國立交通大學

電子物理研究所

碩士論文

掺釹與掺鐿雷射晶體在低溫下 的自發輻射與受激輻射之研究

Exploring spontaneous and stimulated emissions of Nd-doped and Yb-doped laser crystals at cryogenic temperature

研究生:溫順茗

指導教授:陳永富 教授

中華民國一百零三年九月

掺釹與掺鐿雷射晶體在低溫下

的自發輻射與受激輻射之研究

Exploring spontaneous and stimulated emissions of Nd-doped

and Yb-doped laser crystals at cryogenic temperature

學 生:溫順茗 Student : Shun-Ming Wen Advisor : Yung-Fu Chen 指導教授:陳永富 國立交通大學 電子物理研究所 碩士論文 A Thesis Submitted to Institute of Electrophysics College of science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master of Science September 2014 Hsinchu, Taiwan, Republic of China

中華民國一百零三年九月

掺釹與摻鐿雷射晶體在低溫下

的自發輻射與受激輻射之研究

學生:溫順茗

指導教授:陳永富

摘要

國立交通大學電子物理所碩士班

我們以液態氮降溫的方式,觀察 Nd:YAG、Nd:YAP、Nd:YLF、Nd:YVO4、 Nd:GdVO4、Nd:LuVO4、Nd:KGW 及 Yb:KGW 八種晶體在不同溫度下的自 發輻射光譜峰值位置偏移、峰值強度等變化。發現在降溫過程中,有五種晶 體發生原本較強之自發輻射峰值轉換至附近峰值的現象。並以 Nd:YAG 和 Nd:YLF 晶體為例,探討在不同輸入功率下,要達到雙波長雷射輸出功率相 同之最佳溫度。其中以 20 W 之輸入功率,在溫度 152 K,Nd:YAG 晶體可 達到 1061 nm 與 1064 nm 雙波長雷射輸出功率皆為 6 W。以 7.9 W 之輸入 功率,在溫度 138 K,Nd:YLF 晶體達到 1047 nm 與 1053 nm 輸出功率皆為 1.55 W 之雙波長雷射。

Exploring spontaneous and stimulated emissions of Nd-doped

and Yb-doped laser crystals at cryogenic temperature

Student : Shun-Ming Wen

Advisor: Yung-Fu Chen

Institute of Electrophysics

National Chiao Tung University

Abstract

We explore the variation of the spontaneous emission spectra with temperature for eight gain media, including Nd:YAG, Nd:YAP, Nd:YLF, Nd:YVO4, Nd:GdVO4, Nd:LuVO4, Nd:KGW, and Yb:KGW crystals, as cryogenically cooling these gain media to 80 K. It is observed that the central peaks of the spontaneous emission spectra for five crystals shift to other side peaks with decreasing temperature. Moreover, we employ the Nd:YAG and Nd:YLF crystals to investigate the optimal temperatures for balancing the dual-wavelength output powers with the different incident pump powers. At an incident pump power of 20 W, the output powers of the Nd:YAG laser for the dual-wavelength at 1061 and 1064 nm can simultaneously reach 6.0 W at optimally balanced temperature of 152 K. At temperature of 138 K, the Nd:YLF laser can be operated at two wavelengths of 1047 and 1053 nm simultaneously with 1.55 W output power at an incident pump power of 7.9 W.

致謝

陳永富老師是一個非常認真盡責的老師,每天都到實驗室關心同學,並與學生討論 研究近況,時間方便時,跟同學們一起吃飯、打網球。感謝老師指導,讓我不只順利取 得學位,還多學到很多做事的方法及態度,感謝老師在做人處事上的教誨。

很感謝卓俊佑學長。在我剛換實驗室的第一天,小佑學長就很注意我心理的調適, 教完一部分 Origin後,便要我先放輕鬆,隔天再繼續學習其他部分。小佑學長是一個縱 觀大局的人,從一開始雷射背景知識的建立,到進入實驗、數據分析處理,到整理論文, 一步一步,循序漸進,都在他的安排上。有時他知道我想做實驗,前一天晚上或是一早 就先將晶體準備好,或是幫我先跟其他學長借好儀器,讓人超感動的。有時我太過沒主 見,常常問東問西的,給學長添了不少麻煩,真的很抱歉。小佑學長也很希望我到實驗 室能夠學到解決問題的方法,訓練自主能力。

很感謝實驗室各位,特別是小佑學長、段必學長、容辰學姊、JJ 學姊、舜子學長、 曄王學長、小傑、郅閎、子麟,在這段期間的關心與指導。

在此感謝氮化物光電元件實驗室的彥顯、尹豪、Lido、崇銘、明達、佳豪、耀德、 書雋、彥甫學長,指導我們實驗的部分、氮化鎵與磊晶的背景知識。感謝我的同屆聖倫、 宗翰、其昌,我們一起讀書、做實驗、重訓、出去玩,有很多共同的回憶。感謝李威儀 老師,除了平常指導之外,還在我車禍在家休養期間,特別選在鹿港舉辦謝師宴,讓我 可以和大家一起參與活動。感謝晟淵、巧涵的幫忙。

感謝爸媽的養育之恩,還有家人的支持,讓我能夠專心的完成學業。感謝我的女朋 友孟欣,在我碩士班的這兩年多來,忍受遠距離戀愛的考驗,每天陪我講電話,偶爾假 日一同出遊,讓我的研究生生活更加精采。

摘要i
Abstract ii
致謝 iii
目錄iv
圖表目錄v
第一章 簡介1
1-1 二極體激發式固體雷射1
1-2 固態雷射晶體介紹3
1-3 雷射晶體的低溫特性6
1-4 論文章節介紹7
第二章 低溫下自發輻射光譜
2-1 低溫自發輻射光譜實驗架設8
2-2a Nd:YAG 晶體14
2-2b Nd:YAP 晶體
2-2c Nd:YLF 晶體
2-2d Nd:YVO4 晶體
2-2e Nd:GdVO4 晶體
2-2f Nd:LuVO4 晶體
2-2g Nd:KGW 晶體
2-2h Yb:KGW 晶體
2-3 低溫自發輻射光譜總結99
第三章 低溫受激輻射
3-1 緒論
3-2 低溫下 Nd: YAG 雷射特性102
3-3 低溫下 Nd:YLF 雷射特性109
第四章 總結與未來工作115
4-1 總結115
4-2 未來工作118
參考文獻119

圖表目錄

圖 1-1-1 Nd:GdVO4 晶體 σ 偏振與 π 偏振之吸收頻譜2
圖 1-2-1 釹離子之能帶結構圖
圖 1-2-2 鏡離子之能帶結構圖
圖 1-2-3 Nd: YAP 晶體能帶結構圖5
圖 1-2-4 Nd:YVO4 晶體能帶結構圖5
圖 2-1-1 自發輻射光譜量測實驗架構圖9
表 2-1-1 Nd:YAG、Nd:YLF、Nd:YAP、Nd:KGW 晶體之特性參數 10
表 2-1-2 Nd:YVO4、Nd:GdVO4、Nd:LuVO4、Yb:KGW 晶體之特性參數 12
表 2-2a-1 Nd:YAG 晶體隨溫度由 290 K 降至 80 K,在 ⁴ F _{3/2} → ⁴ I _{9/2} 、 ⁴ F _{3/2} → ⁴ I _{11/2} 、 ⁴ F _{3/2} → ⁴ I _{13/2}
能階躍遷,雷射中心波長自發輻射藍移量與藍移速率。15
圖 2-2a-1 Nd:YAG 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其
解析度為 2.0 nm。
圖 2-2a-2 Nd:YAG 晶體在波長範圍 915 nm 到 965 nm , 溫度 80 K 與 290 K 的自發輻射
光譜圖。16
圖 2-2a-3 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 930 nm 到 955 nm 的自發
輻射光譜圖。17
圖 2-2a-4 Nd: YAG 晶體在溫度範圍 80 K 到 290 K, 波長範圍 945.6 nm 到 946.7 nm 的自
發輻射光譜圖。
圖 2-2a-5 Nd:YAG 晶體在波長範圍 1040 nm 到 1140 nm , 溫度 80 K 與 290 K 的目發輻
射光譜圖。
表 2-2b-1 Nd: YAP 晶體隨溫度田 290 K 降全 80 K, 任 $F_{3/2} \rightarrow f_{3/2} \rightarrow f_$
能階躍遼, 网偏振笛射中心波長目發輯射監移重興監移建學。
圖 2-20-1 Nd: YAP 晶體社 290 K, 波長範圍 800 nm 到 1/00 nm 的目發輻射光譜圖, 兵
解析度為 2.0 nm, 紅線(員線)為 π 偏振, 監線(庫線)為 σ 偏振, 抽圖為波長 1050
IIII 到 1100 IIII 之 以 入圖。29 图 2 2b 2 Nd:VAD 目體左泅府 200 K, 沈巨谿图 850 nm 到 050nm 的白發輻射光並图。
圖 2-20-2 Nd. IAF
圖 2-20-3 Nd. TAF
圖 2-2b-4 Nd·VAP 县體 σ 信振在测度節圈 80 K 到 290 K, 波長節圈 870 nm 到 940 nm 的
自發輻射光導圖。 31
□ 3 1 3 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
自發輻射光譜圖。 32
圖 2-2b-6 Nd: YAP 晶體在溫度 290 K,波長範圍 1040 nm 到 1140 nm 的自發輻射光譜圖。
\cdots

圖 2-2b-7 Nd: YAP 晶體在溫度 80 K,波長範圍 1040 nm 到 1140 nm 的自發輻射光譜圖。
圖 2-2b-9 Nd:YAP 晶體 σ 偏振在溫度範圍 80 K 到 290 K,波長範圍 1064.25nm 到 1065.75nm 的自發輻射光譜圖。
圖 2-2b-10 Nd: YAP 晶體π偏振在溫度範圍 80 K 到 290 K,波長範圍 1079.6nm 到 1080.8nm 的自發輻射光譜圖。
圖 2-2b-11 Nd:YAP 晶體在溫度 290 K,波長範圍 1300 nm 到 1340nm 的自發輻射光譜
圖 2-2b-12 Nd:YAP 晶體在溫度 80 K,波長範圍 1300 nm 到 1340 nm 的自發輻射光譜圖。
圖 2-2b-13 Nd:YAP 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1320 nm 到 1450nm 的自發輻射光譜圖。
圖 2-2b-14 Nd: YAP 晶體在溫度 150 K,波長範圍 1320 nm 到 1450 nm 的自發輻射光譜圖。
表 2-2c-1 Nd:YLF 晶體隨溫度由 290 K 降至 80 K,在 ⁴ F _{3/2} → ⁴ I _{9/2} 、 ⁴ F _{3/2} → ⁴ I _{11/2} 、 ⁴ F _{3/2} → ⁴ I _{13/2} 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。40
圖 2-2c-2 Nd:YLF 晶體在溫度 290 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。
圖 2-2c-3 Nd:YLF 晶體在溫度 80 K, 波長範圍 850 nm 到 950nm 的自發輻射光譜圖。
圖 2-2c-4 Nd:YLF 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 850 nm 到 920nm 的 自發輻射光譜圖。
圖 2-2c-5 Nd:YLF 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 850 nm 到 920nm 的 自發輻射光譜圖。
圖 2-2c-6 Nd:YLF 晶體在溫度 290 K,波長範圍 1040 nm 到 1080 nm 的自發輻射光譜圖。
圖 2-2c-7 Nd:YLF 晶體在溫度 80 K,波長範圍 1040 nm 到 1080nm 的自發輻射光譜圖。
圖 2-2c-8 Nd:YLF 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1030 nm 到 1080nm 的自發輻射光譜圖。
圖 2-2c-9 Nd:YLF 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1046nm 到 1049nm 的自發輻射光譜圖。
圖 2-2c-10 Nd:YLF 晶體 π 偏振,溫度 80 K 到 290 K,波長 1047nm 的峰值位置圖。.46 圖 2-2c-11 Nd:YLF 晶體在溫度 290 K,波長範圍 1305 nm 到 1335nm 的自發輻射光譜圖。

