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for Poisson equation in cylindrical
and spherical coordinates

Student : Jui-Ming Tseng Advisors : Dr. Ming-Chih Lai

Department ( Institute ) of Applied Mathematics
National Chiao Tung University

ABSTRACT

A simple and efficient compact fourth-order Poisson solver
in cylindrical and spherical coordinates is presented. The
solver relies on the ‘truncated Fourier series expansion,
where the differential equations of Fourier coefficients
have been solved by fourth-order finite difference
discretizations without pole conditions. And two kinds of
efficient iterative method, GMRES and Bi-CGSTAB, with
different preconditioners are applied to solve the resulted
nonsymmetrical systems of Fourier coefficients.
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1 Introduction

In many physical problems, one often needs to solve the Poisson equation on
a non-Cartesian domain, such as polar or cylindrical or spherical domains. It
is convenient to rewrite the equation in those coordinates. The first problem
that must be dealt with is the coordinate singularities caused by the trans-
formation. The singularities occur at the polar axis of those domains. It
is important to note that the occurrence of those singularities is due to the
representation of the governing equation in those coordinates.

Most of finite difference, finite volume and spectral methods in the liter-
ature (see Lai & Wang, 2002) need to either approximate the value of the
solution or impose appropriate pole conditions for the solution at the singu-
larities. This pole approximation provides a numerical boundary value for
the finite difference scheme.

In Lai (2002), the author developed FFT-based fast direct solvers for Pois-
son equation on 2D polar geomettry.- Thé author uses the truncated Fourier
series expansion to derive a set of singular. ODEs for the Fourier coefficients,
and then solves those singular equations by. the compact fourth-order finite
difference discretizations. By shifting a half mesh width from the origin, and
incorporating with the derived symmetry.constraint of Fourier coefficients,
we can easily handle coordinate singularities without pole conditions. By
manipulating the radial mesh*width, three different boundary problems for
polar geometry (Dirichlet, Neumann‘and Robin conditions) can be solved
equally easily.

In this paper, we extend the previous fourth-order schemes on two di-
mensional cases (Lai, 2002) to the three-dimensional domains. Using the
truncated Fourier series expansion, the original three-dimensional PDE now
becomes a set of two-dimensional PDEs of the Fourier coefficients. Then we
solve those PDEs by fourth-order finite difference discretizations.

In the following, we present two kinds of iterative method, GMRES and
Bi-CGSTAB, to solve the nonsymmetric systems of two-dimensional PDEs of
Fourier coefficients. Then some preconditioners can be used. In particular, a
preconditioner arising from those singular equations have been solved by the
second-order finite difference discrtizations (see Lai et al, 2002) and shown
to be the most efficient one.



2 Fast Poisson solver in cylindrical coordi-
nates

The Poisson equation on a cylinder Q ={0<r<1,0<0 <27,0<2<1}
can be conveniently written in cylindrical coordinates as

Pu 10u  10%u  *u
wﬁ—rar‘i‘ﬁw—i—w:]p(’r,z,e) (21)
For the sake of simplicity, we restrict the Dirichlet boundary conditions on
the top and bottom boundaries, u(r,1,0) = up(r,0), u(r,0,0) = ug(r,0),
but consider three different type of sidewall boundary conditions: Dirichlet
u(1,2,6) = us(z,0); Neumann 9%(1,z,6) = ugs(z,6); or Robin condition
8“—i—cw(l 2,0) = ug(z,0),a > 0.

The main issue for solving Eq.(2.1) is how to treat the coordinate sin-
gularity along the polar axis at the,center » = 0. Most of Poisson solvers
for Eq.(2.1) including finite difference and’spectral methods (see Chen et
al. (2000), Lai & Wang (2002)), involve imposing additional pole conditions
to approximate accurately -the solution in the-vicinity of the origin. The
accuracy of those methods depends greatly on the choice of pole conditions.

In the following, we develop anewelass of fast direct solver for Eq.(2.1).
Our approach relies on the truncated Fourier series expansion, where the
differential equations of Fourier:coefficients are solved by the fourth-order
finite difference discretizations without pole condition.

2.1 Fourier mode equations

Since the solution u is periodic in €, we can approximate it by the truncated
Fourier series as

N/2—1

u(r, z,0) = Z T (1, 2) €™, (2.2)

n=—N/2

where 1, (r, z) is the complex Fourier coefficient given by

L N2
T,z —NZUTZQ e~k (2.3)
k=0

and 0, = 2kw/N, and N is the number of grid points along a circle.
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Substituting the expansions of (2.2) into Eq.(2.1), and equating the Fourier
coefficients, we derive ,(r, z) satisfying the PDE

o*a, 104, 0*a, n® . 2
87“2 ; aT 822 _ﬁ un:fn(T,Z>,0<T§1,0SZ§1, (24)

where the nth Fourier coefficient of the right-hand side function f,(r, z) is
defined similarly as (2.3). The Fourier coefficients of the boundary values
We(z), Wh(r), a(r) are also defined in a similar fashion as to (2.3). So the
remaining problem is to solve Eq.(2.4) with the top and bottom boundary
conditions 1, (r,0) = a}(r), t,(r,1) = @} (r), and with one of the three
sidewall boundary conditions @, (1,2) = @%(z), %= (1,z) = @%(z), or %= 4
atiy, (1, 2) = 0%(2).

2.2 Fourth-order finite:difféerence discretization

We choose a grid in (7, z) plane to-avoid the pelar singularity by

r = (@— 1/2) Ar, 2; 2 j Az, (2.5)

for 1 < < L+4+1;0 < j°< M+1, with Ar = 2/(2L + 1) and Az =
1/(M + 1). Let the discrete’values be dencted by U(r;, z;) =~ U,(ri,2;),
F(ri,z;) = fulri, zj).

Our goal is to derive a fourth-order finite difference approximation to
Eq.(2.4). Obviously, the first and second derivatives, U, , U, and U,,, must
be approximated to fourth-order accurately. First, let us write down two
difference formulas for the first and second derivatives with the truncation

errors O(Ar?) and O(Az*):
Ar?

U= 50(T‘)U’ij - TTUTTT‘ + O(AYA)? (26)
Ar?

Urr = 6%7‘)UZ] - EUT’I‘T‘T + O(ATA), (27)
A 2

Uzz = 5%Z)Ulj — 1_;Uzzzz -+ O(AZA) (28)



Here 0o Uij, 6(27,)Uij and 5%Z)Uij are the centered difference operators for the
first and second derivatives, defined as

Uit1,; — Ui—1 2 — Uit1; —2U; 5+ U;i—1

2 Uijir —2Ui; + Ui
0 \Uij = A2 ,

where U, ; are the discrete values defined at the grid points r; and z;.

In order to have fourth-order approximations for U, , U, and U, we need
to approximate the higher order derivatives U, , U, and U,,,, in Eqgs.(2.6)
, (2.7) and (2.8) to be second-order accurate. To accomplish this, we differ-
entiate Eq.(2.4) once and twice for radial and axial directions, respectively,
to obtain the higher order derivatives of U :

(2.9)

Uy 1+mn? on?

