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摘         要 

在這篇論文裡，將會介紹三維 Poisson 方程在圓柱及球座

標下簡單且有效率的四階緊緻解法。這個解法是由截斷

(truncated)傅利葉級數展開式所產生，且得到一組傅利葉

係數所形成的偏微分方程組，運用緊緻差分技巧，我們可以

得到四階精確且不需奇異點條件的結果。接著利用兩種有效

的迭代法(GMRES,BI-CGSTAB)來解離散後，傅利葉係數所形

成非對稱的線性系統並配合不同的 preconditioner。 
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ABSTRACT 
 

A simple and efficient compact fourth-order Poisson solver 
in cylindrical and spherical coordinates is presented. The 
solver relies on the truncated Fourier series expansion, 
where the differential equations of Fourier coefficients 
have been solved by fourth-order finite difference 
discretizations without pole conditions. And two kinds of 
efficient iterative method, GMRES and Bi-CGSTAB, with 
different preconditioners are applied to solve the resulted 
nonsymmetrical systems of Fourier coefficients. 
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1 Introduction

In many physical problems, one often needs to solve the Poisson equation on
a non-Cartesian domain, such as polar or cylindrical or spherical domains. It
is convenient to rewrite the equation in those coordinates. The �rst problem
that must be dealt with is the coordinate singularities caused by the trans-
formation. The singularities occur at the polar axis of those domains. It
is important to note that the occurrence of those singularities is due to the
representation of the governing equation in those coordinates.
Most of �nite di¤erence, �nite volume and spectral methods in the liter-

ature (see Lai & Wang, 2002) need to either approximate the value of the
solution or impose appropriate pole conditions for the solution at the singu-
larities. This pole approximation provides a numerical boundary value for
the �nite di¤erence scheme.
In Lai (2002), the author developed FFT-based fast direct solvers for Pois-

son equation on 2D polar geometry. The author uses the truncated Fourier
series expansion to derive a set of singular ODEs for the Fourier coe¢ cients,
and then solves those singular equations by the compact fourth-order �nite
di¤erence discretizations. By shifting a half mesh width from the origin, and
incorporating with the derived symmetry constraint of Fourier coe¢ cients,
we can easily handle coordinate singularities without pole conditions. By
manipulating the radial mesh width, three di¤erent boundary problems for
polar geometry (Dirichlet, Neumann and Robin conditions) can be solved
equally easily.
In this paper, we extend the previous fourth-order schemes on two di-

mensional cases (Lai, 2002) to the three-dimensional domains. Using the
truncated Fourier series expansion, the original three-dimensional PDE now
becomes a set of two-dimensional PDEs of the Fourier coe¢ cients. Then we
solve those PDEs by fourth-order �nite di¤erence discretizations.
In the following, we present two kinds of iterative method, GMRES and

Bi-CGSTAB, to solve the nonsymmetric systems of two-dimensional PDEs of
Fourier coe¢ cients. Then some preconditioners can be used. In particular, a
preconditioner arising from those singular equations have been solved by the
second-order �nite di¤erence discrtizations (see Lai et al, 2002) and shown
to be the most e¢ cient one.
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2 Fast Poisson solver in cylindrical coordi-
nates

The Poisson equation on a cylinder 
 = f0 < r � 1; 0 � � < 2�; 0 � z � 1g
can be conveniently written in cylindrical coordinates as

@2u

@r2
+
1

r

@u

@r
+
1

r2
@2u

@�2
+
@2u

@z2
= f(r; z; �) (2.1)

For the sake of simplicity, we restrict the Dirichlet boundary conditions on
the top and bottom boundaries, u(r; 1; �) = uT (r; �), u(r; 0; �) = uB(r; �),
but consider three di¤erent type of sidewall boundary conditions: Dirichlet
u(1; z; �) = uS(z; �); Neumann @u

@r
(1; z; �) = uS(z; �); or Robin condition

@u
@r
+ �u(1; z; �) = uS(z; �); � > 0.
The main issue for solving Eq.(2.1) is how to treat the coordinate sin-

gularity along the polar axis at the center r = 0. Most of Poisson solvers
for Eq.(2.1) including �nite di¤erence and spectral methods (see Chen et
al: (2000), Lai & Wang (2002)), involve imposing additional pole conditions
to approximate accurately the solution in the vicinity of the origin. The
accuracy of those methods depends greatly on the choice of pole conditions.
In the following, we develop a new class of fast direct solver for Eq.(2.1).

Our approach relies on the truncated Fourier series expansion, where the
di¤erential equations of Fourier coe¢ cients are solved by the fourth-order
�nite di¤erence discretizations without pole condition.

2.1 Fourier mode equations

Since the solution u is periodic in �, we can approximate it by the truncated
Fourier series as

u(r; z; �) =

N=2�1X
n=�N=2

ûn(r; z) e
in�; (2.2)

where ûn(r; z) is the complex Fourier coe¢ cient given by

ûn(r; z) =
1

N

N�1X
k=0

u(r; z; �k) e
�in�k ; (2.3)

and �k = 2k�=N , and N is the number of grid points along a circle.
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Substituting the expansions of (2.2) into Eq.(2.1), and equating the Fourier
coe¢ cients, we derive ûn(r; z) satisfying the PDE

@2ûn
@r2

+
1

r

@ûn
@r

+
@2ûn
@z2

� n
2

r2
ûn = f̂n(r; z); 0 < r � 1; 0 � z � 1; (2.4)

where the nth Fourier coe¢ cient of the right-hand side function f̂n(r; z) is
de�ned similarly as (2.3). The Fourier coe¢ cients of the boundary values
ûnS(z), û

n
T (r), û

n
B(r) are also de�ned in a similar fashion as to (2.3). So the

remaining problem is to solve Eq.(2.4) with the top and bottom boundary
conditions ûn(r; 0) = ûnB(r), ûn(r; 1) = ûnT (r), and with one of the three
sidewall boundary conditions ûn(1; z) = ûnS(z),

@ûn
@r
(1; z) = ûnS(z), or

@ûn
@r
+

�ûn(1; z) = û
n
S(z).

2.2 Fourth-order �nite di¤erence discretization

We choose a grid in (r; z) plane to avoid the polar singularity by

ri = (i� 1=2)�r; zj = j�z; (2.5)

for 1 � i � L + 1; 0 � j � M + 1, with �r = 2=(2L + 1) and �z =
1=(M + 1). Let the discrete values be denoted by U(ri; zj) � ûn(ri; zj),
F (ri; zj) � f̂n(ri; zj).
Our goal is to derive a fourth-order �nite di¤erence approximation to

Eq.(2.4). Obviously, the �rst and second derivatives, Ur , Urr and Uzz, must
be approximated to fourth-order accurately. First, let us write down two
di¤erence formulas for the �rst and second derivatives with the truncation
errors O(�r4) and O(�z4):

Ur = �0(r)Uij �
�r2

6
Urrr +O(�r

4); (2.6)

Urr = �
2
(r)Uij �

�r2

12
Urrrr +O(�r

4); (2.7)

Uzz = �
2
(z)Uij �

�z2

12
Uzzzz +O(�z

4): (2.8)
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Here �0(r)Uij, �
2
(r)Uij and �

2
(z)Uij are the centered di¤erence operators for the

�rst and second derivatives, de�ned as

�0(r)Uij =
Ui+1;j � Ui�1;j

2�r
; �2(r)Uij =

Ui+1;j � 2Ui;j + Ui�1;j
�r2

;

�2(z)Uij =
Ui;j+1 � 2Ui;j + Ui;j�1

�z2
; (2.9)

where Ui;j are the discrete values de�ned at the grid points ri and zj.
In order to have fourth-order approximations for Ur , Urr and Uzz, we need

to approximate the higher order derivatives Urrr , Urrrr and Uzzzz in Eqs.(2.6)
, (2.7) and (2.8) to be second-order accurate. To accomplish this, we di¤er-
entiate Eq.(2.4) once and twice for radial and axial directions, respectively,
to obtain the higher order derivatives of U :