vi

圖 2-2c-13 Nd:YLF 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1300 nm
到1380nm 的自發輻射光譜圖。48
圖 2-2c-14 Nd:YLF 晶體 σ 偏振在溫度範圍 80 K 到 290 K,波長範圍 1311.5nm 到 1315nm
的自發輻射光譜圖。49
圖 2-2c-15 Nd:YLF 晶體 σ 偏振,溫度 80 K 到 290 K,波長 1313nm 的峰值位置圖。.49
表 2-2d-1 Nd:YAG 晶體隨溫度由 290 K 降至 80 K,在 ⁴ F _{3/2} → ⁴ I _{9/2} 、 ⁴ F _{3/2} → ⁴ I _{11/2} 、 ⁴ F _{3/2} →
⁴ I _{13/2} 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。51
圖 2-2d-1 Nd:YVO4 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其
解析度為 2.0 nm,紅線(實線)為π偏振,藍線(虛線)為σ偏振。52
圖 2-2d-2 Nd:YVO4 晶體在溫度 290 K,波長範圍 850 nm 到 950nm 的自發輻射光譜 53
圖 2-2d-3 Nd:YVO4 晶體在溫度 80 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。
圖 2-2d-4 Nd:YVO ₄ 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 860 nm 到
930 nm 的自發輻射光譜圖。54
圖 2-2d-5 Nd:YVO4 晶體在溫度 290 K,波長範圍 1050 nm 到 1100 nm 的自發輻射光譜
圖。
圖 2-2d-6 Nd: YVO4 晶體在溫度 80 K, 波長範圍 1050 nm 到 1100 nm 的自發輻射光譜圖。
圖 2-2d-7 Nd:YVO ₄ 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1060 nm
到 1090 nm 的自發輻射光譜圖。56
圖 2-2d-8 Nd:YVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K,波長範圍 1062 nm 到 1070 nm
的自發輻射光譜圖。
圖 2-2d-9 Nd:YVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K,波長範圍 1063 nm 到 1067 nm
的自發輻射光譜圖。
圖 2-2d-10 Nd:YVO4 晶體在溫度 290 K,波長範圍 1320 nm 到 1420 nm 的自發輻射光譜
圖。
圖 2-2d-11 Nd:YVO4 晶體在溫度 80 K,波長範圍 1320 nm 到 1420 nm 的自發輻射光譜
圖 2-2d-12 Nd: YVO4 晶體 σ 偏振與 π 偏振在温度範圍 80 K 到 290 K, 波長範圍 1330 nm
到 1400nm 的目發輻射光譜圖。
圖 2-2d-13 Nd:YVO4 晶體σ偏振在溫度範圍 80 K 到 290 K,波長範圍 1340 nm 到 1345
nm 的目發輯射光譜圖。60
圖 2-2d-14 Nd: Y VO4 晶體 π 偏振仕温度 範圍 80 K 到 290 K, 波長 範圍 1340 nm 到 1345
nm 的目贸辐射光谱道。60
Image:
圖 2-20-10 NO:Y VO4 晶體 (a) σ 偏振 (b) π 偏振 ,温度 80 K 到 290 K ,波長 1064 nm 的

vii

峰值位置圖。61
圖 2-2d-17 Nd:YVO4 晶體 (a) σ 偏振 (b) π 偏振, 溫度 80 K 到 290 K, 波長 1341 nm 的
峰值位置圖。61
表 2-2e-1 Nd:GdVO4 晶體隨溫度由 290 K 降至 80 K,在 ⁴ F _{3/2} → ⁴ I _{9/2} 、 ⁴ F _{3/2} → ⁴ I _{11/2} 、 ⁴ F _{3/2} →
⁴ I _{13/2} 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。63
圖 2-2e-1 Nd:GdVO4 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,
其解析度為 2.0 nm, 紅線(實線)為 π 偏振, 藍線(虛線)為 σ 偏振。
圖 2-2e-2 Nd:GdVO4 晶體在溫度 290 K, 波長範圍 850 nm 到 950 nm 的目發輻射光評圖。
圖 2-2e-3 Nd:Gd VO4
到 930 nm 的白發輻射光薄圖。
圖 2-2e-5 Nd:GdVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 911 nm 到 913.5
nm 的自發輻射光譜圖。
圖 2-2e-6 Nd:GdVO ₄ 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 911 nm 到 913.5
nm 的自發輻射光譜圖。
圖 2-2e-7 Nd:GdVO4 晶體在溫度 290 K, 波長範圍 1050 nm 到 1100 nm 的自發輻射光譜
圖。
圖 2-2e-8 Nd:GdVO4 晶體在溫度 80 K,波長範圍 1050 nm 到 1100 nm 的自發輻射光譜
圖。
圖 2-2e-9 Nd:GdVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1060 nm 到 1090
nm 的自發輻射光譜圖。
圖 2-2e-10 Nd:GdVO4 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1060 nm 到 1090
nm 的目發輻射光譜圖。
圖 2-2e-11 Nd:GdVO4 晶體往温度 290 K, 波長範圍 1310 nm 到 1410 nm 的自發輻射光譜
圖 2-2e-12 Nd:GdVO₄ 旱體在 29 度 80 K, 波長 節圍 1310 nm 到 1410 nm 的白發輻射光譜
圖。 70
圖 2-2e-13 Nd:GdVO4 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1320 nm
到 1400 nm 的自發輻射光譜圖。
圖 2-2e-14 Nd:GdVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1339 nm 到 1342
nm 的自發輻射光譜圖。72
圖 2-2e-15 Nd:GdVO4 晶體 σ偏振,溫度 80 K 到 290 K,波長 1340 nm 的峰值位置圖。
表 2-2f-1 Nd:LuVO4 晶體隨溫度由 290 K 降至 80 K,在 ⁴ F _{3/2} → ⁴ I _{9/2} 、 ⁴ F _{3/2} → ⁴ I _{11/2} 、 ⁴ F _{3/2} →
⁴ I _{13/2} 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。74
圖 2-2f-1 Nd:LuVO4 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其

解析度為 2.0 nm,紅線(實線)為π偏振,藍線(虛線)為σ偏振。74
圖 2-2f-2 Nd:LuVO4 晶體在溫度 290 K,波長範圍 850 nm 到 950 nm 的自發輻射光譜圖。
圖 2-2f-3 Nd:LuVO4 晶體在溫度 80 K,波長範圍 850 nm 到 950 nm 的自發輻射光譜圖。
圖 2-2f-4 Nd:LuVO4 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 860 nm
到 940 nm 的自發輻射光譜圖。76
圖 2-2f-5 Nd:LuVO4 晶體在溫度 290 K,波長範圍 1050 nm 到 1100 nm 的自發輻射光譜
圖。
圖 2-2f-6 Nd:LuVO4 晶體在溫度 80 K,波長範圍 1050 nm 到 1100 nm 的自發輻射光譜
圖。
nm 的自發輻射光譜圖。
圖 2-2f-8 Nd:LuVO ₄ 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1060 nm 到 1100
nm 的自發輻射光譜圖。
圖 2-2f-9 Nd:LuVO4 晶體在溫度 290 K,波長範圍 1310 nm 到 1410nm 的自發輻射光譜
圖。
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
圖。
nm 的自發輻射光譜圖。
圖 2-2f-12 Nd:LuVO4 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1370 nm 到 1400
nm 的自發輻射光譜圖。
圖 2-2f-13 Nd:LuVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1341.6 nm 到
1343.8 nm 的自發輻射光譜圖。
圖 2-2f-14 Nd:LuVO4 晶體 π 偏振, 溫度 80 K 到 290 K, 波長 1342 nm 的峰值位置圖。
83
表 2-2g-1 Nd:KGW 晶體隨溫度由 290 K 降至 80 K,在 ⁴ F _{3/2} → ⁴ I _{9/2} 、 ⁴ F _{3/2} → ⁴ I _{11/2} 、 ⁴ F _{3/2} →
⁴ I _{13/2} 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。
圖 2-2g-1 Nd:KGW 晶體在 290 K, 波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其
解析度為 2.0 nm,紅線(實線)為 E//N _p 偏振,藍線(虛線)為 E//N _m 偏振。
圖 2-2g-2 Nd:KGW 晶體在溫度 290 K,波長範圍 850 nm 到 950 nm 的自發輻射光譜圖。
86
圖 2-2g-3 Nd:KGW 晶體在溫度 80 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。
86
圖 2-2g-4 Nd:KGW 晶體 E//N _p 偏振與 E//N _m 偏振,在溫度範圍 80 K 到 290 K,波長範圍
850 nm 到 950nm 的自發輻射光譜圖。
圖 2-2g-5 Nd:KGW 晶體 E//Np 偏振與 E//Nm 偏振,在溫度 150 K,波長範圍 860 nm 到

ix

940 nm 的自發輻射光譜圖。88
圖 2-2g-6 Nd:KGW 晶體在溫度 290 K,波長範圍 1020 nm 到 1120nm 的自發輻射光譜
圖。
圖 2-2g-7 Nd:KGW 晶體在溫度 80 K,波長範圍 1020 nm 到 1120 nm 的自發輻射光譜圖。
圖 2-2g-8 Nd:KGW 晶體 E//Np 偏振與 E//Nm 偏振在溫度範圍 80 K 到 290 K,波長範圍
1030 nm 到 1120 nm 的自發輻射光譜圖。
圖 2-2g-9 Nd:KGW 晶體在溫度 290 K,波長範圍 1280 nm 到 1430 nm 的自發輻射光譜
圖。
圖 2-2g-10 Nd:KGW 晶體在溫度 80 K,波長範圍 1280 nm 到 1430 nm 的自發輻射光譜
◎ ····································
圖 2-2g-11 Nd:KGW 品體 E//Nn 偏振與 E//Nm 偏振在溫度範圍 80 K 到 290 K,波長範圍
1320 nm 到 1420 nm 的自發輻射光譜圖。 92
表 2-2h-1 Yh·KGW 見體隨溫度中 290 K 降至 80 K, 兩偏振雲射中心波長白發輻射藍
移量 <u>的</u> 萨移谏家。
圖 2-2h-1 Yh·KGW 昆艚在 290 K, 波長範圍 950 nm 到 1100 nm 的自發輻射光譜圖, 紅
a(實線)为 F//N. 信振, 虧線(虎線)为 F//N. 信振。 94
圖 2-2h-2 Yh·KGW 具體存 80 K, 波長節圍 950 nm 到 1100 nm 的白發輻射光譜圖, 红
圖 2-2h-3 Yb·KGW 旱體 F//N。偏振在溫度節園 80 K 到 290 K,波長節園 950 nm 到 1100nm
的白發輻射平導圖。
圖 2-2h-4 Yh·KGW 具體 F/N. 信振, 迴度 80 K 到 290 K, 波長 1038 nm 的峰值位置圖。
m 的白發起計光並圖。
■ 2.2h.6 Vb·KGW 具體 E//N 信垢, 過度 80 K 到 200 K, 浊毛 1023 nm 的修估位罢图。
圖 2-211-0 TO.KOW 間腔 E//IMm Imf版 / Ⅲ反 80 K 到 290 K / 次長 1023 I III 19吨
丰 2 2 1 Nd·VVO,、Nd·CdVO,、Nd·LuVO,目豐左泅府 20 K 龄 200 K 修估没府揃没之位
衣 2-3-1 Nu. 1 VO4、Nu.Ou VO4、Nu.Lu VO4
契
表 2-3-2 Nd. 1 VO4、Nd.Od VO4、Nd.Lu VO4 m 脰仕 温度 80 K 較 290 K 咩 但 业 直 之 監 惨 里
主 2.2.2 标评白 登起时候估捕捞,的捕捞泅座 101
$\overline{\chi}$ 2-3-3 軟浊日發輻射峰值轉換, 與轉換温度
回 3-2-1 INU. IAU 的 脑 受 次 仗 笛 豹 貝 婌 禾 (神画
□ 3-2-2 NU. TAO 前脰以聊八切半 20 W, 仕次 衣 耙屋 1039 NIII 到 1008 NIII, 温度 210 K
王 70 K 的角別兀碹回。
□ 3-2-3 小四温度下, 100 □ 3-2-3 小四温度下, 100 □ 3-2-3 小四温度下, 100 □ 3-2-3 小四温度下, 100 □ 100 □ 100 □ 100 □ 100 □ 100 □ 100
回 3-2-4(a) 以 3.4 W ∠ 聊八切华, 留射 波 troinin 與 1004 nm 期出 切 举随 温 度 ∠ 變 化

圖 3-2-4(b) 以 20 W 之輸入功率, 雷射波長 1061 nm 與 1064 nm 輸出功率隨溫度之變化

圖 3-2-4(c) 以 20 W 之輸入功率, 雷射波長 1061 nm 與 1064 nm 輸出功率隨溫度之變化

第一章 簡介

1-1 二極體激發式固體雷射

雷射可依增益介質的材料分為:氣體雷射、固體雷射、半導體雷射、液體雷射。其 中半導體雷射(laser diode)是以半導體當增益介質,以順向偏壓激發,使電子由價帶 (valence band)激發到導帶(conduction band),產生居量反轉。在共振腔的部分,利用半導 體的自然劈裂面(cleaved facet),形成一對平行的鏡面當作共振腔,使雷射光共振放大輸 出。半導體雷射有體積小、重量輕、成本低,能量轉換效率高,又可直接由輸入之激發 電源調變雷射光之輸出頻率,調制頻率可達數十億赫茲等特性[1],因此廣泛用於光碟 機、雷射印表機、雷射掃描機、光纖通信系統等光電產品裡。然而,它的缺點有散熱不 容易,受溫度的影響很敏感,光束的發散角很大,光束的同調品質較差等,故不適合用 來做精密加工。

固體雷射的增益介質大部分是將具有受激輻射作用的離子掺入玻璃、陶瓷或晶體中, 以人工方法製成。共振腔的部分,則多以外加光學鏡片的方式組成。固體雷射增益介質 密度較高,能承受較高的峰值功率,常配合Q開關(Q-switch)、鎖模(mode-locked)、倍頻 等技術,改變其輸出參數,可應用在金屬、陶瓷等材料之雕刻、切割、焊接、表面處理 等[2][3][4],還可應用於美容、近視、刺青去除等醫療領域[5]。然而固體雷射散熱差, 容易造成熱透鏡(thermal lens effect)效應、輸出品質下降等問題,故通常需要溫度控制系 統,如利用水冷的方式,使增益的晶體控制在固定的溫度下,避免晶體損壞或是雷射品 質不一。

傳統的固體雷射以電弧燈(arc lamp)或閃光燈(flash lamp)當作激發光源,因為電弧燈 或閃光燈管發光的頻譜範圍從紅外光到紫外光皆有,而固體雷射晶體卻只針對某些波段 吸收較強,對其餘波段非但吸收能力不佳,因此造成轉換效率低,且容易產生廢熱。例 如由圖 1-1-1Nd:GdVO4 晶體之吸收頻譜可知 Nd:GdVO4 晶體對 590 nm、808 nm 波段之 吸收特別強。近年來由於二極體雷射的迅速發展,二極體激發式固體雷射(Diode pump solid state laser, DPSSL)也被廣泛的研究並應用於產業中,因半導體雷射具有頻寬窄的特性,可大幅增加固體雷射的轉換效率,搭配固體雷射高品質的模態,兩者相得益彰。