Urrr - Fr - + Ur ——U - Uzzr7 (210)
r 72 s
F, S8 Lt g 5,2 g Um
Urrrr - Frr__+ +nUrr— u nUr iU—i_
r i gt
_Uzzrr7 (211)
Urz .
Uzzz = Fz - Urrz T + n_Uz, (212)
Urzz
Uzzzz = Fzz - Urrzz - + Uzz (213)
T

In Egs.(2.10) , (2.11) , (2.12) , (2.13), those differential operators in right-
hand side can be approximated further by the centered difference formulas
to achieve second-order accuracy. Substituting those approximations into
Eqgs.(2.6) , (2.7) and (2.8) then applying to Eq.(2.4), we obtain the finite
difference scheme as follows. For 1 <i < L,1 < j < M, we need to solve

Ar? 1 3+ n? 3 + 5n
12 [5?r)Fi,j - Féo(r)ﬂ,j + (52 Uij — 3 ——— 0o Ui

? 7

¢ Uig —

8n? 1 1 Ar?
+g Uiy + ;50(@5?2)(]@',3‘ = 00 U] + 00y Ui — W[%(T)Fi,j
1 + n? 2n?
2 2 2
(S )UZJ + (5 (T)Ui,j - FUi’j - 50(T)5(Z)Ui,j] U + (5 )Uz]

z Q



AZ 2 2 Lo n®

— 5 iy = 00t Ui — mUBLICTE R 35(,2)[]@1] =F;. (214

In order to close the linear system, the numerical boundary values U ;
and U4 ; in the r direction should be supplied. Choosing of r; as described
in (2.5), we have r;; = 1; thus, the numerical boundary value U4, ; can
either be given by the Dirichlet boundary value 4%(z;) or be determined by
imposing the condition on the boundary (Neumann and Robin). The nu-
merical boundary value U ; can be obtained by the symmetry constraint
of Fourier coefficients, which is derived as follows. The transformation be-
tween Cartesian and cylindrical coordinates can be written as x = rcos#,
y =rsinf, z = z. When we replace r» with —r, and 0 with 6 + 7, the Carte-
sian coordinates of a point remain the same. Therefore, any scalar function

u(r, 0, z) satisfies u(—r, 0, z) = u(r, + 7, z). Using this equality, we have

o0 o0

u(—r,0,z) = Z Qi (= 102) pinf, _ Z iin(r, 2) pin(6+7)
— Z ﬁn(r, Z) et gin Z (_1)nﬂn<r7 Z) et (2.15)
n=-—o0 P

Thus, when the domain of & function-is‘extended to a negative value of r,
the nth Fourier coefficient of thig function satisfies @, (—r, z) = (—1)"t,(r, 2).
Using the above condition, we have

Uoj = Ulroz) = U(=—-2) = (=1)"U(5-, %)

= (=1)"U(r1,2;) = (=1)"Uy,;. (2.16)

Therefore, the numerical boundary value Uj; has been supplied. And the
numerical boundary values in the z direction can be easily obtained by the
given Dirichlet boundary values U, o = u(r;) and U; p41 = @l(1;).

Let us order the unknowns U;; by first grouping the same ¢ so that the
solution vector v is defined by

U1 Uil

U. U,
V= .2 ) U’L = .2

UL UzM



Solving the discrete equations (2.14) results in a large sparse linear system
Av = b, where the coefficient matrix A and the right-hand side vector b are
defined as follows. The matrix A is a L x L block tridiagonal matrix

[T L
Hy T, I,

Hp Ty I
Hp, T}

where T;, H; and [;, 1 < < L are the tridiagonal matrices given by

[ H1, H2,
H2, H1, H?2,
Hi: )
H2;+ H1;, H2,
] H2; HI1; |
S5a b 9 2
H1, = E_6_(1+n)CZ.—(H?m)dﬂrQei—lofi,
a b
H2 e — T~ S = Ji
i TRETI
[T 12 |
12, 11, I2;
I = :
I 12; 1I1; |
5 b
I1; = Ea — 6 — (1 + n2)cz~ + (1 + 3n2)di —2e; +10f;,
a b
12, = —+4+ — ; j
i 12+12+€z+f27



[ T1; T2;

172, T1; T2
T = ’
72, T1;, T2
172, T1;
) 5b
le — __a - — 4+ 2(1 — 4712)01‘ — n2gia
3 3
5b
T2 = —2+5 —n,
‘ Ar A A’f‘z
with a = Ar ez b= Aszz - 1217~27dz — ard €i = 2ar,A52 fi= 241"1A1“’g7’ R

Incorporating with the boundary values and the function F, the right- hand
side vector b can be written as

where
Fi Fi i F
(i Fipny + BiFi + 25+ S+ if j=1
—H21 ﬁ%(?“i_l) — T2z ’LAL%(Tz) — ]21 ﬂ%(riﬂ)
bij =19 i Fig+ BiFi+ 2t 4 ety fg] if2<j<M-1,
o; Fiprj+ BiFio; + Fif;l + 11]2 e 5" if j=M
\ —HQZ ﬁ%(ri_l) — TZZ’&%(TJ ]2 UT(TH—l)
( Fr Fp Fr
apFryn;+ BrFro1; + 55 + Tt 4 2 if j=1
—H2L '&%(T’L_l) — T2L ’&%(T’L)
brj =1 anFrany+ B Fio + T T R if2< <M -1,
Frj Fri. | 2.
apFpig+ B Fr;+ 555 + S + =5 if j=
L —HQL’[J/%(TL,Q —T2L ﬂ%(TL)

with a; = 112—1-?;,5 = 112 1\5,)\-—” 1<i<L.

Note that, the above form is for the Dirichlet sidewall boundary. We shall
discuss the other cases below.



For the Neumann (o« = 0) or Robin boundary cases, we use the same
mesh points but with different radial mesh width Ar = 1/L. With this
choice of radial mesh width, the discrete values of U are defined midway
between sidewall boundary so that the first derivative can be centered on the
grid points. That is, at r =1,

E +alU ~ Ar + o 5 = ﬁg(z]) (2.17)
The numerical boundary value U, ; can be approximated by
1 —aAr/2)Up,; + 0e(z;)A
UL+17]‘ _ ( a r/ ) L,j + uS(Z.7> r‘ (218)

1+ aAr/2

Therefore, we only need to modify Ty, in the matrix A and bf, ; in the vector
b by

T, = Tp+ 91, (2.19)
br; = bp;— CU1Lt8&5) — I20(08(Z,5) + 45(Zj41))) — b17,(2.20)
B Ar .
with b1 = yI2;(i}(r1), 0, .50, BEERIAE 2 and ¢ = ~2%.
2 2

