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Let F be a set of f 6 2n� 5 faulty nodes in an n-cube Q n such that every node of Qn still has
at least two fault-free neighbors. Then we show that Qn � F contains a path of length at
least 2n � 2f � 1 (respectively, 2n � 2f � 2) between any two nodes of odd (respectively,
even) distance. Since the n-cube is bipartite, the path of length 2n � 2f � 1 (or
2n � 2f � 2) turns out to be the longest if all faulty nodes belong to the same partite set.
As a contribution, our study improves upon the previous result presented by [J.-S. Fu, Lon-
gest fault-free paths in hypercubes with vertex faults, Information Sciences 176 (2006)
759–771] where only n� 2 faulty nodes are considered.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In many parallel computer systems, processors are connected on the basis of interconnection networks, referred to as net-
works henceforth. Among various kinds of networks, hypercube is one of the most attractive topologies discovered for its
suitability in both special-purpose and general-purpose tasks [11]. One important issue to address in hypercubes is how
to embed other networks into hypercubes. By definition [11], embedding one guest network G into another host network
H is a form of injective mapping, g, from the node set of G to the node set of H. A link of G corresponds to a path of H under
g. Often embedding takes cycles, paths, or meshes as guest networks [3–5,19,20] because these architectures are extensively
applied in parallel systems.

Fault-tolerant embedding in hypercubes has been widely addressed in researches [2,6,7,9,13,15–18]. For example, Latifi
et al. [9] proved that an n-dimensional hypercube (or n-cube), Q n, is Hamiltonian even if it has n� 2 faulty links. On the other
hand, Tsai et al. [15] showed that Q n (n P 3) is both Hamiltonian laceable and strongly Hamiltonian laceable even if it has
n� 2 faulty links. Recently, Tsai and Lai [17] addressed the conditional edge-fault-tolerant edge-bipancyclicity of hyper-
cubes. As Tseng [18] showed, a faulty n-cube, containing fe 6 n� 4 faulty links and fv 6 n� 1 faulty nodes with
fe þ fv 6 n� 1, has a fault-free cycle of length at least 2n � 2f v . Furthermore, Fu [6] showed that a fault-free cycle of length
at least 2n � 2f can be embedded into an n-cube with 1 6 f 6 2n� 4 faulty nodes. Fu [7] also proved that a fault-free path of
length at least 2n � 2f � 1 (or 2n � 2f � 2) can be embedded to join two arbitrary nodes of odd (or even) distance in an n-cube
with f 6 n� 2 faulty nodes.
. All rights reserved.
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Fig. 1. A conditionally faulty Q4 with four faulty nodes. Every faulty node is marked by an ‘‘X” symbol. The length of the longest path between nodes 0110
and 1001 is 4.
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Basically, the components of a network may fail independently. It is unlikely that all failures would be close to each other.
Based on this phenomenon, the conditional node-faults [10] were defined in such a way that each node of a faulty network
still has at least g fault-free neighbors. In this paper, we concern that g ¼ 2. More precisely, a network is said to be condi-
tionally faulty if and only if every node has at least two fault-free neighbors. Under this premise, we would like to extend Fu’s
result [7] by showing that a conditionally faulty n-cube with f 6 2n� 5 faulty nodes still contains a fault-free path of length
at least 2n � 2f � 1 (respectively, 2n � 2f � 2) between any two fault-free nodes of odd (respectively, even) distance. Con-
sider a 4-cube with four faulty nodes, 0000, 0011, 1100, and 1111, as shown in Fig. 1, in which every node has at least
two fault-free neighbors. Then the length of the longest path between nodes 0110 and 1001 is 4 < 24 � 2 � 4� 2. This is
why we concentrate only on f 6 2n� 5 faulty nodes.

It is sufficient to assume that every node should have at least two fault-free neighbors while a long path is constructed
between every pair of fault-free nodes. Consider the scenario that u is a fault-free node with only one fault-free neighbor,
namely v. Then the longest path between u and v happens to be of length 1. To avoid such a degenerate situation, it is nec-
essary that, for any pair u; v of adjacent nodes, u has some fault-free neighbor other than v, and vice versa. On the other hand,
it is also statistically reasonable to require that every node needs to have at least two fault-free neighbors. Suppose, with a
random fault model, the probabilities of node failures are identical and independent. Let PrðnÞ denote the probability that
every node of the n-cube Qn, containing 2n� 5 faulty nodes, is adjacent to at least two fault-free neighbors. Because Qn

has 2n nodes, there are 2n

2n� 5

� �
ways to distribute 2n� 5 faulty nodes. In the random fault model, all these fault distri-

butions have equal probability of occurrence. Clearly, Prð3Þ ¼ 1 and Prð4Þ ¼ 1�
24�

4
3

� �

24

3

� � ¼ 31
35, where 24 � 4

3

� �
is the

number of faulty node distributions that there exists some node having three faulty neighbors. When n P 5, the number

of faulty node distributions that there exists some node having n faulty neighbors is 2n � 2n � n
n� 5

� �
. Moreover, the number

of faulty node distributions that there exists some node having exactly n� 1 faulty neighbors is 2n � n
n� 1

� �
2n � n
n� 4

� �
.

Since 2n � n
n� 4

� �
P 2n � n

n� 5

� �
for n P 5, we can derive that
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It is not difficult to compute PrðnÞ numerically, such as Prð5Þ ¼ 6157
6293, Prð6Þ ¼ 9696527

9706503, etc. Since limn!1LðnÞ ¼ 1, PrðnÞ ap-
proaches to 1 as n increases.

The rest of this paper is organized as follows. In Section 2, basic definitions and notations are introduced. In Section
3, a partition procedure, named PARTITION, is proposed to divide a conditionally faulty n-cube into two conditionally
faulty subcubes. In Section 4, we show that a conditionally faulty n-cube with f 6 2n� 5 faulty nodes has a fault-free
path of length at least 2n � 2f � 1 (respectively, 2n � 2f � 2) between any two fault-free nodes of odd (respectively, even)
distance. Finally, the conclusion and discussion are presented in Section 5.
2. Preliminaries

Throughout this paper, we concentrate on loopless undirected graphs. For the graph definitions, we follow the ones given
by Bondy and Murty [1]. A graph G consists of a node set VðGÞ and a link set EðGÞ that is a subset of
fðu;vÞ j ðu;vÞ is an unordered pair ofVðGÞg. It is bipartite if its node set can be partitioned into two disjoint partite sets,
V0ðGÞ and V1ðGÞ, such that every link joins a node of V0ðGÞ and a node of V1ðGÞ.

A path P of length k from node x to node y in a graph G is a sequence of distinct nodes hv1;v2; . . . ;vkþ1i such that
x ¼ v1, y ¼ vkþ1, and ðv i;v iþ1Þ 2 EðGÞ for every 1 6 i 6 k if k P 1. Moreover, a path of length 0 consisting of a single
node x is denoted by hxi. For convenience, we write P as hv1; . . . ;v i;Q ;v j; . . . ;vkþ1i, where Q ¼ hv i; . . . ; v ji. The ith node
of P is denoted by PðiÞ; i.e., PðiÞ ¼ v i. A cycle is a path with at least three nodes such that the last node is adjacent to the
first one. For clarity, a cycle of length k is represented by hv1;v2; . . . ;vk;v1i. A path (or cycle) in a graph G is a Hamil-
tonian path (or Hamiltonian cycle) if it spans G. A bipartite graph is Hamiltonian laceable [14] if there exists a Hamiltonian
path between any two nodes that are in different partite sets. Furthermore, a Hamiltonian laceable graph G is hyper-
Hamiltonian laceable [12] if, for any node v 2 ViðGÞ and i 2 f0;1g, there exists a Hamiltonian path of G� fvg between
any two nodes of V1�iðGÞ. Later Hsieh et al. [8] introduced strongly Hamiltonian laceability. A Hamiltonian laceable graph
G is strongly Hamiltonian laceable if there exists a path of length jVðGÞj � 2 between any two nodes in the same partite
set.

Let u ¼ bn . . . bi . . . b1 be an n-bit binary string. For 1 6 i 6 n, we use ðuÞi to denote the binary string bn . . . �bi . . . b1.
Moreover, we use ½u�i to denote the bit bi of u. The Hamming weight of u, denoted by wHðuÞ, is
jf1 6 j 6 n j ½u�j ¼ 1gj. The n-cube Qn consists of 2n nodes and n2n�1 links. Each node corresponds to an n-bit binary
string. Two nodes, u and v, are adjacent if and only if v ¼ ðuÞi for some i, and we call the link ðu; ðuÞiÞ i-dimensional.
We define dimððu;vÞÞ ¼ i if v ¼ ðuÞi. The Hamming distance between u and v, denoted by hðu; vÞ, is defined to be
j f1 6 j 6 n j ½u�j–½v �jg j. Hence two nodes, u and v, are adjacent if and only if hðu;vÞ ¼ 1. It is well known that Q n

is a bipartite graph with partite sets V0ðQ nÞ ¼ fu 2 VðQ nÞ j wHðuÞ is eveng and V1ðQnÞ ¼ fu 2 VðQ nÞ j wHðuÞ is oddg.
A graph G is node-transitive if, for any pair v1;v2 of VðGÞ, there exists some automorphism l : VðGÞ ! VðGÞ such that

lðv1Þ ¼ v2. A graph G is link-transitive if, for any two links e1 ¼ ðu1;v1Þ and e2 ¼ ðu2;v2Þ of G, there exists some auto-
morphism w : VðGÞ ! VðGÞ such that wðu1Þ ¼ u2 and wðv1Þ ¼ v2. As introduced in [11], Qn is both node-transitive and
link-transitive. The following two theorems reveal the link-fault-tolerant Hamiltonian laceability of hypercubes.