Urrr = Fr �
Urr
r
+
1 + n2

r2
Ur �

2n2

r3
U � Uzzr; (2.10)

Urrrr = Frr �
Fr
r
+
3 + n2

r2
Urr �

3 + 5n2

r3
Ur +

8n2

r4
U +

Uzzr
r

�Uzzrr; (2.11)

Uzzz = Fz � Urrz �
Urz
r
+
n2

r2
Uz; (2.12)

Uzzzz = Fzz � Urrzz �
Urzz
r
+
n2

r2
Uzz: (2.13)

In Eqs.(2:10) , (2:11) , (2:12) , (2:13), those di¤erential operators in right-
hand side can be approximated further by the centered di¤erence formulas
to achieve second-order accuracy. Substituting those approximations into
Eqs.(2.6) , (2.7) and (2.8) then applying to Eq.(2.4), we obtain the �nite
di¤erence scheme as follows. For 1 � i � L; 1 � j �M , we need to solve

�2(r)Ui;j �
�r2

12
[�2(r)Fi;j �

1

ri
�0(r)Fi;j +

3 + n2

r2i
�2(r)Ui;j �

3 + 5n2

r3i
�0(r)Ui;j

+
8n2

r4i
Ui;j +

1

ri
�0(r)�

2
(z)Ui;j � �2(r)�2(z)Ui;j] +

1

ri
�0(r)Ui;j �

�r2

6ri
[�0(r)Fi;j

� 1
ri
�2(r)Ui;j +

1 + n2

r2i
�0(r)Ui;j �

2n2

r3i
Ui;j � �0(r)�2(z)Ui;j]�

n2

r2i
Ui;j + �

2
(z)Ui;j
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��z
2

12
[�2(z)Fi;j � �2(z)�2(r)Ui;j �

1

ri
�2(z)�0(r)Ui;j +

n2

r2i
�2(z)Ui;j] = Fi;j: (2.14)

In order to close the linear system, the numerical boundary values U0;j
and UL+1;j in the r direction should be supplied. Choosing of ri as described
in (2.5), we have rL+1 = 1; thus, the numerical boundary value UL+1;j can
either be given by the Dirichlet boundary value ûnS(zj) or be determined by
imposing the condition on the boundary (Neumann and Robin). The nu-
merical boundary value U0;j can be obtained by the symmetry constraint
of Fourier coe¢ cients, which is derived as follows. The transformation be-
tween Cartesian and cylindrical coordinates can be written as x = r cos �;
y = r sin �; z = z. When we replace r with �r, and � with � + �, the Carte-
sian coordinates of a point remain the same. Therefore, any scalar function
u(r; �; z) satis�es u(�r; �; z) = u(r; � + �; z). Using this equality, we have

u(�r; �; z) =
1X

n=�1
ûn(�r; z) ein� =

1X
n=�1

ûn(r; z) e
in(�+�)

=
1X

n=�1
ûn(r; z) e

in�ein� =
1X

n=�1
(�1)nûn(r; z) ein�: (2.15)

Thus, when the domain of a function is extended to a negative value of r,
the nth Fourier coe¢ cient of this function satis�es ûn(�r; z) = (�1)nûn(r; z).
Using the above condition, we have

U0;j = U(r0;zj) = U(�
�r

2
; zj) = (�1)nU(

�r

2
; zj)

= (�1)nU(r1;zj) = (�1)nU1;j: (2.16)

Therefore, the numerical boundary value U0;j has been supplied. And the
numerical boundary values in the z direction can be easily obtained by the
given Dirichlet boundary values Ui;0 = ûnB(ri) and Ui;M+1 = û

n
T (ri).

Let us order the unknowns Uij by �rst grouping the same i so that the
solution vector v is de�ned by

v =

26664
U1
U2
...
UL

37775 ; Ui =

26664
Ui1
Ui2
...
UiM

37775 :
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Solving the discrete equations (2.14) results in a large sparse linear system
Av = b, where the coe¢ cient matrix A and the right-hand side vector b are
de�ned as follows. The matrix A is a L� L block tridiagonal matrix

A =

26666664
T1 I1
H2 T2 I2

: : :
: : :
HL�1 TL�1 IL�1

HL TL

37777775 ;

where Ti; Hi and Ii; 1 � i � L are the tridiagonal matrices given by

Hi =

26666664
H1i H2i
H2i H1i H2i

: : :
: : :
H2i H1i H2i

H2i H1i

37777775 ;

H1i =
5a

6
� b

6
� (1 + n2)ci � (1 + 3n2)di + 2ei � 10fi;

H2i =
a

12
+
b

12
� ei � fi;

Ii =

26666664
I1i I2i
I2i I1i I2i

: : :
: : :
I2i I2i I2i

I2i I1i

37777775 ;

I1i =
5a

6
� b

6
� (1 + n2)ci + (1 + 3n2)di � 2ei + 10fi;

I2i =
a

12
+
b

12
+ ei + fi;
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Ti =

26666664
T1i T2i
T2i T1i T2i

: : :
: : :
T2i T1i T2i

T2i T1i

37777775 ;
T1 = T1 + (�1)nH11I;

T1i = �5a
3
� 5b
3
+ 2(1� 4n2)ci � n2gi;

T2i = �a
6
+
5b

6
� n2ci;

with a = 1
�r2
; b = 1

�z2
; ci =

1
12r2i
; di =

�r
24r3i
; ei =

�r
24ri�z2

; fi =
1

24ri�r
; gi =

�r2

3r4i
.

Incorporating with the boundary values and the function F , the right-hand
side vector b can be written as

b =

26664
bT1;j
bT2;j
...

bTL;j � I1LûnS(Zj)� I2L(ûnS(Zj�1) + ûnS(Zj+1))

37775 ;
where

bi;j =

8>>>><>>>>:
�i Fi+1;j + �iFi�1;j +

Fi;j+1
12

+
Fi;j�1
12

+
2Fi;j
3

�H2i ûnB(ri�1)� T2i ûnB(ri)� I2i ûnB(ri+1)
if j = 1

�i Fi+1;j + �iFi�1;j +
Fi;j+1
12

+
Fi;j�1
12

+
2Fi;j
3

if 2 � j �M � 1
�i Fi+1;j + �iFi�1;j +

Fi;j+1
12

+
Fi;j�1
12

+
2Fi;j
3

�H2i ûnT (ri�1)� T2iûnT (ri)� I2i ûnT (ri+1)
if j =M

;

bL;j =

8>>>>><>>>>>:
�LFL+1;j + �LFL�1;j +

FL;j+1
12

+
FL;j�1
12

+
2FL;j
3

�H2L ûnB(rL�1)� T2L ûnB(rL)
if j = 1

�LFL+1;j + �LFL�1;j +
FL;j+1
12

+
FL;j�1
12

+
2FL;j
3

if 2 � j �M � 1
�LFL+1;j + �LFL�1;j +

FL;j+1
12

+
FL;j�1
12

+
2FL;j
3

�H2LûnT (rL�1)� T2L ûnT (rL)
if j =M

;

with �i = 1
12
+ �i

12
; �i =

1
12
� �i

12
; �i =

�r
2ri
; 1 � i � L.

Note that, the above form is for the Dirichlet sidewall boundary. We shall
discuss the other cases below.
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For the Neumann (� = 0) or Robin boundary cases, we use the same
mesh points but with di¤erent radial mesh width �r = 1=L. With this
choice of radial mesh width, the discrete values of U are de�ned midway
between sidewall boundary so that the �rst derivative can be centered on the
grid points. That is, at r = 1,

@U

@r
+ �U � UL+1;j � UL;j

�r
+ �

UL+1;j + UL;j
2

= ûnS(zj): (2.17)

The numerical boundary value UL+1;j can be approximated by

UL+1;j =
(1� ��r=2)UL;j + ûnS(zj)�r

1 + ��r=2
: (2.18)

Therefore, we only need to modify TL in the matrix A and bTL;j in the vector
b by

TL = TL + IL; (2.19)

bTL;j = bTL;j � �(I1LûnS(Zj)� I2L(ûnS(Zj�1) + ûnS(Zj+1)))� b1T ;(2.20)

with b1 = I2L(ûnB(rL); 0; :::; 0; û
n
T (rL));  =

1���r
2

1+��r
2

and � = �r
1+��r

2

.