圖 1-1-1 Nd:GdVO4 晶體 σ 偏振與 π 偏振之吸收頻譜 [6]

1-2 固態雷射晶體介紹

固態晶體是固體雷射常用的增益介質之一,由摻雜(doping)的離子和基質材料(Hostmaterial)決定其特性。摻雜的離子,會決定晶體的躍遷能階,進而影響晶體的吸收與發 光波長範圍。另一方面,每一種基質材料有不同的布拉維晶格、不同的空間群,有不同 的對稱性,會導致各能階的吸收與自發輻射的比例不同,影響自發輻射的峰值位置,或 造成不同偏振特性等。

例如由圖 1-2-1 和圖 1-2-2 的比較我們可以發現,掺致晶體與掺鐿晶體所使用的能 階即有明顯不同,對應到的吸收與自發輻射波長也會有所差異。掺致晶體的吸收波長在 0.8 μm,而自發輻射波長大約在 0.9 μm、1.06 μm 和 1.3 μm。其中 0.9 μm 是準三能階, 而 1.06 μm 和 1.3 μm 是四能階。另一方面,掺鐿晶體的吸收波長則在 940 nm 到 976 nm 之間,而自發輻射的波長則在 1040 nm 附近,且其為準三能階。準三能階的特性是下能 階(lower level)能量只比基態能階(ground state)高幾個 K_BT,掉到基態能階的載子受到些 許的熱能,便會再吸收回到下能階,影響居量反轉,使發出自發輻射的效率變差。

在基質材料的部分,我們由圖 1-2-3 和圖 1-2-4, Nd:YAP 晶體與 Nd:YVO4 晶體能 帶結構圖可以看到,同為摻雜釹之晶體,在 0.9 μm、1.06 μm、1.3 μm 波段雖然皆有自發 輻射,但自發輻射的波長是不一樣的,除此之外,晶體的基質材料也會影響晶體的熱膨 脹 係數 (Thermal expansion coefficients)、熱導係數 (Thermal conductivity)、折射率 (Refractive indices)等物理特性,這些特性多半與晶體溫度有直接關係,因此溫度的控制 往往成為固體雷射中極重要的一環。

圖 1-2-2 鐿離子之能帶結構圖

圖 1-2-4 Nd:YVO4 晶體能帶結構圖 [8]

1-3 雷射晶體的低溫特性

在雷射的發展史中,低溫系統很早就被使用。例如,1964年,世界上第一台二極體 激發式固體雷射是以摻雜鈾的螢石(U:CaF2)為增益介質[9],此雷射必須操作在液態氦環 境,以減少低能階居量數,降低發出雷射的臨界電流。對於某些雷射,特別是摻雜鈷[10]、 鐵[11]等過渡金屬為增益介質的雷射,在低溫的狀態可以減少非輻射緩解(nonradiative relaxation)速率而大幅增加亞穩態(metastable state)的生命週期(lifetime)。1986年,Moulton 在麻省理工學院(Massachusetts Institute of Technology, MIT)發現摻鈦氧化鋁(Ti:Al2O3)雷 射的輸出功率在 300 K 為 150 mW,而當溫度為 77 K 時,輸出功率可提高為 450 mW, 這主要歸因於熱導係數(thermal conductivity)的提高[12]。

低溫系統在雷射上的使用,起初是由於只有在極低溫的環境下才能觀察到雷射現象。 但2000年以後,隨著材料科學的進步,許多雷射並不用操作在低溫下,就可以達到好幾 百瓦的輸出功率[13][14],並且有好的光束品質。雖然如此,固態晶體在低溫的狀況下, 通常會因為熱導係數會提高、熱光係數(thermo-optic coefficient)會降低、熱膨脹係數 (thermal expansion coefficients)會降低等原因,而有較優異的表現[15][16]。這也導致近 年來有許多論文討論在低溫系統下,量子數虧損[17]、超短脈衝[18][19][20]、熱導係 數[21][22]、熱光係數[23]、自發輻射光譜[24][25]、輸出效率[26][27][28]、斜效 率[29][30]等變化及雷射特性的探討。然而,上述的論文大多是以摻鏡之固態晶體討論 居多,其原因為摻鏡晶體是準三能階,而準三能階雷射在極低溫的環境下輸出效能會有 突破性的成長。也因此,在固態雷射領域最常被使用的摻釹晶體反而較少被應用在低溫 系統中。考慮到摻釹晶體的自發輻射在0.9 µm波段亦為準三能階,且固態晶體在低溫環 境下物理特性優化等情形,本論文則將研究摻釹之固態晶體在低溫下的變化。其中我們 以晶體自發輻射為主要研究主題,詳細記錄多種晶體自發輻射光譜隨溫度的變化,並藉 由其變化可預期在低溫環境下雷射輸出特性的改變,最後以幾個實際的雷射操作驗證成 果。

1-4 論文章節介紹

本論文分為四個章節

第一章是簡介,介紹二極體激發式雷射、固態雷射晶體,還有固態雷射晶體在低溫 下的使用與特性,最後為論文架構。

第二章為低溫自發輻射光譜的觀察與紀錄,第一節為實驗架設與晶體特性,第二節 分別介紹八種晶體之自發輻射光譜,與其降至低溫時的變化,第三節歸納八種晶體共同 的變化。

第三章為觀察晶體低溫自發輻射光譜後的應用,以Nd:YAG和Nd:YLF晶體為例, 觀察其受激輻射的變化,探討在不同功率下,要達到雙波長雷射輸出功率相同之最佳溫度。

第二章 低溫下自發輻射光譜

2-1 低溫自發輻射光譜實驗架設

本論文量測自發輻射光譜的實驗架構如圖 2-1-1 所示。我們將尺寸 3×3×5 mm³的 晶體以銦月包覆,固定在銅座上,放入低溫系統(Janis Research Co., VPF-100)中,抽真 空值壓力約 3x10⁻³ torr,避免結水氣。本實驗以液態氮降溫,包覆晶體的銅座上有熱電 偶及加熱器,連接到溫控器(LakeShore,335 Temperature Controller)控制溫度。對於摻釹 晶體的實驗,我們使用內徑為 600 µm 之光纖耦合二極體雷射(Coherent)作為激發光源, 激發波長為 808 nm。我們將雷射二極體調整在輸入功率 1 W,經由焦距 5 cm、聚焦比 例 1 比 1 的耦合透鏡組,以同樣 600 µm 的光斑尺寸激發晶體。我們在晶體後方放置偏 振分光鏡(polarizing beam splitter, PBS),分離晶體不同偏振的自發輻射,並收光進入最 高解析度為 0.1 nm 的光譜儀(Advantest,Q8381)紀錄訊號。另一方面,對於摻鏡之晶體, 我們則改以內徑 200 µm 的光纖耦合二極體雷射(BWT)為激發光源,激發為波長 940 nm。 本論文所量測的晶體有:摻釹釔鋁石榴石(Nd:YAG)、摻釹氟化釔鋰(Nd:YLF)、摻 釹鋁酸釔(Nd:YAP)、摻釹鎢酸鉀釓(Nd:KGW)、摻釹釠酸釔(Nd:YVO4)、摻釹釠酸釓

分別列於表 2-1-1、表 2-1-2。在接下來的實驗中,較大範圍的自發輻射光譜(850 nm 至 1700 nm)由於光譜儀的限制,故以解析度 2.0 nm 記錄,其餘較小範圍則以解析度 0.1 nm 分段紀錄之。

圖 2-1-1 自發輻射光譜量測實驗架構圖

表 2-1-1 Nd:YAG、Nd:YLF、Nd:YAP、Nd:KGW 晶體之特性參數

	Nd:YAG	Nd:YLF	Nd:YAP	Nd:KGW
Thermal	$7.8 \times 10^{-6}/K$	8.3 ×10 ⁻⁶ /K (π)	2.32×10 ⁻⁶ /K (a)	$\alpha_{[100]} =$
Expansion	<111>	13.3 ×10 ⁻⁶ /K(σ)	8.08×10 ⁻⁶ /K (b)	$4 \times 10^{-6}/\mathrm{K};$
Coefficients	[31]	[31]	8.7×10^{-6} /K (c)	α [010]=
			[32]	$1.6 \times 10^{-6}/K;$
				α [001]=
				8.5×10 ⁻⁶ /K
				[31]
Thermal	14 W/m/K	63 W/m/K	11.7W/m/K (a)	$K_{[100]} =$
Conductivity	(293 K)	[31]	10.0W/m/K (b)	26 W/m/K;
	[31]		13.3W/m/K (c)	K[010]=
	S/E		[32]	38 W/m/K;
		EIEIDD		$K_{[001]} =$
				34 W/m/K
				(373 K)
				[31]
Typical	1064.2 nm	1047 nm (π)	1064.6 nm (σ)	1067 nm
Lasing	[33]	1053 nm (σ)	1079.6 nm (π)	[35]
Wavelength		[31]	[34]	
Refractive	<i>n</i> = 1.816	$n_{o} = 1.448$ >	$n_a = 1.929$	$n_q = 2.049;$
Indices	[33]	$n_e = 1.470$	$n_b = 1.943$	$n_p = 1.978;$
		[31]	$n_c = 1.952$	$n_m = 2.014$
			[33]	[31]
Thermo-Optic	7.8×10 ⁻⁶ /K	-4.310 ⁻⁶ /Κ (π)	7.7×10 ⁻⁶ /K	-15.42×10 ⁻⁶ /K
Coefficients	[31]	-2.010 ⁻⁶ /Κ (σ)	(E//a)	(E//Np)
		[36]	11.7×10 ⁻⁶ /K	-11.99×10 ⁻⁶ /K
			(E//b)	(E//Nm)
			8.3 ×10 ⁻⁶ /K	[37]
			(E//c)	
			[32]	
Fluorescence	$258 \pm 3 \ \mu s$	485 µs (1 at. %)	$156 \pm 1 \ \mu s$	110 µs(3 at. %),
Lifetime	(1 at. %)	[31]	(1 at. %)	90 µs (8 at.%)
	[33]		[33]	[31]

	Nd:YAG	Nd:YLF	Nd:YAP	Nd:KGW
Emission Cross	$2.8 \times 10^{-19} \text{ cm}^2$	$1.8 \times 10^{-19} \text{ cm}^2(\pi)$	$2.4 \times 10^{-19} \text{ cm}^2$	$0.83 \times 10^{-19} \text{ cm}^2$
Section	[31]	$1.2 \times 10^{-19} \text{cm}^2(\sigma)$	(E//C)	(E//Ng)
		[31]	[38]	$3.23 \times 10^{-19} \text{ cm}^2$
				(E//N _m)
				$1.19 \times 10^{-19} \text{ cm}^2$
				(E//N _p)
				[35]
Absorption	$0.74 \times 10^{-19} \text{cm}^2$	$4.8 \times 10^{-20} \text{ cm}^2$	-	$3.43 \times 10^{-20} \text{ cm}^2$
Cross Section	@ 808 nm	@ 798 nm		(E//Ng)
	[39]			$26.75 \times 10^{-20} \text{ cm}^2$
		- 7/	E	(E//N _m)
			8 IE	$7.81 \times 10^{-20} \text{ cm}^2$
				$(E//N_p)(1.9 \text{ at.})$
				%) @ 810 nm
		1890		[35]
Absorption	4.3 cm ⁻¹	$10.8 \text{ cm}^{-1}(\pi)$	4.8 cm ⁻¹	20 cm ⁻¹
Coefficient	@ 808 nm	@ 792.0 nm	@ 803 nm	@ 810 nm
	[33]	3.59 cm ⁻¹ (σ) @ 797.0 nm	[40]	[41]
		[31]		

表 2-1-2 Nd:YVO4、Nd:GdVO4、Nd:LuVO4、Yb:KGW 晶體之特性參數

	Nd:YVO ₄	Nd:GdVO ₄	Nd:LuVO ₄	Yb:KGW
Thermal	$\alpha_a = (5.5 \pm 1.5)$	$\alpha_a = 1.5 \times 10^{\text{-6}}/K$	$\alpha_a = 1.7 \times 10^{-6}/K$	$\alpha_{[100]} =$
Expansion	×10 ⁻⁶ /K	$\alpha_c = 9.3 \times 10^{-6}/K$	$\alpha_{c} = 9.1 \times 10^{-6}/K$	$4 \times 10^{-6}/K;$
Coefficients	$\alpha_c = (11 \pm 1.5)$	[31]	[43]	$\alpha_{[010]} =$
	×10 ⁻⁶ /K			$1.6 \times 10^{-6}/K;$
	[42]			$\alpha_{[001]} =$
				8.5×10 ⁻⁶ /K
				[31]
Thermal	$\kappa_a = 5.23 \text{ W/m/K}$	11.7 W/m/K	6.1 W/m/K	$K_{[100]} =$
Conductivity	$\kappa_c = 5.10 \text{ W/m/K}$	<110>	[44]	26 W/m/K;
	[42]	[31]		K _{[010]=}
				38 W/m/K;
				K _[001] =
		EIFISN		34 W/m/K
				@373K [31]
Typical	1064.3 nm	1062.9 nm	1065.8 nm	1023-1060 nm
Lasing	[42]	[31]	[43]	[31]
Wavelength				
Refractive	$n_{o} = 1.9721;$	$n_0 = 1.98535;$	$n_0 = 2.03486;$	ng=2.037,
Indices	$n_e = 2.1858$	$n_e = 2.19813$	$n_e = 2.25472$	n _p =1.986,
	@ 808 nm	@ 1064 nm	[45]	n _m =2.033
	$n_{o} = 1.9573;$	[31]		[46]
	$n_e = 2.1652$			
	@ 1064 nm			
	[42]			
Thermo-Optic	$dn_o/dT =$	4.7×10 ⁻⁶ /K	$dn_o/dT =$	0.4×10 ⁻⁶ /K
Coefficients	8.5×10 ⁻⁶ /K	[31]	14.0×10 ⁻⁶ /K	[46]
	$dn_e/dT =$		$dn_e/dT =$	
	3.0×10 ⁻⁶ /K		6.7× 10 ⁻⁶ /K	
	[42]		[45]	
Fluorescence	110 μ s(0.4 at. %)	100 µs	95 µs	600 µs (5 at. %)
Lifetime	97 µs (1.0 at. %)	[47]	[43]	[41]
	63 µs (2.0 at. %)			
	[42]			

