS) 實驗值得到一致的結果

Alessandra Degli Esposti,^{a)} Martin Brinkmann,^{b)} and Giampiero Ruani J. Chem. Phys., Vol. 116, 798 January 2002

圖 1-3: Ruani等人發表Alq3分子的紅外線振動光譜及拉曼光譜理論計算和實

驗有相當一致的結果

1-2 有機電激發光元件

主動驅動 OLED (Active Matrix OLED, AMOLED)已逐漸成為小尺寸 平面顯示器技術的主角之一,而目前 AMOLED 主要搭配低溫多晶矽薄膜 電晶體 (LTPS TFT) 驅動,除了是因為 LTPS 的載子遷移率大於非晶矽薄 膜電晶體 (a-Si TFT),更主要是因為 LTPS 可以製作 p 通道的薄膜電晶 體,而 a-Si TFT只能製作 n 通道的薄膜電晶體,因此典型的 OLED 陽極 電極氧化銦錫 (ITO)可與 p 通道 LTPS 驅動電晶體的集極 (Drain) 連 接,驅動電晶體的電路就不會受到 OLED 材料在元件驅動時電阻改變而影 嚮。但是 LTPS TFT 製程中所需的遮罩數目約為 a-Si TFT 的二倍,並且 LTPS 的基板尺寸目前最大只有到第四代 730x920 mm²,另一方面,LTPS 在大尺寸的結晶均匀度不佳會造成面板亮度不均的問題,因此要製作大尺 寸 AMOLED 顯示器的較佳選擇仍是搭配 a-Si TFT 作為驅動電晶體。表 1-1為 a-Si TFT 與 LTPS TFT 的比較。

	a-Si TFT	LTPS TFT
Mobility	Low	High
Туре	Only NMOS	NMOS/PMOS
Masks	4 or 5	9 or 10
Gen. Size	7.5 (1950×2250mm ²)	4 (730x920mm ²)
Uniformity	Better	Worse

表1-1 a-Si TFT 與 LTPS TFT 特性比較

a-Si TFT 在大尺寸面板的技術已相當成熟,並且具有面板亮度較 LTPS 均匀的優點,而最重要的是使用 a-Si TFT 製作大尺寸 AMOLED 擁 有較佳的成本優勢。然而 a-Si TFT 只能製作 n 通道電晶體,因此典型的 OLED 下電極必需與驅動電晶體的源極 (Source) 連接,這也造成驅動電晶 體電路受到 OLED 材料的影響,因此面板的壽命相對的變短,圖1-6是典 型的 OLED 搭配 a-Si TFT 與 LTPS TFT 驅動的元件壽命檢測結果,搭配 LTPS TFT 驅動的 AMOLED 元件穩定性比 a-Si TFT 的 AMOLED 好許 多,亮度較不易隨著驅動時間而衰減。因此為了改善 a-Si TFT 驅動 OLED 的面板穩定性,本研究開發的倒置式 OLED (Inverted OLED)因為下電極是 作為陰極,因此可與 a-Si TFT 的集極連接,n 通道的 a-Si TFT 就不會受 到 OLED 材料影響。

典型的 OLED 元件是以透明導電薄膜 ITO 玻璃作為陽極基板,再以 熱蒸鍍有機薄膜與高反射的陰極材料,電洞由較高功函數的 ITO 注入至電 洞傳輸層材料,電子則由較低功函數的陰極材料(MgAg², Al:Li²³, Al/Li²⁴, Al/LiF²⁵)注入電子傳輸層材料,電子與電洞在有機發光層中復合產生激發子 而放光,光線則由陽極 ITO 玻璃基板方向射出,因為 ITO 基板朝下而被 稱為下發光 OLED (Bottom-Emission OLED)。此種典型的元件結構設計在 搭配主動驅動的薄膜電晶體為顯示面板時,因為基板上部份區域為不透光 的薄膜電晶體,光線的出口率受到薄膜電晶體所佔面積的影嚮,因此為了 增加出口率而有許多文獻研究可作為陰極的透明電極,使光線能向上發光 而不被薄膜電晶體而限制,此種元件被稱為上發光型 OLED (Top Emission OLED),然而使用低功函數金屬薄膜作為透明陰極的方法往往伴隨微共振 腔的問題而使視角明顯變小,OLED 與薄膜電晶體接觸端仍為陽極,因此 只適用於 p 通道 LTPS TFT。

S. R. Forrest等人²⁶率先提出Inverted OLED (IOLED) 的元件, 使陰極金 屬直接與基板接觸, 在陰極金屬上蒸鍍有機薄膜後再成長陽極導電膜, 與 一般元件的製作流程剛好相反, IOLED 能製作在非常平坦的陰極金屬上, 適合與 n 通道薄膜電晶體結合作為高效率的主動矩陣驅動的元件, 同時亦 能作為倒置式上發光型 OLED (ITOLED) 增加開口率或是發展為穿透式 OLED (Transparent OLED)²⁷及疊層型 OLED (Stacked OLED)²⁸。

IOLED 相關研究最早是由 Baigent 等人²⁹在矽晶片上成長高分子薄膜 後,再以離子濺鍍 ITO 薄膜作為陽極金屬,在濺鍍 ITO 薄膜時基板以水 冷式降溫避免有機薄膜被破壞,成膜後再以攝氏 220 度退火12小時幫助 ITO 薄膜結構得到較低電阻率。然而高分子有機材料的玻璃轉換溫度(Tg) 較小分子材料高許多,因此在濺鍍 ITO 薄膜時有機材料不易被破壞,但是 在小分子材料上要濺鍍 ITO 薄膜則必須要有濺鍍保護層(Protective Cap Layer, PCL)防止濺鍍破壞,Forrest 等人發現 PTCDA 作為濺鍍保護層的效 果較 CuPc 好²⁶, Dobbertin 等人³⁰使用具有高電洞傳導率³¹及高熱穩定性³² 的 Pentacene 有機材料作為濺鍍保護層,並在濺鍍 ITO 時以較低功率及較 高功率兩階段濺鍍,另外Dobbertin 等人³³則是在小分子有機材料上以旋轉

塗佈法成長一層高分子材料(PEDOT:PSS)作為濺鍍保護層。K. Leo等人²⁷發 現利用 P 型摻雜的電洞傳輸層 (F4TCNQ:m-MTDATA) 也可保護發光層 不受 ITO 濺鍍破壞。濺鍍 ITO 薄膜的導電性及光學特性也需在元件製作 中被考慮³⁴,因此在 ITOLED 元件研究中,使用濺鍍ITO導電薄膜作為陽 極,如何有效的防止濺鍍造成有機材料的破壞以及在低溫下濺鍍高導電率 的 ITO 薄膜都是相當重要的。

在 IOLED 元件的陽極透明導電膜除了可用濺鍍 ITO 薄膜,亦有文獻 使用半透明的薄 Au³⁵或 Ag/TeO2³⁶之導電薄膜取代需濺鍍的 ITO 製作 ITOLED, 2005年 Hwok 等人37使用薄銀 25 nm 作為半穿透的上陽極電 極,並使用 V2O5 作為電洞注入層(圖1-5),其元件發光層使用 C545T 摻雜 Alq3 發光效率可達到 11 cd/A,然而元件的光色卻因為共振腔效應 (Microcavity Effect)而會隨著視角而有改變。本研究開發的倒置式下發光型 OLED (Inverted Bottom-Emission OLED, IBOLED) 使用相同的發光層材 料,螢光的綠光元件效率高達 22 cd/A,並且光色不會隨視角改變,我們也 研發出高效率長壽命的白光 IBOLED ,雖然下發光型元件的開口率不及上 發光型元件,但本研究所開發的 IBOLED 元件相較傳統元件效率高出許 多, 並且在搭配 a-Si TFT 製作大尺寸的 AMOLED 時上發光與下發光型 元件對開口率的影響相對就小了許多,因此我們認為本研究成果對於搭配 a-SiTFT 製作大尺寸 AMOLED 極具產業價值,相關研究成果也已提出專 利申請,元件開發細節將在第三章詳述。

圖1-4: OLED 搭配 a-Si TFT 或 LTPS TFT 驅動之面板壽命比較

圖1-5: 左圖為Hwok 等人發表的上發光 IOLED 元件結構,右圖可觀察到 元件的放光光譜隨視角而改變

第二章 有機半導體材料電子結構分析

2-1 理論方法

在有機半導體電子結構分析部分,本研究採用以密度泛函理論(Density Functional Theory)為基礎之第一原理計算,1964年Hohenberg and Kohn 合作 發表了密度泛函理論的論文³⁸,為量子化學理論計算和凝態物理開啟了一個 新的研究領域,1998 Hohenberg and Kohn 因為提出密度泛函理論而榮獲化 學諾貝爾獎。近年來國內外研究群已廣泛使用密度泛函理論進行多電子系 統之理論計算,此研究方法可得到系統在基態、三重態或激發態(時間相關 密度泛函理論)之電子結構。

第一原理 (First principle) 計算是完全由量子力學理論為基礎的計算方法,近年來電腦運算速度的快速提升使得第一原理計算已能使用在應用科學領域。目前最廣泛使用的第一原理計算方法也就是本研究使用的密度泛 函理論,簡單的解釋其理論:一個系統的總能量可由電荷密度的分佈來決 定,也就是說系統的總能量是電荷密度的泛函數,因此只要我們能解析一 個系統的電荷密度分佈就可以得到這個系統的總能量。

對於 n 個電子系統的行為,我們可以下面這個多體薛丁格方程式來描述,

$$H\Psi = E\Psi$$
$$H = \sum_{i=1}^{n} \left(-\frac{1}{2}\nabla_{i}^{2}\right) + \sum_{i=1}^{n} v(r_{i}) + \sum_{i< j}^{n} \frac{1}{r_{i}}$$

$$v(r_i) = -\sum_{\alpha} \frac{Z_{\alpha}}{r_{ij}}$$

密度泛函理論提出多電子系統的總能量為電荷密度的泛函數,因此我們 可以用電子密度求出系統的基態能量與電荷分佈狀態,然而要處理多電子 的問題是相當複雜的,雖然位能項可以有相當多的方法來計算得解,但是 多粒子的薛丁格方程式的動能項卻含有未知的電子與電子的交互相干動能 (Exchange and Correlation)。因此在 1965 年 Kohn and Sham 提出 LDA(Local Density Approximation)的方法來近似求解多電子的交互作用,使得多電子問 題變成可解的單電子自洽方程式(Self-Consistent one-electron equation), Kohn-Sham equation 的數學式如下:

$$\left[\frac{-\hbar^2}{2m}\nabla^2 + V_{ion}(\vec{r}) + V_H(\vec{r}) + V_{xc}(\vec{r})\right]\Psi_i(\vec{r}) = \varepsilon_i\Psi(\vec{r})$$

 $\Psi_i(\vec{r}) \quad 非交互作用之單粒子態i 的波函數$ $\varepsilon_i ` 單粒子態i 的能量本徵值$ $V_{ion}(\vec{r}) \quad 總電子-離子位勢$ $V_H(\vec{r}) = e^2 \int \frac{n(\vec{r})}{|\vec{r} - \vec{r}|} d^3r \dots$ 電子與電子間的 Hartree 位勢 $V_{xc}(\vec{r}) = \frac{\delta E_{xc} \left[n(\vec{r})\right]}{\delta n(\vec{r})} \dots$ 交換相干位勢

藉由密度泛函理論為基礎之第一原理計算應用在有機半導體材料的研 究是相當重要的,在第一章的文獻中我們也看到許多的研究成果,藉由此 方法使我們可得到有機分子的基態、三重態或激發態的電子結構,本研究 使用密度泛函理論為基礎之第一原理計算的 Gaussian 03³⁹,在計算電子交 互相干能的解是用 B3-LYP^{40,41} 方法搭配 6-31G(d) 基底函數。研究有機半 導體材料之內容涵蓋分子結構最佳化、振動光譜、軌域能階、基態與激發 態電子結構及三重態能隙等,對於實驗結果之分析與新型材料之研究相當 重要。