Table 2.1 shows the maximum errors.of the method for three different
solutions of Poisson equation in a c¢ylinder with Dirichlet boundary condition.
In all our tests, we use L mesh points in the radial and axial directions, and
2L points in the azimuthal direction. The rate of convergence is computed
by the formula log2(E§£ 2), where E is the maximum error. One can see that
the errors of the solutions show third-order convergence for all solutions. The
loss of one order of accuracy seems to come from the discretization near the
origin. This can be seen from the following truncation error analysis. In
the Fourier mode equation Eq.(2.4), the U'(= 86%) term is divided by r.
So the second-order approximation of U"in (2.6) is divided by an O(Ar)
term near the origin, which makes the approximation of U" /r first-order
accurate. This has the consequence that the overall truncation error of the
U'/r term in the vicinity of the origin is O(Ar®) and thus so is the Fourier
mode equation (2.4). However, this loss of accuracy does not appear when
solving the problem on a hollow cylinder. Let us explain why that is the case
next. The present scheme can be easily applied to solve the Poisson equation

on a hollow cylinder {a < r < b}, where a > 0. As the cylinder case, we need

8



to solve Eq.(2.4) and three different boundary conditions at 7 = b with an
additional boundary condition imposed at r = a. Instead of setting a grid as
in (2.5), we choose a regular grid,

ri=a-+iAr, i=0,1,2,...L, L +1, (2.21)

with the mesh width Ar = (b —a)/(L + 1). Now the second-order approxi-
mation of U in (2.6) is divided by an O(a + Ar) term instead of an O(Ar)
term, so the truncation error of the U’ /r term is still O(Ar?). Therefore, the
overall truncation error of Eq.(2.4) is O(Ar?).

The fourth and fifth columns of Table 2.1 show the errors and the rate of
convergence for the solutions on a hollow cylinder {0.5 < r < 1}. We can see
that the fourth-order convergence can be achieved for all examples. In the
following, the Table 2.2 and 2.3 show the maximum errors of the method for
three different solutions of Poisson equation in a cylinder and hollow cylinder
with remaining boundary conditiens(Neéumann and Robin).



Table 2.1
The Maximum Errors of Different Solutions to the
Poisson Equation with Dirichlet Boundary

0<r<1 06 <r<i1
L lull Rate lull Rate
U(T’, 2, 9) — eTCOS0+T‘Si1’10+Z
8 T7.8137E-05 1.5465E-07

16  9.8506E-06 2.99 1.0920E-08  3.82
32 1.2566E-06 2.97 7.3409E-10  3.90
64 1.5941E-07  2.98 4.7580E-11  3.95

u(r, z,0) = r2(cos 6 + sin@)z(1 —2)

8 9.1438E-04 8.8994E-07

16 1.0755E=04 %.3.09 6.4128E-08  3.80
32 1.3008E-05. 3.05 4.3173E-09 3.89
64 1.5966E-06 3:03 2.8035E-10 3.95

u(r, z,0) = cos(m(r? cos® 6 + rsin 0)) sin(72?)
8  7.4000E-03 7.5000E-03

16 3.3150E-04 4.48 1.7101E-05 8.78
32 4.0782E-05 3.02 1.2221E-06 3.81
64 5.0424E-06 3.02 8.1011E-08 3.92
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Table 2.2
The Maximum Errors of Different Solutions to the
Poisson Equation with Neumann Boundary

0<r<1 06 <r<i1
L lull Rate lull Rate
U(T’, 2, 9) — eTCOS0+T‘Si1’10+Z
8 4.2863E-04 9.3911E-05

16 1.0817E-04 1.99 2.4471E-05 1.94
32 2.6993E-05 2.00 6.2247E-06  1.96
64 6.7313E-06-2.00 1.5682E-06 1.99

u(r, z,0) = r2(cos 6 + sin@)z(1 —2)

8 1.4000E-03 2.9138E-04

16 3.5261E-04 "1.99 7.7016E-05 1.92
32 8.8215E-05.. 2.00 1.9828E-05 1.96
64 2.2041E-05"2:00 3.0323E-06 1.99

u(r, z,0) = cos(m(r? cos® 6 + rsin 0)) sin(72?)
8  2.4900E-02 2.0200E-02

16 4.1000E-03 2.60 1.1000E-03  4.20
32 1.1000E-03 1.90 2.8932E-04 1.93
64 3.0123E-04 1.87 7.5139E-05 1.95
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Table 2.3
The Maximum Errors of Different Solutions to the
Poisson Equation with Robin Boundary (o = 1)

0<r<1 05<r<l1
L~ el Rate " Jul, Ratc
u(r, z,0) = ereosftrsin+z

8 1.0000E-03 2.3024E-04

16 2.5937E-04 1.95 5.9649E-05 1.95
32 6.4653E-05 2.00 1.5131E-05 1.98
64 1.6112E-05 2.00 3.8114E-06  1.99

u(r,z,0) = r*(cos + sin6)z(1 — z)

8 4.2000E-03 8.7050E-04

16 1.0000E-03 2.07 2.3109E-04 1.91
32 2.6050E-04 4%1.94 5:9561E-05 1.96
64 6.5035E-05 " 2.00 1.5121E-05 1.98

u(r, z,0) = cos(m(r? cos® 8 + r sin)) sin(722)
8 2.3100E-02 1.9100E-02

16 5.3000E-03. "2:12 1.3000E-03  3.88
32 1.6000E-03+ "1.73 3:9232E-04 1.73
64 4.1390E-04 1.95 1.0176E-04 1.95

3 Fast Poisson solver in spherical coordinates

The Poisson equation in a spherical shell @ = {Ry <r <1,0< ¢ < 7,0 <

0 < 27} can be written in spherical coordinates as
Pu 20u 1 0% cotoOu 1 Q%u
St t5==+ — + YY)
or2  ror  1r?o¢ r2 0¢  r?sin”® ¢ 00

The boundary condition should be imposed on the inner (r = Ry > 0) and
outer (r = 1) surfaces of the sphere. Here, for convenience of exposition, we
assume the Dirichlet boundary on the inner surface u(Rg, ¢,0) = us(¢,0).
Three different boundary conditions can be considered on the outer surface:

Dirichlet u(1,¢,0) = us(¢,0); Neumann g—ﬁ(l,qﬁ,é) = ug(¢,0); or Robin

condition g—ﬁ + au(l,¢,0) = us(¢,0),a > 0. However, the method to be

12



described can be easily adapted to different boundary conditions on the inner
surface.

As in the cylindrical case of the previous section, the main difficulty for
solving Eq.(3.1) is to treat the coordinate singularities along the polar axis
where north (¢ = 0) and south (¢ = 7) poles are located. Again, most of
numerical approaches including finite difference and spectral methods involve
imposing additional pole conditions to capture the behavior of the solution in
the vicinity of the poles. In the following, we will present a numerical method
to solve Eq.(3.1) which uses the symmetry constraint of Fourier coefficient
to handle the coordinate singularities without pole condition.

3.1 Fourier mode equations

As in the cylindrical coordinate case, we approximate u by the truncated
Fourier series as

N/2—1

Z Un(r, 0) el (3.2)

n=—N/2

where 4, (r, ¢) is the complex Fourier eoefficient given by

1 N—-1
ro) =" Yo, 0,) e, (3.3)
k=0

and 0, = 2kw/N and N is the number of grid points along a latitude cir-
cle. The expansion for the function f can be written in the similar fashion.
Substituting those expansions into Eq.(3.1), and equating the Fourier coeffi-
cients, ,(r, ¢) then satisfies the PDE

a, 204, 10%*, cot¢di, n?

or? + ror @ r2 Dp* r2  0¢  r2gin? qb fn( %) (3.4)

with 4, (R, ¢) = 4} (¢) and one of the three boundary conditions: Dirichlet
@n(1,¢) = 0%(¢); Neumann %22(1,¢) = @%(¢); or Robin condition % +
ati,(1,¢) = ul(¢). Here, 4} (p) and 4%(¢) are the nth Fourier coefficient of

ur(¢,0) and ug(¢, ), respectively.