	Nd:YVO ₄	Nd:GdVO ₄	Nd:LuVO ₄	Yb:KGW
Emission Cross	22×10 ⁻¹⁹ cm ²	$7.6 \times 10^{-19} \mathrm{cm}^2$	$14.6 \times 10^{-19} \text{ cm}^2$	$2.8 \times 10^{-20} \mathrm{cm}^2$
Section	@1064 nm	@ 1064 nm	@ 1065.8 nm	@ 1023 nm
	[42]	[31]	[43]	[41]
Absorption	$5.7 \times 10^{-19} \text{ cm}^2$	$4.9 \times 10^{-19} \text{ cm}^2$	$6.9 \times 10^{-19} \text{ cm}^2$	$1.2 \times 10^{-19} \text{ cm}^2$
Cross Section	@ 800 nm [34]	@ 808 nm [31]	@ 800 nm [34]	@981.2 nm [48]
Absorption	$\sigma = 31 \pm 3 \text{ cm}^{-1};$	74 cm ⁻¹	$\pi = 61 \text{ cm}^{-1}$,	26 cm ⁻¹
Coefficient	$\pi = 9 \pm 2 \text{ cm}^{-1}$	[31]	$\sigma=19 \text{ cm}^{-1}$	(5 at. %)
	@ 808 nm		@ 809 nm;	[41]
	[42]		$\pi = 46 \text{ cm}^{-1}$,	
			$\sigma = 8 \text{ cm}^{-1}$	
			@ 880 nm	
			[49]	

2-2a Nd:YAG 晶體

本實驗量測的 Nd:YAG 晶體濃度為 1.1 at. %。Nd:YAG 晶體是目前最常用的固態雷射晶體,以三價的釹取代三價的釔,因此不需要電荷補償,他的立方晶系結構也有利於得到窄的螢光譜線,導致高增益;另外 YAG 基質機械強度高,導熱性好且有良好的光學特性。而由於 Nd:YAG 晶體為等向性材料,並無偏振的特性。圖 2-2a-1 為 Nd:YAG 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖。

圖 2-2a-2 到圖 2-2a-4 為 Nd:YAG 晶體在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖,我們可以看到在這個波段 Nd:YAG 晶體主要的自發輻射峰值在 938 nm 以及 946 nm。由圖 2-2a-3 我們可以觀察到在降溫的過程中,自發輻射強度很明 顯的增強,但在溫度降至約 130 K 時達到最大值,我們推測溫度更低時自發輻射強度的 減弱是來自吸收效率變差的關係。另外由圖 2-2a-4,我們可以看到 946 nm 波段的峰值 位置隨溫度由 290 K 降至 80 K 時,有紅移的現象,紅移量約為 0.3 nm,紅移速率為 1.43 pm K⁻¹。

圖 2-2a-5 到圖 2-2a-9 為 Nd: YAG 晶體在 ${}^{4}F_{3,2}$ → ${}^{4}I_{11/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖,在這個波段主要的峰值是在 1064 nm,但由實驗的觀察我們可 以發現,在低溫的環境下峰值會轉至 1061 nm。由圖 2-2a-6 和圖 2-2a-7 可推測自發輻射 峰值波長轉換的溫度約在 165 K 附近。另外由圖 2-2a-8 我們還可以觀察到,1061 nm 波 段的峰值位置隨溫度由 290 K 降至 80 K,會逐漸藍移,藍移量約為 0.5 nm,藍移速率為 2.38 pm K⁻¹。而 1064 nm 波段的峰值位置藍移速率大約相同,但約在 170 K 的溫度以下 會分裂出 1064.75 nm 的另一個峰值。相較於其他摻釹晶體,Nd: YAG 晶體有較豐富的自 發輻射光譜,在 1120 nm 附近亦有自發輻射,其中較常被使用的波長為 1113 nm 及 1123 nm,如圖 2-2a-9 所示。我們可以觀察到這個波段的自發輻射也有峰值轉換的現象,其中 1123 nm 的自發輻射強度在低溫環境下明顯高過 1113 nm 的自發輻射強度。由圖 2-2a-11 可知,1113 nm 及 1123 nm 波段的峰值會有約為 0.48 pm K⁻¹ 及 0.95 pm K⁻¹ 的紅移速率, 紅移量約為 0.1 nm 及 0.2 nm。 圖 2-2a-12 到圖 2-2a-15 為 Nd:YAG 晶體在 ${}^{4}F_{32}$ → ${}^{4}I_{13/2}$ 能階躍遷,溫度範圍 80 K 到 290 K 的自發輻射光譜圖。由圖 2-2a-11 和圖 2-2a-12 我們可以觀察到這個波段的自發輻射有和 1060 nm 波段類似的狀況。在溫度為 290 K 時,最強的峰值是在 1319 nm,這也 是一般較常被使用的雷射波段。溫度由 290 K 降至 170 K 時,另一個較常被用到的雷射 波段,1338 nm 的峰值強度會強過 1319 nm 的峰值強度。而隨著溫度再降至約 130 K 時, 1334 nm 和 1358 nm 波段的自發輻射強度則會強過 1338 nm。最後降至 80 K 時,最強的 自發輻射峰值為 1358 nm。由圖 2-2a-15 和圖 2-2a-16 我們可以觀察到 1319 nm、1338 nm 的峰值位置隨溫度由 290 K 降至 80 K,會有 0.9 nm 和 1.1 nm 的藍移,藍移速率為 4.29 pm K⁻¹和 5.19 pm K⁻¹。

我們從 Nd:YAG 晶體的自發輻射在降溫的過程中的變化,即最強峰值轉換的現象可以推估,當 Nd:YAG 晶體應用到雷射時,這些波段很可會發生雷射波長轉換的現象,例 如在 2009 年即有研究觀察過使用 Nd:YAG 陶瓷材料的波長轉換現象 [50]

1896

表 2-2a-1 Nd:YAG 晶體隨溫度由 290 K 降至 80 K,在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 能階躍遷,雷射中心波長自發輻射藍移量與藍移速率。

	${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \qquad {}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$			${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$
雷射中心波長(nm)	946	1064	1123	1319
藍移量(nm)	-0.3	0.5	-0.2	0.9
藍移速率(pm K ⁻¹)	-1.43	2.38	-0.95	4.29

圖 2-2a-2 Nd:YAG 晶體在波長範圍 915 nm 到 965 nm , 溫度 80 K 與 290 K 的自發輻射 光譜圖。

圖 2-2a-3 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 930 nm 到 955 nm 的自發 輻射光譜圖。

圖 2-2a-5 Nd:YAG 晶體在波長範圍 1040 nm 到 1140 nm , 溫度 80 K 與 290 K 的自發輻射光譜圖。

圖 2-2a-6 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 1040 nm 到 1090 nm 的自發輻射光譜圖。

圖 2-2a-8 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 1061 nm 到 1067 nm 的自發 輻射光譜圖。

圖 2-2a-9 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 1100 nm 到 1130 nm 的自發輻射光譜圖。

圖 2-2a-11 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 1110 nm 到 1120 nm 的自發輻射光譜圖。

圖 2-2a-12 Nd:YAG 晶體在波長範圍 1315 nm 到 1455 nm, 溫度 290 K 與 80 K 的自發輻射光譜圖。

圖 2-2a-13 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 1310 nm 到 1370nm 的自發輻射光譜圖。

圖 2-2a-14 Nd:YAG 晶體在波長範圍 1332 nm 到 1340nm, 溫度 130 K 與 150 K 的自發 輻射光譜圖。

圖 2-2a-16 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 1337 nm 到 1339 nm 的 自發輻射光譜圖。

圖 2-2a-17 Nd:YAG 晶體在溫度範圍 80 K 到 290 K,波長範圍 1405 nm 到 1455 nm 的自發輻射光譜圖。

2-2b Nd:YAP 晶體

本實驗所量測的 Nd:YAP 晶體濃度為 1.0 at. %。Nd:YAP 晶體為斜六方晶系(正交晶 系),與 Nd:YAG 晶體的組成元素相同,但組成比例不同,因此物理、化學、機械和熱性 能相近。π 偏振的主要雷射波長為 1080 nm,σ 偏振的主要雷射波長為 1065 nm。Nd:YAP 晶體的自發輻射頻譜較其他摻雜釹之晶體有更多根的峰值。圖 2-2b-1 為 Nd:YAP 晶體 在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,紅線(實線)為π偏振,藍線 (虛線)為σ偏振,插圖為波長 1050 nm 到 1100 nm 之放大圖。

圖 2-2b-2 到圖 2-2b-5 為 Nd:YAP 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{9/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2b-2 與圖 2-2b-3 比較,溫度由 290 K 降到 80 K,除 884 nm、892 nm、915.8 nm、930 nm 四個峰值明顯變強外,其餘峰值或非峰值處,強度皆變 弱。π偏振 892 nm 峰值強度變強 3.6 倍,成為 ${}^{4}F_{3/2}$ → ${}^{4}I_{9/2}$ 能階躍遷中,最強峰值。σ 偏 振在 930 nm,溫度由 290 K 降至 90 K 的藍移量約為 0.2 nm,藍移速率為 1.05 pm K⁻¹。 π偏振在 915 nm 的藍移量約為 0.41 nm,藍移速率為 1.95 pm K⁻¹。

圖 2-2b-6 到圖 2-2b-10 為 Nd: YAP 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{11/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2b-9 可以看出 σ 偏振的峰值位置隨溫度由 290 K 降至 80 K,1065 nm 藍移約為 0.8 nm,藍移速率為 3.8 pm K⁻¹,其中 150 K 的峰值最強。由圖 2-2b-10 可以看出 π 偏振在 1080.1 nm 的峰值由 290 K 降至 110 K,並無藍移或紅移,而 90 K 藍移至 1080.0 nm,80 K 紅移至 1080.2 nm,其紅藍移的量甚小,有可能是示波器 解析度極限只有到 0.1 nm 所造成。 π 偏振在 130 K 的峰值最強。

圖 2-2b-11 到圖 2-2b-14 為 Nd:YAP 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{13/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2b-11 和圖 2-2b-12 比較,溫度 290 K 時,π偏振強度 較強,而當溫度降到 80 K 時,σ偏振強度較強。由圖 2-2b-13 可看出,σ偏振隨著溫度 降低,1339 nm 峰值有增加的趨勢,而π偏振 1341 nm 峰值逐漸變弱,並且分裂出 1339 nm。由圖 2-2b-14 更可清楚看到,在 150 K 時,σ偏振峰值強度較π偏振強。σ偏振在 1339 nm 的藍移量約為 0.8 nm,藍移速率為 3.8 pm K⁻¹。π偏振在 1321 nm 的藍移量約

0.6 nm,藍移速率為 2.85 pm K^{-1。}

表 2-2b-1 Nd:YAP 晶體隨溫度由 290 K 降至 80 K,在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。

	${}^4F_{3/2} {\longrightarrow} {}^4I_{9/2}$		${}^4F_{3/2} {\rightarrow} {}^4I_{11/2}$		${}^4F_{3/2} {\longrightarrow} {}^4I_{13/2}$	
偏振	π	σ	π	σ	π	σ
雷射中心波長(nm)	916	930	1080	1065	1341	1339
藍移量(nm)	0.4	0.2	-0.1	0.7	0.6	0.8
藍移速率(pm K ⁻¹)	1.95	1.00	-0.48	3.33	2.85	3.80

圖 2-2b-1 Nd:YAP 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其 解析度為 2.0 nm,紅線(實線)為π偏振,藍線(虛線)為σ偏振,插圖為波長 1050 nm 到 1100 nm 之放大圖。

圖 2-2b-3 Nd: YAP 晶體在溫度 80 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。

圖 2-2b-4 Nd: YAP 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 870 nm 到 940 nm 的 自發輻射光譜圖。

Wavelength (nm)

圖 2-2b-5 Nd:YAP 晶體 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 870 nm 到 940 nm 的 自發輻射光譜圖。

圖 2-2b-7 Nd: YAP 晶體在溫度 80 K,波長範圍 1040 nm 到 1140 nm 的自發輻射光譜圖。

圖 2-2b-8 Nd:YAP 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1040 nm 到 1120nm 的自發輻射光譜圖。