2-2 有機分子結構最佳化

第一原理的密度泛函理論在基態結構的最佳化經常可以得到與實驗相 當接近的結果,我們計算目前在OLED最廣為使用的 Tris-(8-hydroxyquinoline) Aluminum (Alq₃)分子,得到的紅外線振動光譜 (IR Spectrum)與實 驗值相當一致(圖 2-1),由分子振動光譜不僅可間接的證明分子結構最佳 化計算的可靠性,更可以由計算結果解析每一個振動模是由哪幾個原子的 振動所造成。在此我們只考慮在氣態 (Gas Phase)下的分子結構,在本研究 的模擬計算中我們暫時不考慮分子堆壘所產生的交互作用。

由於單晶繞射儀實驗量測費時且昂貴,因此在未知的晶體結構之分子 材料我們可藉由理論計算分子結構最佳化的方式了解分子結構,並藉此了 解原子間鍵結的關係,由於分子振動光譜與分子結構有關,我們將實驗未 知的 BAlq 分子結構進行理論計算之結構最佳化,並計算分子的振動光譜 與實驗值比較,也有相當一致的結果(圖2-2),因此我們可以從第一原理計 算之紅外線光譜結果間接的證明計算有機分子之最佳化結構是可信的,我 們也可以進一步對其電子結構分析。

圖2-2:BAlq 分子之振動光譜,第一原理計算結果(虛線)與實驗值(實線)一致。

2-3 分子軌域能階與能隙

在 OLED 元件結構設計時,有機半導體材料的 HOMO 與 LUMO 的 能階位置是相當重要的,因為 HOMO、LUMO 能階的位置影響電荷在元 件內傳導所需克服的能障,且 HOMO、LUMO 之能階差約為吸收光譜之 能隙,因此材料之放光波長與此能隙有一定之趨勢(仍需考慮不同之 Stokes Shift,即吸收與放射之能量差,將在後續討論),我們藉由第一原理計算得 到之 HOMO、LUMO 能隙與實驗結果有一致的趨勢,並進而探討分子軌 域之態密度 (Density of States) 與部份 (原子投影) 態密度,藉此分析分子

BAlq 的 HOMO 能階較 Alq3 低、而 LUMO 的能階又與 Alq3 相同,因此 BAlq 可被用來當作電洞阻隔層進而增加電子與電洞在發光層的 再結合放光⁴²,T.Tsuji 等人⁴³在2004年發表 BAlq 可作為紅光磷光元件發 光層的主體 (host) 材料,因此我們希望能更多的了解 BAlq 材料的特性, 我們計算得到之 HOMO 與 LUMO 的能隙與實驗結果有一致的趨勢(表 2-1),BAlq 的 HOMO 約比 Alq3 低 0.1 eV,且 LUMO 的能階相同,因 此 BAlq 可作為電洞阻擋層材料,實驗的吸收光譜能隙 BAlq 為 3.44 eV 比 Alq3 的 3.2 eV 來得大,我們計算的吸收能隙分別為 3.38 eV 和 3.28 eV,同樣是和實驗值有相似的結果。在計算結果與實驗值的比較時,重要 的是不同分子間趨勢的比較,我們除了得到和實驗一致的能階與能隙,更 從計算結果使我們可以藉由態密度分析分子基團在不同能階的貢獻,圖2-3

的實線是 BAlq 分子的總態密度,另外的虛線分別是部分態密度,從圖2-3 我們就可以很清楚的看到電子在 HOMO、LUMO 的能階是分別偈域在 4-phenylphenol 和 2-methyl-8-hydroxy-quinoline,不僅如此,我們更進一步 使用原子投影部分態密度的分析方法,定量的了解各原子在不同能階的貢 獻(圖2-4),從圖 2-4 我們可清楚看到 BAlq 的 HOMO 主要偈域在 4-phenylphenol,並且從量化分析可發現電子主要分佈在 O4、C28 原子位 置。我們認為偈域化的 HOMO 分佈會降低電洞在分子間的躍遷機率,因 此 BAlq 可作為良好的電洞阻擋層不只是因為其 HOMO 能階較低,其偈 域化的 HOMO 分佈也可阻擋電洞躍遷⁴⁴。

表2-1:計算 Alq3 與 BAlq 分子能階位置與實驗結果有一致趨勢

	m	Alq ₃	BAlq
	Cal.	5.0/1.7	5.1/1.7
	Exp.	5.7/3.0	5.9/3.0
Absorption $gap(aV)$	Cal.	3.3	3.4
Absolption gap (ev)	Exp	3.2	3.4
Triplet con (aV)	Cal.	2.00	2.4
Thplet gap (ev)	Exp.	2.05	non

圖2-3:由態密度分析 BAlq 分子得到不同基團在不同能態的貢獻

圖2-4:電子佔據在 BAlq 分子 HOMO、LUMO 的量化分佈圖

2-4 調控能階或能隙

有機分子能階(或能隙)的調控,從文獻中已知的方法大致可分為二 種,一種方法是藉由改變分子的共軛鏈長,通常共軛鏈長越短則能隙越大, 共軛鏈長越長則能隙越小;另一種方法則是在 HOMO 或 LUMO 的位置 加上施體 (Donor) 或受體 (Acceptor)(圖2-5)。我們由計算得到 Alq₃(圖2-6) 的 HOMO、LUMO 是分別偈域在 Phenoxide 和 Pyridine 的位置與文獻報 告¹³的結果一致,我們更進一步將電子結構的分佈以原子投影的部份態密度 來分析(圖2-7),可以更清楚的看到每個原子在 HOMO、LUMO 的貢獻。

我們在 Alq3 的 HOMO 位置 C10 分別以 Acceptor 氮原子和 Donor 甲基作取代和橋接,另外也在 LUMO 位置的 C7 同樣的用氮原子取代或 甲基橋接,藉以調控 Alq3 分子的能階與能隙。從圖2-5 我們可以預期在 HOMO 位置接上 Acceptor 或是在 LUMO 位置接上 Donor 都可以使能 隙變大而讓原本發錄光的 Alq3 的波長藍位移,若是在 HOMO 位置接上 Donor 或是在 LUMO 位置接上 Acceptor 則會使能隙減小而產生紅位 移。我們分別建構了四種 Alq3 的衍生物(圖2-8),計算其分子最佳化之結 構,並得到各衍生物的 HOMO、LUMO 能階,在原本 Alq3 的 HOMO 位 置 C10 以 Acceptor N 原子取代後的 Alq3-AH (Acceptor on HOMO)分 子,其 HOMO 能階顯著的向下移了約 0.89 eV,而 LUMO 能階也向下移 動約 0.42 eV, Alq3-AH 的能隙比原本的 Alq3 變大了 0.47 eV,相當明顯 的產生藍位移。從計算結果可以清楚看到取代 C10 位置的 N 原子在 Alq₃-AH 的 Mulliken Charge 為 -0.53,是很強的 Acceptor 。在原本 Alq₃ 的LUMO 位置 C7 橋接 Donor 甲基,Alq₃-DL 的LUMO 能階向上移了約 0.15 eV,而 HOMO 也只微幅的向上移動 0.11 eV,不過能隙仍然是比原本 的 Alq₃ 略大 0.04 eV 也是產生藍位移。相反的,將 Donor 甲基橋接在 HOMO C10 位置的 Alq₃-DH則是產生紅位移,HOMO、LUMO 分別向上 移動 0.15 eV、0.07 eV,能隙較原本的 Alq₃小了約 0.1 eV,而將 Acceptor N 取代 C7 的Alq₃-AL 能隙則是明顯小了 0.34 eV,因為 N 的取代位置在 LUMO 而使原本的 LUMO 能階下降了 0.87 eV,HOMO 也比原本低了 0.63 eV。

	НОМО	LUMO	HOMO-LUMO	Eabs (TDDFT)
	(eV)	(eV)	(eV)	(eV)
Alq ₃ -AH	5.90	2.15	3.75	3.40
Alq ₃ -DL	4.90	1.58	3.32	2.95
Alq ₃	5.01	1.73	3.28	2.90
Alq ₃ -DH	4.84	1.66	3.18	2.79
Alq ₃ -AL	5.47	2.53	2.94	2.54

表 2-2 :計算 Alq3 衍生物之能階與能隙

因此我們不僅解析Alq3的電子結構並且可由其電荷在HOMO、LUMO 能階的分佈位置,進而設計新型的相關衍生物,除了可改變光色也可以藉 由調控能階位置降低或提高不同材料間的能障,降低能障可使元件驅動的 電壓下降,而提高能障多用於電子或電洞阻隔使激子被限制在發光層而提 高發光效率。我們也利用改變共軛長度來調空能階位置及能隙的大小,為 了提高 OLED 的發光效率與元件壽命,降低電極與有機材料間的能障是重 要的研究方向,陽極透明電極 ITO 功函數約為 4.8~5.0 eV,而 NPB 電洞 傳輸層的 HOMO 為 -5.4 eV,電洞注入的能障約為 0.4~0.6 eV,因此常用 的方法是在 ITO 與 NPB 之間夾一層電洞注入層材料 CuPc ,CuPc 的 HOMO 約為 -5.1 eV,因此可降低電洞注入所需克服的能障,但因 CuPc 為 深藍色材料,對部份紅光波長吸收而不適用於全彩化面板需求,因此研發 與 ITO 能階匹配的電洞傳輸材料一直是相當重要的。

Marder等人⁴⁵將TPD分子中間的 Biphenyl 用CH₂ 將其橋接,希望藉由橋 接使 Biphenyl 平面化而增加共軛效果、電荷密度分佈非定域效果增加可能 有助於 HOMO 能階上升,使ITO 與其新分子能障減小,計算結果發現將 TPD 分子的 Biphenyl 橋接成平面化後 HOMO 提高了 0.11eV。我們計算 模擬NPB (圖 2-9)的 Biphenyl 平面角度改變對能階的影響,並分析 HOMO 電荷密度分佈的區域,我們發現 HOMO 能階的改變是由 Triarylamine 主 控而不是 Biphenyl 的平面角,提供新材料開發時一個重要的方向。我們發 現NPB分子 Biphenyl間平面夾角的改變所需的能障相當小(表 2-3),單晶結 構時平面夾角約為 0 度,而單分子計算基態時的最佳化結構之平面夾角約 為 34 度,但是其Biphenyl平面夾角的改變對HOMO能階的影響較小,但 Triarylamine 間的平面夾角大小則顯著的改變HOMO能階,我們進而將 Phenyl 與 Naphthyl 分別與 Biphenyl橋接(圖 2-10),設計二個新分子進 行模擬,因平面化共軛效果增加而使離子化位能較NPB小 0.13 eV與 0.32 eV,應可有效降低電洞由ITO注入時的能障,此分析結果有助於含 Triarylamine 的新型電洞傳輸材料之研究與開發。

表 2-3 NPB 的 Biphenyl 平面夾角改變時的能量與鍵長之差別

Dihedral	Energy	НОМО	C5-C40
angle	barrier (eV)	Shift (eV)	Bond length (Å)
0°	0.070	0.06	1.487
30°	0.002	0.01	1.481
34°	0.0	0.0	1.481
60°	0.054	-0.11	1.486
90°	0.130	-0.26	1.494

圖2-5:能階調控示意圖(中研院化學所陳錦地教授繪製)

圖2-6: Alq3 分子結構

圖2-8 Alq3 衍生物分子結構

圖 2-9:NPB 分子結構

圖 2-10:分別將 NPB 原本的 Phenyl 與 Naphthyl 與的 Biphenyl 橋接而設計的新 NPB 衍生物。

2-5 斯托克位移 (Stokes Shift)