Table 2.1 shows the maximum errors of the method for three di¤erent
solutions of Poisson equation in a cylinder with Dirichlet boundary condition.
In all our tests, we use L mesh points in the radial and axial directions, and
2L points in the azimuthal direction. The rate of convergence is computed
by the formula log2(

EL=2
EL
), where EL is the maximum error. One can see that

the errors of the solutions show third-order convergence for all solutions. The
loss of one order of accuracy seems to come from the discretization near the
origin. This can be seen from the following truncation error analysis. In
the Fourier mode equation Eq.(2.4), the U

0
(= @ûn

@r
) term is divided by r.

So the second-order approximation of U
000
in (2.6) is divided by an O(�r)

term near the origin, which makes the approximation of U
000
=r �rst-order

accurate. This has the consequence that the overall truncation error of the
U

0
=r term in the vicinity of the origin is O(�r3) and thus so is the Fourier

mode equation (2.4). However, this loss of accuracy does not appear when
solving the problem on a hollow cylinder. Let us explain why that is the case
next. The present scheme can be easily applied to solve the Poisson equation
on a hollow cylinder fa � r � bg, where a > 0. As the cylinder case, we need

8



to solve Eq.(2.4) and three di¤erent boundary conditions at r = b with an
additional boundary condition imposed at r = a. Instead of setting a grid as
in (2.5), we choose a regular grid,

ri = a+ i�r; i = 0; 1; 2; :::; L; L+ 1; (2.21)

with the mesh width �r = (b � a)=(L + 1). Now the second-order approxi-
mation of U

000
in (2.6) is divided by an O(a+�r) term instead of an O(�r)

term, so the truncation error of the U
0
=r term is still O(�r2). Therefore, the

overall truncation error of Eq.(2.4) is O(�r4).
The fourth and �fth columns of Table 2.1 show the errors and the rate of

convergence for the solutions on a hollow cylinder f0:5 � r � 1g. We can see
that the fourth-order convergence can be achieved for all examples. In the
following, the Table 2.2 and 2.3 show the maximum errors of the method for
three di¤erent solutions of Poisson equation in a cylinder and hollow cylinder
with remaining boundary conditions(Neumann and Robin).

9



Table 2.1
The Maximum Errors of Di¤erent Solutions to the
Poisson Equation with Dirichlet Boundary

0 < r � 1 0:5 < r � 1
L kuk1 Rate kuk1 Rate

u(r; z; �) = er cos �+r sin �+z

8 7.8137E-05 1.5465E-07
16 9.8506E-06 2.99 1.0920E-08 3.82
32 1.2566E-06 2.97 7.3409E-10 3.90
64 1.5941E-07 2.98 4.7580E-11 3.95

u(r; z; �) = r3(cos � + sin �)z(1� z)
8 9.1438E-04 8.8994E-07
16 1.0755E-04 3.09 6.4128E-08 3.80
32 1.3008E-05 3.05 4.3173E-09 3.89
64 1.5966E-06 3.03 2.8035E-10 3.95

u(r; z; �) = cos(�(r2 cos2 � + r sin �)) sin(�z2)
8 7.4000E-03 7.5000E-03
16 3.3150E-04 4.48 1.7101E-05 8.78
32 4.0782E-05 3.02 1.2221E-06 3.81
64 5.0424E-06 3.02 8.1011E-08 3.92
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Table 2.2
The Maximum Errors of Di¤erent Solutions to the
Poisson Equation with Neumann Boundary

0 < r � 1 0:5 < r � 1
L kuk1 Rate kuk1 Rate

u(r; z; �) = er cos �+r sin �+z

8 4.2863E-04 9.3911E-05
16 1.0817E-04 1.99 2.4471E-05 1.94
32 2.6993E-05 2.00 6.2247E-06 1.96
64 6.7313E-06 2.00 1.5682E-06 1.99

u(r; z; �) = r3(cos � + sin �)z(1� z)
8 1.4000E-03 2.9138E-04
16 3.5261E-04 1.99 7.7016E-05 1.92
32 8.8215E-05 2.00 1.9828E-05 1.96
64 2.2041E-05 2.00 5.0323E-06 1.99

u(r; z; �) = cos(�(r2 cos2 � + r sin �)) sin(�z2)
8 2.4900E-02 2.0200E-02
16 4.1000E-03 2.60 1.1000E-03 4.20
32 1.1000E-03 1.90 2.8932E-04 1.93
64 3.0123E-04 1.87 7.5139E-05 1.95
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Table 2.3
The Maximum Errors of Di¤erent Solutions to the
Poisson Equation with Robin Boundary (� = 1)

0 < r � 1 0:5 < r � 1
L kuk1 Rate kuk1 Rate

u(r; z; �) = er cos �+r sin �+z

8 1.0000E-03 2.3024E-04
16 2.5937E-04 1.95 5.9649E-05 1.95
32 6.4653E-05 2.00 1.5131E-05 1.98
64 1.6112E-05 2.00 3.8114E-06 1.99

u(r; z; �) = r3(cos � + sin �)z(1� z)
8 4.2000E-03 8.7050E-04
16 1.0000E-03 2.07 2.3109E-04 1.91
32 2.6050E-04 1.94 5.9561E-05 1.96
64 6.5035E-05 2.00 1.5121E-05 1.98

u(r; z; �) = cos(�(r2 cos2 � + r sin �)) sin(�z2)
8 2.3100E-02 1.9100E-02
16 5.3000E-03 2.12 1.3000E-03 3.88
32 1.6000E-03 1.73 3.9232E-04 1.73
64 4.1390E-04 1.95 1.0176E-04 1.95

3 Fast Poisson solver in spherical coordinates

The Poisson equation in a spherical shell 
 = fR0 � r � 1; 0 � � � �; 0 �
� � 2�g can be written in spherical coordinates as

@2u

@r2
+
2

r

@u

@r
+
1

r2
@2u

@�2
+
cot�

r2
@u

@�
+

1

r2 sin2 �

@2u

@�2
= f(r; �; �): (3.1)

The boundary condition should be imposed on the inner (r = R0 > 0) and
outer (r = 1) surfaces of the sphere. Here, for convenience of exposition, we
assume the Dirichlet boundary on the inner surface u(R0; �; �) = uI(�; �).
Three di¤erent boundary conditions can be considered on the outer surface:
Dirichlet u(1; �; �) = uS(�; �); Neumann @u

@r
(1; �; �) = uS(�; �); or Robin

condition @u
@r
+ �u(1; �; �) = uS(�; �); � > 0. However, the method to be
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described can be easily adapted to di¤erent boundary conditions on the inner
surface.
As in the cylindrical case of the previous section, the main di¢ culty for

solving Eq.(3.1) is to treat the coordinate singularities along the polar axis
where north (� = 0) and south (� = �) poles are located. Again, most of
numerical approaches including �nite di¤erence and spectral methods involve
imposing additional pole conditions to capture the behavior of the solution in
the vicinity of the poles. In the following, we will present a numerical method
to solve Eq.(3.1) which uses the symmetry constraint of Fourier coe¢ cient
to handle the coordinate singularities without pole condition.