13



3.2 Fourth-order finite difference discretization

We consider the Dirichlet boundary on the outer surface first and will discuss
the other cases later. Let us choose a grid in (r, ¢) plane by

— Ry+ilr, ¢, =(j—1/2) A¢, (3.5)

for0 <i<L+1,0<j<M+1withAr=(1-Ry)/(L+1)and Ap = /M.
By the choice of those mesh points, we avoid placing points directly at north
(¢ = 0) and south (¢ = 7) poles. Again, let the discrete values be denoted
by Ul(ri, ¢;) = tn(ri, ¢;), and F(ri, ¢;) = fu(ri, ¢;).

Our goal is to derive a fourth-order finite difference approximation to
Eq.(3.4). As in the cylindrical coordinate case, we obtain the finite difference
scheme as follows. For 1 <¢ < L,1 < j < M, we need to solve

04 Usj = Al_;z[‘s%r)pi,i - %50(T)Fi,j b (%)52 Ui + %;CQ%UM
+(—8 6:; csc? @ )00y Ui 105(¢)U wcr—(jt(b]ao Ui, %5 000 Uij
+%50(r)5f¢)Ui,j © t¢ —520(y00, Uij— 52 5(2¢,)Ui,j]+%{50(r)Ui,j—AT72[50(T)Fi,j
_%5%7*)[]1',3' (%)500 Ui, +2%;%50<¢>Ui,j+%5%¢)md Cow *do(ro(e) Uij
_%?500)5?@[]@1 MUM]H {0t Ui A(b[ 05y P17 cot &;00() F,

+(—=3—-5n7) csc® ¢; cot ¢,;00(6) Uz j42n° csc® ¢ (4 esc? ¢;—3) Uy j+2r; cot ¢;60(s)00(r) U,

+((34-n?) csc? gbj—l)é%qﬁ)Uiﬁ—rf cot ¢j(50(¢)6(2r)UiJ'_2Ti5%¢)50(r)Ui’j_r?5(¢)52 Ui, i}

14



Cot qb A¢?
J {00 UZJ—T[—7’1250(@6?”&4—1—(1—1—712) csc? $;00(p) Ui j—cot gbjé?@Ui,j

n?csc? ¢
— J Uy = F;. (3.6)

e

)

—2n? csc? gbj cot ngij- + T?5o(¢)Fi,j]} -

When j = 1 for Eq.(3.6), the numerical boundary value U, ¢ can be given
by U; o = (—1)"U; 1. This is because the Fourier coefficient satisfies the sym-
metry constraint a,(r;, —A¢/2) = (—1)"u,(r;, A¢/2) (Lai & Wang, 2002).
Similarly, another numerical boundary value U; 41 can also be obtained by
Uini+1 = (—1)"U; pr for the same reason. So the numerical boundary values
in the ¢ direction are provided and no pole condition is needed in our finite
difference setting. The numerical boundary values in the radial direction
Uo,j; UrLy1,; are given by the boundary values i} (¢;), ig(9;)-

Let us order the unknowns Uj;, by first grouping the same ¢ so that the
solution vector v is defined by,

U1 Uil

U U;
V= .2 ) Uz — .2

Ug Uin

The remaining problem is to solveiailarge sparse linear system Av = b,
where the coefficient matrix A and the right-hand side vector b are defined
as follows. The matrix A is a L x L block tridiagonal matrix

T, L
Hy Ty I
A=
Hp oy Ty Ip
Hp 1T

where T;, H; and [;, 1 < i < L are the tridiagonal matrices given by

[ T]-i,l -+ (—1)”T37;71 T27;71
132 Tl 129

T3im—1 Tl T2 v
Tgi,M Tth + (-].)nTQLM ]
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T1;; = —20P1—-8P3; ;—P7; j— P8; j+2A¢* P3; j—2P9;,—10P6;+P10; ;- A¢* P6;,

P10; ;

T2;; = P9;+5P6,—

P10,

[ Hli,l + (—1)”[‘]3271 H2i,1

A¢?

A¢?

H3i72 H]_l'72 H2i72

H3;v—1 H1; -
H3; ur

H1;; = 10P1—10P2; — P3;; — P4;; — 2P5, — P6;,

H3;; = —P15;;+ P16y +P5|=:Po%%

[ I]-i,l + (—1)”]37;,1 122"1

139 ITys 12,5

P12y

P14; PG

= P3; ==~ POi+ P11, ;4 P12+ P13~ P14;~2P1,

—P3; ==~ P6;—P11;;~P12,;~ P13, /+ P14;~2P1,

1 H2; v
Hlin + (—1)"H2i 0 |

L1 P1,

10 > T2
P12, Pl4; PG

10 2

I3i -1 1101

Igi,M 1117M+<_1)n]2%M ]

I1,; = 10P1+ 10P2; — P3;; + P4;, + 2P5; — P6;,

P1
2+ ’

12 p—a

P12;; Pl4; PG,
I2;; = —P15;;+ P16;; — P5;+ P2; + 0 d 5 2+ 5 + P1,
P12;; Pl4; PG,
13;; = P15;; — P16;; — P5; + P2; — 0 d 5 L+ 5 TPl
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with

1 1 n?csc? . Arn?csc? ¢,
Pl = —,PQi:—,P?)ij:—(b], ij:—(bja
12Ar2 12r;Ar ’ 12r? ’ 12r3
A 1 Ar?n?csc? ¢,
Py, = 8T pg— L pr, S AT
12r3A¢ 6r2A¢ ’ 67;
Ap*n2 csct ¢ Ar? csc2 .
P, = SOOCd pg AT p _SC9
J 3r2 6riAP? N 6r?
Ar? cot ¢, 5cot . 14 3n2)(Adcot ¢, csc? o,
pr, _ ArOlg L Seote (L BB6corg; eey)
’ 12r7A¢ T 12r7A¢ ’ 24r;
A cot ¢, Arcot ¢ A¢pcot ¢,
P4, = —— 2 P15, =—— P16, =— 2 1 <5< M.
7 12A72 7 0W T opBAg T M T TaapAr T = =

Incorporating with the boundary value and the function F, the right-hand
side vector b can be written as

[ 01 — H3y a7 y) = H1yjag (0;) — H2: 547 (641) ]

| b — 130 W a) L laag@? () — 1200507 (011

where
2 1 1
bij = gFig+ (5 +PIT)Finy + (35 = P1T)E,
1 Ar2Pi4 1 Ar2Pi4
Sl i 1 2 A G i A A

with P17, = £~,1<i< Land 1 <j < M.