Theorem 1 [15]. Let n P 3. Suppose that F # EðQnÞ is a set of utmost n� 2 faulty links. Then Qn � F is Hamiltonian laceable and
strongly Hamiltonian laceable.

Theorem 2 [15]. Let n P 3. Suppose that F # EðQnÞ is a set of utmost n� 3 faulty links. Then Qn � F is hyper-Hamiltonian
laceable.
3. Partition of faulty hypercubes

In this section, we show that a conditionally faulty n-cube can be partitioned into two conditionally faulty subcubes if
it has 2n� 5 or less faulty nodes. First of all, we introduced some notations to be used later. For 1 6 j 6 n and i 2 f0;1g, let

Q j;i
n be a subgraph of Q n induced by fu 2 VðQnÞ j ½u�j ¼ ig. Obviously, Qj;i

n is isomorphic to Qn�1. Then the node partition of

Q n into subgraphs Qj;0
n and Qj;1

n is called j-partition. For convenience, we use FðGÞ to denote the set of all faulty nodes in

graph G. For any node u of G, its neighborhood NGðuÞ is defined by NGðuÞ ¼ fv 2 VðGÞ j ðu;vÞ 2 EðGÞg. In addition, let NF
GðuÞ

denote the set NGðuÞ \ FðGÞ.
Suppose Qn, n P 4, is conditionally faulty with f 6 2n� 5 faulty nodes. Moreover, suppose u, v, and w are three nodes

of this faulty n-cube, and each of them has only two fault-free neighbors. Then we discuss how the faulty nodes will be
distributed conditionally. For simplification, let U ¼ NF

Qn
ðuÞ, V ¼ NF

Qn
ðvÞ, and W ¼ NF

Q n
ðwÞ.

If j V \W j ¼ 0, then we have f Pj V [W j ¼ j V j þ jW j ¼ 2n� 4, contradicting the requirement that f 6 2n� 5.
Therefore, j V \W jP 1 needs to be satisfied. Similarly, we also have j U \ V jP 1 and j U \W jP 1. Since any two nodes
of an n-cube can have utmost two common neighbors, we obtain that j V \W j; j U \ V j; j U \W j2 f1;2g. We first consider
the case that at least one of j V \W j, j U \ V j, and j U \W j is equal to 1. Without loss of generality, we suppose
j V \W j ¼ 1.



Fig. 2. Every faulty node is marked by an ‘‘X” symbol. (a) The Q4 with j NF
Q4
ðuÞ \ NF

Q4
ðvÞ j ¼ j NF

Q4
ðvÞ \ NF

Q4
ðwÞ j ¼ j NF

Q4
ðuÞ \ NF

Q4
ðwÞ j ¼ 1; (b) a layout

isomorphic to (a); (c) the Q4 with j NF
Q4
ðuÞ \ NF

Q4
ðvÞ j ¼ j NF

Q4
ðvÞ \ NF

Q4
ðwÞ j ¼ 1 and j NF

Q4
ðuÞ \ NF

Q4
ðwÞ j ¼ 2; (d) a layout isomorphic to (c).
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I. First, we concern the case that j V \W j ¼ j U \ V j ¼ j U \W j ¼ 1. If j U \ V \W jP 1, we have 2n� 5 P f P
j U [ V [W j ¼ 3ðn� 2Þ � ð1þ 1þ 1Þ þ 1 ¼ 3n� 8; i.e., n 6 3. Since n P 4, we only concern j U \ V \W j ¼ 0. Then
we have 2n� 5 P f Pj U [ V [W jP 3ðn� 2Þ � ð1þ 1þ 1Þ ¼ 3n� 9; i.e., n 6 4. Fig. 2a depicts a faulty 4-cube with
j V \W j ¼ j U \ V j ¼ j U \W j ¼ 1 and j U \ V \W j ¼ 0. Fig. 2b is a cube-styled layout isomorphic to Fig. 2a. We can
examine Fig. 2a in a top-down viewpoint. Since hypercube is node-transitive, we can assume that u ¼ t1. By link-
transitivity, we assume that t4 and t5 are faulty neighbors of u. Since j U \ V j ¼ 1, we obtain v 2 ft7; t8; t9; t10g. With-
out loss of generality, we assume that v ¼ t10. Since j U \W j ¼ j V \W j ¼ 1 and j U \ V \W j ¼ 0, we see that
w ¼ t9 and V \W ¼ ft15g. As a consequence, this happens to be the only possibility. However, node t11 has only
one fault-free neighbor. Thus it is not conditionally faulty.

II. Secondly, we consider the case that j V \W j ¼ j U \ V j ¼ 1 and j U \W j ¼ 2. By the definition of hypercube, we see
that j NQn ðuÞ \ NQn ðvÞ \ NQn ðwÞ j6 1. Obviously, we have j U \ V \W j6j NQn ðuÞ \ NQn ðvÞ \ NQn ðwÞ j. In particular, we
claim that j U \ V \W j ¼ 1. Suppose, by contradiction, that j U \ V \W j ¼ 0. Then we have U \ V \W ¼
ðU \ VÞ \ ðU \WÞ ¼ ;. Since U \ V–; and U \W–;, we conclude that V \W ¼ ;. That is, the assumption of
j U \ V \W j ¼ 0 leads to a contradiction between j V \W j ¼ 1 and V \W ¼ ;. As a result, j U \ V \W j is equal
to 1. Accordingly, we have 2n� 5 P f Pj U [ V [W j ¼ 3ðn� 2Þ � ð1þ 1þ 2Þ þ 1 ¼ 3n� 9; i.e., n 6 4. See Fig. 2c
for illustration. For clarity, Fig. 2d is an isomorphic layout of Fig. 2c. Similarly, we can examine Fig. 2c in a top-down
viewpoint. By node-transitivity, we assume that u ¼ t1. By link-transitivity, we assume that t4 and t5 are faulty neigh-
bors of u. Since j U \W j ¼ 2, we have w ¼ t11. Since j V \W j ¼ j U \ V j ¼ 1 and j U \ V \W j ¼ 1, we obtain
v 2 ft7; t8; t9; t10g. Without loss of generality, we assume that v ¼ t10. Then this turns out to be the only possibility.
It is noticed that node t8 has only two fault-free neighbors.

III. Next, we concern the case that j V \W j ¼ 1 and j U \ V j ¼ j U \W j ¼ 2. Similarly, we have j U \ V \W j ¼ 1. Since
ðU \ VÞ [ ðU \WÞ# U, we have j ðU \ VÞ [ ðU \WÞ j6j U j. However, we have a contradiction that
j ðU \ VÞ [ ðU \WÞ j ¼ j U \ V j þ j U \W j � j U \ V \W j ¼ 2þ 2� 1 ¼ 3 > n� 2 ¼ j U j if n 6 4. In what follows,
we suppose that n P 5. As a consequence, we have 2n� 5 P f Pj U [ V [W j ¼ 3ðn� 2Þ � ð1þ 2þ 2Þ þ 1 ¼
3n� 10; i.e., n ¼ 5. See Fig. 3a. Again, we examine Fig. 3a in a top-down viewpoint. By node-transitivity, we assume
that u ¼ t1. By link-transitivity, we assume that t4, t5, and t6 are faulty neighbors of u. Since j U \ V j ¼ j U \W j ¼ 2,
we have fv;wg � ft14; t15; t16g. Without loss of generality, we assume that v ¼ t14 and w ¼ t16. Since j V \W j ¼ 1,
we have t26 R V [W . Moreover, we have 2n� 5 P f Pj V [W j ¼ j V j þ jW j � j V \W j ¼ ðn� 2Þ þ ðn� 2Þ � 1
Fig. 3. Every faulty node is marked by an ‘‘X” symbol. Each of u, v, w, and z has only two fault-free neighbors. (a) The Q 5 with j NF
Q5
ðvÞ \ NF

Q5
ðwÞ j ¼ 1 and

j NF
Q5
ðuÞ \ NF

Q5
ðvÞ j ¼ j NF

Q5
ðuÞ \ NF

Q5
ðwÞ j ¼ 2; (b) the Q5 with j NF

Q5
ðuÞ \ NF

Q5
ðvÞ j ¼ j NF

Q5
ðvÞ \ NF

Q5
ðwÞ j ¼ j NF

Q5
ðuÞ \ NF

Q5
ðwÞ j ¼ 2.
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¼ 2n� 5; that is, f ¼ 2n� 5 and U # V [W . Then we have either t20 2 V or t23 2 V . Without loss of generality, we
assume that t23 2 V . Similarly, we can assume that t25 2W . As a result, this is the only possibility. It is noted that node
t12 ¼ z has three faulty neighbors, and j NF

Q5
ðxÞ j6 2 for each x 2 VðQ5Þ � fu;v ;w; zg.
Q
6

wv
t10

t 2
t 3

t 4 t 5 t 6
t 7

t 8
t 9

t11 t12 t13 t14

t15 t16 t17 t18 t19

t20 t21 t22

t23 t24 t25 t26 t27 t28 t29 t30 t31 t 32 t 33 t 34 t 35 t 36 t 37 t 38 t 39 t 40 t 41 t 42

The links among nodes t 23 ,... , t 57 are omitted.

t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53 t54 t55 t57t56

u=t1

u=t1

wv
zt10

t 2
t 3

t 4 t 5 t 6 t 7

t 8
t 9

t11 t12 t13 t14

t15 t16
t17 t18 t19

t20 t21 t22

t23 t24 t25 t26 t27 t28 t29 t30 t31 t 32 t 33 t 34 t 35 t 36 t 37 t 38 t 39 t 40 t 41 t 42