圖 2-2b-10 Nd:YAP 晶體π偏振在溫度範圍 80 K到 290 K,波長範圍 1079.6nm 到 1080.8nm 的自發輻射光譜圖。

圖 2-2b-12 Nd: YAP 晶體在溫度 80 K,波長範圍 1300 nm 到 1340 nm 的自發輻射光譜圖。

圖 2-2b-13 Nd:YAP 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1320 nm 到 1450nm 的自發輻射光譜圖。

圖 2-2b-14 Nd: YAP 晶體在溫度 150 K,波長範圍 1320 nm 到 1450 nm 的自發輻射光譜圖。

2-2c Nd:YLF 晶體

本實驗量測的 Nd:YLF 晶體濃度為 0.8 at. %。Nd:YLF 晶體為四方晶系,具有特別 低的熱透鏡效應、螢光壽命長等特點。 π 偏振的主要雷射波長為 1047 nm、1321 nm, σ 偏振的主要雷射波長為 1053 nm、1313 nm。圖 2-2c-1 為 Nd:YLF 晶體在 290 K,波長範 圍 850 nm 到 1700 nm 的自發輻射光譜圖,紅線(實線)為 π 偏振,藍線(虛線)為 σ 偏振, 插圖為波長 1034 nm 到 1085 nm 之放大圖,由此圖可看出 π 偏振與 σ 偏振主要的波長 1047 nm、1053 nm。

圖 2-2c-2 到圖 2-2c-5 為 Nd:YLF 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{9/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2c-2 跟圖 2-2c-3 比較,當溫度由 290 K 降到 80 K 後, σ 偏振有 880 nm、885 nm、908 nm 三個峰值變強,而 π 偏振只有 880 nm 變強。 σ 偏振 在 908 nm 的藍移量為 0.1 nm,藍移速率為 0.47 pm K⁻¹, π 偏振在 903 nm 的藍移量為 0.2 nm,藍移速率為 0.95 pm K⁻¹。

圖 2-2c-6 到圖 2-2c-9 Nd:YLF 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{11/2}$ 能階躍遷,溫度 80 K 到 290 K 之 間的自發輻射光譜圖。由圖 2-2c-6 可看出在 290 K,π偏振的峰值較σ偏振強。而到了 80 K 反而是σ偏振較強,如圖 2-2c-7。π偏振 1047 nm 峰值隨溫度由 290 K 降至 150 K, 強度是增加的,但 150 K 至 80 K 強度變弱。而σ偏振 1053 nm 峰值隨溫度由 290 K 降 至 80 K,強度是持續增加的,如圖 2-2c-8 所示。150 K 後,σ偏振的峰值較π偏振強, 發生峰值轉換的現象。由圖 2-2c-9 可知,π偏振的峰值位置隨溫度由 290 K 降至 80 K, 1047 nm 藍移量約為 0.8 nm,藍移速率為 3.8 pm K⁻¹,圖 2-2c-10 為π偏振在溫度 80 K 至 290 K 的峰值位置,呈現性變化。σ偏振在 1053 nm 的藍移量約為 0.2 nm,藍移速率 為 0.95 pm K⁻¹。

圖 2-2c-11 到圖 2-2c-14 Nd:YLF 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{13/2}$ 能階躍遷,在度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2c-13,π 偏振降溫至 80 K 時,1317 nm 峰值強度較 1321 nm 峰值強度強,有峰值轉換的現象。由圖 2-2c-12 可看到,當溫度降至 80 K 後,σ 偏 振有 1312 nm、1325 nm 兩個峰值,π 偏振有 1317 nm、1321 nm 兩個峰值。σ 偏振在 1312

39

nm 隨溫度由 290 K 降至 80 K,藍移量約為 1.19 nm,的藍移速率為 5.7 pm K⁻¹,圖 2-2c-15 為 σ 偏振 80 K 至 290 K 的峰值位置,呈現性變化。 π 偏振在 1321 nm 的藍移量約為 0.6 nm,藍移速率為 2.85 pm K⁻¹。

表 2-2c-1 Nd:YLF 晶體隨溫度由 290 K 降至 80 K,在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。

圖 2-2c-1 Nd:YLF 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其 解析度為 2.0 nm,紅線(實線)為π偏振,藍線(虛線)為σ偏振,插圖為波長 1034 nm 到 1085 nm 之放大圖。

圖 2-2c-3 Nd:YLF 晶體在溫度 80 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。

圖 2-2c-4 Nd:YLF 晶體 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 850 nm 到 920nm 的 自發輻射光譜圖。

圖 2-2c-5 Nd:YLF 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 850 nm 到 920nm 的 自發輻射光譜圖。

圖 2-2c-7 Nd:YLF 晶體在溫度 80 K,波長範圍 1040 nm 到 1080nm 的自發輻射光譜圖。

圖 2-2c-8 Nd:YLF 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1030 nm 到 1080nm 的自發輻射光譜圖。

圖 2-2c-10 Nd:YLF 晶體 π 偏振,溫度 80 K 到 290 K,波長 1047nm 的峰值位置圖。

圖 2-2c-11 Nd:YLF 晶體在溫度 290 K,波長範圍 1305 nm 到 1335 nm 的自發輻射光譜圖。

圖 2-2c-12 Nd:YLF 晶體在溫度 80 K,波長範圍 1305 nm 到 1335 nm 的自發輻射光譜圖。

圖 2-2c-13 Nd:YLF 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1300 nm 到 1380nm 的自發輻射光譜圖。

圖 2-2c-15 Nd:YLF 晶體 σ 偏振,溫度 80 K 到 290 K,波長 1313nm 的峰值位置圖。

2-2d Nd:YVO4 晶體

本實驗量測的Nd:YVO4晶體濃度為0.2 at. %。Nd: YVO4晶體為四方晶系,比Nd:YAG 晶體的吸收係數高,也有較寬的吸收帶。Nd: YVO4 晶體以自發輻射光譜強度判別 π 偏 振與 σ 偏振,光譜強度較強的為 π 偏振。圖 2-2d-1 Nd:YVO4 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,紅線(實線)為 π 偏振,藍線(虛線)為 σ 偏振。

圖 2-2d-2 到圖 2-2d-4 為 Nd:YVO4 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{9/2}$ 能階躍遷,在溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2d-2,溫度 290 K 時,π偏振的 880 nm 為此能階躍遷 間最強之峰值,由圖 2-2d-4 可看出在溫度 210 K 以下,880 nm 峰值隨溫度降低而變弱,到了 90 K 後,914 nm 峰值強度較 880 nm 強。σ偏振在 930 nm,溫度由 290 K 降至 90 K 的藍移量約為 1 nm,藍移速率為 4.75 pm K⁻¹。π偏振在 914 nm 的藍移量約為 0.7 nm, 藍移速率為 3.32 pm K⁻¹。

圖 2-2d-5 到圖 2-2d-9 為 Nd:YVO4 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{11/2}$ 能階躍遷,在溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2d-5 和圖 2-2d-6 比較,溫度由 290 K 降至 80 K, σ 偏振 1064 nm 峰值強度變為 290 K 時的 2.5 倍, π 偏振 1064 nm 峰值強度變為 290 K 時的 3 倍。由圖 2-2d-8, σ 偏振的峰值位置隨溫度由 290 K 降至 80 K, 1065 nm 藍移量約 為 0.8 nm,藍移速率為 3.8 pm K⁻¹,圖 2-2d-16(a)為 σ 偏振 80 K 至 290 K 的峰值位置, 呈現性變化。由圖 2-2d-9, π 偏振的峰值位置隨溫度由 290 K 降至 80 K, 1065 nm 藍移 量約為 0.7 nm,藍移速率約為 3.3 pm K⁻¹,圖 2-2d-16(b)為 σ 偏振 80 K 至 290 K 的峰值 位置, 呈現性變化。

圖 2-2d-10 到圖 2-2d-14 為 Nd:YVO4 晶體在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2d-10、圖 2-2d-11 比較,溫度由 290 K 降至 80 K, σ 偏振與 π 偏振 1342 nm 峰值強度皆變為 290 K 時的 3 倍。由圖 2-2d-13, σ 偏振的峰值位置隨溫度由 290 K 降至 80 K, 由 1342 nm 的藍移量約為 1.2 nm,藍移速率為 5.7 pm K⁻¹,圖 2-2d-17(a)為 σ 偏振 80 K 至 290 K 的峰值位置,呈現性變化。由圖 2-2d-14, π 偏

振的峰值位置隨溫度由 290 K 降至 80 K, 1342 nm 藍移量約為 1.2 nm, 藍移速率為 5.7 pm K⁻¹, 圖 2-2d-17(b)為 σ 偏振 80 K 至 290 K 的峰值位置,呈現性變化。

圖 2-2d-15 和圖 2-2d-16 及圖 2-2d-17 為 Nd:YVO4 晶體隨溫度由 290 K 降至 80 K, 在兩個偏振、三段能階躍遷之峰值位置圖,相較於其他摻雜釹之晶體,Nd:YVO4 晶體藍 移量較大,也較有線性變化。

表 2-2d-1 Nd:YAG 晶體隨溫度由 290 K 降至 80 K,在 ⁴F_{3/2}→⁴I_{9/2}、⁴F_{3/2}→⁴I_{11/2}、⁴F_{3/2}→
⁴I_{13/2} 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。

	${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$		${}^4F_{3/2} \rightarrow {}^4I_{11/2}$		${}^4F_{3/2} {\rightarrow} {}^4I_{13/2}$	
偏振	π	σ	π	σ	π	σ
雷射中心波長(nm)	914	914	1064	1064	1342	1342
藍移量(nm)	1.0	0.7	0.8	0.7	1.2	1.2
藍移速率(pm K ⁻¹)	4.75	3.32	3.80	3.33	5.70	5.70

圖 2-2d-1 Nd:YVO₄ 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其 解析度為 2.0 nm,紅線(實線)為π偏振,藍線(虛線)為σ偏振。

圖 2-2d-3 Nd:YVO4 晶體在溫度 80 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。

Wavelength (nm)

圖 2-2d-4 Nd:YVO4 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 860 nm 到 930 nm 的自發輻射光譜圖。

圖 2-2d-6 Nd: YVO4 晶體在溫度 80 K, 波長範圍 1050 nm 到 1100 nm 的自發輻射光譜圖。

圖 2-2d-7 Nd:YVO₄ 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1060 nm 到 1090 nm 的自發輻射光譜圖。

圖 2-2d-9 Nd:YVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K,波長範圍 1063 nm 到 1067 nm 的自發輻射光譜圖。

圖 2-2d-11 Nd:YVO4 晶體在溫度 80 K,波長範圍 1320 nm 到 1420 nm 的自發輻射光譜圖。

圖 2-2d-12 Nd:YVO4 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1330 nm 到 1400nm 的自發輻射光譜圖。

圖 2-2d-14 Nd:YVO4 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1340 nm 到 1345 nm 的自發輻射光譜圖。

圖 2-2d-15 Nd:YVO4 晶體 (a)σ偏振 (b)π偏振,溫度 80 K 到 290 K,波長 914 nm 的峰 值位置圖。

圖 2-2d-16 Nd:YVO4 晶體 (a) σ 偏振 (b) π 偏振, 溫度 80 K 到 290 K, 波長 1064 nm 的 峰值位置圖。

圖 2-2d-17 Nd:YVO4 晶體 (a) σ 偏振 (b) π 偏振, 溫度 80 K 到 290 K, 波長 1341 nm 的 峰值位置圖。

2-2e Nd:GdVO4 晶體

本實驗量測的 Nd:GdVO₄ 晶體濃度為 0.5 at. %。Nd:GdVO₄ 晶體為四方晶系,以自 發輻射光譜強度判別 π 偏振與 σ 偏振,光譜強度較強的為 π 偏振。圖 2-2e-1 為 Nd:GdVO₄ 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,紅線(實線)為 π 偏振, 藍線(虛線)為 σ 偏振。

圖 2-2e-2 到圖 2-2e-4 為 Nd:GdVO₄ 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{9/2}$ 能階躍遷,在溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2e-5, σ 偏振在 110 K 時,912 nm 峰值強度最強。峰值位置隨溫度由 290 K 降至 80 K,藍移量約 0.6 nm,藍移速率為 2.85 pm K⁻¹。由圖 2-2e-6, π 偏振一樣在 110 K 時,912 nm 峰值強度最強。峰值位置隨溫度由 290 K 降至 80 K,藍移量約為 0.4 nm,藍移速率為 1.9 pm K⁻¹。

圖 2-2e-7 到圖 2-2e-10 為 Nd:GdVO₄ 晶體在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ 能階躍遷,在溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2e-9, σ 偏振 1063 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移量約為 0.6 nm,藍移速率為 2.85 pm K⁻¹,強度增強為 1.67 倍。由圖 2-2e-10, π 偏振 1063 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移量約為 0.4 nm,藍移速 率為 1.90 pm K⁻¹,強度增強為兩倍。

圖 2-2e-11 到圖 2-2e-14 為 Nd:GdVO₄ 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{13/2}$ 能階躍遷,在溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2e-13, σ 偏振 1341 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移量約為 1.2 nm,藍移速率為 5.70 pm K⁻¹,強度增強為兩倍。由圖 2-2e-13, π 偏振 1341 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移 1.1 nm,藍移速率為 5.22 pm K⁻¹,強度增強為 1.67 倍。

62

表 2-2e-1 Nd:GdVO₄ 晶體隨溫度由 290 K 降至 80 K,在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \wedge {}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \wedge {}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。