For the Neumann (o = 0) or Robin boundary cases, we use the same grid
described in (3.5) but with different radial mesh width Ar = 2(1—Ry)/(2L+
1). With this choice of radial mesh width, the discrete values of U are defined
midway between boundary so that the first derivative can be centered on the
mesh points. That is, at r» = 1,

ou U1, — UL, Ups1,; + UL
_ U ~ 5J 5] 5] 5]
or ta Ar ta 2
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So the numerical boundary value U4, ; can be approximated by

(1—aAr/2)U; + ag(%)m
1+ aAr/2

ULy = (3.8)

Therefore, we only need to modify 77, in the matrix A and the vector bf’ ; by

TL = TL—i-’)/[L, (39)
br; = bp;— CI3nr 0l (p; 1) — a2 () — 1201507 (¢54,)),(3.10)

Ar

. . Ar _ l-a5F
with C = @, and Y= @

Table 3.1 shows the maximum errors of the method for three different
solutions of Poisson equation in a spherical shell with Dirichlet boundary
condition. In all our tests, we use L mesh points in the radial and colatitude
directions, and 2L points in the longitude direction. The inner radius is
chosen by Ry = 0.5.

One can see that the errors of thégolutions show third-order convergence
for all solutions. The lossiof one order of accuracy seems to come from
the discretization near the-north (¢ =0) pole.- This can be seen from the
following truncation error analysis: In the Fourier mode equation Eq.(3.4),
the U' (= %) term is divided- by sin ¢. So the fourth-order approximation of

U'in (3.4) is divided by an O(A) termmear the north (¢ = 0) pole. This has
the consequence that the overall truncation error of the C‘T’,th " term in the
vicinity of the north (¢ = 0) pole is O(A¢?) and thus so is the Fourier mode
equation (3.4). In the following, the Table 3.2 and 3.3 show the maximum
errors of the method for three different solutions of Poisson equation in a

spherical shell with remaining boundary conditions(Neumann and Robin).
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Table 3.1
The Maximum Errors of Different Solutions to the
Poisson Equation with Dirichlet Boundary

06 <r<l1

L |l Rate

__ _rsin ¢ cos 647 sin ¢ sin 41 cos
U(ﬁ Cb, 9) =€ ¢ ¢ ¢

8 3.7000E-03

16 5.4095E-04 2.77
32 7.4825E-05 2.85
64 1.0067E-05 2.89

u(r, ¢, 0) = r3(cos 0 + sin) sin ¢(¥ — i cos ¢)

8 5.2000E-03

16 9.5143E-04 2.45
32 1.5249E-04 2.64
64 2.2549E-05 2.76

u(r, ¢,0) = cos(m(r? cos® fsin? ¢ + 7 sin § sin ¢) ) sin (772 cos? ¢)
8 5.3700E-02

16 7.1000E-03 2.92
32 8.3568E-04 3.09
64 9.7240E-05 3.10
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Table 3.2
The Maximum Errors of Different Solutions to the
Poisson Equation with Neumann Boundary

06 <r<l1

L |l Rate

__ _rsin ¢ cos 647 sin ¢ sin 41 cos
U(ﬁ Cb, 9) =€ ¢ ¢ ¢

8 6.8000E-03

16 8.5296E-04 3.00
32 1.0804E-04 2.98
64 1.4317E-05 2.92

u(r, ¢, 0) = r3(cos 0 + sin) sin ¢(¥ — i cos ¢)

8 1.0500E-02

16 1.6000E-03 2.71
32 2.2105E-04 2.86
64 2.9431E-05 291

u(r, ¢,0) = cos(m(r? cos® fsin? ¢ + 7 sin § sin ¢) ) sin (772 cos? ¢)
8 1.3090E-01

16 1.6500E-02 2.99
32 2.2000E-03 291
64 3.8002E-04 2.53
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Table 3.3
The Maximum Errors of Different Solutions to the
Poisson Equation with Robin Boundary (o = 1)
0.5 <r<l1
L |ull Rate

__ _rsin ¢ cos 6+ sin ¢ sin +r cos
U(T‘, Qb, 0) =e ¢ ¢ ¢

8 6.0000E-03

16 8.0381E-04 2.90
32 1.0805E-04 2.90
64 1.5225E-05 2.83

u(r, ¢,0) = r3(cos 0 + sin 0) sin ¢(1 — r cos ¢)

8 9.6000E-03

16 1.5000E-03 2.68
32 2.1788E-04 2.78
64 3.3247TE-05 2.7

u(r, ¢,0) = cos(m(r2cos? @sin® ¢+ rsin @sin ¢)) sin(7r? cos? ¢)

8 1.0880E-01

16 1.2900E-02 3.08
32 1.6000E-03 3.01
64 2.4752E-04 2.69

4 Generalized Minimal Residual (GMRES)

In this section, we present an iterative method for solving nonsymmetric lin-
ear systems of the Fourier mode equation (2.4). The Generalized Minimal
Residual (GMRES) method is an extension of MINRES (which is only ap-
plicable to symmetric systems) to nonsymmetric linear systems(see Saad and
Schultz). The stopping criterion of the convergence is based on the relative
residual which the tolerance ranges from 107'2 — 107! depending on the
different Fourier modes.

In the Conjugate Gradient method, the residuals form an orthogonal basis
for the space span{r(®, Ar® A% 1 In GMRES, this orthonormal basis
is formed explicitly:
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w® = Ap®
fork=1,...,7
w® = WO — (WO F))y*)

end
i+ — w(i)/ Hw(i)”

The reader may recognize this as a modified Gram-Schmidt orthogonal-
ization. The GMRES iterates are constructed as

2@ =20 4y 4 4y, (4.1)

where the coefficients gy, have been chosen to minimize the residual norm
|0 — Az®]|.

Then we preform a preconditioner which can be applied to the GMRES
method to solve the compact fourth-order scheme. We take the precon-
ditioner M arising from the BEq.(2.4) has been solved by the second-order
finite difference discretization with!Dirichlet houndary condition(see Lai et
al. (2002) ). The matrix M-isia L X L block tridiagonal matrix

T (1+\)E
(1—=X) Ty Lt M)
M = . :
(1 — )\L—l)I TL_1 (]_ + )\L_1>I
(1= M) Ty

where T;,1 <7 < L is a tridiagonal matrix given by

-0%5
g oa; B

B oo B
[ERe? ]
with a; = —2 —4\2n? — 28,8 = Ar? /A2 N = 1/(2i — 1).
Table 4.1 shows the number of iterations needed for solving the solution

of Example 1 of Poisson equation in a cylinder with the Fourier mode number
n = 1 and Dirichlet boundary condition by GMRES method with different
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preconditioners. The tolerance for the relative residual is chosen as 10713,
Those preconditioners include block Jacobi (BJ), incomplete LU factorization
(LUINC), and the fast Poisson solver (FPS) described as before. Indeed, the
fast Poisson solver preconditioner turns out to be the most efficient one since
it has the least number of iterations, and the iterations are kept to be a
constant when we increase the grid points.