The links among nodes t 23 ,... , t 57 are omitted.

t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53 t54 t55 t56 t57

Q
6

a

b

Fig. 4. Every faulty node is marked by an ‘‘X” symbol. The Q6 with j NF
Q6
ðuÞ \ NF

Q6
ðvÞ j ¼ j NF

Q6
ðvÞ \ NF

Q6
ðwÞ j ¼ j NF

Q6
ðuÞ \ NF

Q6
ðwÞ j ¼ 2. (a)

j NF
Q6
ðuÞ j ¼ j NF

Q6
ðvÞ j ¼ j NF

Q6
ðwÞ j ¼ j NF

Q6
ðzÞ j ¼ 4 and j NF

Q6
ðxÞ j6 3 for x 2 VðQ6Þ � fu; v ;w; zg; (b) j NF

Q6
ðuÞ j ¼ j NF

Q6
ðvÞ j ¼ j NF

Q6
ðwÞ j ¼ 4 and j NF

Q6
ðxÞ j6 3

for x 2 VðQ6Þ � fu; v ;wg.
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Now we consider the case that j V \W j ¼ j U \ V j ¼ j U \W j ¼ 2. Again, we have j U \ V \W j ¼ 1. Since
j ðU \ VÞ [ ðU \WÞ j6j U j, we still have a contradiction that j ðU \ VÞ [ ðU \WÞ j ¼ j U \ V j þ j U \W j � j U \ V \W j ¼
2þ 2� 1 ¼ 3 > n� 2 ¼ j U j if n 6 4. In what follows, we suppose n P 5. Then we have 2n� 5 P f P
j U [ V [W j ¼ 3ðn� 2Þ � ð2þ 2þ 2Þ þ 1 ¼ 3n� 11; i.e., n 2 f5;6g. Note that j U [ V [W j ¼ 4 if n ¼ 5 and
j U [ V [W j ¼ 7 if n ¼ 6. See Fig. 3b and Fig. 4a and b. In Fig. 3b, it is not difficult to see that j NF

Q5
ðxÞ j6 2 for each

x 2 VðQ 5Þ � fu;v ;w; zg. We explain Fig. 4 as follows. By node-transitivity, we assume that u ¼ t1. By link-transitivity, we
assume that t4, t5, t6, and t7 are faulty neighbors of u. Since j U \ V j ¼ j U \W j ¼ 2, we deduce that
fv ;wg � fti j 17 6 i 6 22g. Since j U \ V \W j ¼ 1, we can assume that v ¼ t20 and w ¼ t22. Then we have
j V \ ft30; t36; t39; t42g j ¼ 2 and jW \ ft32; t38; t41; t42g j ¼ 2. Since j V \W j ¼ 2, we have V \W ¼ ft6; t42g. If t39 2 V and
t41 2W , then node t18 happens to have only two fault-free neighbors (see Fig 4a); otherwise, we have j NF

Q6
ðxÞ j6 3 for each

x 2 VðQ 6Þ � fu;v ;wg (see Fig. 4b, in which nodes t36 and t41, for example, are faulty). Hence these figures cover all
possibilities.

According to the analysis presented earlier, a conditionally faulty n-cube with f 6 2n� 5 faulty nodes is likely to contain
three or four nodes such that each of them has only two fault-free neighbors. Since 2n� 5 6 n� 2 for n 6 3, we concentrate
only on the case that n P 4. To summarize, we have the following two lemmas.

Lemma 1. Suppose that an n-cube Qn ðn P 4Þ is conditionally faulty with f 6 2n� 5 faulty nodes. Let u;v ;w; z 2 VðQnÞ such that

j NF
Qn
ðuÞ j ¼ j NF

Qn
ðvÞ j ¼ j NF

Qn
ðwÞ j ¼ j NF

Qn
ðzÞ j ¼ n� 2 and j NF

Qn
ðxÞ j6 n� 3 for every x 2 VðQnÞ � fu;v ;w; zg. Then the faulty

nodes are distributed as illustrated in Figs. 2c, 3a and b, and 4a. In Figs. 2c and 3a, no dimensions can be used to partition Qn in such
a way that both resulting subcubes are conditionally faulty. In Fig. 3b and Fig. 4a, there exists some dimension j of f1;2; . . . ;ng such

that both Qj;0
n and Qj;1

n are conditionally faulty with 2n� 7 or less faulty nodes.

Proof. In Figs. 2c and 3a, we check, by brute force, that either Q k;0
n or Q k;1

n contains a node with only one fault-free neighbor
for each k 2 f1;2; . . . ;ng; that is, there does not exist any dimension to partition Qn such that both ðn� 1Þ-cubes are condi-
tionally faulty. In Figs. 3b and 4a, let j be any integer of f1;2; . . . ;ng such that ðuÞj is faulty. Then both Q j;0

n and Q j;1
n are con-

ditionally faulty with 2n� 7 or less faulty nodes. h

Lemma 2. Suppose that an n-cube Qn ðn P 4Þ is conditionally faulty with f 6 2n� 5 faulty nodes. Let u;v ;w 2 VðQnÞ such that

j NF
Qn
ðuÞ j ¼ j NF

Qn
ðvÞ j ¼ j NF

Qn
ðwÞ j ¼ n� 2 and j NF

Qn
ðxÞ j6 n� 3 for every x 2 VðQ nÞ � fu;v ;wg. Then the faulty nodes are dis-

tributed as illustrated in Fig. 4b. Moreover, there exists some dimension j of f1;2; . . . ;ng such that both Qj;0
n and Qj;1

n are condition-
ally faulty with 2n� 7 or less faulty nodes.

Proof. Let j 2 f1;2; . . . ;ng such that ðuÞj 2 NF
Qn
ðuÞ \ NF

Qn
ðvÞ \ NF

Qn
ðwÞ. Then both Q j;0

n and Qj;1
n are conditionally faulty with

2n� 7 or less faulty nodes. h

Lemma 3. Suppose that an n-cube Qn ðn P 4Þ is conditionally faulty with f 6 2n� 5 faulty nodes. Let u and v be two nodes of Q n

such that j NF
Qn
ðuÞ j ¼ j NF

Qn
ðvÞ j ¼ n� 2 and j NF

Qn
ðxÞ j6 n� 3 for every x 2 VðQnÞ � fu;vg. Then there exists some dimension k of

f1;2; . . . ;ng such that both Qk;0
n and Q k;1

n are conditionally faulty. When n P 5, both Q k;0
n and Q k;1

n contain 2n� 7 or less faulty
nodes.

Proof. Since j NF
Qn
ðuÞ j ¼ j NF

Qn
ðvÞ j ¼ n� 2 and f 6 2n� 5, we have j NF

Qn
ðuÞ \ NF

Qn
ðvÞ jP 1. Since any two nodes of Q n can

have utmost two common neighbors, we consider the following two cases.
Case 1: Suppose that j NF

Qn
ðuÞ \ NF

Qn
ðvÞ j ¼ 2. Let i and j be two integers such that fðuÞi; ðuÞjg ¼ NF

Qn
ðuÞ \ NF

Qn
ðvÞ.

Obviously, we have ðuÞi ¼ ðvÞj and ðuÞj ¼ ðvÞi. Then we can partition Qn along dimension k 2 fi; jg. As a result, both Qk;0
n and

Qk;1
n contain at least n� 3 faulty nodes. See Fig. 5a.

Case 2: Suppose that j NF
Qn
ðuÞ \ NF

Qn
ðvÞ j ¼ 1. We claim first that this case holds only for n P 5. By contradiction, we

suppose n ¼ 4. Let p and q be two integers such that both ðuÞp and ðuÞq are faulty. Since j NF
Qn
ðuÞ \ NF

Qn
ðvÞ j ¼ 1, we have

v–ððuÞpÞq. Thus node ððuÞpÞq happens to have only two fault-free neighbors, which contradicts the assumption that
j NF

Qn
ðxÞ j6 n� 3 for every x 2 VðQnÞ � fu;vg.

Let i and j be two integers such that fðuÞig ¼ fðvÞjg ¼ NF
Qn
ðuÞ \ NF

Qn
ðvÞ. Since j NF

Qn
ðuÞ � fðuÞig j þ j NF

Qn
ðvÞ � fðvÞjg j ¼

2ðn� 3Þ > n� 2 ¼ j f1; . . . ;ng � fi; jg j for n P 5, there exists some dimension k of f1; . . . ;ng � fi; jg such that both ðuÞk and
ðvÞk are faulty. As a result, either Qk;0

n or Qk;1
n contains exactly two faulty nodes. See Fig. 5b.

In either case, both Qk;0
n and Qk;1

n are conditionally faulty. h

Lemma 4. Suppose that an n-cube Q n ðn P 4Þ is conditionally faulty with f 6 2n� 5 faulty nodes. Let z be a unique node with
exactly n� 2 faulty neighbors. Then there exists some dimension j of f1;2; . . . ;ng such that both Qj;0

n and Q j;1
n are conditionally

faulty. Except for the case depicted in Fig. 5c, both Q j;0
n and Qj;1

n contain 2n� 7 or less faulty nodes if n P 5.