有機分子的吸收與放射會出現在不同的波長位置,其差異被稱為 Stokes Shift,主要是分子吸收能量與放光能量的差異,當分子由基態時電 子躍遷至激發態分子結構會有微小改變,分子結構會變成在激發態時的最 穩態,當電子再由激發態躍遷回基態即為放光的能量,所以一般而言 Stokes Shift 是分子在基態與激發態結構改變吸收的能量差而產生的結果 (圖2-11)。

為了比較激發態與基態時的差別,我們使用 CIS 方法搭配 321G基底 函數計算第一激發態的最佳結構,用 Hartree-Fock 方法計算基態的最佳化 結構,再各別以 Time-Dependent DFT (TDDFT)/6-31G(d) 計算載子躍遷機 率及吸收與放光的能隙值:我們計算 Alq3分子的 Stokes Shift 為 126 nm 與實驗值 124 nm 相當一致,也與文獻計算的 123 nm 相近(表2-4)。我們 比較 Alq3 分子由基態變成激發態時的結構變化,我們發現造成 stockes shift 的激發態結構最佳化主要是發生在 Alq3 的其中一個基團(表2-5),與 文獻的計算結果一致¹⁵。吸收躍遷的最大頻率是由 HOMO 躍遷至 LUMO+2,而不是由 HOMO 至 LUMO,我們可以從圖2-12清楚看到 HOMO 和 LUMO+2 的電子雲分佈是在同一個基團,而 LUMO 的電子雲 則是在另一個基團,因此 HOMO 的電子吸收能量躍遷至 LUMO+2 的機 率是最大的。

當分子在基態時,帶有最大動能的電子由 HOMO 吸收能量躍遷至

LUMO+2 形成激發態,分子結構在發生躍遷的那個基團產生結構的變化藉 以達到激發態時的能量最穩態,因此激發態的電子再由激發態的 LUMO 能階躍遷至 HOMO 能階,此時分子結構則再變形回基態結構。因此分子 在基態與激發態結構改變所耗損的能量,也就是吸收光與放射光的能量 差,從光譜的位移計算結果 Stokes Shift 為 126 nm,而從能量差來看其換算 值為 0.79 eV,結構改變耗損的能量越多 Stokes Shift 也就越大,因此一般 而言,分子構形越不容易形變的其 Stokes Shift 也越小,另外,我們也認為 Alq3 分子具有高達 126 nm 的 Stokes Shift 的原因,也來自於其基態躍遷 是由 HOMO 躍遷至 LUMO+2 ,因此 LUMO+2 的電子到激發態的 LUMO,也因此造成結構的改變,由此可知,若是吸收光譜的躍遷能階相 差越多,在激發態時可能形成的結構改變也越大,因此 Stokes Shift 也就越 大。

+	0 4 D A 1	sta	A 1	,,	0, 1 01.0	山谷山南南山山
衣	2-4 BAIq	與	Alq ₃	的	Stokes Shift	計具值與貫驗值

	B	Alq		mer-Alq ₃			
	Our Cal.	Exp.	Our Cal.	Exp. ⁴⁶	Ref. Cal. ⁴⁶		
Absorption	372/3.33	360/3.44	427/2.90	390/3.18	415/2.99		
(nm/eV)							
Emission	489/2.53	475/2.61	541/2.29	514/2.41	538/2.30		
(nm/eV)							
Stokes Shift	117/0.80	115/0.83	126/0.79	124/0.77	123/0.69		
(nm/eV)							

Ligand A				Ligand B			Ligand C		
	HF	CIS	Diff.	HF	CIS	Diff.	HF	CIS	Diff.
	(Å)	(Å)	(%)	(Å)	(Å)	(%)	(Å)	(Å)	(%)
C7-C5	1.361	1.413	3.82	1.363	1.362	-0.07	1.362	1.362	0
C5-C3	1.409	1.359	-3.55	1.411	1.408	-0.21	1.411	1.408	-0.21
C3-N2	1.298	1.383	6.55	1.3	1.307	0.54	1.298	1.305	0.54
N2-C17	1.357	1.348	-0.66	1.352	1.357	0.37	1.353	1.356	0.22
C17-C9	1.399	1.399	0	1.397	1.392	-0.36	1.418	1.391	-1.90
C9-C10	1.417	1.408	-0.64	1.417	1.415	-0.14	1.418	1.416	-0.14
C10-C12	1.363	1.413	3.67	1.364	1.364	0	1.363	1.363	0
C12-C14	1.412	1.36	-3.68	1.414	1.411	-0.21	1.415	1.412	-0.21
C14-C16	1.372	1.431	4.30	1.371	1.367	-0.29	1.371	1.366	-0.36
C16-C17	1.431	1.426	-0.35	1.428	1.423	-0.35	1.43	1.422	-0.56
C16-O18	1.299	1.279	-1.54	1.301	1.325	1.84	1.304	1.328	1.84
O18-Al1	1.826	1.905	4.33	1.849	1.864	0.81	1.855	1.859	0.22
Al1-N2	2.104	1.986	-5.61	2.167	2.056	-5.12	2.076	2.061	-0.72

表 2-5 Alq3 基態與激發態的結構鍵長差別

在前一節我們計算了 BAlq 的分子軌域,已知 HOMO、LUMO 的能 階是分別侷域在 4-phenylphenol 和 2-methyl-8-hydroxy-quinoline,因此若 從前述的結果來推論,因為 HOMO、LUMO 也是分別侷域在不同的基團, 因此電子由 HOMO 躍遷至 LUMO 的機率是很小的,因此我們用TDDFT 計算 BAlq 發現電子由 HOMO-1 至 LUMO 能階的躍遷機率最大,相同 的 HOMO-1 與 LUMO 是侷域在同一個 2-methyl-8-hydroxy-quinoline 基 團,也就是基態與激發態結構改變最大的基團(表2-6),我們也發現 BAlq 的 吸收躍遷不像 Alq3 是由帶有最大動能的 HOMO 電子躍遷至未佔據態, 從圖2-13 可以看到 LUMO, LUMO+1, LUMO+2 都沒有分佈在和 HOMO 相同位置的4-phenylphenol 基團,因此雖然 HOMO 的電子帶有最大動能, 但是較低能量的未佔據態能階都沒有分佈在那個基團,而 HOMO-1 與 LUMO 則是侷域在同一個基團,由此可合理解釋為何 BAlq 的吸收躍遷是 發生在 HOMO-1、LUMO的基團位置。圖2-14為 BAlq 分子在激發態時的 分子軌域分佈,雖然激發態的 HOMO 仍然有分佈在4-phenylphenol 基團, 我們也發現產生結構改變的 2-methyl-8-hydroxy-quinoline 基團在激發態的 HOMO、LUMO 都有電荷的分佈,因此放光躍遷也就是發生在這個基團位 置。

由此我們從計算結果可得到 BAlq 的 Stokes Shift 是由基態的 HOMO-1 的電子躍遷至 LUMO,在 HOMO-1 與 LUMO 所佔據的 2-methyl-8-hydroxy-quinoline 基團其中之一發生結構的改變而達到激發態

的能量最穩態,此時 HOMO 的分佈不再只偈域在4-phenylphenol 基團,在 激發態時的 HOMO 也分佈在發生結構改變的 2-methyl-8 -hydroxy -quinoline 基團,由 TDDFT 計算的吸收光譜為 372 nm 與實驗值 360 nm 相當接近,而放光位置計算結果為 489 nm 也與實驗值 475 nm 接近,吸 收與放光的 Stokes Shift 計算結果為 117 nm 與實驗值 115 nm 相當一 致。因此我們認為若是要設計一個分子具有較大的 Stokes Shift 其基態 HOMO、LUMO 的分佈最好偈域在不同的基團,然而若要得到較小的 Stokes Shift 則是HOMO、LUMO 最好偈域在接近的位置。

	Ligand A			Ligand B				Ligand C			
	HF	CIS	Diff.		HF	CIS	Diff.		HF	CIS	Diff.
_	(Å)	(Å)	(%)		(Å)	(Å)	(%)		(Å)	(Å)	(%)
Al ₁ -O ₂	1.790	1.786	-0.22	Al ₁ -O ₃	1.789	1.857	3.80	Al ₁ -O ₄	1.746	1.722	-1.37
Al ₁ -N ₅	2.113	2.105	-0.38	Al ₁ -N ₆	2.098	1.983	-5.48	O ₄ -C ₃₁	1.325	1.336	0.83
O ₂ -C ₁₄	1.318	1.336	1.37	O ₃ -C ₂₄	1.318	1.296	-1.67	C ₃₁ -C ₃₂	1.394	1.392	-0.14
C ₁₄ -C ₁₃	1.366	1.362	-0.29	C ₂₄ -C ₂₃	1.365	1.426	4.47	C ₃₂ -C ₂₇	1.383	1.380	-0.22
C ₁₃ -C ₁₂	1.415	1.412	-0.21	C ₂₃ -C ₂₂	1.416	1.359	-4.03	C ₂₇ -C ₂₈	1.392	1.389	-0.22
C ₁₂ -C ₁₁	1.361	1.362	0.07	C ₂₂ -C ₂₁	1.361	1.422	4.48	C ₂₈ -C ₂₉	1.393	1.390	-0.22
C ₁₁ -C ₁₀	1.418	1.415	-0.21	C ₂₁ -C ₂₀	1.419	1.401	-1.27	C ₂₉ -C ₃₀	1.382	1.379	-0.22
C ₁₀ -C ₁₅	1.392	1.388	-0.29	C ₂₀ -C ₂₅	1.392	1.404	0.86	C ₃₀ -C ₃₁	1.395	1.392	-0.22
C ₁₅ -C ₁₄	1.424	1.417	-0.49	C ₂₅ -C ₂₄	1.424 ₈	1.421	-0.21	C ₂₈ -C ₅₃	1.489	1.488	-0.07
C ₁₀ -C ₉	1.417	1.417	0	C ₂₀ -C ₁₉	1.416	1.403	-0.92	C ₅₃ -C ₅₄	1.394	1.391	-0.22
C ₉ -C ₈	1.358	1.357	-0.07	C ₁₉ -C ₁₈	1.359	1.413	3.97	C ₅₄ -C ₅₆	1.385	1.383	-0.14
C ₈ -C ₇	1.420	1.417	-0.21	C ₁₈ -C ₁₇	1.419	1.363	-3.95	C ₅₆ -C ₆₀	1.385	1.384	-0.07
C ₇ -N ₅	1.304	1.311	0.54	C ₁₇ -N ₆	1.305	1.390	6.51	C ₆₀ -C ₅₈	1.385	1.384	-0.07
C ₇ -C ₁₆	1.504	1.506	0.13	C ₁₇ -C ₂₆	1.504	1.500	-0.27	C ₅₈ -C ₅₅	1.385	1.383	-0.14
N ₅ -C ₁₅	1.360	1.365	0.37	N ₆ -C ₂₅	1.357	1.341	-1.18	C ₅₅ -C ₅₃	1.394	1.391	-0.22

表 2-6 BAlq 基態與激發態的結構鍵長差別

圖2-11: Stokes Shift 示意圖

圖2-12: Alq3 基態分子軌域 HOMO(a)、LUMO(b)、LUMO+1(c) 和 LUMO+2(d) 的電子分佈,吸收躍遷機率最大的是由 HOMO 至 LUMO+2。