Table 4.1
The performance comparison for using different preconditioners
O0<r<i1
U(T, 2, 9) _ ercos@+rsin9+z

L Outer/Inner Iteration Relative residual Tolerance Relative Error

GMRES
8 1/38 4.2482F-14 1.0E-13 7.8137E-05
16 1/74 8.7889E-14 1.0E-13 9.8506E-06
32 1/145 8.3080E<14 1.0E-13 1.2566E-06
64 2/1 9.6686E-14 1.0E-13 1.5941E-07
BJ
8 1/25 2:5087E-14 1.0E-13 7.8137E-05
16 1/48 5:4973E~14 1.0E-13 9.8507E-06
32 1/90 6.7025E-14 1.0E-13 1.2565E-06
64 1/164 8.5684E-14 1.0E-13 1.5909E-07
LUINC
8 1/10 1.2748E-14 1.0E-13 7.8137E-05
16 1/16 2.1491E-14 1.0E-13 9.8505E-06
32 1/27 3.7427E-14 1.0E-13 1.2566E-06
64 1/47 7.4488E-14 1.0E-13 1.5913E-07
(2-order)FPS
8 1/15 1.5611E-14 1.0E-13 7.8137E-05
16 1/15 5.0064E-14 1.0E-13 9.8506E-06
32 1/15 2.7255E-14 1.0E-13 1.2566E-06
64 2/1 2.4130E-14 1.0E-13 1.5941E-07
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In the following, Table 4.2 and 4.3 show the number of iterations needed
for solving the solution of remaining examples with the Fourier mode number
n =1 by GMRES method with different preconditioners. The tolerance for
the relative residual is chosen as 107!3. Similarly, the fast Poisson solver
preconditioner turns out to be the most efficient one since it has the least
number of iterations, and the iterations are kept to be a constant when we
increase the grid points.

Table 4.2
The performance comparison for using different preconditioners
O0<r<i1
u(r, z,0) = r3(cos + sinf)z(1 — 2)

L Outer/Inner Iteration Relative residual Tolerance Relative Error

GMRES
8 1/28 1.0713E-14 1.0E-13 9.1438E-04
16 1/58 7.3844E-14 1.0E-13 1.0755E-04
32 1/115 8.7476E-14 1.0E-13 1.3008E-05
64 2/1 9.5299E-14 1.0E-13 1.5966E-06
BJ
8 1/19 5.6023E~14 1.0E-13 9.1438E-04
16 1/36 7.6266E-14 1.0E-13 1.0755E-04
32 1/67 7.0556E-14 1.0E-13 1.3008E-05
64 1/125 6.3349E-14 1.0E-13 1.5966E-06
LUINC
8 1/10 2.1958E-14 1.0E-13 9.1438E-04
16 1/15 6.7705E-14 1.0E-13 1.0755E-04
32 1/26 5.5145E-14 1.0E-13 1.3008E-05
64 1/45 6.0695E-14 1.0E-13 1.5966E-06
(2-order)FPS
8 1/13 1.4886E-14 1.0E-13 9.1438E-04
16 1/12 7.5673E-14 1.0E-13 1.0755E-04
32 1/12 2.3112E-14 1.0E-13 1.3008E-05
64 1/11 1.9006E-14 1.0E-13 1.5966E-06
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Table 4.3
The performance comparison for using different preconditioners

O0<r<i1
u(r, z,0) = r? sin 20 sin(72)

L Outer/Inner Iteration Relative residual Tolerance Relative Error

GMRES
8 1/35 6.2341E-14 1.0E-13 3.0938E-05
16 1/69 7.0950E-14 1.0E-13 2.0650E-06
32 1/136 8.1227E-14 1.0E-13 1.3481E-07
64 1/267 9.4758E-14 1.0E-13 8.6033E-09
BJ
8 1/22 6.8349E-14 1.0E-13 3.0938E-05
16 1/43 6.1935E-14 1.0E-13 2.0650E-06
32 1/79 7.4148E-14 1.0E-13 1.3481E-07
64 1/143 8.8186E-14 1.0E-13 8.6030E-09
LUINC
8 1/10 2.0703E-14 1.0E-13 3.0938E-05
16 1/15 6.1446E-14 1.0E-13 2.0650E-06
32 1/26 7.2626E-14 1.0E-13 1.3481E-07
64 1/44 7.6683E-14 1.0E-13 8.6124E-09
(2-order)FPS
8 1/13 1.5440E-14 1.0E-13 3.0938E-05
16 1/13 3.2524E-14 1.0E-13 2.0650E-06
32 1/13 1.7154E-14 1.0E-13 1.3481E-07
64 1/13 2.3399E-14 1.0E-13 8.6031E-09
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5 Bi-Conjugate Gradient Stabilized

In this section, we present the other efficient iterative method for solving non-
symmetric linear systems. The stopping criterion of the convergence is based
on the relative residual which the tolerance ranges from 10~ — 1073 depend-
ing on the different Fourier modes.First, we present the Conjugate Gradient
Squared (CG-S) algorithm that was developed by Sonneveld (1984), mainly
to avoid using the transpose of A in the Bi-Conjugate Gradient (Bi-CG)
method and to gain faster convergence for roughly the same computational
cost. In the Bi-CG algorithm, the approximations are constructed in such
a way that the residual vector r) is orthogonal with respect to another
vectors 70 71 76— and, vice versa, #U) is orthogonal with respect to
r© p( e,

Sonneveld observed that, in the case of convergence, both the rows {r(j )}
and {f(j)} converge to zero, but that only the convergence of the {r(j)} is
used. He proposes the following! modification to Bi-CG by which all the
convergence effort is focused 4n the #llvectots. For the Bi-CG vectors it is
well known that they can befgritten as #i) = Pi(A)r©® and 7) = P;(AT)F ),
and because of the bi-orthogonality relation we have that

g e

(O, 7) = G (AYOPIAT )
(PA)P;(A)r 2 70) = 0 for i < j. (5.1)

The iteration parameters for Bi-CG are computed from innerproducts
like the above. Sonneveld observed that we can also construct the vectors
79 = P2(A)r©®, using only the latter form of the innerproduct for recovering
the Bi-CG parameters. By doing so, it can be avoided that the vectors
79 have to be formed, nor is here any multiplication with the matrix A”.
The resulting algorithm can be represented by the following scheme M is a
preconditioning matrix.
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PRECONDITIONED CG-S ALGORITHM ————

Compute r(® = b — Az for some initial guess ()

7 is an arbitrary vector, such that (r®, 7)) £ 0, e.g.r© = 70,
fori=1,2,...

piq = (7O, r(=D)

if p,_; = 0 method fails

ifi=1
uD = 70
p) = @)
else

Bic1 = pi-1/Pics
ul) = - |5 i)
p(i) =@ 4+ Bi_l(q(i—l) = 5i_1p(i—1))
end if
Solve p from Mp = p®
0= Ap
o = pi—l/(f(0)7 0)
¢ = 0 — a0
Solve @ from Mt = u® 4 ¢®
20 = 261 4 g4
qg = Au
P = D) _ g,
check convergence; continue if necessary

end
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The CG-S algorithm is based on squaring the residual polynomial, and, in
case of irregular convergence, this may lead to a great quantity increasing of
rounding errors, or possibly even overflow. The Bi-Conjugate Gradient Sta-
bilized (Bi-CGSTAB) algorithm is a variation of CG-S which was developed
to treat this difficulty (see Van der Vorst). Instead of seeking a method which
expresses a residual vector of the form 7#(), Bi-CGSTAB produces iterates
whose residual are of the form

PU) = Q,(A)P;(A)r®, (5.2)

in which, as before, P;(t) is the residual polynomial associate with the Bi-CG
algorithm and @;(¢) is a new polynomial which is defined recursively at each
step with the goal of "stabilizing" or"smoothing" the convergence behavior
of the original algorithm.