Proof. Since Qn is node-transitive, we assume z ¼ 0n. Since Qn is also link-transitive, we assume that ðzÞ1 and ðzÞ2 are fault-
free. Because z is a unique node with exactly n� 2 faulty neighbors, we have j NF

Qn
ðxÞ j6 n� 3 for x 2 VðQ nÞ � fzg. For every
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Fig. 5. Every faulty node is marked by an ‘‘X” symbol. (a,b) j NF
Qn
ðuÞ j ¼ j NF

Qn
ðvÞ j ¼ n� 2 and j NF

Qn
ðxÞ j6 n� 3 for x 2 VðQnÞ � fu; vg; (c) a faulty node

distribution on Q5; (d) a conditionally faulty 4-cube with four faulty nodes.
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k 2 f3; . . . ;ng, we have NF
Qk;0

n
ðxÞ# NF

Q n
ðxÞ and NF

Qk;1
n
ðyÞ# NF

Qn
ðyÞ for x 2 VðQk;0

n Þ � fzg and y 2 VðQk;1
n Þ. Thus we obtain

j NF
Qk;0

n
ðxÞ j6j NF

Q n
ðxÞ j6 n� 3 and j NF

Qk;1
n
ðyÞ j6j NF

Qn
ðyÞ j6 n� 3 for x 2 VðQ k;0

n Þ � fzg and y 2 VðQk;1
n Þ. In addition, we have

j NF
Qk;0

n
ðzÞ j ¼ ðn� 2Þ � 1 ¼ n� 3 for every k 2 f3; . . . ;ng. Let j be an integer of f3; . . . ;ng. Then both Qj;0

n and Q j;1
n are condi-

tionally faulty.
Suppose f 6 2n� 6. We see that, for any j 2 f3; . . . ;ng, both Qj;0

n and Qj;1
n contain 2n� 7 or less faulty nodes.

Suppose f ¼ 2n� 5. We assume, by contraposition, that either Qj;0
n or Qj;1

n contains 2n� 6 faulty nodes for any
j 2 f3; . . . ;ng. Then, for any x of FðQ nÞ � fðzÞk j 3 6 k 6 ng, we have ½x�j ¼ ½z�j for every j 2 f3; . . . ;ng. Hence we have
FðQnÞ � fðzÞk j 3 6 k 6 ng# fz; ððzÞ1Þ2g. Since j FðQnÞ � fðzÞk j 3 6 k 6 ng j ¼ f � ðn� 2Þ ¼ n� 3 6 2 ¼ j fz; ððzÞ1Þ2g j, we
derive that n 6 5. That is, if n P 6, there exists some dimension j of f3; . . . ;ng such that both Q j;0

n and Qj;1
n are conditionally

faulty with 2n� 7 or less faulty nodes. Since j FðQ nÞ � fðzÞk j 3 6 k 6 ng j ¼ 2 for n ¼ 5, nodes z and ððzÞ1Þ2 are faulty; that
is, FðQ5Þ ¼ fz; ðzÞ3; ðzÞ4; ðzÞ5; ððzÞ1Þ2g, as shown in Fig. 5c. Therefore, Fig. 5c happens to be the only possibility that either Qj;0

n
or Qj;1

n contains 2n� 6 faulty nodes for every j 2 f3; . . . ; ng. h

Lemma 5. Suppose that an n-cube Qn ðn P 4Þ contains f 6 2n� 5 faulty nodes such that every node has at least three fault-free
neighbors. Then there exists some dimension j of f1; . . . ;ng such that both Qj;0

n and Q j;1
n are conditionally faulty. For n P 5, Q j;0

n and
Q j;1

n contain 2n� 7 or less faulty nodes.

Proof. Since every node has at least three fault-free neighbors, every ðn� 1Þ-dimensional subcube of Q n is conditionally
faulty. First, we consider the case that f 6 2n� 6. Let u and v be two distinct faulty nodes, and let j 2 f1; . . . ;ng such that
½u�j–½v�j. Then both Qj;0

n and Qj;1
n contain 2n� 7 or less faulty nodes.

Now we consider the case that f ¼ 2n� 5. For n P 5, we claim that there exists some dimension j of f1; . . . ;ng such that
j FðQj;0

n Þ j6 2n� 7 and j FðQj;1
n Þ j6 2n� 7. For 1 6 k 6 n, we define that qk ¼ 1 if ½u�k ¼ ½v �k for every two distinct faulty

nodes u;v 2 FðQnÞ, and qk ¼ 0 otherwise. Let q ¼
Pn

k ¼ 1qk. Clearly, all faulty nodes are located in either Qk;0
n or Qk;1

n if
qk ¼ 1. For convenience, let f1 6 k 6 n j qk ¼ 0g ¼ fi1; . . . ; in�qg. Then both Qj;0

n and Qj;1
n contain at least one faulty node for

j 2 fi1; . . . ; in�qg. Suppose, by contradiction, either Qj;0
n or Qj;1

n contains only one faulty node for every j 2 fi1; . . . ; in�qg. For
v 2 FðQnÞ, let AðvÞ ¼ f1 6 k 6 n j FðQk;0

n Þ ¼ fvg or FðQk;1
n Þ ¼ fvgg. Since Q n is node-transitive, we assume that e ¼ 0n is a

faulty node such that j AðeÞ j achieves the maximum of set fj AðvÞ jj v 2 FðQnÞg. For convenience, let p ¼ j AðeÞ j. Obviously,
we have 1 6 p 6 n� q. Moreover, let AðeÞ ¼ fi1; . . . ; ipg. For v 2 FðQnÞ � feg, we see that ½v�k ¼ 1 for each k 2 fi1; . . . ; ipg.
Let BðkÞ ¼ fv 2 FðQnÞ � feg j ½v �k–½e�kg for k 2 fipþ1; . . . ; in�qg. Since we assumed, by contradiction, that either Qj;0

n or Qj;1
n

has only one faulty node for each j 2 fi1; . . . ; in�qg, we have j BðjÞ j ¼ 1 for each j 2 fipþ1; . . . ; in�qg. Since Qn is link-
transitive, we assume that fi1; . . . ; ipg ¼ f1; . . . ; pg and fipþ1; . . . ; in�qg ¼ fpþ 1; . . . ;n� qg. Then we have ðFðQnÞ � fegÞ�S

k2fipþ1 ;...;in�qgBðkÞ# f0
n�p1pg. Accordingly, we derive that 1 ¼ j f0n�p1pg jPj ðFðQnÞ � fegÞ �

S
k2fipþ1 ;...;in�qgBðkÞ jPj FðQ nÞ j �

j feg j �
P

k2fipþ1 ;...;in�qg j BðkÞ j ¼ ð2n� 5Þ � 1� ðn� q� pÞ; that is, pþ q 6 7� n. Recall that p P 1 and q P 0. Thus, we have
n 2 f5;6g. Now we can identify all faulty nodes according to the values of p, q, and n.

Case 1: Suppose ðn; q; pÞ ¼ ð5;0;1Þ. Since p ¼ 1, we have ½v �1 ¼ 1 for each v 2 FðQ5Þ � feg and j BðjÞ j ¼ 1 for each
j 2 f2;3;4;5g. Thus we have FðQ5Þ ¼ f00000;00011;00101;01001;10001g. Clearly, node 00001 has five faulty neighbors.

Case 2: Suppose ðn; q; pÞ ¼ ð5; 0;2Þ. Similarly, we have FðQ 5Þ ¼ f00000;00111;01011;10011;00011g. Then node 00011
has three faulty neighbors.

Case 3: Suppose ðn; q; pÞ ¼ ð5;1;1Þ. We have FðQ 5Þ ¼ f00000;00011;00101;01001;00001g. Again, node 00001 has four
faulty neighbors.

Case 4: Suppose ðn; q; pÞ ¼ ð6;0;1Þ. We have FðQ 6Þ ¼ f000000;000011;000101;001001;010001;100001;000001g.
Thus, node 000001 has six faulty neighbors.

In short, node 0n�p1p has at least n� 2 faulty neighbors, which contradicts the requirement that every node has at least
three fault-free neighbors. Hence there exists some dimension j of f1; . . . ;ng such that both Q j;0

n and Qj;1
n are conditionally

faulty with 2n� 7 or less faulty nodes. h

Suppose that Qn is conditionally faulty with utmost 2n� 5 faulty nodes. Let F ¼ FðQ nÞ. For n P 5, we propose a proce-
dure PARTITION(Q n, F) to determine j-partition of Qn according to the following rules:
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(1) Suppose that at least three nodes of Q n have exactly n� 2 faulty neighbors, respectively. If Qn has its faulty
nodes distributed as shown in Fig. 3a, it will be partitioned along dimension j ¼ dimððt1; t5ÞÞ. Then one resulting
subcube has its faulty nodes distributed as in Fig. 2b. Otherwise, Lemma 1 and Lemma 2 ensure that Q n can be
partitioned along some dimension j such that both Q j;0

n and Q j;1
n are conditionally faulty with 2n� 7 or less faulty

nodes.
(2) Suppose that there exist exactly two nodes of Qn with n� 2 faulty neighbors, respectively. By Lemma 3, there

exists some dimension j of f1; . . . ;ng such that both Qj;0
n and Qj;1

n are conditionally faulty with 2n� 7 or less faulty
nodes.

(3) Suppose that there is only one node of Q n with exactly n� 2 faulty neighbors. Denote it by z. If the faulty nodes
are distributed as in Fig. 5c, we partition Q n along any dimension j 2 fi j ðzÞi is faultyg. Then one resulting subcube
turns out to have 2n� 6 faulty nodes, distributed as in Fig. 5d. Otherwise, we can apply Lemma 4 to choose a
dimension j of f1; . . . ;ng such that both Q j;0

n and Qj;1
n are conditionally faulty with 2n� 7 or less faulty nodes.

(4) Suppose that every node of Q n has at least three fault-free neighbors. Obviously, every ðn� 1Þ-cube is conditionally faulty.
By Lemma 5, there exists some dimension j of f1; . . . ;ng such that both Qj;0

n and Q j;1
n contain 2n� 7 or less faulty nodes.

The following corollary summarizes what is obtained by procedure PARTITION(Qn, F). Also, it is a summary of Lemmas
1–5.