	${}^{4}F_{3/2}$	\rightarrow ⁴ I _{9/2}	⁴ F _{3/2} -	$>^{4}I_{11/2}$	${}^{4}F_{3/2}$	$>^{4}I_{13/2}$
偏振	π	σ	π	σ	π	σ
雷射中心波長(nm)	912	912	1063	1063	1341	1341
藍移量(nm)	0.6	0.4	0.4	0.6	1.1	1.2
藍移速率(pm K ⁻¹)	2.85	1.90	1.90	2.85	5.23	5.70

圖 2-2e-1 Nd:GdVO4 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖, 其解析度為 2.0 nm,紅線(實線)為π偏振,藍線(虛線)為σ偏振。

圖 2-2e-3 Nd:GdVO4 晶體在溫度 80K,波長範圍 850 nm 到 950 nm 的自發輻射光譜圖。

圖 2-2e-4 Nd:GdVO4 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 870 nm 到 930 nm 的自發輻射光譜圖。

圖 2-2e-6 Nd:GdVO4 晶體 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 911 nm 到 913.5 nm 的自發輻射光譜圖。

圖 2-2e-8 Nd:GdVO4 晶體在溫度 80 K,波長範圍 1050 nm 到 1100 nm 的自發輻射光譜圖。

圖 2-2e-9 Nd:GdVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1060 nm 到 1090 nm 的自發輻射光譜圖。

圖 2-2e-10 Nd:GdVO₄ 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1060 nm 到 1090 nm 的自發輻射光譜圖。

圖 2-2e-12 Nd:GdVO4 晶體在溫度 80 K,波長範圍 1310 nm 到 1410 nm 的自發輻射光譜圖。

圖 2-2e-13 Nd:GdVO4 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1320 nm 到 1400 nm 的自發輻射光譜圖。

圖 2-2e-15 Nd:GdVO4 晶體 σ 偏振, 溫度 80 K 到 290 K, 波長 1340 nm 的峰值位置圖。

2-2f Nd:LuVO4 晶體

本實驗量測的 Nd:LuVO4 晶體濃度為 0.5 at. %。Nd:LuVO4 晶體為四方晶系,以自發輻射光譜強度判別 π 偏振與 σ 偏振,光譜強度較強的為 π 偏振。圖 2-2f-1 為 Nd:LuVO4 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,紅線(實線)為 π 偏振, 藍線(虛線)為 σ 偏振。

圖 2-2f-2 到圖 2-2f-4 為 Nd:LuVO4 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{9/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2f-4 可看出 π 偏振 889.7 nm 峰值,隨溫度降低,強度增 加的速度較快,到 150 K 時,峰值超越 σ 偏振 891.5 nm 的峰值強度;到 90 K 時,峰值 強度超越 π 偏振與 σ 偏振 912 nm 的峰值強度。σ 偏振 916 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移量約 0.2 nm,藍移速率為 0.95 pm K⁻¹。π 偏振 916 nm 峰值位置隨溫度 由 290 K 降至 80 K,藍移量約為 0.4 nm,藍移速率為 1.9 pm K⁻¹。

圖 2-2f-5 到圖 2-2f-8 為 Nd:LuVO4 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{11/2}$ 能階躍遷,溫度 80 K 到 290 K 之間的自發輻射光譜圖。由圖 2-2f-7, σ 偏振 1066 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移量約為 0.3 nm,藍移速率為 1.43 pm K⁻¹,強度增強為兩倍。由圖 2-2f-8, π 偏振 1066 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移量約為 0.5 nm,藍移速率為 2.38 pm K⁻¹,強度增強為 2.8 倍。

圖 2-2f-9 到圖 2-2f-13 為 Nd:LuVO4 晶體在 ${}^{4}F_{3/2}$ → ${}^{4}I_{13/2}$ 能階躍遷,在溫度範圍 80 K 到 290 K 的自發輻射光譜圖。由圖 2-2f-11, σ 偏振 1342 nm 峰值位置隨溫度由 290 K 降 至 80 K,藍移量約為 0.5 nm,藍移速率為 2.38 pm K⁻¹,強度增強為 2.5 倍。由圖 2-2f-13, π 偏振 1343 nm 峰值位置隨溫度由 290 K 降至 80 K,藍移量約為 0.8 nm,藍移速率為 3.8 pm K⁻¹,強度增強為 2.6 倍。圖 2-2f-14 顯示其峰值位置呈現性變化。

73

表 2-2f-1 Nd:LuVO₄ 晶體隨溫度由 290 K 降至 80 K,在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \wedge {}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \wedge {}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。

	${}^4F_{3/2} \rightarrow {}^4I_{9/2}$		${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$		${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$	
偏振	π	σ	π	σ	π	σ
雷射中心波長(nm)	916	916	1066	1066	1343	1343
藍移量(nm)	0.4	0.2	0.5	0.3	0.8	0.5
藍移速率(pm K-1)	1.90	0.95	2.38	1.43	3.80	2.38

圖 2-2f-1 Nd:LuVO4 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其 解析度為 2.0 nm,紅線(實線)為π偏振,藍線(虛線)為σ偏振。

圖 2-2f-3 Nd:LuVO4 晶體在溫度 80K,波長範圍 850 nm 到 950 nm 的自發輻射光譜圖。

圖 2-2f-4 Nd:LuVO4 晶體 σ 偏振與 π 偏振在溫度範圍 80 K 到 290 K, 波長範圍 860 nm 到 940 nm 的自發輻射光譜圖。

圖 2-2f-6 Nd:LuVO4 晶體在溫度 80 K,波長範圍 1050 nm 到 1100 nm 的自發輻射光譜圖。

圖 2-2f-7 Nd:LuVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K,波長範圍 1060 nm 到 1100 nm 的自發輻射光譜圖。

圖 2-2f-8 Nd:LuVO4 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1060 nm 到 1100 nm 的自發輻射光譜圖。

圖 2-2f-10 Nd:LuVO4 晶體在溫度 80 K,波長範圍 1310 nm 到 1410nm 的自發輻射光譜圖。

圖 2-2f-11 Nd:LuVO4 晶體 σ 偏振在溫度範圍 80 K 到 290 K, 波長範圍 1370 nm 到 1400 nm 的自發輻射光譜圖。

Wavelength (nm)

圖 2-2f-12 Nd:LuVO₄ 晶體 π 偏振在溫度範圍 80 K 到 290 K,波長範圍 1370 nm 到 1400 nm 的自發輻射光譜圖。

圖 2-2f-14 Nd:LuVO4 晶體 π 偏振,溫度 80 K 到 290 K,波長 1342 nm 的峰值位置圖。

2-2g Nd:KGW 晶體

本實驗量測的 Ng-cut Nd:KGW 晶體,濃度為 5.0 at. %。Nd:KGW 晶體為單斜晶系, 由 Yujin Chen 等人在 2006 年所發表的論文 [35],Nd:KGW 晶體,E//Nm 偏振的自發輻射 強度最強,E//Np 偏振次之,E//Ng 偏振最弱。Nd:KGW 晶體的自發輻射頻譜較其他摻雜 釹之晶體寬,並非只有在特定波長產生一根根的峰值,而是看起來一段段的自發輻射光 譜。圖 2-2g-1 為 Nd:KGW 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光 譜圖,紅線(實線)為 E//Np 偏振,藍線(虛線)為 E//Nm 偏振。

圖 2-2g-2 到圖 2-2g-5 為 Nd:KGW 晶體在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ 能階躍遷,在溫度範圍 80 K 到 290 K 的自發輻射光譜圖。由圖 2-2g-2 跟圖 2-2g-3 比較,當溫度由 290 K 降到 80 K 後, E/Nm 偏振有 896.8 nm、908.6 nm 兩個較強峰值,而 E/Np 偏振有 896.8 nm 一個較強峰 值。E/Nm 偏振在 908.7 nm 的藍移量約為 0.3 nm,藍移速率為 1.42 pm K⁻¹。由圖 2-2g-4 和圖 2-2g-5,150 K 後,E/Nm 偏振峰值 908.6 nm 超越 E/Np 偏振峰值 900.5 nm 成為 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ 能階躍遷最強峰值。

圖 2-2g-6 到圖 2-2g-8 為 Nd:KGW 晶體在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ 能階躍遷,在溫度範圍 80 K 到 290 K 的自發輻射光譜圖。由圖 2-2g-8,隨溫度由 290 K 降至 80 K, E//N_m 偏振 1068.8 nm 峰值分裂為 1068.5 nm、1070.7 nm、1068.5 nm 峰值較強。E//N_p 偏振 1070.6 nm 峰值 分裂為 1068.6 nm、1070.7 nm, 1070.7 nm 峰值較強。E//N_m 偏振在 1068 nm 的藍移量約 為 0.3 nm,藍移速率為 1.42 pm K⁻¹。

圖 2-2g-11 到圖 2-2g-13 為 Nd:KGW 晶體在 ⁴F_{3/2}→⁴I_{13/2} 能階躍遷,在溫度範圍 80 K 到 290 K 的自發輻射光譜圖。由圖 2-2g-11,隨溫度由 290 K 降至 80 K, E//Nm 偏振 1352.4 nm 峰值分裂為 1353.3 nm、1350.9 nm, 1353.4 nm 峰值較強。E//Np 偏振 1353.3 nm 峰值 分裂為 1353.3 nm、1350.8 nm, 1353.3 nm 峰值較強。E//Nm 偏振在 1353.4 nm 的藍移量 為 0.1 nm, 藍移速率為 0.48 pm K⁻¹。

Nd:KGW 晶體在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ 、 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 兩個能階躍遷,都出現溫度由 290 K 降到 80 K 後,較強的峰值逐漸分裂為兩個峰,原本峰值較新分裂峰值強。

Nd:KGW 晶體在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} \equiv 個能階躍遷, E//N_p 偏振 290$ K 和 80 K 的峰值位置階相同,降溫的過程中,雖有些許藍移或紅移,但從光譜圖看來, 只是單純隨著溫度降低,峰值強度變強。

表 2-2g-1 Nd:KGW 晶體隨溫度由 290 K 降至 80 K,在 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \cdot {}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ 能階躍遷,兩偏振雷射中心波長自發輻射藍移量與藍移速率。

圖 2-2g-1 Nd:KGW 晶體在 290 K,波長範圍 850 nm 到 1700 nm 的自發輻射光譜圖,其 解析度為 2.0 nm,紅線(實線)為 E//Np偏振,藍線(虛線)為 E//Nm偏振。

圖 2-2g-3 Nd:KGW 晶體在溫度 80 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。

圖 2-2g-4 Nd:KGW 晶體 E//N_p 偏振與 E//N_m 偏振,在溫度範圍 80 K 到 290 K,波長範圍 850 nm 到 950nm 的自發輻射光譜圖。

圖 2-2g-5 Nd:KGW 晶體 E//N_p 偏振與 E//N_m 偏振,在溫度 150 K,波長範圍 860 nm 到 940 nm 的自發輻射光譜圖。

圖 2-2g-7 Nd:KGW 晶體在溫度 80 K,波長範圍 1020 nm 到 1120 nm 的自發輻射光譜圖。

圖 2-2g-8 Nd:KGW 晶體 E//Np 偏振與 E//Nm 偏振在溫度範圍 80 K 到 290 K,波長範圍 1030 nm 到 1120 nm 的自發輻射光譜圖。

圖 2-2g-10 Nd:KGW 晶體在溫度 80 K,波長範圍 1280 nm 到 1430 nm 的自發輻射光譜圖。

Nd:KGW

圖 2-2g-11 Nd:KGW 晶體 E//N_p 偏振與 E//N_m 偏振在溫度範圍 80 K 到 290 K,波長範圍 1320 nm 到 1420 nm 的自發輻射光譜圖。

2-2h Yb:KGW 晶體

本實驗量測的 N_g -cut Yb:KGW 晶體濃度為 5.0 at. %。Yb:KGW 晶體為單斜晶系,參照 Mu Zhou 等人 2009 年在 Optics Communications 發表的論文 [51],自發輻射光譜中, E// N_p 偏振在 1038 nm 有一峰值, E// N_m 偏振在 1023 nm 有一峰值。

圖 2-2h-1 為 Yb:KGW 晶體在 ${}^{2}F_{5/2} \rightarrow {}^{2}I_{7/2}$ 能階躍遷,溫度 290 K 之自發輻射光譜圖, 紅線(實線)為 E//N_p 偏振,藍線(虛線)為 E//N_m 偏振。圖 2-2h-2 為 Yb:KGW 晶體在 ${}^{2}F_{5/2} \rightarrow {}^{2}I_{7/2}$ 能階躍遷,溫度 80 K,波長範圍 950 nm 到 1100 nm 的自發輻射光譜圖,紅線 (實線)為 E//N_p 偏振,藍線(虛線)為 E//N_m 偏振。

由圖 2-2h-3 和圖 2-2h-4,溫度由 290 K 降至 80 K, E//N_p偏振峰值由 1037.9 nm 逐 漸藍移至 1035.6 nm,藍移量約為 2.3 nm,藍移速率為 10.9 pm K⁻¹,峰值強度增強為 1.4 倍。

由圖 2-2h-5 和圖 2-2h-6,溫度由 290 K 降至 80 K, E//Nm 偏振峰值由 1023.2 nm 逐 漸藍移至 1021.5 nm,藍移量約為 1.7 nm,藍移速率為 8.1 pm K⁻¹,峰值強度增強為 1.9 倍。