The resulting algorithm can be represented by the following scheme. M
is a preconditioning matrix.

PRECONDITIONED Bi-6GSTAB ALGORITHM ————

Compute 7 = b — Az9-for some-initial guess =
7 is an arbitrary vector, such'that (+©), #9)) £ 0, e.g.,r® = #©);
fori=1,2,...
piy = (FO,7071)
if p,_; = 0 method fails
ifi=1
) — )
else
Bic1 = (pi-1/pi—2) (i1 /wi—1)
p(i) — p=1) o Biil(p(ifl) — wi_lv(ifl))

end if
Solve p from Mp = p®

= pi—1/<7:(0)7 U(i))

S = r(iil) — Oéﬂ](l)
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check norm of s; if small enough: set 2 = 20~ 4+ a,;p and
stop
Solve s from Ms = s
t= AS
w; = (s,t)/(t, 1)
20 = 20D 4 050 4 0,3
r® =5 —w;t
check convergence; continue if necessary
for continuation it is necessary that w; # 0

end

Table 5.1 shows the number of iterations needed for solving the solution
of Example 1 of Poisson equatien'in a ¢ylinder with the Fourier mode num-
ber n = 1 and Dirichlet boundary_eendition by Bi-CGSTAB method with
different preconditioners. The tolerance for the relative residual is chosen as
1071°, Those preconditionets have been describéd in earlier section. Indeed,
the fast Poisson solver preconditioner turns out:to be the most efficient one
since it has the least number of iterations, and- the iterations are kept to be
a constant when we increase the grid points:
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Table 5.1
The performance comparison for using different preconditioners

O0<r<i1
U('f’ = 9) — ercos@+rsin9+z
Y )

L Tteration number Relative residual Tolerance Relative Error

Bi-CGSTAB
8 25 2.3263E-11 1.0E-10 7.8136E-05
16 52 8.3558E-11 1.0E-10 9.8507E-06
32 97 8.2703E-11 1.0E-10 1.2564E-06
64 182 9.9557E-11 1.0E-10 1.5835E-07
BJ
8 16 3.0152E-11 1.0E-10 7.8136E-05
16 34 4.6514E-11 +.0E-10 9.8505E-06
32 65 7.0701E-11 1.0E-10 1.2564E-06
64 134 8.0676E-11 1.0E-10 1.5885E-07
LUINC
8 6 1.8371E-11 1.0E-10 7.8136E-05
16 9 7.8271E-11 1.0E-10 9.8503E-06
32 19 3.6401E-11 1.0E-10 1.2575E-06
64 38 7.1583E-11 1.0E-10 1.6127E-07

(2-order)FPS

8 7 4.7806E-11 1.0E-10 7.8137E-05
16 7 6.9638E-11 1.0E-10 9.8505E-06
32 7 6.5055E-11 1.0E-10 1.2566E-06
64 7 2.7534E-11 1.0E-10 1.5950E-07
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In the following, Table 5.2 and 5.3 show the number of iterations needed
for solving the solution of remaining examples with the Fourier mode number
n = 1 by Bi-CGSTAB method with different preconditioners. The tolerance
for the relative residual is chosen as 107!, Similarly, the fast Poisson solver
preconditioner turns out to be the most efficient one since it has the least
number of iterations, and the iterations are kept to be a constant when we
increase the grid points.

Table 5.2
The performance comparison for using different preconditioners
O0<r<i1
u(r, z,0) = r3(cos 0 +sin6)z(1 — 2)
L Iteration number Relative residual Tolerance Relative Error

Bi-CGSTAB
8 17 7:1236E-11 1.0E-10 9.1438E-04
16 34 6.7664E+11 1.0E-10 1.0755E-04
32 67 6.9265E-11 1.0E-10 1.3008E-05
64 138 9.2923E-11 1.0E-10 1.5966E-06
BJ
8 12 6:2911E-11 1.0E-10 9.1438E-04
16 25 5.2211E-11 1.0E-10 1.0755E-04
32 o4 8.9216E-11 1.0E-10 1.3008E-05
64 109 8.3574E-11 1.0E-10 1.5966E-06
LUINC
8 6 1.0459E-11 1.0E-10 9.1438E-04
16 10 1.5875E-11 1.0E-10 1.0755E-04
32 18 7.2357E-11 1.0E-10 1.3008E-05
64 35 7.2622E-11 1.0E-10 1.5966E-06

(2-order)FPS

8 6 2.2892E-11 1.0E-10 9.1438E-04
16 5 5.1414E-11 1.0E-10 1.0755E-04
32 ) 2.5197E-11 1.0E-10 1.3008E-05
64 ) 2.0837E-11 1.0E-10 1.5966E-06
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Table 5.3
The performance comparison for using different preconditioners

O0<r<i1
u(r, z,0) = r? sin 20 sin(72)

L Tteration number Relative residual Tolerance Relative Error

Bi-CGSTAB
8 21 2.5726E-11 1.0E-10 3.0938E-05
16 40 8.3996E-11 1.0E-10 2.0650E-06
32 7 8.2066E-11 1.0E-10 1.3480E-07
64 171 8.9168E-11 1.0E-10 8.5930E-09
BJ
8 15 1.0410E-11 1.0E-10 3.0938E-05
16 32 9.1358E-11 +.0E-10 2.0650E-06
32 62 9.9962E-11 1.0E-10 1.3481E-07
64 114 9.5901E-11 1.0E-10 8.6033E-09
LUINC
8 6 0.8224E-12 1.0E-10 3.0938E-05
16 10 2.1490E-11 1.0E-10 2.0650E-06
32 18 9.4662E-11 1.0E-10 1.3481E-07
64 35 6.6702E-11 1.0E-10 8.5840E-09

(2-order)FPS

8 6 1.1841E-11 1.0E-10 3.0938E-05
16 6 7.6716E-11 1.0E-10 2.0650E-06
32 6 6.6982E-11 1.0E-10 1.3481E-07
64 6 3.4051E-11 1.0E-10 8.6042E-09
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6 The compact fourth-order scheme on polar
geometry with Neumann problems

In Lai (2002), the author present a simple and efficient compact fourth-order
Poisson solver in polar coordinates with Dirichlet problem. In this section,
we will present the compact fourth-order scheme on polar geometry with
different Neumann problems. The first, we consider a Neumann problem for
the Poisson equation on a unit disk:

u  10u 1 0%u

W+;E+§W:f(r,e),0<r<1,0§9<27r, (6.1)
ou
5, (L,0) = 9(0). (6.2)

Since the solution u is periodic in #, we can approximate it by the trun-
cated Fourier series as

N/2-1

u(ry 0= Y A (r) e’ (6.3)

n==N/2
where ,(r) is the complex Fourier'coefficient given by

[
Up(r) = N Z u(r, 0y,) e 0%, (6.4)
k=0

and 0 = 2kw/N, and N is the number of grid points along a circle.
Substituting those expansions into Eq.(6.1), and equating the Fourier
coefficients, we derive 4, (r) satisfying the ODE