Corollary 1. Suppose that an n-cube Qn ðn P 5Þ is conditionally faulty with f 6 2n� 5 faulty nodes. Except for the cases
illustrated in Figs. 2c, 3a, and 5c, there exists some dimension j of f1;2; . . . ;ng such that both Qj;0

n and Qj;1
n are conditionally faulty

with 2n� 7 or less faulty nodes.
4. Long paths in faulty hypercubes

The following theorem was proved by Fu [7].

Theorem 3 [7]. Let u and v denote two arbitrary fault-free nodes of an n-cube with f 6 n� 2 faulty nodes, where n P 3. If hðu;vÞ
is odd (or even), then there exists a fault-free path of length at least 2n � 2f � 1 (or 2n � 2f � 2) between u and v.

To improve the above result, we need the following lemma.

Lemma 6. Let z 2 VðQ4Þ, fi; j; p; qg ¼ f1;2;3;4g, and F ¼ fðzÞi; ðzÞj; ðzÞpg. Suppose that s and t are any two nodes of Q4 � F such
that fs; tg–fz; ðzÞqg. Then Q4 � F has a path of length at least 9 or 8 between s and t if hðs; tÞ is odd or even, respectively.

Proof. By symmetry, let z ¼ 0000, i ¼ 1, j ¼ 2, p ¼ 3, and q ¼ 4. We partition Q 4 into Q 4;0
4 and Q 4;1

4 . Then Q 4;1
4 is fault-

free and z 2 V0ðQ 4;0
4 Þ.

Case 1: Both s and t are in Q4;0
4 � F. Since Q4;1

4 is fault-free, Theorem 1 ensures that Q4;1
4 contains a path P of length 7

(respectively, 6) between ðsÞ4 and ðtÞ4 if hðs; tÞ is odd (respectively, even). Thus, hs; ðsÞ4; P; ðtÞ4; ti is a fault-free path of length 9
(respectively, 8) between s and t if hðs; tÞ is odd (respectively, even).

Case 2: Both s and t are in Q4;1
4 . If hðs; tÞ is odd, Theorem 1 ensures that Q4;1

4 � fð1101;1111Þg contains a path P of length 7
between s and t. Clearly, path P does not pass through (1101,1111). Since it spans Q 4;1

4 , we have 1111 2 VðPÞ. Accordingly,
link (1110,1111) or (1011,1111) is on P. Thus P can be written as hs;R1;1110;1111;R2; ti or hs; T1;1011;1111; T2; ti. As a
result, hs;R1;1110;0110;0111;1111;R2; ti or hs; T1;1011, 0011;0111;1111; T2; ti is a path of length 9 between s and t. On the
other hand, if hðs; tÞ is even, then we consider two cases as follows. Suppose first that s; t 2 V0ðQ4;1

4 Þ. By Theorem 1,
Q4;1

4 � fð1101;1111Þg contains a path P of length 6 between s and t. Again, link (1110,1111) or (1011,1111) is on P, and thus
the desired path can be constructed as above. Suppose that s; t 2 V1ðQ4;1

4 Þ. By Theorem 2, Q4;1
4 � f1001g contains a path P of

length 6 between s and t. Obviously, link (1110,1111), (1101,1111), or (1011,1111) is on P. Hence the desired path can be
constructed similarly.

Case 3: Suppose that s is in Q4;0
4 � F and t is in Q4;1

4 . First, we consider the case that s–z. If s 2 V0ðQ4Þ, then s is adjacent
to node 0111. Clearly, there exists some node v of f0110;0101;0011g � fsg such that ðvÞ4–t. By Theorem 1, Q4;1

4 has a path
P of length 6 or 7 between ðvÞ4 and t if hðs; tÞ is odd or even, respectively. Then hs; 0111;v ; ðvÞ4; P; ti is a fault-free path of
length 9 or 10 if hðs; tÞ is odd or even, respectively. If s 2 V1ðQ4Þ, then we have s ¼ 0111. Obviously, there exists some node
u of f0110;0101;0011g such that ðuÞ4–t. Similarly, Q4;1

4 has a path T of length 7 (respectively, 6) between ðuÞ4 and t if
hðs; tÞ is odd (respectively, even). Then hs;u; ðuÞ4; T; ti is a fault-free path of length 9 (respectively, 8) if hðs; tÞ is odd
(respectively, even).

Next, we consider the case that s ¼ z. If hðs; tÞ is even, it follows from Theorem 1 that Q 4;1
4 has a path H of length 7

between ðsÞ4 ¼ ðzÞ4 and t. Then hs ¼ z; ðzÞ4;H; ti is a fault-free path of length 8. If hðs; tÞ is odd, Theorem 2 ensures that
Q4;1

4 � f1100g has a path R of length 6 between ðzÞ4 and t. Clearly, node 1111 is on R. Accordingly, link (1111,1110),
(1111,1101), or (1111,1011) is on R. For example, path R can be written as hðzÞ4;R1;1111;1110;R2; ti if ð1111;1110Þ 2 EðRÞ.
Then hs ¼ z; ðzÞ4;R1;1111;0111;0110, 1110;R2; ti is a fault-free path of length 9 between s and t. h

For the sake of readability, the proof of the following theorem will be described in Appendix A.
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Theorem 4. Let F be a set of f 6 3 faulty nodes in Q 4 such that every node of Q4 has at least two fault-free neighbors. Suppose that
s and t are two arbitrary nodes of Q 4 � F. Then Q 4 � F contains a path of length at least 15� 2f (respectively, 14� 2f ) between s
and t if hðs; tÞ is odd (respectively, even).

With Theorem 4 and Lemma 6, we will be able to prove the next theorem.

Theorem 5. Let F be a set of f faulty nodes in Qn ðn P 1Þ such that every node of Qn has at least two fault-free neighbors. Suppose
f ¼ 0 if n 2 f1;2g, and f 6 2n� 5 if n P 3. Let s and t be two arbitrary nodes of Qn � F. Then Qn � F contains a path of length at
least 2n � 2f � 1 (respectively, 2n � 2f � 2) between s and t if hðs; tÞ is odd (respectively, even).

Proof. The result is trivial for n 2 f1;2g. When n 2 f3;4g, the result follows from Theorem 3 or Theorem 4, respectively. In
what follows we consider the case that n P 5. Except for the faulty node distribution illustrated in Fig. 3a, procedure PAR-
TITION(Q n, F) returns j-partition of Qn such that both Q j;0

n and Qj;1
n are conditionally faulty. If Q 5 has its faulty nodes distrib-

uted as in Fig. 3a, then PARTITION(Q5, F) returns j-partition of Q5 such that one subcube has its faulty nodes distributed as in
Fig. 2b. Accordingly, the proof can be justified by the induction on n. Our inductive hypothesis is that the result holds for
Q n�1. For convenience, let F0 ¼ FðQ j;0

n Þ and F1 ¼ FðQj;1
n Þ. Moreover, let f0 ¼ j F0 j and f1 ¼ j F1 j. Without loss of generality,

we assume that s 2 V0ðQ n � FÞ.
Case 1: Suppose f0 6 2n� 7 and f1 6 2n� 7. Without loss of generality, we assume that f0 6 f1. In particular, for the case

illustrated in Fig. 3a, Q j;0
5 is conditionally faulty with f0 ¼ 2 faulty nodes, and Q j;1

5 is not conditionally faulty with f1 ¼ 3
faulty nodes distributed as in Fig. 2b.

Subcase 1.1. Both s and t are in Qj;0
n . By inductive hypothesis, Qj;0

n � F0 contains a path H0 of length L at least 2n�1 � 2f 0 � 1
(respectively, 2n�1 � 2f 0 � 2) between s and t if hðs; tÞ is odd (respectively, even). Clearly, we have
j fv 2 VðQj;1

n Þ jj N
F
Qj;1

n
ðvÞ jP n� 2g j6 1. Let A ¼ fðH0ðiÞ;H0ðiþ 1ÞÞ j 1 6 i 6 L and i � 1ðmod 2Þg be a set of disjoint links on

H0. Since j A j ¼ dL
2e > f1 þ 1 Pj F1 [ fv 2 VðQj;1

n Þ jj N
F
Qj;1

n
ðvÞ jP n� 2g j for n P 5, there exists an odd integer ı̂, 1 6 ı̂ 6 L,

such that j F1 \ fðH0ð̂ıÞÞj; ðH0ð̂ıþ 1ÞÞjg j ¼ 0, j NF
Qj;1

n
ððH0ð̂ıÞÞjÞ j6 n� 3, and j NF

Qj;1
n
ððH0 ð̂ıþ 1ÞÞjÞ j6 n� 3 are satisfied. Let

x ¼ H0 ð̂ıÞ and y ¼ H0ð̂ıþ 1Þ. Hence path H0 can be written as hs;H00; x; y;H
00
0; ti.

If Q j;1
n is conditionally faulty, our inductive hypothesis asserts that Qj;1

n � F1 has a path H1 of length at least 2n�1 � 2f 1 � 1
between ðxÞj and ðyÞj. Otherwise, the faulty nodes of Qj;1

n are distributed as in Fig. 2b. Since both ðxÞj and ðyÞj have two or more
fault-free neighbors in Qj;1

n , Lemma 6 ensures that Qj;1
n has a fault-free path H1 of length at least 2n�1 � 2f 1 � 1 between ðxÞj

and ðyÞj. Then hs;H00; x; ðxÞ
j
;H1; ðyÞj; y;H000; ti is a fault-free path of length at least 2n � 2f � 1 (respectively, 2n � 2f � 2) be-

tween s and t if hðs; tÞ is odd (respectively, even). See Fig. 6a.