Yb:KGW 晶體的螢光隨著溫度降低,峰值增強的強度與摻釹之固態雷射晶體差不多, 但藍移量大約是摻釹之固態晶體的三倍,光譜的半高寬也隨溫度降低,變窄不少。

表 2-2h-1 Yb:KGW 晶體隨溫度由 290 K 降至 80 K,兩偏振雷射中心波長自發輻射藍 移量與藍移速率。

偏振	E//Np	E//N _m	
雷射中心波長(nm)	1038	1023	
藍移量(nm)	2.3	1.7	
藍移速率(pm K ⁻¹)	10.93	8.08	

圖 2-2h-2 Yb:KGW 晶體在 80 K,波長範圍 950 nm 到 1100 nm 的自發輻射光譜圖,紅線(實線)為 E//N_p 偏振,藍線(虛線)為 E//N_m 偏振。

圖 2-2h-3 Yb:KGW 晶體 E//Np 偏振在溫度範圍 80 K 到 290 K,波長範圍 950 nm 到 1100 nm 的自發輻射光譜圖。

圖 2-2h-4 Yb:KGW 晶體 E//Np 偏振,溫度 80 K 到 290 K,波長 1038 nm 的峰值位置圖。

圖 2-2h-5 Yb:KGW 晶體 E//Nm 偏振在溫度範圍 80 K 到 290 K,波長範圍 950 nm 到 1100 nm 的自發輻射光譜圖。

圖 2-2h-6 Yb:KGW 晶體 E//Nm 偏振,溫度 80 K 到 290 K,波長 1023 nm 的峰值位置圖。

2-3 低溫自發輻射光譜總結

隨溫度降低,除了 Nd:YAG 晶體波長 946 nm 峰值位置紅移 0.3 nm, 1123 nm 峰值 位置紅移 0.2 nm,本實驗量測之晶體自發輻射峰值位置皆藍移或偏移量甚小。

除了 Nd:KGW 晶體,掺釹固態雷射晶體之螢光,1.3 μm 的峰值藍位移量大於 1.06 μm 與 0.9 μm 的峰值位移量。

有幾個峰值位置藍移呈線性變化,且藍移量較大分別是:Nd:YLF 晶體 σ 偏振 1313 nm、 π 偏振 1047 nm, Nd:GdVO4 晶體 σ 偏振 1341 nm, Nd:LuVO4 晶體 σ 偏振 1343 nm, Nd:YVO4 晶體 σ 與 π 偏振的 1065 nm、1342 nm。

掺釹釩酸鹽類晶體在常溫下,π偏振自發輻射峰值強度較σ偏振峰值強度強,降 至低溫後π偏振增強倍數又大於等於σ偏振,如表 2-3-1所示,兩偏振在低溫下的峰值 強度差距更大。

如表 2-3-2 所示,掺釹釩酸鹽類晶體之峰值藍移量,平均來說π偏振大於σ偏振。 由表 2-3-1 及表 2-3-2,可知 Nd:YVO4 晶體在增強倍數與藍移量兩個項目皆大於 Nd:GdVO4晶體與、Nd:LuVO4晶體。

本實驗量測之部分晶體,降到低溫的過程中,原本較強之自發輻射峰值強度被附 近峰值超越,詳細轉換波長及溫度如表 2-3-3 所示。

Enhan	ced multiples	Nd:YVO ₄	Nd:GdVO ₄	Nd:LuVO₄	average
0.9 µm	σ -polarization	1.5	1.6	1.1	1.40
	π -polarization	1.6	1.6	1.1	1.43
1.06	σ -polarization	2.5	1.67	2	2.06
1.06 µm	π -polarization 3 2	2.8	2.60		
1.2	σ-polarization	3	2	2.5	2.50
1.3 μm	π -polarization	3	2.3	2.6	2.63
	average		1.86	2.02	

數

表 2-3-2 Nd:YVO4、Nd:GdVO4、Nd:LuVO4 晶體在溫度 80 K 較 290 K 峰值位置之藍移量

Blue	e shift (nm)	Nd:YVO ₄	Nd:GdVO4	Nd:LuVO ₄	average
0.9 µm	σ -polarization	0.7	0.4	0.2	0.43
	π -polarization	1	0.6	0.4	0.67
1.06 µm	σ -polarization	0.7	0.6	0.3	0.53
	π -polarization	0.8	0.4	0.5	0.56
1.2	σ-polarization	1.2	1.2	0.5	0.97
1.3 μm	π -polarization	1.2	1.1	0.8	1.03
average		<u>0.93</u>	0.72	0.45	

Crystal	Strongest wavelength at room temperature	Strongest wavelength at cryogenic temperature	Temperature
	1064.3 nm	1061.7 nm	170 K
Nd:YAG	1112.6 nm	1116.6 nm	250 K
	1337.4 nm	1334.4 nm	130 K
Nd:YAP	1341 nm(π)	1339 nm(σ)	150 K
Nd VI E	1047 nm(π)	1053 nm(σ)	150 K
Nd. I LF	1321 nm(π)	1317 nm(π)	80 K
Nd:LuVO ₄	891.5 nm(σ)	889.7 nm(π)	130 K
Nd:KGW	900.5 nm (E//N _p)	908.6 nm (E//N _m)	150 K

表 2-3-3	較強自發輻射峰值轉換	,	與轉換溫度
---------	------------	---	-------

第三章 低温受激輻射

3-1 緒論

由自發輻射光譜,我們可以推測晶體可能的受激輻射。在第二章中,我們發現當溫 度降低時,部分晶體會有原先自發輻射強度較強之峰值被附近其他峰值超越的現象,故 在此我們以 Nd:YAG 晶體、Nd:YLF 晶體驗證是否因溫度降低,而發出不同波長之雷射 或雙波長雷射。

3-2 低溫下 Nd:YAG 雷射特性

實驗的架構與第二章的低溫系統相同,如圖 3-2-1 所示,但銅座中的晶體換成鍍有 鏡面當作共振腔之單塊晶體(monolithic crystal)。又 Nd: YAG 晶體為各向同性材料,並無 偏振,故不需要偏振分光鏡。

由 2-2a 節,圖 2-2a-6 及圖 2-2a-7,可知溫度 290 K 時,Nd:YAG 晶體之自發輻射峰 值 1064 nm 峰值強度較 1061 nm 峰值強度強,隨溫度逐漸降低,1064 nm 峰值強度逐漸 變弱,1061.7 nm 峰值強度逐漸變強,降至 170 K 後,1064 nm 峰值強度較 1061 nm 峰值 強度弱。可推斷降到低溫後,Nd:YAG 晶體有機會產生 1061 nm 及 1064 nm 雙波長雷射。

我們在實驗中 [52]所使用的 1.1 at.% Nd:YAG 晶體,長度 5 mm,直徑 3 mm,前端 鍍有 808 nm 高穿透率(high-transmission, T > 95 %)鍍膜和 1030~1100 nm 高反射率(highreflection, R > 99.8 %)鍍膜。出光端鍍有 1060~1070 nm 部分反射 (partial-reflection, R = 95%) 鍍膜。以波長 808 nm 之雷射二極體做為激發光源。

由圖 3-2-2 可知,Nd:YAG 雷射在輸入功率 20 W,溫度 210 K以下,可產生 1061 nm 與 1064 nm 雙波長雷射。而這兩個峰值與第二章量測之自發輻射光譜一樣有隨溫度 降低,峰值強度轉換及峰值位置藍移之現象。

由圖 3-2-3 發現, 雷射在溫度 90 K 到 290 K 的光轉換效率大致都在 60%, 並沒有隨

溫度降低而提升之現象。可見 1061 nm 與 1064 nm 雙波長雷射之總輸出功率是一樣的, 但會隨著溫度而消長。

圖 3-2-4 為以輸入功率 3.4 W、7.5 W 和 20 W, 雷射波長 1061 nm 與 1064 nm 輸出 功率隨溫度之變化, 由圖 3-2-4 (c)可以推斷在溫度 152 K 時, 1061 nm 與 1064 nm 雷射 之輸出功率皆為 6 W, 達到雙波長雷射輸出功率相同。

圖 3-2-5 顯示輸入功率強度越強, 達到雙波長雷射輸出功率一致所需的最佳溫度就 需要越低。原因是當輸入功率越強時, 晶體內部之溫度越高,故需要再降低晶體溫度, 來達到雙波長雷射輸出功率一致。此圖找出不同輸入功率下, 要達到雙波長雷射輸出功 率相同所需之溫度。

圖 3-2-1 Nd:YAG 晶體雙波長雷射實驗架構圖

圖 3-2-2 Nd:YAG 晶體以輸入功率 20 W,在波長範圍 1059 nm 到 1068 nm,溫度 210 K 至 90 K的雷射光譜圖。

圖 3-2-4(a) 以 3.4 W 之輸入功率, 雷射波長 1061 nm 與 1064 nm 輸出功率隨溫度之變化

圖 3-2-4(c) 以 20 W 之輸入功率, 雷射波長 1061 nm 與 1064 nm 輸出功率隨溫度之變化

圖 3-2-5 改變輸入功率強度, 達雙波長雷射輸出功率一致之最佳溫度

3-3 低溫下 Nd:YLF 雷射特性

由 2-2c 節,圖 2-2c-6 至圖 2-2c-8,可知溫度 290 K 時, π 偏振 1047 nm 峰值強度較 σ 偏振 1053 nm 峰值強度強,隨溫度逐漸降低, π 偏振 1047 nm 峰值強度,先是變強, 到 150 K 後,開始變弱,而 σ 偏振 1053 nm 峰值強度持續變強。溫度降至 150 K 後, σ 偏振 1053 nm 峰值強度較 π 偏振 1047 nm 峰值強度強。由此推斷降到低溫後,Nd:YLF 晶體有機會產生 1047 nm 及 1053 nm 雙波長雷射。

實驗架構與第二章的低溫系統大致相同,但以波長 806 nm 內徑 400 μm 之光纖耦合 二極體雷射做為激發光源,並在低溫恆溫器(cryostat)前加上曲率半徑 350 mm,鍍有 808 nm 高穿透率(T > 95%)鍍膜和 1050 nm 高反射率(R > 99.8%)鍍膜之前鏡(front mirror), 雷射出光端加上鍍有 1050 nm 部分反射 (R = 97%) 鍍膜之輸出耦合鏡(output coupler), 如圖 3-3-1 所示。

由圖 3-3-2 可知,Nd:YAG 雷射在輸入功率 7.9 W,溫度 140 K 至 136 K 間,可產生 1047 nm 與 1053 nm 雙波長雷射。

由圖 3-3-3 發現, 雷射在溫度 90 K 到 250 K 的光轉換效率大致都在 39 %, 並沒有 隨溫度降低而提升之現象。可見 1047nm 與 1053 nm 雙波長雷射之總輸出功率是一樣的, 但會隨著溫度而互有消長。

圖 3-3-4 為分別以輸入功率 7.9 W、4.6 W 及 2.9 W, 雷射波長 1047 nm 與 1053 nm 輸出功率隨溫度之變化。由此圖可以推斷當輸入功率 7.9 W, 在溫度 138 K 時,可達到 雙波長雷射輸出功率皆為 1.55 W。

圖 3-3-5 跟 3-2 節所討論的 Nd:YAG 晶體一樣,都因為輸入功率提高,造成晶體內 部溫度提高,而需要更低的環境溫度,來達到雙波長雷射輸出功率相同。

圖 3-3-1 Nd:YLF 晶體雙波長雷射實驗架構圖

圖 3-3-2 Nd:YLF 晶體以輸入功率 7.9 W,在波長範圍 1030 nm 到 1070 nm,溫度 210 K 至 90 K的雷射光譜圖。

圖 3-3-4(a) 輸入功率 7.9 W, 雷射波長 1047 nm 與 1053 nm 輸出功率隨溫度之變化

圖 3-3-4(c) 輸入功率 2.9 W, 雷射波長 1047 nm 與 1053 nm 輸出功率隨溫度之變化

圖 3-3-5 改變輸入功率強度, 達雙波長雷射輸出功率一致之最佳溫度

第四章 總結與未來工作

4-1 總結

在降溫的過程當中,發現並不是所有晶體的峰值皆隨溫度下降而持續增強,有些波段的最強峰值出現在溫度110 K、130 K 甚至是150 K,而這個原因可用圖4-1-1 [53]來說明。對於摻釹之固態雷射晶體,我們是以波長 808 nm 之雷射二極體當作激發光源,由插圖我們可以更詳細的看到 Nd:YAG 晶體在 808 nm 波段的吸收光譜是隨著溫度降低而變強,但到 109 K 與 129 K 為最強峰值,溫度降低至 77 K 反而吸收較弱,而導致螢光強度轉弱的現象。

在觀察的低溫自發輻射光譜中,隨溫度降低過程中,除了 Nd:YAG、Nd:YAP 晶體有 部分峰值位置紅移,其他晶體之峰值位置皆為藍移或是幾乎沒有移動;多數晶體有峰值 分裂之現象。如圖 4-1-2 所示,摻雜釹晶體之自發輻射,1.3 μm 的峰值位移量大於 1.06 μm 與 0.9 μm 的峰值位移量。

有幾個峰值位置藍移呈線性變化,且藍移量較大的峰值位置分別是:Nd:YLF 晶體 σ 偏振 1313 nm、 π 偏振 1047 nm, Nd:GdVO4 晶體 σ 偏振 1341 nm, Nd:LuVO4 晶體 σ 偏振 1343 nm, Nd:YVO4 晶體 σ 與 π 偏振的 1065 nm、1342 nm。

掺釹釩酸鹽類晶體在常溫下,π偏振自發輻射峰值強度較σ偏振峰值強度強,降 至低溫後π偏振增強倍數又大於等於σ偏振,如圖4-1-3所示,兩偏振在低溫下的峰值 強度差距更大。