2o, 1di, 0. -
W ;W—ﬁun:fn,0<r< 1, (65)

di,
“(1) =4 .
2 (1) = n, (6.6)

where f,,(r) and §, are defined in a manner similar to that of (6.3) and (6.4).
For the Neumann boundary, we choose a grid to avoid the polar singu-
larity by

ri=(i—1/2)Ari=0,1,..,M +2, (6.7)
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with Ar = 2/(2M +1). Let the discrete values be denoted by U (r;) = (),

By the same method that described in second section, we obtain the finite
difference scheme as follows. For 1 <i < M + 1, we need to solve

A 2 2
U, — —T(52F - —60F SR A ek L LA
i i i
1 A 1 2n? 2
0o T(éoF - —52U - ZU) - LU= Fi (68)

The inner numerical boundary value Uy = (—1)"U; can be obtained by
the symmetry constraint of Fourier coefficients as before. And the outer
numerical boundary value Uy, is derived as follows. That is, at r =1,

SoU = U/+U—Ar2+O(Ar4)

"

;A 1 2
= U+ g(F_UT"f' J;”U—iUHO(Ar)

Unmya —Unm _ . N A7“2(3FM+1 =4yt Fyu-r Uny2 —2Un +Un
2Ar Gn 6 2T Ar?
+ (1 + n?)gn =200 11). (6.9)

The outer numerical boundary value Uy, 42 can be approximated by

6Ar . 3—Ar 6+Arf(1+n?),. Ar
Vrrea = (GG, 6 Jon = P
Ar Ar 1 —n2Ar?
—?FM EFM 1+ (—3 )Unr41]. (6.10)

Table 6.1 shows the maximum errors of this method for three different
solutions of Poisson equation in unit disk with Neumann boundary condition
at r = 1.
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Table 6.1
The Maximum Errors of Different Solutions to
the Poisson Equation with Neumann Boundary
u(1,6) = g(f) using N = 64.
O0<r<i1
M llul Rate

u(z,y) = e
16 4.2008E-05

32 5.3993E-06 2.960
64 6.8285E-07 2.983
128  8.5733E-08 2.994

u(x,y) =3e" Y (x —2*)(y —y*) +5
16 2.4161E-04

32 1.7289E-05 3.805
64 1.1573E-06 2:901
128  7A4875E-08 3.950

u(r,y) = Th

16 7.2000E-03

32 5.7T732E-04 3.641
64 4.1560E-05 3.796
128  2.8026E-06 3.890

The second, we consider a Neumann problem for the Poisson equation on
an annulus:

Pu  10u 1 0%u

72 T oo ﬁw:f(r,0)70.5<7"<1,0§9<27r, (6.11)
u(0.5,60) = k(0), %(1,0) = g(0). (6.12)

We choose a regular grid,
ri=05+1Ar,i=0,1,..., M + 2, (6.13)

with Ar = 1/(2M + 2).
The finite difference scheme can be obtained as Eq.(6.8). Similarly, the
outer numerical boundary value Uy, 5 can be approximated by (6.10). Table
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6.2 shows the maximum errors of this method for three different solutions of
Poisson equation in an annulus with Neumann boundary condition at r = 1.

Table 6.2
The Maximum Errors of Different Solutions to
the Poisson Equation with Neumann Boundary
u(0.5,6) = k(6), 24(1,0) = g(9) using N = 64.
05<r<i
M lull Rate

u(z,y) = e* v
16 5.3054E-07

32 3.7839E-08 3.809
64  2.5324E-09 3.902
128  1.6362E-10 3.952

u(w,y) =36 (@ =a?) (= y*) + 5
16 1:3822E-05

32 1:0083E-06 3077
64 6:8229E-08 3.885
128  4.4393E-09 3.942

u(z,y) = Ty

16  6.6515E-04

32 5.1868E-05 3.681
64 3.6497E-06 3.829
128 2.4233E-07 3.913

The last one, we consider a Neumann problem for the Poisson equation
on an annulus:

0*u  10u 1 0%u

— -+ —=— = : 1,0< 2 14
ar2+rar+r2ae2 f(r,0),05 <r<1,0<60<2m, (6.14)
Ju Ju
—(0.5,0) = k(0), —(1,60) = g(0). 1
~L(05,0) = k(0), 5(1,60) = 9(0) (615
We choose a regular grid,
r,=05+0—1Ar,i=0,1,.... M + 2, (6.16)
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with Ar = 1/(2M). Then the outer numerical boundary value Uys4o can
be approximated by (6.10). And the inner numerical boundary value Uy is
derived as follows. That is, at r = 0.5,

SoU = U’+%Ar2+0(Ar4)

1"

’ AT2 ’ U ]_ +7’L2 ’ 2”2 4
= U+T(F_T+ 2 U—FU)—FO(AT )
UQ_UO*]% ATQ(—3F1+4F2—F3_U2—2U1+U0+(1+HZ)A
2Ar "6 2Ar 0.5Ar2 (0.5)2 "
2n?2
~ o (6.17)

The inner numerical boundary valueiUprean be approximated by

6ATr 3 +2Ar =3 =2Ar*(1+n? .. Ar
Ar Ar e A
—? 2 ‘I‘ EF;:; —f‘ (—3 )Ul] (618)

Table 6.3 shows the maximum-‘etrors of this'method for three different solu-
tions of Poisson equation in an annulus with Neumann boundary conditions
at r =1 and 0.5.
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Table 6.3
The Maximum Errors of Different Solutions to
the Poisson Equation with Neumann Boundary

52(0.5,0) = k(6), 52(1,6) = g(¢) using N = 64.

05<r<i1
M llul Rate

u(w,y) = et
16 6.7419E-07

32 4.3156E-08 3.966
64 2.7284E-09 3.983
128 1.7218E-10 3:986

u(x,y)= 3™ a=a?)(y =y°) +5
16 2:5549E-05

32 1.6625E-06 3.942
64 1.0601E-07 3.971
128  6.6921E-09 3.986

u(z,y) = T

16 6.5994E-04

32 4.6168E-05 3.837
64 3.0672E-06 3.912
128  1.9766E-07 3.956
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7 Conclusions

In this paper, we present a simple and efficient compact fourth-order Poisson
solver in cylindrical and spherical coordinates. The solver relies on the trun-
cated Fourier series expansion, where the differential equations of Fourier
coefficients have been solved by fourth-order finite difference discretizations
without pole conditions. And two kinds of efficient iterative method, GM-
RES and Bi-CGSTAB, with different preconditioners are applied to solve
the resulted nonsymmetric systems of Fourier coefficients. In particular, a
preconditioner arising from those singular equations have been solved by the
second-order finite difference discrtizations and shown to be the most effi-
cient one. Meanwhile, we can see that the numerical result confirms the
third-order accuracy for the problem on a cylinder. The loss of one order of
accuracy can be seen from the discretization near the origin. Therefore, the
future research aspect is how to treat the coordinate singularity so that the
scheme becomes fully fourth-order’accuréte,
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