3.1 Fourier mode equations

As in the cylindrical coordinate case, we approximate u by the truncated
Fourier series as

u(r; �; �) =

N=2�1X
n=�N=2

ûn(r; �) e
in�; (3.2)

where ûn(r; �) is the complex Fourier coe¢ cient given by

ûn(r; �) =
1

N

N�1X
k=0

u(r; �; �k) e
�in�k ; (3.3)

and �k = 2k�=N and N is the number of grid points along a latitude cir-
cle. The expansion for the function f can be written in the similar fashion.
Substituting those expansions into Eq.(3.1), and equating the Fourier coe¢ -
cients, ûn(r; �) then satis�es the PDE

@2ûn
@r2

+
2

r

@ûn
@r

+
1

r2
@2ûn

@�2
+
cot�

r2
@ûn
@�

� n2

r2 sin2 �
ûn = f̂n(r; �); (3.4)

with ûn(R0; �) = ûnI (�) and one of the three boundary conditions: Dirichlet
ûn(1; �) = ûnS(�); Neumann

@ûn
@r
(1; �) = ûnS(�); or Robin condition

@ûn
@r
+

�ûn(1; �) = û
n
S(�). Here, û

n
I (�) and û

n
S(�) are the nth Fourier coe¢ cient of

uI(�; �) and uS(�; �), respectively.
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3.2 Fourth-order �nite di¤erence discretization

We consider the Dirichlet boundary on the outer surface �rst and will discuss
the other cases later. Let us choose a grid in (r; �) plane by

ri = R0 + i�r; �j = (j � 1=2)��; (3.5)

for 0 � i � L+1; 0 � j �M+1 with �r = (1�R0)=(L+1) and �� = �=M .
By the choice of those mesh points, we avoid placing points directly at north
(� = 0) and south (� = �) poles. Again, let the discrete values be denoted
by U(ri; �j) � ûn(ri; �j), and F (ri; �j) � f̂n(ri; �j).
Our goal is to derive a fourth-order �nite di¤erence approximation to

Eq.(3.4). As in the cylindrical coordinate case, we obtain the �nite di¤erence
scheme as follows. For 1 � i � L; 1 � j �M , we need to solve

�2(r)Ui;j �
�r2

12
[�2(r)Fi;j �

2

ri
�0(r)Fi;j + (

8 + n2 csc2 �j
r2i

)�2(r)Ui;j +
10n2 csc2 �j

r4i
Ui;j

+(
�8� 6n2 csc2 �j

r3i
)�0(r)Ui;j�

10

r4i
�2(�)Ui;j�

10 cot�j
r4i

�0(�)Ui;j+
6 cot�j
r3i

�0(r)�0(�)Ui;j

+
6

r3i
�0(r)�

2
(�)Ui;j�

cot�j
r2i

�2(r)�0(�)Ui;j�
1

r2i
�2(r)�

2
(�)
Ui;j]+

2

ri
f�0(r)Ui;j�

�r2

6
[�0(r)Fi;j

� 2
ri
�2(r)Ui;j+(

2 + n2 csc2 �j
r2i

)�0(r)Ui;j+
2 cot�j
r3i

�0(�)Ui;j+
2

r3i
�2(�)Ui;j�

cot�j
r2i

�0(r)�0(�)Ui;j

� 1
r2i
�0(r)�

2
(�)Ui;j�

2n2 csc2 �j
r3i

Ui;j]g+
1

r2i
f�2(�)Ui;j�

��2

12
[r2i �

2
(�)Fi;j�r2i cot�j�0(�)Fi;j

+(�3�5n2) csc2 �j cot�j�0(�)Ui;j+2n2 csc2 �j(4 csc2 �j�3)Ui;j+2ri cot�j�0(�)�0(r)Ui;j

+((3+n2) csc2 �j�1)�2(�)Ui;j+r2i cot�j�0(�)�2(r)Ui;j�2ri�2(�)�0(r)Ui;j�r2i �2(�)�2(r)Ui;j]g
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+
cot�j
r2i

f�0(�)Ui;j�
��2

6
[�r2i �0(�)�2(r)Ui;j+(1+n2) csc2 �j�0(�)Ui;j�cot�j�2(�)Ui;j

�2n2 csc2 �j cot�jUi;j + r2i �0(�)Fi;j]g �
n2 csc2 �j

r2i
Ui;j = Fi;j: (3.6)

When j = 1 for Eq.(3.6), the numerical boundary value Ui;0 can be given
by Ui;0 = (�1)nUi;1. This is because the Fourier coe¢ cient satis�es the sym-
metry constraint ûn(ri;���=2) = (�1)nûn(ri;��=2) (Lai & Wang, 2002).
Similarly, another numerical boundary value Ui;M+1 can also be obtained by
Ui;M+1 = (�1)nUi;M for the same reason. So the numerical boundary values
in the � direction are provided and no pole condition is needed in our �nite
di¤erence setting. The numerical boundary values in the radial direction
U0;j; UL+1;j are given by the boundary values ûnI (�j); û

n
S(�j).

Let us order the unknowns Uij by �rst grouping the same i so that the
solution vector v is de�ned by

v =

26664
U1
U2
...
UL

37775 ; Ui =

26664
Ui1
Ui2
...
UiM

37775 :
The remaining problem is to solve a large sparse linear system Av = b,
where the coe¢ cient matrix A and the right-hand side vector b are de�ned
as follows. The matrix A is a L� L block tridiagonal matrix

A =

266664
T1 I1
H2 T2 I2

: : :
HL�1 TL�1 IL�1

HL TL

377775 ;
where Ti; Hi and Ii; 1 � i � L are the tridiagonal matrices given by

Ti =

26666664
T1i;1 + (�1)nT3i;1 T2i;1

T3i;2 T1i;2 T2i;2
: : :

: : :
T3i;M�1 T1i;M�1 T2i;M�1

T3i;M T1i;M + (�1)nT2i;M

37777775 ;
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T1i;j = �20P1�8P3i;j�P7i;j�P8i;j+2��2P3i;j�2P9i�10P6i+P10i;j+��2P6i;

T2i;j = P9i+5P6i�
P10i;j
2

�P3i;j�
��2

2
P6i+P11i;j+P12i;j+P13i;j�P14j�2P1;

T3i;j = P9i+5P6i�
P10i;j
2

�P3i;j�
��2

2
P6i�P11i;j�P12i;j�P13i;j+P14j�2P1;

Hi =

26666664
H1i;1 + (�1)nH3i;1 H2i;1

H3i;2 H1i;2 H2i;2
: : :

: : :
H3i;M�1 H1i;M�1 H2i;M�1

H3i;M H1i;M + (�1)nH2i;M

37777775 ;

H1i;j = 10P1� 10P2i � P3i;j � P4i;j � 2P5i � P6i;

H2i;j = P15i;j � P16i;j + P5i � P2i +
P12i;j
10

+
P14j
2

+
P6i
2
+ P1;

H3i;j = �P15i;j + P16i;j + P5i � P2i �
P12i;j
10

� P14j
2

+
P6i
2
+ P1;

Ii =

26666664
I1i;1 + (�1)nI3i;1 I2i;1

I3i;2 I1i;2 I2i;2
: : :

: : :
I3i;M�1 I1i;M�1 I2i;M�1

I3i;M I1i;M + (�1)nI2i;M

37777775 ;

I1i;j = 10P1 + 10P2i � P3i;j + P4i;j + 2P5i � P6i;

I2i;j = �P15i;j + P16i;j � P5i + P2i +
P12i;j
10

+
P14j
2

+
P6i
2
+ P1;

I3i;j = P15i;j � P16i;j � P5i + P2i �
P12i;j
10

� P14j
2

+
P6i
2
+ P1;
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with

P1 =
1

12�r2
; P2i =

1

12ri�r
; P3i;j =

n2 csc2 �j
12r2i

; P4i;j =
�rn2 csc2 �j

12r3i
;

P5i =
�r

12r3i��
2 ; P6i =

1

6r2i��
2 ; P7i;j =

�r2n2 csc2 �j
6r4i

;

P8i;j =
��2n2 csc4 �j

3r2i
; P9i =

�r2

6r4i��
2 ; P10i;j =

csc2 �j
6r2i

;

P11i;j =
�r2 cot�j
12r4i��

; P12i;j =
5 cot�j
12r2i��

; P13i;j =
(1 + 3n2)(�� cot�j csc

2 �j)

24r2i
;

P14j =
�� cot�j
12�r2

; P15i;j =
�r cot�j
24r3i��

; P16i;j =
�� cot�j
24ri�r

; 1 � j �M:

Incorporating with the boundary value and the function F , the right-hand
side vector b can be written as

b =

2666664
bT1;j �H31;j ûnI (�j�1)�H11;jûnI (�j)�H21;jûnI (�j+1)

...
bTi;j
...

bTL;j � I3M;j ûns (�j�1)� I1M;jûns (�j)� I2M;jûns (�j+1)

3777775 ;

where

bi;j =
2

3
Fi;j + (

1

12
+ P17i)Fi+1;j + (

1

12
� P17i)Fi�1;j

+(
1

12
+
�r2P14j

2
)Fi;j+1 + (

1

12
� �r

2P14j
2

)Fi;j�1;

with P17i = �r
12ri
; 1 � i � L and 1 � j �M .