圖2-14:BAlq 分子激發態時不同分子軌域的電子佔據分佈

2-5 三重態能隙

關於三重態能隙的重要性第一章已有討論,T. Tsuji 等人⁴³在2004年發 表 BAlq 可作為紅光磷光元件發光層的主體 (Host) 材料,以 BAlq 作為其 主體材料比用 Alg3 作為磷光主體材料可得更高的元件發光效率。已知磷光 的主體材料其三重態能隙必需大於磷光的放光材料之三重態能隙,才不會 造成摻雜的磷光放光材料的激發子再傳到主體材料的三重態能階而使發光 效率降低。47,48 因此我們分別計算 BAlq 與 Alq3 的三重態能隙,計算結 果得到 BAlq 的三重態能隙 2.42 eV 比 Alq3 三重態能隙 2.00 eV, 文獻報 告實驗量測Alq3 三重態能隙為 2.05 eV49與我們計算的結果相當接近,我們 認為計算結果與實驗值的比較在趨勢比較的一致性是相當重要的,因為實 驗仍未有量測 BAlq 三重態的數據被報導,即使在低溫下 BAlq 的螢光放 光光譜遮蔽了磷光的放光位置,因此我們在實驗量測下無法觀測到 BAlq 的磷光放光位置而無法確認其三重態能隙,不過藉由理論計算結果,我們 得到 BAlq 的三重態能隙比 Alq3 大了約 0.4 eV,這也合理的解釋了為何 文獻中的實驗結果用 BAlq 作為紅光磷光元件發光層的主體材料可以有更 佳的效率。

近年來最常使用的磷光主體材料為 4,4'-bis(9-carbazolyl)-biphenyl (CBP) 和 N,N'-dicarbazolyl-2,5-benzene (*m*CP),其分子結構如圖2-15。CBP 的三重態能隙實驗值為 2.56 eV,在作為紅光或綠光的磷光主體材料都可達 到很好的元件效率^{50,51,52,53,54,55},但是作為藍光磷光的主體材料時效率就變得 很差了,因為藍光的磷光材料的三重態能隙 2.65 eV 主體材料 CBP 的三 重態能隙更大而造成激發子傳回 CBP 而使放光效率降低⁵⁶。因此使用較大 三重態能隙 2.9 eV 的 mCP 作為藍光磷光材料 Iridium bis(4,6-difluorophenyl) -pyridinato-N,C²) picolinate (FIrpic) 可使元件發光效率大輻提 升^{57,58}。我們計算 CBP、mCP 的三重態能隙分別得到 2.66 eV、2.97 eV 與 實驗值的數據也相當一致,計算得到的 三重態能隙 mCP 約比 CBP 大 0.3 eV。

Adachi 等人⁵⁹於2004年合成四種 2,4,6-tris(diarylamino)-1,3,5 -triazine 衍生物,其分子結構如圖2-16。他們發現使用 TRZ2 分子取代 CBP 作為 綠光磷光的主體材料可得到約 10% 相當高的元件外部量子效率,他們發現 TRZ2 比 TRZ3, TRZ4 具有較大的三重態能隙,我們分別計算這四個分子 的能隙位置及單重態與三重態能隙列於表2-7,雖然計算結果在此系列衍生 物的三重態約比實驗值大了約 0.2 eV,但是我們可以看到計算結果和實驗 值有一致的趨勢,TRZ2的三重態能隙比 TRZ3,TRZ4 的三重態能隙大了約 0.4 eV, 然而 TRZ1 因為薄膜非常容易結晶而在文獻實驗中沒有量測其三 重態能隙,我們從計算結果發現 TRZ1 的三重態能隙又比 TRZ2 來得大了 約 0.25 eV,為了解決 TRZ1 容易結晶的問題可以在分子設計時增加空間 障礙,並且從計算結果發現 TRZ1 的分子偶極矩 (Dipole moment) 最小, 偶極矩小的分子其載子遷移率較不會受到外加電場大小而改變,因此我們 認為 TRZ1 的衍生物相當有潛力可作為藍光磷光的主體材料。⁶⁰

	TRZ1	TRZ2	TRZ3	TRZ4
HOMO (eV)	5.47(6.0) ^a	5.77(6.0)	5.36(5.8)	5.47(5.8)
LUMO (eV)	0.38(2.1)	1.41(2.6)	0.96(2.3)	1.06(2.2)
Singlet Eg (eV)	5.1(3.9)	4.4(3.4)	4.4(3.5)	4.4(3.6)
Triplet Eg (eV)	2.88 (^b)	2.63(2.81)	2.21(2.47)	2.11(2.42)
Dipole (Debye)	0.3	1.2	1.9	2.5

表 2-7:TRZ1-TRZ4 能隙與能隙的計算值與實驗值

^a The experimental value in brackets is cited from ref.

^b The triplet gap of TRZ1 has not been measured by experiment.

圖2-15: CBP 與 mCP 的分子結構

第三章 倒置式有激電激發光元件

在第一章我們介紹了倒置式 OLED 研究的重要性,主要是為了將 OLED 能與 a-Si TFT 整合製作大尺寸的主動驅動顯示器,在相關文獻中主 要使用濺鍍 ITO 或是半透明超薄金屬製作倒置式上發光型 OLED (ITOLED),然而因為濺鍍容易造成有機材料的破壞使元件效率衰減,若是 用超薄金屬取代 ITO 則會因為共振腔效應而使元件的視角減小並產生色 偏。本研究所開發的倒置式下發光型 OLED (IBOLED) 的元件效率因為載 子復合效率提高而有較大的發光效率,並且元件穩定性(操作壽命)也較傳統 元件更佳,我們也製作出高效率及高穩定度的白光 IBOLED,對於未來大 尺寸 AMOLED 的開發極具產業價值。

3-1 提高載子由電極注入有機層之效率

在典型的 OLED 元件結構中是將玻璃基板上的透明導電膜 ITO 作為 陽極,再依序將電洞傳輸層材料、發光層材料、電子傳輸層材料蒸鍍在 ITO 上,最後再鍍上反射金屬作為上陰極,如圖3-1a 所示,圖3-1a 下方為其能 階示意圖,左邊 ITO 的功函數能階約為 4.7 eV,有機半導體材料的下方的 橫線代表最高佔據態能階 (HOMO),而上方的橫線代表最低未佔據態能階 (LUMO),最右邊是陰極鋁的功函數能階約為 4.2 eV。典型的 OLED 將電 洞由 ITO 注入有機材料電洞傳輸層 HOMO 的效率,可藉由 O₂-plasma⁶¹ 或 UV ozone⁶²等方法處理 ITO 表面使其功函數增加,或是在 ITO 與電洞 傳輸層之間夾入一層電洞注入層 CuPc¹⁷、PEDOT⁶³ 等材料使電洞注入能障 減小;而電子由陰極鋁注入有機電子傳層層的效率,目前最普遍是使用 LiF/Al 的結構來增加電子注入的效率。

在本研究中我們所製作的 IBOLED 是將透明導電膜 ITO 基板作為下 陰極,依序蒸鍍電子傳輸層、發光層、電洞傳輸層及上陽極金屬鋁(圖3-1b), 由於 ITO 功函數約為 4.7 eV,因此與有機電子傳輸層的 LUMO 3.0 eV 之 間具有高達 1.7 eV的電子注入能障,如何有效的將電子由高功函數的 ITO 注入電子傳輸層的 LUMO,是 IBOLED 開發中最重要的挑戰,另外降低 陽極鋁與電洞傳輸層的能障也可使元件能得到更小的驅動電壓。因為 Alg, 的電子傳導率遠大於電洞傳導率,因此我們分別以 Al 和 ITO 作為下陰 極,然後蒸鍍 Alq₃ 80 nm再覆蓋陽極電極鋁,由於下電極是作為陰極,因 此量測元件的電流可視為電子只有從下基板陰極注入 Alq3 的電流,我們可 從圖3-2a 看到以鋁作為下陰極的電流遠大於用 ITO 作為陰極,這是因為 鋁的功函數較 ITO 低了許多,因此與 Alq3 LUMO 的能障相對也較小, C. W. Chen 等人³⁶發現在 Al 或 Ag 作為下陰極時製作 ITOLED,可在下陰 極與電子傳輸層之間鍍上總厚度約為 1 nm的 Alq₃/LiF/Al 複合層,我們發 現Alq3/LiF/Al 複合層鍍在鋁與 Alq3 之間的確可有效提高電子注入效率, 但是將Alq3/LiF/Al 複合層鍍在陰極 ITO 上則對電子注入效率的提高相當 有限(圖3-2b),電流密度只有非常小輻度的提高。

另外我們也發現 LiF 雖然在典型 OLED 結構中介於 Alq3 與陰極 Al 之間可有效提高電子注入效率,但是若將 LiF 鍍在下陰極 Al 之上,

再鍍 Alq3 則無法提高電子注入效率(圖3-3a),反而會因為 LiF 的高阻值使 電流密度下降,這也驗證在典型 OLED 中 LiF 是在蒸鍍鋁時產生 AlF3和 Li⁺Alq3⁻ 化學反應而提高了電子注入效率⁶⁴,雖然 Saheen 等人曾發表 LiF 可以降低鋁的功函數⁶⁵,我們發現 LiF 鍍在 Al 陰極時電子注入能障反而 變大了,但是我們將 LiF 鍍在 ITO 表面卻可以發現 3 nm 厚度時可提高 電子注入效率(圖3-3b),不過仍然是相當有限,這也顯示電子注入效率的提 高並非單純由陰極的功函數來決定的,我們認為 LiF 可在 ITO 表面形成 界面偶極而提高電子注入效率。

Hiramoto 等人⁶⁶使用 Mg/ITO 作為陰極使電子能有效注入有機材料 t-BuPh-PTC,我們發現將超薄膜 1 nm 的 Mg 鍍在 ITO 表面可有效提高 電子由 ITO 注入 Alq₃(圖3-4a),雖然 Mg 的具有低功函數 3.2 eV,但是 我們發現越厚的 Mg 鍍在 ITO 表面反而電子注入效率變得更差(圖 3-4b),因此我們認為 1nm Mg 可以使電子由高功函數 ITO 表面注入 Alq₃ LUMO 能階的主要原因,不是因為 Mg 具有低功函數的原因,而是 在低覆蓋率時的 Mg 在 ITO 表面形成的界面偶極而降低了電子注入能 障,因為 ITO 表面有拉電子力較大的氧原子,因此 Mg 的電子雲會被氧 原子吸引而在表面形成界面偶極,而這個界面偶極的方向是使電子更容易 由 ITO 注入 Alq₃ 的方向,電子注入效率因而提升,但是在 Mg 的覆蓋率 逐漸增加時 Mg 原子之間形成鍵結而使原本的界面偶極衰減,所以較厚的

圖,界面偶極的存在降低了 ITO 費米能階與 Alq₃ LUMO 能階的能障。我 們比較沒有 Mg (ITO/Alq₃/Al) 和有 Mg (ITO/Mg/Alq₃/Al)的電子傳導元件 (Electron-Only Devices),在電流密度 1 mA/cm²時電壓可以從 13.8 V 下降 至 7.8 V。

在 IBOLED 中我們發現 1 nm Mg 可提高電子由 ITO 注入的效率,另 一方面,氧化金屬 MoO₃⁶⁷、V₂O₅⁶⁸ 和 WO₃⁶⁹ 都被報告顯示可降低電洞由 陽極金屬注入電洞傳輸層的能障,我們實驗室也發現 WO₃ 可有效作為疊 層式 OLED 的連接層⁷⁰,我們將 WO₃ 作為 IBOLED 的電洞注入層,元 件結構如圖3-6,元件的驅動電壓只要 4.2 V,圖3-7為元件的電流密度、電 壓和亮度的特性曲線,元件的電流效率和功率效率分別可達到 4.66 cd/A 和 1.51 lm/W,在電流密度 20 mA/cm² 時驅動電壓為 8.9 V其亮度為 940 cd/m²,相較在傳統的下發光型 OLED 結構 ITO/CuPc/NPB/Alq₃/LiF/Al 在 20 mA/cm² 時驅動電壓要 9.5 V,我們成功的降低了高功函數 ITO 與 Alq₃ LUMO 能階的能障,並製作出文獻未曾發表過的下發光型倒置式 OLED⁷¹。