Subcase 1.2. Both s and t are in Q j;1
n . We consider first that the faulty nodes of Qj;1

5 are distributed as depicted in Fig. 2b. Let z
denote the node with only one fault-free neighbor r in Q j;1

5 . Note that f0 ¼ 2 and f1 ¼ 3.

Suppose fs; tg ¼ fz; rg. Then a long path between s and t is constructed as follows. On the one hand, we assume that
s ¼ z and t ¼ r. Since j V0ðQ j;0

5 Þ � F0 jPj V0ðQ j;0
5 Þ j � j F0 j ¼ 24 � 2 > 4 ¼ j F1 [ ftg j, there exists some fault-free node x

of V0ðQj;0
5 Þ such that ðxÞj R F1 [ ftg. By inductive hypothesis, Qj;0

5 � F0 has a path H0 of length at least 24 � 2f 0 � 1 between
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Fig. 6. Illustration for Theorem 5.
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ðsÞj and x. By Lemma 6, Q j;1
5 � F1 has a path H1 of length at least 24 � 2f 1 � 2 between ðxÞj and t. As a result,

hs; ðsÞj;H0; x; ðxÞj;H1; ti is a fault-free path of length at least 25 � 2f � 1 (see Fig. 6b). On the other hand, we assume that
t ¼ z and s ¼ r. Since j V1ðQ j;0

5 Þ � F0 jPj V1ðQ j;0
5 Þ j � j F0 j ¼ 24 � 2 > 4 ¼ j F1 [ fsg j, there exists some fault-free node x

of V1ðQj;0
5 Þ such that ðxÞj R F1 [ fsg. Again, the inductive hypothesis asserts that Qj;0

5 has a fault-free path H0 of length at least
24 � 2f 0 � 1 between x and ðtÞj; Lemma 6 asserts that Qj;1 has a fault-free path H1 of length at least 24 � 2f 1 � 2 between s
and ðxÞj. Then hs;H1; ðxÞj; x;H0; ðtÞj; ti is a fault-free path of length at least 25 � 2f � 1 (see Fig. 6c).

Suppose fs; tg–fz; rg. Then Lemma 6 asserts that Qj;1
5 � F1 contains a path H1 of length L at least 24 � 2f 1 � 1 (respectively,

24 � 2f 1 � 2) between s and t if hðs; tÞ is odd (respectively, even). Let A ¼ fðH1ðiÞ;H1ðiþ 1ÞÞ j 1 6 i 6 L and i � 1ðmod 2Þg be
a set of disjoint links. Since j A j ¼ dL

2e > 2 ¼ f 0, there exists an odd integer ı̂, 1 6 ı̂ 6 L, such that
F0 \ fðH1ð̂ıÞÞj; ðH1 ð̂ıþ 1ÞÞjg ¼ ;. Let x ¼ H1 ð̂ıÞ and y ¼ H1ð̂ıþ 1Þ. Accordingly, path H1 can be written as hs;H01; x; y;H

00
1; ti.

Again, the inductive hypothesis asserts that Qj;0
5 � F0 has a path H0 of length at least 24 � 2f 0 � 1 between ðxÞj and ðyÞj. Then

hs;H01; x; ðxÞ
j
;H0; ðyÞj; y;H001; ti is a fault-free path of length at least 25 � 2f � 1 or 25 � 2f � 2 if hðs; tÞ is odd or even, respec-

tively. See Fig. 6d.
Now we consider the case that faulty nodes of Q j;1

5 are not distributed as depicted in Fig. 2b, or n P 6. Then Qj;1
n is con-

ditionally faulty. By inductive hypothesis, Qj;1
n � F1 has a path H1 of length L at least 2n�1 � 2f 1 � 1 (respectively,

2n�1 � 2f 1 � 2) between s and t if hðs; tÞ is odd (respectively, even). Similarly, let A ¼ fðH1ðiÞ;H1ðiþ 1ÞÞ j 1 6
i 6 L and i � 1ðmod 2Þg be a set of disjoint links. Since j A j ¼ dL

2e > f0 for n P 5, there is a link ðx; yÞ of A such that
F0 \ fðxÞj; ðyÞjg ¼ ;. Accordingly, path H1 can be written as hs;H01; x; y;H

00
1; ti. By inductive hypothesis, Qj;0

n � F0 has a path
H0 of length at least 2n�1 � 2f 0 � 1 between ðxÞj and ðyÞj. Again, hs;H01; x; ðxÞ

j
;H0; ðyÞj; y;H001; ti is a fault-free path of length

at least 2n � 2f � 1 or 2n � 2f � 2 if hðs; tÞ is odd or even, respectively. See Fig. 6d.

Subcase 1.3. Suppose that s is in Q j;0
n and t is in Qj;1

n . Note that j fx 2 VðQj;1
n Þ jj N

F
Qj;1

n
ðxÞ jP n� 2g j6 1. On the one hand, we

consider the case that node t has only one fault-free neighbor, denoted by r, in Q j;1
n . On this occasion, n is equal to 5. Since

j V1ðQj;0
n Þ � F0 jP 2n�2 � f0 > f1 þ 2 ¼ j F1 [ ft; rg j for n ¼ 5, there exists a fault-free node b of V1ðQj;0

n Þ � F0 such that
ðbÞj R F1 [ ft; rg. On the other hand, we consider the case that node t has at least two fault-free neighbors in Qj;1

n . Since
j V1ðQj;0

n Þ � F0 jP 2n�2 � f0 > f1 þ 2 Pj F1 j þ j ftg j þ j fx 2 VðQj;1
n Þ jj N

F
Qj;1

n
ðxÞ jP n� 2g jPj F1 [ ftg [ fx 2 VðQj;1

n Þ jj N
F
Qj;1

n
ðxÞ jP

n� 2g j for n P 5, there exists a fault-free node b of V1ðQj;0
n Þ � F0 such that ðbÞj R F1 [ ftg [ fx 2 VðQj;1

n Þ jj N
F
Qj;1

n
ðxÞ jP n� 2g.

By inductive hypothesis, Qj;0
n � F0 has a path H0 of length at least 2n�1 � 2f 0 � 1 between s and b. If the faulty nodes of Q j;1

n

are distributed as illustrated in Fig. 2b, Lemma 6 asserts that Q j;1
n � F1 has a path H1 of length at least 2n�1 � 2f 1 � 1 (respec-

tively, 2n�1 � 2f 1 � 2) between ðbÞj and t if hððbÞj; tÞ is odd (respectively, even); otherwise, the inductive hypothesis asserts
that Qj;1

n � F1 has a path H1 of length at least 2n�1 � 2f 1 � 1 (respectively, 2n�1 � 2f 1 � 2) between ðbÞj and t if hððbÞj; tÞ is odd
(respectively, even). Then hs;H0; b; ðbÞj;H1; ti is a fault-free path of length at least 2n � 2f � 1 (respectively, 2n � 2f � 2) be-
tween s and t if hðs; tÞ is odd (respectively, even). See Fig. 6e.

Case 2: Suppose either f0 ¼ 2n� 6 or f1 ¼ 2n� 6. By Lemmas 1–5, we know that this case may occur while n ¼ 5. More
precisely, the faulty nodes happen to be distributed as illustrated in Fig. 5c where z is itself a faulty node with three faulty
neighbors. Without loss of generality, we assume that f0 ¼ 4; thus, ðzÞj is a unique faulty node in Q j;1

5 .

Subcase 2.1. Both s and t are in Qj;0
5 . By inductive hypothesis, Qj;0

5 � ðF0 � fzgÞ contains a path H0 of length L at least
9 ¼ 24 � 2 � 3� 1 (respectively, 8 ¼ 24 � 2 � 3� 2) between s and t if hðs; tÞ is odd (respectively, even).

First, we consider the case that node z is not on H0. Let A ¼ fðH0ðiÞ;H0ðiþ 1ÞÞ j 1 6 i 6 L and i � 1ðmod 2Þg be a set of
disjoint links on H0. Since j A j ¼ dL

2e > 1 ¼ f 1, there exists an odd integer ı̂, 1 6 ı̂ 6 L, such that both ðH0 ð̂ıÞÞj and
ðH0ð̂ıþ 1ÞÞj are fault-free. Let x ¼ H0 ð̂ıÞ and y ¼ H0ð̂ıþ 1Þ. Hence path H0 can be written as hs;H00; x; y;H

00
0; ti. It follows from

inductive hypothesis that Q j;1
5 � fðzÞ

jg has a path H1 of length at least 13 ¼ 24 � 2 � 1� 1 between ðxÞj and ðyÞj. Then
hs;H00; x; ðxÞ

j;H1; ðyÞj; y;H000; ti is a fault-free path of length at least 23 > 25 � 2 � 5� 1 (respectively, 22 > 25 � 2 � 5� 2) be-
tween s and t if hðs; tÞ is odd (respectively, even).

Now we consider the case that node z is on H0. Since the length of H0 is at least 9, we can write H0 as
hs;H00; x; z; y;H

00
0; ti. Clearly, ðxÞj and ðyÞj are fault-free nodes in the same partite set of Q j;1

5 . By Theorem 2, Q j;1
5 is hyper-

Hamiltonian laceable; thus Qj;1
5 � fðzÞ

jg has a path H1 of length 14 between ðxÞj and ðyÞj. Then hs;H00; x; ðxÞ
j
;

H1; ðyÞj; y;H000; ti is a fault-free path of length at least 23 > 25 � 2 � 5� 1 (respectively, 22 > 25 � 2 � 5� 2) between s and
t if hðs; tÞ is odd (respectively, even).