For the Neumann (� = 0) or Robin boundary cases, we use the same grid
described in (3.5) but with di¤erent radial mesh width �r = 2(1�R0)=(2L+
1). With this choice of radial mesh width, the discrete values of U are de�ned
midway between boundary so that the �rst derivative can be centered on the
mesh points. That is, at r = 1,

@U

@r
+ �U � UL+1;j � UL;j

�r
+ �

UL+1;j + UL;j
2

= ûnS(�j): (3.7)
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So the numerical boundary value UL+1;j can be approximated by

UL+1;j =
(1� ��r=2)UL;j + ûnS(�j)�r

1 + ��r=2
: (3.8)

Therefore, we only need to modify TL in the matrix A and the vector bTL;j by

TL = TL + IL; (3.9)

bTL;j = bTL;j � �(I3M;j ûns (�j�1)� I1M;jûns (�j)� I2M;jûns (�j+1));(3.10)

with � = �r
1+��r

2

; and  = 1���r
2

1+��r
2

.

Table 3.1 shows the maximum errors of the method for three di¤erent
solutions of Poisson equation in a spherical shell with Dirichlet boundary
condition. In all our tests, we use L mesh points in the radial and colatitude
directions, and 2L points in the longitude direction. The inner radius is
chosen by R0 = 0:5.
One can see that the errors of the solutions show third-order convergence

for all solutions. The loss of one order of accuracy seems to come from
the discretization near the north (� = 0) pole. This can be seen from the
following truncation error analysis. In the Fourier mode equation Eq.(3.4),
the U

0
(= @ûn

@�
) term is divided by sin�. So the fourth-order approximation of

U
0
in (3.4) is divided by an O(��) term near the north (� = 0) pole. This has

the consequence that the overall truncation error of the cot�
r2
U

0
term in the

vicinity of the north (� = 0) pole is O(��3) and thus so is the Fourier mode
equation (3.4). In the following, the Table 3.2 and 3.3 show the maximum
errors of the method for three di¤erent solutions of Poisson equation in a
spherical shell with remaining boundary conditions(Neumann and Robin).
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Table 3.1
The Maximum Errors of Di¤erent Solutions to the
Poisson Equation with Dirichlet Boundary

0:5 < r � 1
L kuk1 Rate

u(r; �; �) = er sin� cos �+r sin� sin �+r cos�

8 3.7000E-03
16 5.4095E-04 2.77
32 7.4825E-05 2.85
64 1.0067E-05 2.89

u(r; �; �) = r3(cos � + sin �) sin�(1� r cos�)
8 5.2000E-03
16 9.5143E-04 2.45
32 1.5249E-04 2.64
64 2.2549E-05 2.76

u(r; �; �) = cos(�(r2 cos2 � sin2 �+ r sin � sin�)) sin(�r2 cos2 �)
8 5.3700E-02
16 7.1000E-03 2.92
32 8.3568E-04 3.09
64 9.7240E-05 3.10
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Table 3.2
The Maximum Errors of Di¤erent Solutions to the
Poisson Equation with Neumann Boundary

0:5 < r � 1
L kuk1 Rate

u(r; �; �) = er sin� cos �+r sin� sin �+r cos�

8 6.8000E-03
16 8.5296E-04 3.00
32 1.0804E-04 2.98
64 1.4317E-05 2.92

u(r; �; �) = r3(cos � + sin �) sin�(1� r cos�)
8 1.0500E-02
16 1.6000E-03 2.71
32 2.2105E-04 2.86
64 2.9431E-05 2.91

u(r; �; �) = cos(�(r2 cos2 � sin2 �+ r sin � sin�)) sin(�r2 cos2 �)
8 1.3090E-01
16 1.6500E-02 2.99
32 2.2000E-03 2.91
64 3.8002E-04 2.53
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Table 3.3
The Maximum Errors of Di¤erent Solutions to the
Poisson Equation with Robin Boundary (� = 1)

0:5 < r � 1
L kuk1 Rate

u(r; �; �) = er sin� cos �+r sin� sin �+r cos�

8 6.0000E-03
16 8.0381E-04 2.90
32 1.0805E-04 2.90
64 1.5225E-05 2.83

u(r; �; �) = r3(cos � + sin �) sin�(1� r cos�)
8 9.6000E-03
16 1.5000E-03 2.68
32 2.1788E-04 2.78
64 3.3247E-05 2.71

u(r; �; �) = cos(�(r2 cos2 � sin2 �+ r sin � sin�)) sin(�r2 cos2 �)
8 1.0880E-01
16 1.2900E-02 3.08
32 1.6000E-03 3.01
64 2.4752E-04 2.69

4 Generalized Minimal Residual (GMRES)

In this section, we present an iterative method for solving nonsymmetric lin-
ear systems of the Fourier mode equation (2.4). The Generalized Minimal
Residual (GMRES) method is an extension of MINRES (which is only ap-
plicable to symmetric systems) to nonsymmetric linear systems(see Saad and
Schultz). The stopping criterion of the convergence is based on the relative
residual which the tolerance ranges from 10�12 � 10�16 depending on the
di¤erent Fourier modes.
In the Conjugate Gradient method, the residuals form an orthogonal basis

for the space span
�
r(0); Ar(0); A2r(0); :::

	
. In GMRES, this orthonormal basis

is formed explicitly:
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!(i) = Av(i)

for k = 1; :::; i

!(i) = !(i) � (!(i); v(k))v(k)

end

v(i+1) = !(i)=
!(i)

The reader may recognize this as a modi�ed Gram-Schmidt orthogonal-
ization. The GMRES iterates are constructed as

x(i) = x(0) + y1v
(1) + :::+ yiv

(i); (4.1)

where the coe¢ cients yk have been chosen to minimize the residual normb� Ax(i).
Then we preform a preconditioner which can be applied to the GMRES

method to solve the compact fourth-order scheme. We take the precon-
ditioner M arising from the Eq.(2.4) has been solved by the second-order
�nite di¤erence discretization with Dirichlet boundary condition(see Lai et
al: (2002) ). The matrix M is a L� L block tridiagonal matrix

M =

266664
T1 (1 + �1)I

(1� �2)I T2 (1 + �2)I
: : :

(1� �L�1)I TL�1 (1 + �L�1)I
(1� �L)I TL

377775 ;
where Ti; 1 � i � L is a tridiagonal matrix given by

Ti =

26666664
�i �
� �i �

: : :
: : :
� �i �

� �i

37777775 ;

with �i = �2� 4�2in2 � 2�; � = �r2=�z2; �i = 1=(2i� 1).
Table 4.1 shows the number of iterations needed for solving the solution

of Example 1 of Poisson equation in a cylinder with the Fourier mode number
n = 1 and Dirichlet boundary condition by GMRES method with di¤erent
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preconditioners. The tolerance for the relative residual is chosen as 10�13.
Those preconditioners include block Jacobi (BJ), incomplete LU factorization
(LUINC), and the fast Poisson solver (FPS) described as before. Indeed, the
fast Poisson solver preconditioner turns out to be the most e¢ cient one since
it has the least number of iterations, and the iterations are kept to be a
constant when we increase the grid points.