在典型 OLED 研究中Kido等人⁷²將鹼金屬 Li、Cs 等材料掺雜在 Alq₃ 作為電子注入層來降低電子由陰極注入的能障,但是純的鹼金屬在熱蒸鍍 過程中因為極容易與水氣反應而不容易控制,2004年T. Hasegawa 等人⁷³發 表使用碳酸銫(Cs₂CO₃)作為掺雜電子注入層的材料,Wakimoto 等人⁷⁴曾發 表 Cs₂CO₃在蒸鍍加熱後會解離成 Cs₂O和 CO₂,由於碳酸銫在製程中具有 容易控制的優點,並且我們認為 Cs₂O 在摻雜後較不容易產生漂移而造成

元件復合效率的降低⁷⁵,因此我們使將 Cs_2CO_3 摻雜在 4,7-diphenyl-1,10phenanthroline (Bphen)作為 IBOLED 的電子注入層, Bphen 的電子遷移率 ^{76,77}約為 2.4~4.2×10⁻⁴ cm²/Vs 相較於 Alq₃ 的電子遷移率⁷⁸ 1.4~4.7×10⁻⁶ cm²/Vs 高許多,並且 Bphen 的 LUMO 能階為 3.2 eV也比 Alg₃ 的 3.0 eV 來得更低,因此電子由陰極注入的能障也相對較小。IBOLED 元件結構 為 ITO/Cs₂O:Bphen/Alg₃/NPB/WO₃/Al 在電流密度 20 mA/cm² 時只需要 8.15 V, 並且電流效率和功率效率可達到 5.19 cd/A 和 2.0 lm/W⁷⁹, 比之前 我們用 1 nm Mg 作為電子注入層時有更佳的效率, C.-I. Wu 等人⁸⁰使用 X-ray Photoemission Spectra (XPS)量測碳酸銫摻雜在 Alq3 發現摻雜後的費 米能階高於原有 Alq; 的 LUMO 能階,並且在原本 Alq; 的能隙中發現有 其他的能階產生,而這些能階被認為是有助於電子注入的,同樣的我們也 認為當碳酸銫摻雜在 Bphen 時會在原本的能隙中產生新的能階,而使電子 能藉由這些能階更容易由 ITO 陰極注入有機層的 LUMO 能階(圖3-8)。

我們提出了二種模型來解釋電子由高功函數的 ITO 注入有機層的 LUMO 能階,分別是超薄膜的 Mg 在 ITO 表面形成的界面偶極與藉由掺 雜在原有能隙間產生新的能階,我們發現這兩種機制是可以共存而使電子 注入效率得到更佳的提升,我們製作 Bilayer Mg/Cs₂O:Bphen 為電子注入層 的 IBOLED 元件,元件的效率比只有 Mg 或只有 Cs₂O:Bphen 時來得更 高(圖3-9),雙層電子注入層的元件在相同電流密度時擁有更低的驅動電壓 以及更高的亮度(圖3-10)。

圖3-1 (a)典型 OLED 與 (b) IBOLED 元件結構及能階示意圖。

圖3-2:電子傳導元件之電流密度與電壓關係圖(a) Al或ITO作為下陰極 (b) ITO 作為下陰極並比較有無Alq3-LiF-Al 電子注入層

圖3-3:不同 LiF 厚度在下陰極與 Alq3 之間作為電子注入層的電流密度與 電壓關係圖(a) Al 作為下陰極時 (b) ITO 作為下陰極時。

圖3-4:比較不同電子注入層的電流密度與電壓關係圖 (a) trilayer, LiF 或Mg 作為電子注入層 (b) 不同 Mg 的厚度。

圖3-5: ITO/Alq₃ 和 ITO/Mg/Alq₃ 能階示意圖 (a) ITO和Alq₃ 的電子注入 能障約為1.7 eV (b) 能障因為界面偶極而障低。

圖3-6: IBOLED 元件結構 ITO/Mg/Alq₃/NPB/WO₃/Al

圖3-7:IBOLED 電流密度、亮度與電壓之關係圖,元件結構為:

圖3-8:ITO/Cs₂O:Bphen/Alq₃能階示意圖

3-2 元件效率與壽命

OLED 元件的外部量子效率可由放光的光子數量與注入的電子數量的 比值來定義,也就是說外部量子效率(External Quantum Efficiency,η_{ext})可用 以下方程式表示:

 $\eta_{ext} = \eta_c \times \eta_{int} = \eta_c \times \gamma \times \eta_r \times \eta_f$

η_c: 出光率 (light-coupling efficiency)

η_{int}:內部量子效率

γ:電子與電洞平衡因子

η_r:載子再結合後形成激發子的比率

 $\eta_f(\text{or }\eta_p)$: 激發子放光的比率

η_c 為光自折射率較大的物質進入折射率較小的物質會產生全反射,因 此在 OLED 的激發子結合放光至玻璃基板外則會有部份的光被侷限在元 件內部,有機材料的折射係數 n 約為 1.6,η_c=1/2n²~20%,而電子與電洞 平衡因子也就是在復合區內電子與電洞的載子濃度是否相同,若電子與電 洞的載子濃度越一致則γ 越趨近於 1,否則就小於 1,η_r 在螢光單重態的激 發子形成最大比例為 25%,而磷光三重態的激發子形成比例為 75%,這 是由量子力學的電子躍遷理論而來的,但是若是 25% 的單重態激發子能跨 越能階變成三重態激發子,則η_r 在磷光系統比率最高可接近 100%。²²因此 在螢光的 OLED 元件外部量子效率最高約為 5%,而磷光則可以高達 20%。激發子在有機分子內是否能完全以放光的形式回到基態決定了η_f的大

ES

小,例如當摻雜的發光材料濃度太高時可能會造成濃度淬熄效應而降低放 光的效率。由於 OLED 使用的電洞傳輸材料 NPB 的載子遷移率比電子傳 輸材料 Alq3 大了二個數量級,因此一般認為在復合區的電洞濃度比電子濃 度來得多,而過多的電洞也造成元件操作壽命的衰減,堆積在復合區的電 洞可能造成不發光的再結合而使元件亮度衰退。^{81,82} 因此在典型 OLED 元 件中 CuPc^{17,83,84}、SiO₂⁸⁵被用來降低電洞的濃度使電子與電洞能有較佳的結 合率,不僅能提升元件電流效率也能增加元件的操作壽命,我們實驗室之 前也發現藉由 CuPc 或 MADN 摻雜在電洞傳輸層 NPB 內阻擋電洞注 入,可大幅提升元件的操作壽命。但是藉由阻擋電洞注入的結果會造成元 件驅動電壓的上升,也就使元件的功率效率降低了。

我們分別比較三種元件結構,分別是典型的 OLED 元件結構 ITO/CuPc/NPB/Alq₃/LiF/Al (Device A)、IBOLED 元件結構 ITO/Cs₂O: Bphen/Alq₃/NPB/WO₃/Al (Device B) 以及 ITO/Li:Bphen/Alq₃/NPB/WO₃/Al (Device C)。(圖 3-11) 在電流密度 20 mA/cm² 時的元件電壓分別為 8.3 V、 8.2V 和 9.6V,電流效率分別為 5.5 cd/A、5.2 cd/A、5.4 cd/A。雖然三個元 件在效率上都相當接近,但是我們發現三個元件在固定 20 mA/cm² 驅動下 亮度衰退 20% 的操作壽命分別為 160 小時、270 小時和 104 小時(圖 3-12)。Cs₂O:Bphen 的 IBOLED 元件操作壽命比典型的 OLED 多 1.7 倍,更比 Li:Bphen 的IBOLED 多 2.6 倍。Li:Bphen 的元件壽命最短主要 是因為 Li 的原子太小容易在元件內產生漂移至復合區造成復合效率的衰 退,而 Cs₂O 因為分子量大不易產生漂移因此元件操作壽命遠比 Li 摻雜 好許多。

另外我們也發現 Cs₂O 掺雜 Bphen 不僅能有效提高電子注入效率,也 可改善 Bphen 的表面結晶特性,因為 Bphen 分子量小並具有平面結構, 因此 Bphen 的玻璃轉換溫度僅有 60℃,在元件操作產生的熱能時很容易 結晶而造成元件壽命的衰減⁸⁶但是我們發現 Cs₂O 掺雜在 Bphen 時抑制了 Bphen 結晶特性。我們分別將 Bphen 和 Cs₂O:Bphen 的薄膜在加熱 80℃(20 分鐘)前後量測表面粗糙度,原子力顯微鏡的掃描結果如圖 3-13, 在沒有加熱前 Bphen 的表面粗糙度為 4.3 nm (圖 3-13a),但是加熱後Bphen 的表面粗糙度明顯變大為 18.9 nm(圖 3-13b),而 Cs₂O:Bphen 的薄膜在加 熱前後分別為 2.9 nm 和 2.3 nm,並沒有明顯變化,因此我們認為摻雜不 僅可提高電子注入效率,也對元件操作壽命有明顯的貢獻。

若電子與電洞的載子濃度在復合區越一致則γ 越趨近於 1,不僅發光效 率會變大,元件的操作壽命也會因為較少的正電荷堆積而提升,我們發現 雙層電子注入層 Mg/Cs₂O:Bphen 的 IBOLED 的元件效率比只有 Cs₂O:Bphen時更好(圖 3-14),主要是因為在相同電壓驅動下有更多的電子可 以被注入至有機層而使復合區的載子濃度更為平衡,我們發現電子注入效 率的提升不僅可以降低驅動電壓,當元件在定電流驅動下 Mg/Cs₂O 雙層電 子注入層的 OLED 元件在 300 小時後電壓只微輻上升 1.5 V,而只有 Cs₂O 電子注入層的 OLED 元件電壓上升了 4.0 V(圖 3-15),元件操作電壓的上

升將造成元件功率效率的損耗及操作壽命的衰減,相關的研究成果已提出 專利申請。

由於有機分子間的交互作用可能導致能量的轉移而使放光效率在高濃 度下淬熄,因此在 OLED 元件的發光層發展出主客摻雜,將高光效率及穩 定的摻雜材料以低摻雜量與能隙較大的主體材料共蒸鍍,在主體的激發子 再將能量轉移到摻雜材料放光,因此能將元件內非放光的載子復合降到最 低⁸⁷, 10-(2-benzothiazolyl)-1,1,7,7- tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H benzopyrano (6,7,8-ij) quinolizin-11-one (C545T) 是產學界相當熟知的高效 率緣光螢光材料,在典型的 OLED 元件結構中 ITO/CuPc/NPB/1% C545T:Alg3/LiF/Al 在電流密度 20 mA/cm² 驅動下可達 10.4 cd/A 的效 率,我們將 C545T 掺雜在 Mg/Cs2O:Bphen 雙層電子注入的 IBOLED 元 件(ITO/Mg/Cs₂O:Bphen/Alq₃/1% C545T:Alq₃/NPB/WO₃/Al)⁸⁸,在 20 mA/cm² 時的電流效率高達 22.2 cd/A,比典型 OLED 元件的效率高了二倍多(圖 3-16), IBOLED 的最高功率效率為 12.4 lm/W, 在相當低的電流密度 0.5 mA/cm²亮度即可達到 100 cd/m², 並且電壓也只需要 5.0 V(圖 3-17)。我們 製作的綠色螢光 IBOLED 外部量子效率為 6%,甚至超過了螢光的理論限 制 5%,這是因為 20% 的出光率(n_c)為古典光學的粗估值,我們認為實際的 出光率應該大於 20%,所以螢光 OLED 的外部量子效率極限不只 5%。

VanSlyke 等人⁸⁹也曾發表C545T掺雜Alq₃的OLED 得到 21 cd/A 高效率的緣光元件(glass/Ag/NPB/C545T:Alq₃/MgAg/Alq₃),但是元件的高效率是

微共振腔(Microcavity effect)的結果,陽極和陰極都是穿透率不高的金屬, 因此光線會在元件內來回折射,藉由調整光程差使特定波長產生建設性干 涉,微共振腔的元件結構得到的放光光譜半高寬會變窄,發光效率和色純 度都被大幅提高,但是因為在不同視角會明顯產生色偏,因此在大尺寸顯 示器應用上會使視角變得很小。在我們的IBOLED中因為陰極和陽極都是使 用和典型 OLED 相同的 ITO和 Al,由於 ITO 的光穿透率高而不會有微 共振腔的現象,我們也確認 IBOLED 在不同視角時光譜並沒有任何改變 (圖 3-18),因此我們認為 IBOLED 的高效率並不是因為微共振腔的效果所 造成,IBOLED 和典型 OLED 都具有廣視角的優點。