Subcase 2.2. Both s and t are in Q j;1
5 . For the sake of clarity, we distinguish whether hðs; tÞ is odd or even.

Suppose that hðs; tÞ is odd. By inductive hypothesis, Q j;1
5 � fðzÞ

jg contains a path H1 of length L at least 13 between s and t.
Obviously, we have ðzÞj R VðH1Þ. Consequently, ðvÞj–z for any v 2 VðH1Þ. Let A ¼ fðH1ðiÞ;H1ðiþ 1ÞÞ j 1 6 i 6 L and
i � 1ðmod 2Þg be a set of disjoint links on H1. Since j A j � j F0 � fzg j ¼ dL

2e � ðf0 � 1ÞP 7� ð4� 1Þ ¼ 4, there exist four
links of A, namely ðx1; y1Þ, ðx2; y2Þ, ðx3; y3Þ, and ðx4; y4Þ, such that ðxiÞj and ðyiÞ

j are fault-free for all i 2 f1;2;3;4g. Thus path
H1 can be written as hs; P1; x1; y1; P2; x2; y2; P3; x3; y3; P4; x4; y4; P5; ti. Then hs; P1; x1; ðx1Þj; ðy1Þ

j
; y1; P2; x2,ðx2Þj; ðy2Þ

j
; y2;

P3; x3; ðx3Þj; ðy3Þ
j
; y3; P4; x4; ðx4Þj; ðy4Þ

j
; y4, P5; ti is a fault-free path of length at least 21 ¼ 25 � 2 � 5� 1 between s and t. See

Fig. 6f.
Suppose that hðs; tÞ is even. If s and ðzÞj belong to the different partite sets of Q j;1

5 , Theorem 2 asserts that Q j;1
5 � fðzÞ

jg has a
path H1 of length 14 between s and t. Similar to the case that hðs; tÞ is odd, there exist four disjoint links on H1, namely ðx1; y1Þ,



T.-L. Kueng et al. / Information Sciences 179 (2009) 667–681 677
ðx2; y2Þ, ðx3; y3Þ, and ðx4; y4Þ, such that ðxiÞj and ðyiÞ
j are fault-free for all i 2 f1;2;3;4g. Accordingly, we can write

H1 ¼ hs; P1; x1; y1; P2; x2; y2; P3; x3; y3; P4; x4; y4; P5; ti. Then hs; P1; x1, ðx1Þj; ðy1Þ
j
; y1, P2; x2; ðx2Þj, ðy2Þ

j
; y2, P3; x3; ðx3Þj, ðy3Þ

j, y3; P4,
x4; ðx4Þj; ðy4Þ

j, y4; P5; ti is a fault-free path of length at least 22 > 25 � 2 � 5� 2 between s and t. If nodes s and ðzÞj belong
to the same partite set of Q j;1

5 , then we construct a fault-free path as follows. Since Qj;0
5 is conditionally faulty, we denote

by x any fault-free neighbor of z in Q j;0
5 . By inductive hypothesis, Qj;0

5 � ðF0 � fzgÞ has a path H0 of length at least
9 ¼ 24 � 2 � 3� 1 between x and z. We can write path H0 as hx;H00; y; zi, where y is also a fault-free neighbor of z. Without
loss of generality, let j ¼ 5, fx; yg ¼ fðzÞ1; ðzÞ2g, and X ¼ fððzÞj; ððzÞjÞ3Þ; ððzÞj; ððzÞjÞ4Þg. Since j X j ¼ 2, Theorem 1 ensures
that Q j;1

5 � X is strongly Hamiltonian laceable; hence it has a path H1 of length 14 between s and t. Obviously, both
ððzÞj; ðxÞjÞ and ððzÞj; ðyÞjÞ are on H1, and we can write H1 as hs;H01; ðxÞ

j; ðzÞj; ðyÞj;H001; ti. Then hs;H01; ðxÞ
j; x;H00; y; ðyÞ

j;H001; ti is a
fault-free path of length at least 22 > 25 � 2 � 5� 2 between s and t.

Subcase 2.3. Suppose that s is in Q j;0
5 and t is in Qj;1

5 . By inductive hypothesis, Qj;0
5 � ðF0 � fzgÞ has a path H0 of length at least

9 (respectively, 8) between s and z if hðs; zÞ is odd (respectively, even). Accordingly, path H0 can be written as hs;H00; x; y; zi.
Since ðzÞj is a unique faulty node in Qj;1

5 , both ðxÞj and ðyÞj are fault-free.

If ðyÞj–t, it follows from inductive hypothesis that Qj;1
5 � fðzÞ

jg has a path H1 of length at least 13 (respectively, 12) be-
tween ðyÞj and t if hððyÞj; tÞ is odd (respectively, even). Then hs;H00; x; y; ðyÞ

j
;H1; ti is a path of length at least

21 ¼ 25 � 2 � 5� 1 (respectively, 20 ¼ 25 � 2 � 5� 2) between s and t if hðs; tÞ is odd (respectively, even). See Fig. 6g. Other-
wise, if ðyÞj ¼ t, then our inductive hypothesis asserts that Qj;1

5 � fðzÞ
jg has a path H1 of length at least 13 between ðxÞj and

ðyÞj. Then hs;H00; x; ðxÞ
j
;H1; ðyÞj ¼ ti is a path of length at least 21 ¼ 25 � 2 � 5� 1 (respectively, 20 ¼ 25 � 2 � 5� 2) be-

tween s and t if hðs; tÞ is odd (respectively, even). See Fig. 6h.
Therefore the proof is completed. h
5. Conclusion

In this paper, we show that a conditionally faulty n-cube with f 6 2n� 5 faulty nodes contains a fault-free path of length
at least 2n � 2f � 1 (respectively, 2n � 2f � 2) between any two fault-free nodes of odd (respectively, even) distance. When
compared with the previous results presented by Fu [7], our results can tolerate almost double that faulty nodes under an
additional condition that every node has two or more fault-free neighbors. It has been well grounded that 2n� 5 is the max-
imum number of faulty nodes tolerable in Qn if n ¼ 4. Yet it is not easy to show that a fault-free path of length at least
2n � 2f � 1 (or 2n � 2f � 2) cannot be embedded to connect any two nodes in a conditionally faulty n-cube with f faulty
nodes for f P 2n� 4 and n P 5. In fact, we conjecture that an n-cube may tolerate more than 2n� 5 faulty nodes with re-
spect to fault-tolerant path embedding. Therefore, we intend to find, in our future work, the tight upper bound to the number
of tolerable faulty nodes.
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Appendix A. Proof of Theorem 4

In order to prove Theorem 4, we address the following two lemmas in advance.

Lemma 7. Suppose that Q3 is conditionally faulty with f 6 2 faulty nodes. Let s and t denote any two fault-free nodes of Q3. Then
Q3 contains a fault-free path of length at least 7� 2f ðrespectively;6� 2f Þ between s and t if hðs; tÞ is odd (respectively, even).

Proof. If f < 2, this result follows from Theorem 3. Thus we only consider the case that f ¼ 2. For convenience, let
F ¼ FðQ3Þ. Since Q3 is node-transitive, we assume that node 000 is faulty. To require that every node of Q3 has at least
two fault-free neighbors, the other faulty node must be one of {001,010,100,111}.

Case 1: One of {001,010,100} is faulty. Obviously, each of {001,010,100} is adjacent to 000. Since Q3 is link-transitive, we
assume that 001 2 F; that is, F ¼ f000;001g. Then we partition Q3 into Q2;0

3 and Q2;1
3 . Hence we have F # VðQ2;0

3 Þ. See Fig. 7a.

Subcase 1.1. Both s and t are in Q2;0
3 � F. Without loss of generality, we assume that s ¼ 101 and t ¼ 100. Obviously,

hs ¼ 101;111;110;100 ¼ ti is a fault-free path of length 3 ¼ 7� 2 � 2.

Subcase 1.2. Both s and t are in Q2;1
3 . If hðs; tÞ is odd, then Q2;1

3 contains a path of length 3 between s and t. Otherwise, Q 2;1
3

contains a path of length 2 between s and t.

Subcase 1.3. Suppose that s is in Q2;0
3 � F and t is in Q 2;1

3 . Without loss of generality, we assume s ¼ 101 and list the required
path in Table 1.



Fig. 7. (a,b) Illustrations for Lemma 7; (c) the distribution of faulty nodes indicated in Lemma 8.
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Case 2: Node 111 is faulty. See Fig. 7b for illustration.

Subcase 2.1. Both s and t are in Q2;0
3 � f000g. For every possible combination of s and t, we list the required paths in Table 1.

Subcase 2.2. Both s and t are in Q 2;1
3 � f111g. This subcase is symmetric to Subcase 2.1.

Subcase 2.3. Suppose that s is in Q2;0
3 � f000g and t is in Q 2;1

3 � f111g. For every possible combination of s and t, we list the
required paths in Table 1.

In summary, Q3 � F contains a path of length at least 7� 2f (respectively, 6� 2f ) between s and t if hðs; tÞ is odd (respec-
tively, even). h

Lemma 8. Let w 2 V0ðQ3Þ and fi; j; kg ¼ f1;2;3g. Suppose that b1 and b2 are two arbitrary nodes of V1ðQ 3Þ. Then
Q3 � fw; ððwÞiÞjg contains a path of length four between b1 and b2 if and only if fb1; b2g–fðwÞk; ðððwÞiÞjÞkg.

Proof. Since Q 3 is node-transitive and link-transitive, we assume that w ¼ 000, i ¼ 1, j ¼ 2, and k ¼ 3. See Fig. 7c. Then
we list all the required paths in Table 1. h
Table 1
The required paths for Lemma 7 and Lemma 8.