Table 4.1
The performance comparison for using di¤erent preconditioners

0 < r � 1
u(r; z; �) = er cos �+r sin �+z

L Outer/Inner Iteration Relative residual Tolerance Relative Error

GMRES
8 1/38 4.2482E-14 1.0E-13 7.8137E-05
16 1/74 8.7889E-14 1.0E-13 9.8506E-06
32 1/145 8.3080E-14 1.0E-13 1.2566E-06
64 2/1 9.6686E-14 1.0E-13 1.5941E-07

BJ
8 1/25 2.5087E-14 1.0E-13 7.8137E-05
16 1/48 5.4973E-14 1.0E-13 9.8507E-06
32 1/90 6.7025E-14 1.0E-13 1.2565E-06
64 1/164 8.5684E-14 1.0E-13 1.5909E-07

LUINC
8 1/10 1.2748E-14 1.0E-13 7.8137E-05
16 1/16 2.1491E-14 1.0E-13 9.8505E-06
32 1/27 3.7427E-14 1.0E-13 1.2566E-06
64 1/47 7.4488E-14 1.0E-13 1.5913E-07

(2-order)FPS
8 1/15 1.5611E-14 1.0E-13 7.8137E-05
16 1/15 5.0064E-14 1.0E-13 9.8506E-06
32 1/15 2.7255E-14 1.0E-13 1.2566E-06
64 2/1 2.4130E-14 1.0E-13 1.5941E-07
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In the following, Table 4.2 and 4.3 show the number of iterations needed
for solving the solution of remaining examples with the Fourier mode number
n = 1 by GMRES method with di¤erent preconditioners. The tolerance for
the relative residual is chosen as 10�13. Similarly, the fast Poisson solver
preconditioner turns out to be the most e¢ cient one since it has the least
number of iterations, and the iterations are kept to be a constant when we
increase the grid points.

Table 4.2
The performance comparison for using di¤erent preconditioners

0 < r � 1
u(r; z; �) = r3(cos � + sin �)z(1� z)

L Outer/Inner Iteration Relative residual Tolerance Relative Error

GMRES
8 1/28 1.0713E-14 1.0E-13 9.1438E-04
16 1/58 7.3844E-14 1.0E-13 1.0755E-04
32 1/115 8.7476E-14 1.0E-13 1.3008E-05
64 2/1 9.5299E-14 1.0E-13 1.5966E-06

BJ
8 1/19 5.6023E-14 1.0E-13 9.1438E-04
16 1/36 7.6266E-14 1.0E-13 1.0755E-04
32 1/67 7.0556E-14 1.0E-13 1.3008E-05
64 1/125 6.3349E-14 1.0E-13 1.5966E-06

LUINC
8 1/10 2.1958E-14 1.0E-13 9.1438E-04
16 1/15 6.7705E-14 1.0E-13 1.0755E-04
32 1/26 5.5145E-14 1.0E-13 1.3008E-05
64 1/45 6.0695E-14 1.0E-13 1.5966E-06

(2-order)FPS
8 1/13 1.4886E-14 1.0E-13 9.1438E-04
16 1/12 7.5673E-14 1.0E-13 1.0755E-04
32 1/12 2.3112E-14 1.0E-13 1.3008E-05
64 1/11 1.9006E-14 1.0E-13 1.5966E-06
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Table 4.3
The performance comparison for using di¤erent preconditioners

0 < r � 1
u(r; z; �) = r2 sin 2� sin(�z)

L Outer/Inner Iteration Relative residual Tolerance Relative Error

GMRES
8 1/35 6.2341E-14 1.0E-13 3.0938E-05
16 1/69 7.0950E-14 1.0E-13 2.0650E-06
32 1/136 8.1227E-14 1.0E-13 1.3481E-07
64 1/267 9.4758E-14 1.0E-13 8.6033E-09

BJ
8 1/22 6.8349E-14 1.0E-13 3.0938E-05
16 1/43 6.1935E-14 1.0E-13 2.0650E-06
32 1/79 7.4148E-14 1.0E-13 1.3481E-07
64 1/143 8.8186E-14 1.0E-13 8.6030E-09

LUINC
8 1/10 2.0703E-14 1.0E-13 3.0938E-05
16 1/15 6.1446E-14 1.0E-13 2.0650E-06
32 1/26 7.2626E-14 1.0E-13 1.3481E-07
64 1/44 7.6683E-14 1.0E-13 8.6124E-09

(2-order)FPS
8 1/13 1.5440E-14 1.0E-13 3.0938E-05
16 1/13 3.2524E-14 1.0E-13 2.0650E-06
32 1/13 1.7154E-14 1.0E-13 1.3481E-07
64 1/13 2.3399E-14 1.0E-13 8.6031E-09
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5 Bi-Conjugate Gradient Stabilized

In this section, we present the other e¢ cient iterative method for solving non-
symmetric linear systems. The stopping criterion of the convergence is based
on the relative residual which the tolerance ranges from 10�9�10�13 depend-
ing on the di¤erent Fourier modes.First, we present the Conjugate Gradient
Squared (CG-S) algorithm that was developed by Sonneveld (1984), mainly
to avoid using the transpose of A in the Bi-Conjugate Gradient (Bi-CG)
method and to gain faster convergence for roughly the same computational
cost. In the Bi-CG algorithm, the approximations are constructed in such
a way that the residual vector r(j) is orthogonal with respect to another
vectors ~r(0); ~r(1); :::; ~r(j�1), and, vice versa, ~r(j) is orthogonal with respect to
r(0); r(1); :::; r(j�1).
Sonneveld observed that, in the case of convergence, both the rows

�
r(j)
	

and
�
~r(j)
	
converge to zero, but that only the convergence of the

�
r(j)
	
is

used. He proposes the following modi�cation to Bi-CG by which all the
convergence e¤ort is focused in the r(j) vectors. For the Bi-CG vectors it is
well known that they can be written as r(j) = Pj(A)r(0) and ~r(j) = Pj(AT )~r(0),
and because of the bi-orthogonality relation we have that

(r(j); ~r(i)) = (Pj(A)r
(0); Pi(A

T )~r(0))

= (Pi(A)Pj(A)r
(0); ~r(0)) = 0 for i < j: (5.1)

The iteration parameters for Bi-CG are computed from innerproducts
like the above. Sonneveld observed that we can also construct the vectors
r̂(j) = P 2j (A)r

(0), using only the latter form of the innerproduct for recovering
the Bi-CG parameters. By doing so, it can be avoided that the vectors
~r(j) have to be formed, nor is here any multiplication with the matrix AT .
The resulting algorithm can be represented by the following scheme M is a
preconditioning matrix.
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PRECONDITIONED CG-S ALGORITHM � � � �

Compute r(0) = b� Ax(0) for some initial guess x(0)

~r(0) is an arbitrary vector, such that (r(0); ~r(0)) 6= 0, e.g.,r(0) = ~r(0);
for i = 1; 2; :::

�i�1 = (~r
(0); r(i�1))

if �i�1 = 0 method fails

if i = 1

u(1) = r(0)

p(1) = u(1)

else

�i�1 = �i�1=�i�2

u(i) = r(i�1) + �i�1q
(i�1)

p(i) = u(i) + �i�1(q
(i�1) + �i�1p

(i�1))

end if

Solve p̂ from Mp̂ = p(i)

v̂ = Ap̂

�i = �i�1=(~r
(0); v̂)

q(i) = u(i) � �iv̂
Solve û from Mû = u(i) + q(i)

x(i) = x(i�1) + �iû

q̂ = Aû

r(i) = r(i�1) � �iq̂
check convergence; continue if necessary

end
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The CG-S algorithm is based on squaring the residual polynomial, and, in
case of irregular convergence, this may lead to a great quantity increasing of
rounding errors, or possibly even over�ow. The Bi-Conjugate Gradient Sta-
bilized (Bi-CGSTAB) algorithm is a variation of CG-S which was developed
to treat this di¢ culty (see Van der Vorst). Instead of seeking a method which
expresses a residual vector of the form r̂(j), Bi-CGSTAB produces iterates
whose residual are of the form

r̂(j) = Qj(A)Pj(A)r
(0); (5.2)

in which, as before, Pj(t) is the residual polynomial associate with the Bi-CG
algorithm and Qj(t) is a new polynomial which is de�ned recursively at each
step with the goal of "stabilizing" or"smoothing" the convergence behavior
of the original algorithm.
The resulting algorithm can be represented by the following scheme. M

is a preconditioning matrix.
PRECONDITIONED Bi-CGSTAB ALGORITHM � � � �

Compute r(0) = b� Ax(0) for some initial guess x(0)