我們認為在 IBOLED 中載子濃度在復合區更加平衡(γ→1)是得到高效 率的原因。我們已提過在典型OLED 元件中復合區的電洞濃度比電子濃度 來得高,主要是因為電洞傳輸層的載子遷移率遠大於電子傳輸層的載子遷 移率,電極與有機界面的能障也決定了載子濃度的多寡。由於IBOLED 中 雙層Mg/Cs₂O:Bphen 將電子由ITO 注入 Alq₃ LUMO 能階的效率比在典型 OLED 元件 Alq₃/LiF/Al 還要來得更好,然而 IBOLED 的電洞注入反而比 典型 OLED 元件中來得差(圖 3-19),因此剛好平衡了電子與電洞在復合區 的濃度,使電子與電洞的平衡因子更趨近於 1。

我們將 C545T:Alq₃ 的 IBOLED 元件分別在電流密度 15 mA/cm² 和 33 mA/cm²下量測操作壽命(圖 3-20),初始亮度分別為 3300 cd/m²和 7200

 cd/m^2 , OLED 元件的半衰期為元件亮度衰退至初始亮度的一半所經過的時間, 元件在不同初始亮度下的半衰期可由以下方程式推算: $L_0^n \times T_{1/2} = const.$

L₀為初始亮度,T_{1/2}為實際量測的半衰期,n則是加速參數。⁹⁰ 在不同電流 密度下量測到的半衰期讓我們推算出 IBOLED 的 n=1.47,因此換算在起 始亮度為 100 cd/m² 時的元件半衰期可以高達十萬小時,比典型 OLED 的 半衰期高出了 50% 以上,因此我們更可以推論這是因為 IBOLED 電子與 電洞在復合區的濃度更接近,使正電荷不易在復合區內堆積而使元件老化。

圖 3-11: 典型 OLED 元件 (Device A)、Cs₂O:Bphen IBOLED (Device B)和 Li:Bphen IBOLED (Device C)

圖 3-12:元件在電流密度 20 mA/cm²下的操作壽命。

圖 3-13:原子力顯微鏡量測之表面結構(a) Bphen 加熱前 (b) Bphen 加熱後 (c) Cs₂O:Bphen 加熱前 (d) Cs₂O:Bphen 加熱後。

圖 3-14:電子傳導元件電流密度與電壓特性圖。

圖 3-15:在 20 mA/cm² 定電流密度驅動下電壓與時間關係圖。

圖 3-16: IBOLED 與典型 OLED 電流效率與電流密度關係圖。

圖 3-17:綠光(C545T:Alq₃) IBOLED元件之 (a)電流密度、亮度與電壓之關 係圖 (b) 功率效率、電流效率與亮度之關係圖。

圖 3-18:從 0-75 度不同視角量測的放光能譜,小插圖為相對亮度與不同視 角的關係圖。

圖 3-19: 典型 OLED 與 IBOLED 的單載子傳輸元件電流密度與電壓之關 係圖。

3-3 高效率與穩定型白光元件

自光 OLED (White OLED, WOLED) 可藉由彩色瀘光片 (Color Filter) 的整合製作全彩顯示器,另一方面也可取代原有液晶顯示器的背光源或是 作為照明使用,因此極具產業價值。本論文所開發的倒置式 WOLED 電流 效率及功率效率分別可達到 13.0 cd/A、10.6 lm/W, Commission International de l'Eclairage (CIE) 色度座標在 20 mA/cm² 時為(0.31,0.44),在 200 cd/m² 至 10000 cd/m² 之間的色度座標變化小於 0.02,色度座標的變化在小於 0.02 時人眼已經無法察覺其色彩的差異,因此符合產業需求,更重要的元 件操作壽命在初始亮度 400 cd/m² 時可高達 34000 小時,並且光色不會隨 操作時間而改變。

在 OLED 元件結構設計方面大致可分為二種方法得到白光,單層發光 層(Single-Emission Layer, SEL)與多層發光層(Multi-Emission Layer, MEL) 二種;多層發光層是將不同顏色的摻雜材料分別摻雜在不同層,使激發子 能在不同發光層復合放光,並藉由調控各層的膜厚與摻雜濃度來達到白光 的光色。^{91,92,93,94,95} 而單層發光層的白光也就是將不同光色的摻雜材料共蒸 鍍在同一層發光層^{96,97,98,99,100},例如將天藍光和黃光共同摻雜在同一層,光 色主要由摻雜濃度比例而決定,因此單層發光層在製程中比多層發光層的 元件結構更為簡單,但是在單層發光層中的黃光摻雜濃度對光色相當敏 威,在相當低濃度的變化就會造成光色的改變,因此如何在製程中最佳化

元件結構並達到白光的光色是相當重要的。雖然多層發光層的摻雜濃度較 高而有較大的誤差容許值,但是由於多層發光層元件的激發子是分別在不 同發光層復合,因此每一層的膜厚對於載子復合區的影嚮相當大,所以在 結構最佳化時膜厚對光色的影響比單層發光層元件來的顯著,但是在之前 的文獻報告中 MEL WOLED 幾乎都比 SEL WOLED 擁有更高的發光效 率,一般認為激發子可以在不同發光層中復合而有較高的載子復合效率, 然而在典型 MEL WOLED 元件中 CIE 色度座標會隨著操作電壓而改 變,這是因為在不同電壓時載子的復合區在多層發光層中稍微有偏移,而 造成在不同發光層區域的載子復合效率改變,所以放光能譜會明顯隨電壓 而改變, Hong H. Lee 等人¹⁰¹發表的 MEL WOLED 光色並不會隨電壓而改 變,他們認為可能是因為載子復合區寬度縮小的結果。另外,WOLED 的 元件穩定性不只要考慮亮度與時間的關係,光色也不能隨著操作時間而有 改變,然而這方面的研究報告非常少。

我們分別製作 SEL 和 MEL 的倒置式 WOLED,元件結構如圖 3-21 所示,電子注入層和電洞注入層分別為 Mg/Cs₂O:Bphen和WO₃:NPB¹⁰², SEL 為天藍光螢光材料 DSA-Ph¹⁰³ 與黃光材料 Rubrene 共掺雜在主體材 料 MADN¹⁰⁴, MEL 則是 DSA-Ph 掺雜 MADN 作為天藍光發光層以及 Rubrene 掺雜在 NPB 作為黃光發光層。調整掺雜濃度以及膜厚來得到最佳 化效率的元件結構, SEL WOLED 結構為 ITO/Mg(1 nm)/Cs₂O:Bphen (11 nm)/Alq₃ (15 nm)/ 3% DSA-Ph:MADN :0.2% Rubrene (40 nm)/NPB (55

nm)/WO3:NPB (10 nm)/Al, MEL WOLED 結構為ITO/Mg(1 nm)/Cs2O:Bphen (11 nm)/Alg₃(15 nm)/3% DSA-Ph:MADN (40 nm)/3% Rubrene:NPB (20 nm)/NPB (35 nm)/ WO3:NPB (10 nm)/Al。最佳化結構的倒置式 SEL WOLED 最大電流效率及功率效率可分別達到 13.0 cd/A 和 10.6 lm/W, 而 MEL WOLED 最高為 11.3 cd/A 和 7.3 lm/W(圖 3-22), 在電流密度 20 mA/cm² 的亮度與外部量子效率分別可達到 2490 cd/m²、4.6% 與 2230 cd/m²、 4.0%,元件效率 SEL WOLED 約比 MEL WOLED 高出 10%以上,這與 之前文獻認為典型 OLED 在 MEL 結構時激發子在不同發光層復合可得 到較高效率並不一致,我們認為這是因為在我們的IBOLED 元件結構中載 子平衡使復合區的寬度較小能在 SEL 結構中使激發子幾乎都能有效率的 復合所致,而典型元件結構電洞載子濃度遠比電子載子濃度來得高,所以 復合區寬度也較大在單一發光層的復合效果沒有多層發光層來的好。我們 發現在IBOLED元件中無論是 SEL 或 MEL WOLED在 200 cd/m²到 10000 cd/m²之間的色度座標變化都小於 0.02,因此我們認為這是在我們的元件結 構中載子平衡使復合區較小的原因所導致的。

我們量測白光元作的操作壽命並同時每隔一段時間就量測元件的光色 變化,將 SEL、MEL WOLED 分別在電流密度 16 mA/cm²、60 mA/cm²和 100 mA/cm²驅動, SEL WOLED在 60 mA/cm²、100 mA/cm²的元件半衰壽 命為 580 小時及 233 小時,都遠大於 MEL WOLED 半衰壽命的 86 小時 及 28 小時,由於 SEL WOLED 在 16 mA/cm²驅動下在 1500 小時(約 60

多天)只衰退了約 30%,因此我們使用Stretched Exponential Decay (SED)¹⁰⁵ 方法推估元件壽命衰退至 50% 時可達 3200 小時,元件亮度與時間的關係 如圖 3-24 所示。我們分別計算加速參數 n 為 1.47 (SEL)、1.64 (MEL)可換 算得到元件在不同亮度時的壽命(圖 3-25),在亮度 400 cd/m² 時 SEL WOLED 元件操作壽命可達 34,000 小時,相當於三年八個月共計 1400 多 天,相較於 MEL WOLED 的 6350 小時高出約五倍之多。更重要的是我們 實際量測操作時間與放光能譜的變化,SEL WOLED 即使在電流密度 16 mA/cm²下連續操作 1350 小時其色度座標只有微小的變化 (0.014, 0.015),光色一直都是維持在白光,然而 MEL WOLED 在電流密度 16 mA/cm²下操作才 100 小時亮度就衰退 13%,在 262 小時其光色已由最初 的白光變成了黃光,色度座標由 (0.36, 0.45)改變成 (0.41, 0.47)。

雖然SEL、MEL WOLED 在 200 cd/m² 至 10000 cd/m²不同亮度下的色 度座標變化都小於 0.02,但是 MEL WOLED 在元件操作時放光能譜會產 生明顯的改變,我們認為這是因為元件在操作時有機材料的導電率以及與 電極界面的能障會產生變化,而造成原本的載子復合區偏移,雖然我們認 為載子平衡有助於縮小復合區的寬度,但是復合區在不同發光層佔的比例 決定了 MEL WOLED的藍光與黃光強度比例,因此復合區只要有微小的偏 移對於 MEL WOLED 而言都會造成明顯的光色變化,但是 SEL WOLED 因為能量是由寬能隙的藍光再轉移給低能隙的黃光材料,因此復合區的偏 移只會造成放光效率的下降而對光色不會有顯著的影響。我們成功的製作

出高效率且具有高度穩定度的白光 OLED^{106,}研究成果也在 2006 光電與通 訊國際研討會中獲得最佳學生論文獎的殊榮。

圖 3-21: 倒置式 SEL 和 MEL WOLED 元件結構示意圖

圖 3-22: 倒置式 SEL 和 MEL WOLED (a)電流密度、亮度與電壓關係圖,

(b) 電流效率、功率效率與亮度關係圖。

圖 3-23: 倒置式 SEL 和 MEL WOLED 在不同亮度時的色度座標。

圖 3-25: 倒置式 SEL 和 MEL WOLED 在不同亮度時的元件操作壽命。

第四章 結論

密度泛函理論的計算方法在材料科學研究中逐漸扮演重要的角色,因 為模擬計算的結果不僅可以得到與實驗相同或一致性趨勢的結果,對於了 解有機半導體材料的光電特性具有相當重要的價值,除了能有效的了解材 料電子結構對物理與化學機制的影響,進而解釋相關實驗的物理化學機 制,並能預測新的材料特性進而縮短研發時程,節省錯誤嘗試的時間與金 錢。我們計算應用於 OLED 的有機半導體材料的紅外光振動光譜、單重態 及三重態能隙、Stokes Shift 等都與實驗有相當一致的結果,我們更進一步 由分子軌域電荷密度分佈探討對載子遷移率的影嚮以及在元件結構中的光 電特性,並藉由比較基態與激發態的結構變化更了解 Stokes Shift 的物理機 制,對於目前相當重要的磷光主體材料的研究,我們從計算三重態能隙發 現具有潛力的新材料方向。