由 2-3 節,表 2-3-1 及表 2-3-2,可知 Nd:YVO4 晶體在增強倍數與藍移量兩個項目 皆大於 Nd:GdVO4 晶體與、Nd:LuVO4 晶體。

本論文觀察之晶體在降溫過程中,有五個晶體,八個波段,發生原本較強之自發輻射峰值被附近峰值超越之現象。其中 Nd:YAG 晶體以 20 W 之輸入功率,在溫度 152 K, 1061 nm 與 1064 nm 雙波長雷射可同時達到 6 W 輸出功率。Nd:YLF 晶體以 7.9 W 之輸 出功率,在溫度 138 K,達到 1047 nm 與 1053 nm 輸出功率皆為 1.55 W 之雙波長雷射。 並找出這兩種晶體在不同輸入功率下,要達到雷射雙波長輸出功率相等之溫度。

輸入功率強度越強, 晶體內部溫度越高, 故達到雙波長雷射輸出功率一致的最佳溫 度就需要越低。

圖 4-1-3 溫度由 290 K 降至 80 K, 掺釹釩酸鹽類晶體之自發輻射的峰值增強倍數

4-2 未來工作

就本論文觀察之晶體,尚有數個波段可嘗試雙波長雷射,並尋找不同輸入功率下, 可達到雙波長雷射輸出功率相等之最佳溫度。

雙波長雷射可應用於雷射光譜學 [54] [55]、全像攝影術(holography) [56]、光學雷達 [57]、醫療儀器 [58]、非線性光學混頻 [59]等,值得進一步研究。

降溫過程中,由自發輻射光譜圖的變化,我們發現有多個峰值半高寬(full width at half maximum, FWHM)變窄之現象。而鎖模雷射(mode-locked)的脈衝與自發輻射的線寬 (linewidth)有關,故鎖模雷射在低溫下的表現將會是很有趣的研究。

參考文獻

- P. Klopp, U. Griebner, M. Zorn, and M. Weyers, "Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser," Appl. Phys. Lett. 98, 071103 (2011).
- 2. 劉國基 and 張百齊, "Nd-YAG 雷射的加工應用," 遠東學報 19, 372-376 (1991).
- J.-F. Seurin, G. Xu, A. Miglo, Q. Wang, R. Van Leeuwen, Y. Xiong, W.-X. Zou, D. Li, J. D. Wynn, V. Khalfin, and C. Ghosh, "High-power vertical-cavity surface-emitting lasers for solid-state laser pumping," SPIE Vertical-Cavity Surface-Emitting Lasers XVI 8276, 827609 (2012).
- R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, "Direct diode lasers with comparable beam quality to fiber, CO₂, and solid state lasers," SPIE High-Power Diode Laser Technol. Appl. X 8241, 824102 (2012).
- S. Backus, S. Brown, M. Gerrity, X. Zhang, R. Bartels, J. Squier, H. Kapteyn, and M. Murnane, "High Peak and Average Power Near/Mid-IR Femtosecond Laser Sources," Imaging Appl. Opt. 14 (2013).
- H. ZHANG, X. MENG, L. ZHU, J. LIU, ChangqingWANG, and Z. SHAO, "Laser Properties at 1.06 μm for Nd : GdVO₄ Single Crystal Pumped by a High Power Laser Diode," Jpn. J. Appl. Phys. 1231, 54–57 (1999).
- 7. Y. Lü, P. Zhai, J. Xia, X. Fu, and S. Li, "Simultaneous orthogonal polarized dualwavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd : YAlO₃ and their sum-frequency mixing," J. Opt. Soc. Am. B **29**, 2352–2356 (2012).
- D. K. Sardar and R. M. Yow, "Stark components of ⁴F_{3/2}, ⁴I_{9/2} and ⁴I_{11/2} manifold energy levels and effects of temperature on the laser transition of Nd³⁺ in YVO₄," Opt. Mater. (Amst). 14, 5–11 (2000).
- R. J. Keyes and T. M. Quist, "INJECTION LUMINESCENT PUMPING OF CaF₂:U³⁺ WITH GaAs DIODE LASERS," Appl. Phys. Lett. 4, 50 (1964).
- 10. L. F. Johnson, H. J. Guggenheim, and R. A. Thomas, "Phonon-Terminated Optical Masers," Phys. Rev. **149**, (1966).

- J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, "4.0 4.5m m lasing of Fe : ZnSe below 180 K, a new mid-infrared laser material," Opt. Lett. 24, 1720–1722 (1999).
- P. . F. Moulton, "Spectroscopic and laser characteristics of Ti : Al₂O₃," Opt. Soc. Am. B
 3, 125–133 (1986).
- A. Giesen, "Results and scaling laws of thin disk lasers," SPIE Solid-State Lasers XIII 5332, 212–227 (2004).
- F. D. Patel, D. G. Harris, and C. E. Turner, Jr., "Improving the Beam Quality of a High Power Yb:YAG Rod Laser Falgun," SPIE Solid-State Lasers XV Technol. Dev. 6100, 610018 (2006).
- D. C. Brown, "The promise of cryogenic solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
- T. Y. Fan, S. Member, IEEE, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, "Cryogenic Yb³⁺ -Doped Solid-State Lasers," IEEE J. Sel. Top. QUANTUM Electron. 13, 448–459 (2007).
- S. Ricaud, D. N. Papadopoulos, a Pellegrina, F. Balembois, P. Georges, a Courjaud, P. Camy, J. L. Doualan, R. Moncorgé, and F. Druon, "High-power diode-pumped cryogenically cooled Yb:CaF₂ laser with extremely low quantum defect.," Opt. Lett. 36, 1602–1604 (2011).
- D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, "Cryogenic Yb³⁺ -doped materials for pulsed solid- state laser applications [Invited]," Opt. Soc. Am. 1, 434–450 (2011).
- 19. H. Fonnum, E. Lippert, and M. W. Haakestad, "550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser.," Opt. Lett. **38**, 1884–1886 (2013).
- D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, "Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system.," Opt. Lett. 37, 2700–2702 (2012).
- 21. A. Lucianetti, D. Albach, and J.-C. Chanteloup, "Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures.," Opt. Express **19**, 12766 (2011).

- 22. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, "High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.," Opt. Express **18**, 24770 (2010).
- 23. D. E. Miller, J. R. Ochoa, and T. Y. Fan, "Cryogenically cooled, 149 W, Q-switched, Yb: LiYF₄ laser," Opt. Lett. **38**, 149–150 (2013).
- 24. Y. Sato and T. Taira, "Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials," Opt. Mater. Express **2**, 1076 (2012).
- H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, "Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator.," Opt. Express 20, 21739 (2012).
- S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, "High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier.," Opt. Lett. 37, 2175–2177 (2012).
- K. Kowalewski, J. Zembek, V. Envid, and D. C. Brown, "201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system.," Opt. Lett. 37, 4633–4635 (2012).
- H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, "Zig-zag active-mirror laser with cryogenic Yb³⁺:YAG/YAG composite ceramics.," Opt. Express 19, 2448–2455 (2011).
- D. C. Brown, T. M. Bruno, and J. M. Singley, "Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency.," Opt. Express 18, 16573 (2010).
- J. Kawanaka, Y. Takeuchi, a. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, "Highly efficient cryogenically-cooled Yb:YAG laser," Laser Phys. 20, 1079–1084 (2010).
- 31. CASTECH, "-Laser crystals-Crystal Products-," http://www.castech.com.
- 32. FLIR, "Yttrium Orthoaluminate YALO₃ | Scientific Materials Corporation | Yttrium Aluminum Perovskite," http://www.scientificmaterials.com/products/yalo3_yttrium-orthoaluminate.php.

- J. Sulc, H. Jelínková, J. K. J. Nski, W. 'Zendzian, J. Kwiatkowski, K. Nejezchleb, and V. Škoda, "Comparison of diode-side-pumped triangular Nd: YAG and Nd: YAP laser," SPIE (2005).
- C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, "Growth, spectroscopic characterization, and laser performance of Nd: LuVO₄, a new infrared," J. Opt. Soc. Am. B 19, 1794–1800 (2002).
- Y. Chen, Y. Lin, X. Gong, Q. Tan, J. Zhuang, Z. Luo, and Y. Huang, "Polarized spectroscopic properties of Nd³⁺-doped KGd(WO₄)₂ single crystal," J. Lumin. **126**, 653–660 (2007).
- 36. K. A. Yahya, O. A. Hussein, and O. H. Mustafa, "Thermal focal length of Nd : YLF laser rod crystal at 797nm and 792nm diode-end pump," **4**, 400–404 (2013).
- P. a Loiko, K. V Yumashev, N. V Kuleshov, and A. a Pavlyuk, "Thermo-optic coefficients and thermal lensing in Nd-doped KGd(WO₄)₂ laser crystals.," Appl. Opt. 49, 6651–6659 (2010).
- R. Moncorg, B. Chambon, N. Gamier, E. Descroix, P. Laporte, H. Guillet, S. Roy, D. Pelenc, and P. Farge, "Nd doped crystals for medical laser applications," Opt. Mater. (Amst). 8, 109–119 (1997).
- 39. LaserComponents, "Home Laser Components GmbH," http://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/ Datasheets/divers-optik/laserstaebe_kristalle/ndgdvo4_cry.pdf&no_cache=1.
- J. Sulc, H. Jelinkova, J. K. Jabczynski, W. Zendzian, J. Kwiatkowski, K. Nejezchleb, and V. Skoda, "comparison of diode-side-pumped Nd:YAG and Nd:YAP laser," SPIE 5707, 325–334 (2005).
- 41. I. LCS, "Potassium Gadolinium (and Yttrium) Tungstate (KGW and KYW) crystals. Laser Crystal Solutions - none-linear optical materials for laser applications.," http://www.lc-solutions.com/product/kgw.php.
- 42. CoherentINC, "Nd :YVO₄," https://www.coherent.com/download/628/Nd-YVO4-Data-Sheet.pdf.
- S. Zhao, H. Zhang, Y. Lu, J. Liu, J. Wang, X. Xu, H. Xia, and M. Jiang, "Spectroscopic characterization and laser performance of Nd:LuVO₄ single crystal," Opt. Mater. (Amst). 28, 950–955 (2006).

- 44. T. Ogawa, Y. Urata, and S. Wada, "Optical properties and thermal characteristics of the floating zone grown Nd: LuVO₄ crystals," Adv. Solid-State Photonics 36–40 (2005).
- 45. J. C. Tung, T. Y. Wu, H. C. Liang, and Y. F. Chen, "Precise measurement of the thermooptical coefficients of various Nd-doped vanadates with an intracavity self-mode-locked scheme," Laser Phys. **24**, 035804 (2014).
- 46. "Yb:KGW and Yb:KYW Crystals Laser Lines and Harmonics | Eksma Optics," http://eksmaoptics.com/femtoline-components/femtoline-nonlinear-laser-crystals/yb-kgw-and-yb-kyw-crystals-laser-lines-and-harmonics/.
- 47. M. Schmidt, E. Heumaim, C. Czeranowsky, G. Huber, and Y. Zavartsev, "Continuous wave diode pumped Nd:GdVO₄ laser at 912nm and intracavity doubling to the blue spectral range," **50**, 470–475 (2001).
- 48. "Nd or Yb doped Potassium-Gadolinium Tungstate crystals," http://www.mtberlin.com/frames_cryst/descriptions/kgw.htm.
- T. Ogawa, Y. Urata, M. Higuchi, J. Takahashi, C. Leong, J. Morikawa, T. Hashimoto, and S. Wada, "Optical and Thermal Characteristics of Nd:LuVO₄ Grown by Floating Zone Method," Appl. Phys. Express 2, 012501 (2009).
- A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, "Stimulated-emission spectroscopy of fine-grained "garnet" ceramics Nd³⁺:Y₃Al₅O₁₂ in a wide temperature range between 77 and 650 K," Laser Phys. Lett. 6, 682–687 (2009).
- M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, "Polarized fluorescence spectra analysis of Yb³⁺:KGd(WO₄)₂," Opt. Commun. 282, 4109–4113 (2009).
- C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, "A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm," Laser Phys. Lett. 10, 045806 (2013).
- 53. S. J. Yoon and J. I. Mackenzie, "Cryogenically cooled 946nm Nd : YAG laser," Opt. Express 22, 8069–8075 (2014).
- M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. a Palombo, and D. M. Sonnenfroh, "Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors," Appl. Opt. 34, 3240–3249 (1995).

- B. Chance, M. Mans, J. Sorge, and M. Z. Zhang, "A Phase Modulation System for Dual Wavelength Difference Spectroscopy of Hemoglobin Deoxygenation in Tissues," SPIE Time-Resolved Laser Spectrosc. Biochem. II 1204, 481–491 (1990).
- 56. F. Weigl, "A generalized technique of two-wavelength, nondiffuse holographic interferometry," Appl. Opt. **10**, 187–192 (1971).
- 57. R. Farley and P. Dao, "Development of an intracavity-summed multiple-wavelength Nd: YAG laser for a rugged, solid-state sodium lidar system," Appl. Opt. 34, 4269–4273 (1995).
- S. N. Son, J.-J. Song, J. U. Kang, and C.-S. Kim, "Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing," Sensors (Basel). 11, 6125–6130 (2011).
- 59. Y. F. Chen, Y. S. Chen, and S. W. Tsai, "Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP," Appl. Phys. B **79**, 207–210 (2004).