~r(0) is an arbitrary vector, such that (r(0); ~r(0)) 6= 0, e.g.,r(0) = ~r(0);
for i = 1; 2; :::

�i�1 = (~r
(0); r(i�1))

if �i�1 = 0 method fails

if i = 1

p(i) = r(i�1)

else

�i�1 = (�i�1=�i�2)(�i�1=!i�1)

p(i) = r(i�1) + �i�1(p
(i�1) � !i�1v(i�1))

end if

Solve p̂ from Mp̂ = p(i)

v(i) = Ap̂

�i = �i�1=(~r
(0); v(i))

s = r(i�1) � �iv(i)
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check norm of s; if small enough: set x(i) = x(i�1) + �ip̂ and

stop

Solve ŝ from Mŝ = s

t = Aŝ

!i = (s; t)=(t; t)

x(i) = x(i�1) + �ip̂
(i) + !iŝ

r(i) = s� !it
check convergence; continue if necessary

for continuation it is necessary that !i 6= 0
end

Table 5.1 shows the number of iterations needed for solving the solution
of Example 1 of Poisson equation in a cylinder with the Fourier mode num-
ber n = 1 and Dirichlet boundary condition by Bi-CGSTAB method with
di¤erent preconditioners. The tolerance for the relative residual is chosen as
10�10. Those preconditioners have been described in earlier section. Indeed,
the fast Poisson solver preconditioner turns out to be the most e¢ cient one
since it has the least number of iterations, and the iterations are kept to be
a constant when we increase the grid points.
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Table 5.1
The performance comparison for using di¤erent preconditioners

0 < r � 1
u(r; z; �) = er cos �+r sin �+z

L Iteration number Relative residual Tolerance Relative Error

Bi-CGSTAB
8 25 2.3263E-11 1.0E-10 7.8136E-05
16 52 8.3558E-11 1.0E-10 9.8507E-06
32 97 8.2703E-11 1.0E-10 1.2564E-06
64 182 9.9557E-11 1.0E-10 1.5835E-07

BJ
8 16 3.0152E-11 1.0E-10 7.8136E-05
16 34 4.6514E-11 1.0E-10 9.8505E-06
32 65 7.5701E-11 1.0E-10 1.2564E-06
64 134 8.0676E-11 1.0E-10 1.5885E-07

LUINC
8 6 1.8371E-11 1.0E-10 7.8136E-05
16 9 7.8271E-11 1.0E-10 9.8503E-06
32 19 3.6401E-11 1.0E-10 1.2575E-06
64 38 7.1583E-11 1.0E-10 1.6127E-07

(2-order)FPS
8 7 4.7806E-11 1.0E-10 7.8137E-05
16 7 6.9638E-11 1.0E-10 9.8505E-06
32 7 6.5055E-11 1.0E-10 1.2566E-06
64 7 2.7534E-11 1.0E-10 1.5950E-07
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In the following, Table 5.2 and 5.3 show the number of iterations needed
for solving the solution of remaining examples with the Fourier mode number
n = 1 by Bi-CGSTAB method with di¤erent preconditioners. The tolerance
for the relative residual is chosen as 10�10. Similarly, the fast Poisson solver
preconditioner turns out to be the most e¢ cient one since it has the least
number of iterations, and the iterations are kept to be a constant when we
increase the grid points.

Table 5.2
The performance comparison for using di¤erent preconditioners

0 < r � 1
u(r; z; �) = r3(cos � + sin �)z(1� z)

L Iteration number Relative residual Tolerance Relative Error

Bi-CGSTAB
8 17 7.1236E-11 1.0E-10 9.1438E-04
16 34 6.7664E-11 1.0E-10 1.0755E-04
32 67 6.9265E-11 1.0E-10 1.3008E-05
64 138 9.2923E-11 1.0E-10 1.5966E-06

BJ
8 12 6.2911E-11 1.0E-10 9.1438E-04
16 25 5.2211E-11 1.0E-10 1.0755E-04
32 54 8.9216E-11 1.0E-10 1.3008E-05
64 109 8.3574E-11 1.0E-10 1.5966E-06

LUINC
8 6 1.0459E-11 1.0E-10 9.1438E-04
16 10 1.5875E-11 1.0E-10 1.0755E-04
32 18 7.2357E-11 1.0E-10 1.3008E-05
64 35 7.2622E-11 1.0E-10 1.5966E-06

(2-order)FPS
8 6 2.2892E-11 1.0E-10 9.1438E-04
16 5 5.1414E-11 1.0E-10 1.0755E-04
32 5 5.5197E-11 1.0E-10 1.3008E-05
64 5 2.0837E-11 1.0E-10 1.5966E-06
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Table 5.3
The performance comparison for using di¤erent preconditioners

0 < r � 1
u(r; z; �) = r2 sin 2� sin(�z)

L Iteration number Relative residual Tolerance Relative Error

Bi-CGSTAB
8 21 5.5726E-11 1.0E-10 3.0938E-05
16 40 8.3996E-11 1.0E-10 2.0650E-06
32 77 8.2066E-11 1.0E-10 1.3480E-07
64 171 8.9168E-11 1.0E-10 8.5930E-09

BJ
8 15 1.0410E-11 1.0E-10 3.0938E-05
16 32 9.1358E-11 1.0E-10 2.0650E-06
32 62 9.9962E-11 1.0E-10 1.3481E-07
64 114 9.5901E-11 1.0E-10 8.6033E-09

LUINC
8 6 5.8224E-12 1.0E-10 3.0938E-05
16 10 2.1490E-11 1.0E-10 2.0650E-06
32 18 9.4662E-11 1.0E-10 1.3481E-07
64 35 6.6702E-11 1.0E-10 8.5840E-09

(2-order)FPS
8 6 1.1841E-11 1.0E-10 3.0938E-05
16 6 7.6716E-11 1.0E-10 2.0650E-06
32 6 6.6982E-11 1.0E-10 1.3481E-07
64 6 3.4051E-11 1.0E-10 8.6042E-09
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6 The compact fourth-order scheme on polar
geometry with Neumann problems

In Lai (2002), the author present a simple and e¢ cient compact fourth-order
Poisson solver in polar coordinates with Dirichlet problem. In this section,
we will present the compact fourth-order scheme on polar geometry with
di¤erent Neumann problems. The �rst, we consider a Neumann problem for
the Poisson equation on a unit disk:

@2u

@r2
+
1

r

@u

@r
+
1

r2
@2u

@�2
= f(r; �); 0 < r < 1; 0 � � < 2�; (6.1)

@u

@r
(1; �) = g(�): (6.2)