我們也開發出高效率並且高穩定性的倒置式下發光型 OLED,可搭配 非晶矽薄膜電晶體製作大尺寸的有機發光顯示器,對於產業發展極具貢 獻,雖然下發光型的開口率比上發光型低,但是我們製作的 IBOLED 元件 效率比典型 OLED 高出許多,並且應用在大尺寸面板時開口率的影響就不 是這麼重要了,在本論文開發的白光 IBOLED 元件效率高達 13.0 cd/A、 10.6 lm/W,並且元件操作壽命在初始亮度 400 cd/m² 下可達 34,000 小時, 並且光色不會隨操作時間而有改變,研究成果對於未來大尺寸全彩有機發 光顯示器之應用,或是省電照明之發展皆具有相當重要的貢獻,研究成果

除了在 2006 年國際顯示器研討會口頭報告發表,也獲得光電通訊國際研 討會的最佳學生論文獎,除了透過產學合作計畫由華映申請專利中,並已 發表數篇國際期刊,研究成果相當卓越。

展望未來,使用有機半導體材料的元件除了有機發光二極體、有機薄 膜電晶體和有機太陽能電池等,有機半導體材料還有許多的發展空間和未 知領域,藉由第一原理計算不僅可解釋現有實驗結果,更能加速新材料研 發的時程與發展。雖然受限於 OLED 量產的良率與成本,OLED 顯示器的 市場佔有率仍然遠低於 LCD,但是在未來大尺寸 OLED 的開發下,OLED 面板的輕、薄以及可撓曲的競爭優勢,OLED 成為顯示器主流技術之一仍 然是指日可待的。另外在省電照明方面由於無機 LED 是點光源,而 OLED 的面光源優勢也是相當令人期待的,因此高效率白光 OLED 的研究仍然是 相當重要的趨勢。

參考文獻

- 1. M. Pope et al., J. Chem. Phys. 38, 2042 (1963)
- 2. C.W. Tang et al., Appl. Phys. Lett. 51, 913 (1987)
- 3. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986)
- 4. C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 11 (2001)
- 5. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003)
- R. L. Martin, J. D. Kress, I. H. Campbell, D. L. Smith, *Phys. Rev. B* 61, 15804 (2000)
- Kushto, G. P.;Izumi, Y.; Kido, J.; Kafafi, Z. H. J. Phys. Chem. 104, 3670 (2000)
- M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. 122, 5147 (2000)
- M. Braum, J. Gmeiner, M. Tzolov, M. Coelle, F. Meyer, W. Milius, H. Hellebrecht, O. Wendland, J. U. Schutz, W. J. Brutting, *Chem. Phys.* 114, 9625 (2001)
- 10. A. Curioni, M. Boero and W. Andreoni, Chem. Phys. Lett. 294, 263 (1998)
- A. Curioni, W. Andreoni, R. Treusch, F. J. Himpsel, E. Haskal, P. Seidler, C. Heske, S. Kakar, T. v. Buuren, and L. J. Termnello, *Appl. Phys. Lett.* 72, 1575 (1998)
- A. Degli Esposti, M. Brinkmann and G. Ruani, J. Chem. Phys. 116, 798 (2002)
- 13. R.Q. Zhang, C.S. Lee and S.T. Lee, Chem. Phys. Lett. 326, 413 (2000)
- R. Q. Zhang, W. C. Lu, C. S. Lee, L. S. Hung, and S. T. Lee, *J. Chem. Phys.* 116, 8827 (2002)
- 15. M. D. Halls and H. B. Schlegel, Chem. Mater. 13, 2632 (2001)
- P. E. Burrows, Z. Shen, V. Bulovie, D. M. McCarty, S. R. Forrest. And M. E. Thompson, J. Appl. Phys. 79, 7991 (1996)
- S. A. VanSlyke, C. H. Chen and C. W. Tang, *Appl. Phys. Lett.* 15, 2160 (1996)
- 18. R. Q. Zhang, C. S. Lee and S. T. Lee, J. Chem. Phys. 112, 8614 (2000)

- 19. R. Q. Zhang, C. S. Lee and S. T. Lee, Appl. Phys. Lett. 75, 2418(1999)
- Z. Deng, S. T. Lee, D. P. Webb, Y. C. Chan and W. A. Gambling, *Synth. Met.* 107, 107 (1999)
- 21. M. D. Halls, C. P. Tripp and H. B. Schlegel, *Phys. Chem. Chem. Phys.* **3**, 2131 (2001)
- C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, *J. Appl. Phys.* 90, 5048 (2001)
- 23. Y. Itoh, N. Tomikawa, S. Kobayashi, and T. Minato, Extended Abstracts, The 51st Autumn Meeting, The Japan Society of Applied Physics, 1990, p. 1040
- 24. J. Kido, K. Nagai, and Y. Okamoto, *IEEE Trans. Electron Devices* **40**, 1342 (1993)
- 25. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997)
- 26. V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest and M. E. Thompson, *Appl. Phys. Lett.* **70**, 2954 (1997)
- 27. M. Pfeiffer, S.R. Forrest, X. Zhou and K. Leo, Org. Elec. 4, 21 (2003)
- 28. G. Gu, G. Parthasarathy and S. R. Forrest, Appl. Phys. Lett. 74, 305 (1999)
- 29. D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti and A. B. Holmes, *Appl. Phys. Lett.* **65**, 2636 (1994)
- T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H.-H. Johannes and W. Kowalsky, *Appl. Phys. Lett.* 82,284 (2003)
- 31. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002)
- 32. A. J. Salih, S. P. Lau, J. M. Marshall, J. M. Maud, W. R. Bowen, N. Hilal, R. W. Lovitt, and P. M. Williams, *Appl. Phys. Lett.* 69, 2231 (1996)
- T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H.-H. Johannes, and W. Kowalsky, *Appl. Phys. Lett.* 83, 5071 (2003)
- D. Vaufrey, M. B. Khalifa, J. Tardy, C. Ghica, M. G. Blanchin, C. Sandu and J. A. Roger, *Semi. Sci. Tech.* 18, 253 (2003)
- 35. X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A.

Werner and J. Drechsel, Appl. Phys. Lett. 81, 922 (2002)

- Chieh-Wei Chen, Chun-Liang Lin, and Chung-Chih Wu, *Appl. Phys. Lett.* 85, 2469 (2004)
- X. Zhu, J. Sun, H. Peng, M. Wong and H.-S. Kwok, *Proc. SID* '05 p.793 (2005)
- 38. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964)
- Gaussian 03, Revision A.1, M. J. Frisch et al., Gaussian, Inc., Pittsburgh PA, 2003.
- 40. A. D. Becke, J. Chem. Phys. 98, 5648 (1993)
- 41. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B 37, 785 (1988)
- R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan Y.-J. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest and J. J. Brown, *Appl. Phys. Lett.* 81, 162 (2002)
- 43. T. Tsuji, S. Kawami, S. Miyaguchi, T. Naijo, T. Yuki, S. Matsuo and H. Miyazaki, *SID'04 Digest Papers* p.900 (2004)
- 44. T.-Y. Chu, Y.-S. Wu, J.-F. Chen and C. H. Chen, *Chem. Phys. Lett.* **404**, 121 (2005)
- 45. R. D. Hreha, C. P. George, A. Haldi, B. Domercq and M. Malagoli, *Adv. Func. Mat.* **13**, 967 (2003)
- T. A. Hopkins, K. Meerholz, S. Shaheen, M. L. Anderson, A. Schmidt, B. Kippelen, A. B. Padias, H. K. Halls, N. Peyghambarian and N. R. Armstrong, *Chem. Mater.* 8, 344 (1996)
- 47. F.-C. Chen, G. He and Y. Yang, Appl. Phys. Lett. 82, 1006 (2003)
- 48. M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch and M. E. Thompson, J. Am. Chem. Soc. 125, 7796 (2003)
- 49. M. Colle and C. Garditz, Appl. Phys. Lett. 84, 3160 (2004)
- S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burows, S.R. Forrest and M. E. Thompson, *J. Am. Chem. Soc.* 123, 4304 (2001)
- 51. T. Tsutsui, M. J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, M.

Fukuda, T. Wakimoto and S. Miyaguchi, *Jpn. J. Appl. Phys. Part* 2, **38**, L1502 (1999)

- 52. C. Adachi, R. C. Kwong and S. R. Forrest, Org. Electron. 2, 37 (2001)
- M. A. Baldo, M. E. Thompson and S. R. Forreest, *Nature (London)* 403, 750 (2000)
- B.W. D'Andrade, M. A. Baldo, C. Adachi, J. Books, M. E. Thompson and S. R. Forrest, *Appl. Phys. Lett.* 79, 1045 (2001)
- 55. T. Watanabe, K. Nakamura, S. Kawami, Y. Fukuda, T. Tsuji, T. Wakimoto, S. Miyaguchi, M. Yahiro, M. J. Yang and T. Tsutsui, *Synth. Met.* **122**, 203 (2001)
- 56. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, *Appl. Phys. Lett.* **79**, 2082 (20001)
- V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P.I. Djurovich, B. W. D'Andrade, C. Adachi, S. R. Forrest and M. E. Thompson, *New J. Chem.* 26, 1171 (2002)
- 58. R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, *Appl. Phys. Lett.* 82, 2422 (2003)
- 59. H. Inomata, K. Goushi, T. Mashuko, T. Konno, T. Imai, H. Sasabe, J.J. Brown and C. Adachi, *Chem. Mater.* **16**, 1285 (2004)
- T.-Y. Chu, M-H. Ho, J.-F. Chen and C. H. Chen, *Chem. Phys. Lett.* 415, 137 (2005)
- 61. H.Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, and H. Aziz, *Appl. Phys. Lett.* **78**, 2595 (2001)
- S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, *Appl. Phys. A* 68, 447 (1999)
- J. S. Kim, M. Granstrom, R.H. Friend, N. Johansson, W.R. Salaneck, R. Daik, W.J. Feast, F. Cacialli, J. Appl. Phys. 84, 6859 (1998)
- 64. M. G. Mason, C. W. Tang, L. S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S. T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos and J. L. Bredas, *J. Appl. Phys.* 89, 2756 (2001)
- 65. S. E. Saheen, G. E. Jabbour, M. M. Morell, Y. Kawabe, B. Kippelen, N.

Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash and N. R. Armstrong, J. *Appl. Phys.* **84**, 2324 (1998)

- M. Hiramoto, Y. Motohashi, N. Nagayama, H. Kumaoka and M. Yokoyama, *Jpn. J. Appl. Phys.* 43, L1041 (2004)
- T. Miyashita, S. Naka, H. Okada and H. Onnagawa, *Proc. IDW'04* (2004), p.1421.
- C.-W. Chu, C.-W. Chen, S.-H. Li, E. H. Wu, and Y. Yang, *Appl. Phys. Lett.* 86, 253503 (2005)
- J. Li, M. Yahiro, K. Ishida, H. Yamada and K. Matsushige, *Synt. Met.* 151, 141 (2005)
- C.-C. Chang, S.-W. Hwang, C. H. Chen and J.-F. Chen, *Jpn. J. Appl. Phys.* 43, 6418 (2004)
- 71. T.-Y. Chu, S.-Y. Chen, J.-F. Chen and C. H. Chen, *Jpn. J. Appl. Phys.* **45**, 4948 (2006)
- 72. J. Kido and T. Matsumoto, Appl. Phys. Lett. 73, 2866 (1998)
- 73. T. Hasegawa, S. Miura, T. Moriyama, T. Kimura, I. Takaya, Y. Osato and H. Mizutani, *Proc. SID'04* p.154. (2004)
- 74. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, *IEEE Trans. Electron Devices* 44, 1245 (1997)
- G. Parthasarathy, C. Shen, A. Kahn and S. R. Forrest, *J. Appl. Phys.* 89, 4986 (2001)
- S. Naka, H. Okada, H. Onnagawa and T. Tsutsui, *Appl. Phys. Lett.* **76**, 197 (2000)
- 77. T. Yasuda, Y. Yamaguchi, D.-C. Zou and T. Tsutsui, *Jpn. J. Appl. Phys.* Part 1, **41**, 5626 (2002)
- 78. R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sindair, V. S. Valencia and P. A. Cahil, *Appl. Phys. Lett.* 66, 3618 (1995)
- S.-Y. Chen, T.-Y. Chu, C.-Y. Su, J.-F. Chen and C. H. Chen, *Appl. Phys. Lett.* 89, 053518 (2006)
- 80. C.-I. W, C.-T. Lin, Y.-H. Chen, M.-H. Chen, Y.-J. Lu and C.-C. Wu, Appl.

Phys. Lett. 88, 152104 (2006)

- J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang and J. Shi, *Synth. Met.* 111/112, 233 (2000)
- D. Y. Kondakov, J. R. Sandifer, C. W. Tang and R. H. Young, *J. Appl. Phys.* 93, 1108 (2003)
- H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor and G. Xu, *Science* 283, 1900 (1999)
- 84. E. W. Forsythe, M. A. Abkowitz and Y. Gao, *J. Phys. Chem.* 104, 3948 (2000)
- Z. B. Deng, X. M. Ding. S. T. Lee and W. A. Gambling, *Appl. Phys. Lett.* 74, 2227 (1999)
- B. W. D'Andrade, S. R. Forrest, A. B. Chwang, *Appl. Phys. Lett.* 83, 3858 (2003)
- 87. J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997)
- 88. T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen and C. H. Chen, *Appl. Phys. Lett.* **89**, 053503 (2006)
- 89. P. K. Raychaudhuri, J. K. Madathil, J. D. Shore and S. A. VanSlyke, *Journal* of the SID 12/3, 315 (2004)
- 90. P. Wellmann, M. Hofmann, O. Zeika, A. Werner, J. Birnstock, R. Meerheim,G. He, K. Walzer, M. Pfeiffer and K. Leo, *Proc. SID*'05 p.393 (2005)
- 91. R. S. Deshpande, V. Bulovic, and S. R. Forrest, *Appl. Phys. Lett.* **75**, 888 (1999)
- 92. B. W. D'Andrade, M. E. Thompson, and S. R. Forrest, *Adv. Mater.* 14, 147 (2002)
- 93. G. Cheng, Y. Zhao, Y. Zhang, and S. Liu, Appl. Phys. Lett. 84, 4475 (2004)
- 94. S. Tokito, T. Tsuzuki, F. Sato and T. Iijima, *Current Appl. Phys.* 5, 331 (2005)
- 95. Y. S. Wu, S. W. Hwang, H. H. Chen, M. T. Lee, W. J. Shen and C. H. Chen, *Thin Solid Films* **488**, 265 (2005)
- 96. C. H. Chen and Y. T. Tao, Appl. Phys. Lett. 81, 4499 (2002)

- 97. X. H. Zhang, M. W. Liu, O. Y. Wong, C. S. Lee, H. L. Kwong, S. T. Lee and S. K. Wu, *Chem. Phys. Lett.* **369**, 478 (2003)
- 98. Y. W. Ko, C. H. Chung, J. H. Lee, Y. H. Kim, C. Y. Sohn, B. C. Kim, C. S. Hwang, Y. H. Song, J. Lim, Y. J. Ahn, G. W. Kang, N. Lee and C. Lee, *Thin Solid Films* 426, 246 (2003)
- 99. X. Y. Zheng, W. O. Zhu, Y. Z. Wu, X. Y. Jiang, R. G. Sun, Z. L. Zhang, S. H. Xu, *Displays* 24, 121 (2003)
- 100. Y. Shao and Y. Yang, Appl. Phys. Lett. 86, 073510 (2005)
- 101. J. H. Choi, Y. G. Lee, S. Park, J. Lee and H. H. Lee, *J. Chem. Eng. Jpn.*38, 588 (2005)
- 102. C. C. Chang, M. T. Hsieh, J. F. Chen, S. W. Hwang, J. W. Ma and C. H. Chen, *Proc. SID'06* (2006) 17.4
- 103. S. F. Hsu, C. C. Lee, A. T. Hu, C. H. Chen, Curr. Appl. Phys. 4, 663 (2004)
- M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai and C. H. Chen, *Appl. Phys. Lett.* 85, 3301 (2004)
- C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, *Appl. Phys.* Lett. 87, 213502 (2005)
- 106. T.-Y. Chu, J.-F. Chen, S.-Y. Chen and C. H. Chen, *Appl. Phys. Lett.* 89, 113502 (2006)

附錄一:本論文研究成果發表

期刊論文

- <u>Ta-Ya Chu</u>, Jenn-Fang Chen, Szu-Yi Chen, Chin H. Chen "Comparative Study of Single and Multi-Emissive Layers in Inverted White Organic Light-Emitting Devices", *Appl. Phys. Lett.* **89**, 113502 (2006)
- <u>Ta-Ya Chu</u>, Jenn-Fang Chen, Szu-Yi Chen, Chao-Jung Chen, Chin H. Chen "Highly Efficient and Stable Inverted Bottom-Emission Organic Light Emitting Devices", *Appl. Phys. Lett.* **89**, 053503 (2006)
- Szu-Yi Chen, <u>Ta-Ya Chu</u>, Chien-Ying Su, Jenn-Fang Chen, Chin H. Chen "Stable Inverted Bottom-Emitting Organic Electroluminescent Devices with Molecular-Doping and Morphology-Improvement", *Appl. Phys. Lett.* 89, 053518 (2006)
- <u>Ta-Ya Chu</u>, Jenn-Fang Chen, Szu-Yi Chen, Chin H. Chen "Ultra-Thin Electron Injection Layer on ITO Bottom Cathode for Highly Efficient Inverted OLED", *Jpn. J. Appl. Phys.* 45, 4948 (2006) (SCI)
- <u>Ta-Ya Chu</u>, Yao-Shan Wu, Jenn-Fang Chen, Chin H. Chen "Characterization of Electronic Structure of Aluminum(III) bis(2-methyl-8- quninolinato)-4-phenylphenolate (BAlq) Host Molecule for Phosphorescent Organic Light Emitting Devices" *Chem. Phys. Lett.* **404**, 121 (2005)
- <u>Ta-Ya Chu</u>, Meng-Huan Ho, Jenn-Fang Chen, Chin H. Chen "Ab initio Molecular Orbital Study of 1,3,5-Triazine Derivatives for Phosphorescent Organic Light Emitting Devices" *Chem. Phys. Lett.* 415, 137(2005)

7. <u>朱達雅</u>,何孟寰,陳金鑫"有機光電材料之電腦模擬計算與分

析—OLED應用", 光學工程 94, 33 (2006)

會議論文

Oral presentation:

- <u>Ta-Ya Chu</u>, Szu-Yi Chen , Jenn-Fang Chen and Chin H. Chen "Highly efficient of White Organic Light-Emitting Devices" The 11th OptoElectronics and Communications Conference (OECC) (2006) (Student Paper Award)
- <u>Ta-Ya Chu</u>, Szu-Yi Chen, Chao-Jung Chen, Jenn-Fang Chen, Chin H. Chen, Highly Efficient and Stable Inverted Bottom-Emittion Organic Light Emitting Devices, SID International Symposium, Seminar, and Exhibition, (SID'06) Digest paper p29.2 San Francisco, USA, June 4-9 (2006)
- <u>Ta-Ya Chu</u>, Szu-Yi Chen, Jenn-Fang Chen, Chin H. Chen, "Effective Structure of Electron Injection from ITO Bottom Cathode for Inverted OLED" International Meeting on Information Display (IMID'05) Digest paper p.972 (2005) Seoul, Korea, July 19-23
- <u>Ta-Ya Chu</u>, Jenn-Fang Chen, Chin H. Chen, "Organic Semiconductor Study by First Principle Calculation" Workshop on First-Principles Computational Materials Physics, Chi-Tou, Taiwan, July 27-29 (2005)

Poster:

 Szu-Yi Chen ,<u>Ta-Ya Chu</u>, Chao-Jung Chen, Jenn-Fang Chen and Chin H. Chen "High-Efficiency Inverted Transparent Blue Organic Light-Emitting Devices" International Meeting on Information Display (IMID'06) Seoul, Korea, August 22-25, 2006

- <u>Ta-Ya Chu</u>, Szu-Yi Chen, Jenn-Fang Chen, Chin H. Chen "Color Stable and Efficient White Organic Electroluminescent Device with Single Emitting Layer" The 6th International Conference on Electroluminescence of Molecular Materials and Related Phenomena (ICEL-6), Hong Kong, August 7-10, 2006
- Szu-Yi Chen <u>,Ta-Ya Chu</u>, Jenn-Fang Chen and Chin H. Chen "Highly Efficient of Inverted OLED With N-doped Electron Injection Layers", The 11th OptoElectronics and Communications Conference (OECC) Kaohsiung, July 3-7, 2006
- <u>Ta-Ya Chu</u>, Szu-Yi Chen, Jenn-Fang Chen, Chin H. Chen, "Reducing Electron Injection Barrier between Indium-Tin Oxide and Organic Material—Application in High-Efficiency Inverted Organic Light-Emitting Devices", Taiwan Display Conference (TDC), Taipei, June 15-16, 2006
- Meng-Huan Ho, Chia-Ming Chang, <u>Ta-Ya Chu</u>, Chin H. Chen, Highly Efficient Blue Organic Electroluminescent Devices, SID International Symposium, Seminar, and Exhibition, (SID'06) Digest paper p29.2 San Francisco, USA, June 4-9, 2006
- <u>Ta-Ya Chu</u>, Meng-Huan Ho, Yao-Shan Wu, Jenn-Fang Chen and Chin H. Chen "Organic Electroluminance materials study by computational simulation" The Fourth International OLED and PLED Workshop, Taipei, November 25-26, 2005 (Best Poster Award)
- 11. <u>Ta-Ya Chu</u>^a, Meng-Huan Ho^b, Jenn-Fang Chen^a, Chin H. Chen^{c*} " Ab initio Molecular Orbital Calculation of 1,3,5-Triazine Derivatives as Hosts for Phosphorescent Organic Light Emitting Devices" International

Display Manufacturing Conference (IDMC'05), Taipei, February 21-24, 2005

- Meng-Huan Ho, Yao-Shan Wu, <u>Ta-Ya Chu</u>*, Jenn-Fang Chen* and Chin H. Chen** "Stilbene-Based Materials for Blue Organic Light Emitting Devices" International Display Manufacturing Conference (IDMC'05) 2005/2/21-24, Taipei, February 21-24, 2005
- Meng-Huan Ho, Yao-Shan Wu, Shih-Feng Hsu, <u>Ta-Ya</u>
 <u>Chu</u>*, Jenn-Fang Chen* and Chin H. Chen** "Novel Host Materials for Phosphorescent Organic Light Emitting Devices" International Display Workshop (IDW '04) Fukuoka, Japan, December, 2004
- 14. <u>朱達雅</u>^{1*}, 鄭榮安², 陳金鑫³, 陳振芳¹ "NPB分子結構與軌域能階之
 第一原理計算分析與研究" Taiwan Display Conference (TDC '04),
 Taipei, February, 2004