Since the solution u is periodic in �, we can approximate it by the trun-
cated Fourier series as

u(r; �) =

N=2�1X
n=�N=2

ûn(r) e
in�; (6.3)

where ûn(r) is the complex Fourier coe¢ cient given by

ûn(r) =
1

N

N�1X
k=0

u(r; �k) e
�in�k ; (6.4)

and �k = 2k�=N , and N is the number of grid points along a circle.
Substituting those expansions into Eq.(6.1), and equating the Fourier

coe¢ cients, we derive ûn(r) satisfying the ODE

d2ûn
dr2

+
1

r

dûn
dr

� n
2

r2
ûn = f̂n; 0 < r < 1; (6.5)

dûn
dr
(1) = ĝn; (6.6)

where f̂n(r) and ĝn are de�ned in a manner similar to that of (6.3) and (6.4).
For the Neumann boundary, we choose a grid to avoid the polar singu-

larity by

ri = (i� 1=2)�r; i = 0; 1; :::;M + 2; (6.7)
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with �r = 2=(2M+1). Let the discrete values be denoted by U(ri) � ûn(ri),
F (ri) � f̂n(ri).
By the same method that described in second section, we obtain the �nite

di¤erence scheme as follows. For 1 � i �M + 1, we need to solve

�2Ui �
�r2

12
(�2Fi �

1

ri
�0Fi +

3 + n2

r2i
�2Ui �

3 + 5n2

r3i
�0Ui +

8n2

r4i
Ui)

+
1

ri
�0Ui �

�r

6ri
(�0Fi �

1

ri
�2Ui +

1 + n2

r2i
�0Ui �

2n2

r3i
Ui)�

n2

r2i
Ui = Fi: (6.8)

The inner numerical boundary value U0 = (�1)nU1 can be obtained by
the symmetry constraint of Fourier coe¢ cients as before. And the outer
numerical boundary value UM+2 is derived as follows. That is, at r = 1,

�0U = U
0
+
U

000

6
�r2 +O(�r4)

= U
0
+
�r2

6
(F

0 � U
00

r
+
1 + n2

r2
U

0 � 2n
2

r3
U) +O(�r4):

� UM+2 � UM
2�r

= ĝn +
�r2

6
(
3FM+1 � 4FM + FM�1

2�r
� UM+2 � 2UM+1 + UM

�r2

+ (1 + n2)ĝn � 2n2UM+1): (6.9)

The outer numerical boundary value UM+2 can be approximated by

UM+2 = (
6�r

3 + �r
)[(
3��r
6�r

)UM + (
6 + �r2(1 + n2)

6
)ĝn +

�r

4
FM+1

��r
3
FM +

�r

12
FM�1 + (

1� n2�r2
3

)UM+1]: (6.10)

Table 6.1 shows the maximum errors of this method for three di¤erent
solutions of Poisson equation in unit disk with Neumann boundary condition
at r = 1.
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Table 6.1
The Maximum Errors of Di¤erent Solutions to
the Poisson Equation with Neumann Boundary
@u
@r
(1; �) = g(�) using N = 64:

0 < r � 1
M kuk1 Rate

u(x; y) = ex+y

16 4.2008E-05
32 5.3993E-06 2.960
64 6.8285E-07 2.983
128 8.5733E-08 2.994

u(x; y) = 3ex+y(x� x2)(y � y2) + 5
16 2.4161E-04
32 1.7289E-05 3.805
64 1.1573E-06 3.901
128 7.4875E-08 3.950

u(x; y) = ex+ey

1+xy

16 7.2000E-03
32 5.7732E-04 3.641
64 4.1560E-05 3.796
128 2.8026E-06 3.890

The second, we consider a Neumann problem for the Poisson equation on
an annulus:

@2u

@r2
+
1

r

@u

@r
+
1

r2
@2u

@�2
= f(r; �); 0:5 < r < 1; 0 � � < 2�; (6.11)

u(0:5; �) = k(�);
@u

@r
(1; �) = g(�): (6.12)

We choose a regular grid,

ri = 0:5 + i�r; i = 0; 1; :::;M + 2; (6.13)

with �r = 1=(2M + 2).
The �nite di¤erence scheme can be obtained as Eq.(6.8). Similarly, the

outer numerical boundary value UM+2 can be approximated by (6:10). Table
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6.2 shows the maximum errors of this method for three di¤erent solutions of
Poisson equation in an annulus with Neumann boundary condition at r = 1.

Table 6.2
The Maximum Errors of Di¤erent Solutions to
the Poisson Equation with Neumann Boundary
u(0:5; �) = k(�); @u

@r
(1; �) = g(�) using N = 64:

0:5 � r � 1
M kuk1 Rate

u(x; y) = ex+y

16 5.3054E-07
32 3.7859E-08 3.809
64 2.5324E-09 3.902
128 1.6362E-10 3.952

u(x; y) = 3ex+y(x� x2)(y � y2) + 5
16 1.3822E-05
32 1.0083E-06 3.777
64 6.8229E-08 3.885
128 4.4393E-09 3.942

u(x; y) = ex+ey

1+xy

16 6.6515E-04
32 5.1868E-05 3.681
64 3.6497E-06 3.829
128 2.4233E-07 3.913

The last one, we consider a Neumann problem for the Poisson equation
on an annulus:

@2u

@r2
+
1

r

@u

@r
+
1

r2
@2u

@�2
= f(r; �); 0:5 < r < 1; 0 � � < 2�; (6.14)

@u

@r
(0:5; �) = k(�);

@u

@r
(1; �) = g(�): (6.15)

We choose a regular grid,

ri = 0:5 + (i� 1)�r; i = 0; 1; :::;M + 2; (6.16)
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with �r = 1=(2M). Then the outer numerical boundary value UM+2 can
be approximated by (6:10). And the inner numerical boundary value U0 is
derived as follows. That is, at r = 0:5,

�0U = U
0
+
U

000

6
�r2 +O(�r4)

= U
0
+
�r2

6
(F

0 � U
00

r
+
1 + n2

r2
U

0 � 2n
2

r3
U) +O(�r4):

� U2 � U0
2�r

= k̂n +
�r2

6
(
�3F1 + 4F2 � F3

2�r
� U2 � 2U1 + U0

0:5�r2
+
(1 + n2)

(0:5)2
k̂n

� 2n2

(0:5)3
U1): (6.17)

The inner numerical boundary value U0 can be approximated by

U0 = (
6�r

3� 2�r )[(
3 + 2�r

6�r
)U2 + (

�3� 2�r2(1 + n2)
3

)k̂n +
�r

4
F1

��r
3
F2 +

�r

12
F3 + (

�2 + 8n2�r2
3

)U1]: (6.18)

Table 6.3 shows the maximum errors of this method for three di¤erent solu-
tions of Poisson equation in an annulus with Neumann boundary conditions
at r = 1 and 0:5.
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Table 6.3
The Maximum Errors of Di¤erent Solutions to
the Poisson Equation with Neumann Boundary
@u
@r
(0:5; �) = k(�); @u

@r
(1; �) = g(�) using N = 64:

0:5 � r � 1
M kuk1 Rate

u(x; y) = ex+y

16 6.7419E-07
32 4.3156E-08 3.966
64 2.7284E-09 3.983
128 1.7218E-10 3.986

u(x; y) = 3ex+y(x� x2)(y � y2) + 5
16 2.5549E-05
32 1.6625E-06 3.942
64 1.0601E-07 3.971
128 6.6921E-09 3.986

u(x; y) = ex+ey

1+xy

16 6.5994E-04
32 4.6168E-05 3.837
64 3.0672E-06 3.912
128 1.9766E-07 3.956
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7 Conclusions

In this paper, we present a simple and e¢ cient compact fourth-order Poisson
solver in cylindrical and spherical coordinates. The solver relies on the trun-
cated Fourier series expansion, where the di¤erential equations of Fourier
coe¢ cients have been solved by fourth-order �nite di¤erence discretizations
without pole conditions. And two kinds of e¢ cient iterative method, GM-
RES and Bi-CGSTAB, with di¤erent preconditioners are applied to solve
the resulted nonsymmetric systems of Fourier coe¢ cients. In particular, a
preconditioner arising from those singular equations have been solved by the
second-order �nite di¤erence discrtizations and shown to be the most e¢ -
cient one. Meanwhile, we can see that the numerical result con�rms the
third-order accuracy for the problem on a cylinder. The loss of one order of
accuracy can be seen from the discretization near the origin. Therefore, the
future research aspect is how to treat the coordinate singularity so that the
scheme becomes fully fourth-order accurate.
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