Subcase 1.3 of Lemma 7
s ¼ 101 t ¼ 010 hs ¼ 101;100;110;010 ¼ ti

t ¼ 011 hs ¼ 101;111;011 ¼ ti
t ¼ 110 hs ¼ 101;100;110 ¼ ti
t ¼ 111 hs ¼ 101;100;110;111 ¼ ti

Subcase 2.1 of Lemma 7
s ¼ 101 t ¼ 001 hs ¼ 101;100;110;010;011; 001 ¼ ti

t ¼ 100 hs ¼ 101; 001; 011;010;110;100 ¼ ti
s ¼ 001 t ¼ 100 hs ¼ 001;011; 010;110;100 ¼ ti

Subcase 2.3 of Lemma 7
s ¼ 001 t ¼ 010 hs ¼ 001;011; 010 ¼ ti

t ¼ 011 hs ¼ 001;101;100;110;010;011 ¼ ti
t ¼ 110 hs ¼ 001;011; 010;110 ¼ ti

s ¼ 100 t ¼ 010 hs ¼ 100;110;010 ¼ ti
t ¼ 011 hs ¼ 100;110; 010; 011 ¼ ti
t ¼ 110 hs ¼ 100;101; 001; 011;010;110 ¼ ti

s ¼ 101 t ¼ 010 hs ¼ 101;100;110;010 ¼ ti
t ¼ 011 hs ¼ 101; 001; 011 ¼ ti
t ¼ 110 hs ¼ 101;100;110 ¼ ti

Lemma 8
b1 ¼ 001 b2 ¼ 010 hb1 ¼ 001;101;100;110; 010 ¼ b2i

b2 ¼ 100 hb1 ¼ 001;101;111;110;100 ¼ b2i
b2 ¼ 111 hb1 ¼ 001;101;100;110;111 ¼ b2i

b1 ¼ 010 b2 ¼ 100 hb1 ¼ 010;110;111;101;100 ¼ b2i
b2 ¼ 111 hb1 ¼ 010;110;100;101;111 ¼ b2i
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Theorem 4. Let F be a set of f 6 3 faulty nodes in Q4 such that every node of Q4 has at least two fault-free neighbors. Suppose that
s and t are two arbitrary nodes of Q 4 � F. Then Q 4 � F contains a path of length at least 15� 2f (respectively, 14� 2f ) between s
and t if hðs; tÞ is odd (respectively, even).

Proof. If f < 3, this result follows from Theorem 3. Thus we concentrate only on the case that f ¼ 3. By Lemmas 1–5, Fig. 2c
happens to be a unique case that a conditionally faulty Q 4 with three faulty nodes cannot be partitioned along any dimension
in such a way that both subcubes are conditionally faulty. On this occasion, we partition Q 4 along an arbitrary dimension j;
otherwise, there exists some dimension j such that both Q j;0

4 and Q j;1
4 are conditionally faulty.

Case 1: Both Qj;0
4 and Qj;1

4 are conditionally faulty. For convenience, let F0 ¼ FðQj;0
4 Þ and F1 ¼ FðQj;1

4 Þ. Without loss of
generality, we assume that f0 ¼ j F0 j ¼ 2 and f1 ¼ j F1 j ¼ 1. Moreover, we assume s 2 V0ðQ4 � FÞ.

Subcase 1.1. Both s and t are in Qj;0
4 . By Lemma 7, Qj;0

4 � F0 contains a path H0 of length at least 3 ¼ 7� 2f 0 (respectively,
2 ¼ 6� 2f 0) between s and t if hðs; tÞ is odd (respectively, even). Obviously, H0 can be written as hs ¼ x0; x1; x2;H00; ti. If ðx1Þj
is faulty, then ðx0Þj and ðx2Þj are fault-free. By Theorem 2, Qj;1

4 is hyper-Hamiltonian laceable. Thus Qj;1
4 � fðx1Þjg has a

Hamiltonian path H1 between ðx0Þj and ðx2Þj. As a result, hs ¼ x0; ðx0Þj;H1; ðx2Þj; x2;H
0
0; ti is a fault-free path of length at least

15� 2f (respectively, 14� 2f ) when hðs; tÞ is odd (respectively, even). If ðx1Þj is fault-free, then ðx0Þj or ðx2Þj is fault-free.
Suppose, for example, that ðx0Þj is fault-free. By Lemma 7, Qj;1

4 � F1 has a fault-free path H1 of length at least 7� 2f 1 between
ðx0Þj and ðx1Þj. As a result, hs ¼ x0; ðx0Þj;H1; ðx1Þj; x1; x2;H

0
0; ti is a fault-free path of length at least 15� 2f (respectively,

14� 2f ) when hðs; tÞ is odd (respectively, even).

Subcase 1.2. Both s and t are in Qj;1
4 . First, we consider the case that hðs; tÞ is odd. By Lemma 7, Qj;1

4 � F1 contains a path T1 of
length at least 5 ¼ 7� 2f 1 between s and t. Let A ¼ fðT1ðiÞ; T1ðiþ 1ÞÞ j 1 6 i 6 5 and i � 1ðmod2Þg be a set of disjoint links
on T1. Since j A j ¼ 3 > f0, there exists an odd integer ı̂, 1 6 ı̂ 6 5, such that both ðT1 ð̂ıÞÞj and ðT1ð̂ıþ 1ÞÞj are fault-free. Let
w ¼ T1 ð̂ıÞ and b ¼ T1 ð̂ıþ 1Þ. Accordingly, T1 can be written as hs; T 01;w; b; T

00
1; ti. By Lemma 7, Qj;0

4 � F0 has a path T0 of length
at least 7� 2f 0 between ðwÞj and ðbÞj. As a result, hs; T 01;w; ðwÞ

j; T0; ðbÞj; b; T 001; ti is a fault-free path of length at least 15� 2f
between s and t.

Next, we consider the case that hðs; tÞ is even. Hence we have t 2 V0ðQ4 � FÞ. Let u denote the faulty node in Q j;1
4 . Then we

distinguish the following two subcases.

Subcase 1.2.1. Suppose that u 2 V1ðQj;1
4 Þ. By Theorem 2, Qj;1

4 is hyper-Hamiltonian laceable. Thus Qj;1
4 � fug has a

Hamiltonian path H1 from s to t. Obviously, the length of H1 is equal to 6. Let
B ¼ fðH1ðiÞ;H1ðiþ 1ÞÞ j 1 6 i 6 6 and i � 1ðmod 2Þg be a set of disjoint links on T1. Since j B j ¼ 3 > f0, there exists an
odd integer ı̂, 1 6 ı̂ 6 6, such that both ðH1 ð̂ıÞÞj and ðH1ð̂ıþ 1ÞÞj are fault-free. Let w ¼ H1 ð̂ıÞ and b ¼ H1ð̂ıþ 1Þ. Thus H1 can
be written as hs;H01;w; b;H

00
1; ti. By Lemma 7, Qj;0

4 � F0 has a path H0 of length at least 7� 2f 0 between ðwÞj and ðbÞj. As a
result, hs;H01;w; ðwÞ

j;H0; ðbÞj; b;H001; ti is a fault-free path of length at least 14� 2f 0 > 14� 2f between s and t.

Subcase 1.2.2. Suppose that u 2 V0ðQj;1
4 Þ. Since hðs; tÞ is even, it follows from Lemma 7 that Qj;1

4 � F1 has a path T1 of length
at least 6� 2f 1 ¼ 4 between s and t. If there exists a link ðw; bÞ on T1 such that both ðwÞj and ðbÞj are fault-free, then a path of
length at least 14� 2f can be constructed in a way similar to that described in Subcase 1.2.1. Otherwise, we have
F0 \ fðT1ðiÞÞj; ðT1ðiþ 1ÞÞjg–; for every i. Then we claim that both ðT1ð2ÞÞj and ðT1ð4ÞÞj are faulty. Since f0 ¼ 2, we see that
j F0 \ fðT1ð1ÞÞj; ðT1ð2ÞÞj; ðT1ð3ÞÞjg j ¼ 1 and j F0 \ fðT1ð3ÞÞj; ðT1ð4ÞÞj; ðT1ð5ÞÞjg j ¼ 1. Then we have F0 \ fðT1ð1ÞÞj;
ðT1ð2ÞÞj; ðT1ð3ÞÞjg ¼ ðF0 \ fðT1ð1ÞÞj; ðT1ð2ÞÞjgÞ \ ðF0 \ fðT1ð2ÞÞj; ðT1ð3ÞÞjgÞ ¼ fðT1ð2ÞÞjg. Similarly, we have F0 \ fðT1ð3ÞÞj;
ðT1ð4ÞÞj; ðT1ð5ÞÞjg ¼ fðT1ð4ÞÞjg. That is, F0 ¼ fðT1ð2ÞÞj; ðT1ð4ÞÞjg. By Lemma 8, Qj;0

4 � F0 contains either a path T0 of length
4 between ðT1ð1ÞÞj and ðT1ð3ÞÞj or a path R0 of length 4 between ðT1ð3ÞÞj and ðT1ð5ÞÞj. As a result,hs ¼ T1ð1Þ;
ðT1ð1ÞÞj; T0; ðT1ð3ÞÞj; T1ð3Þ; T1ð4Þ; T1ð5Þ ¼ ti or hs ¼ T1ð1Þ; T1ð2Þ; T1ð3Þ; ðT1ð3ÞÞj;R0, ðT1ð5ÞÞj; T1ð5Þ ¼ ti is a fault-free path of
length 8 ¼ 14� 2f .

Subcase 1.3. Suppose that s is in Q j;0
4 and t is in Qj;1

4 . Since f0 ¼ 2, we have j V1ðQ j;0
4 Þ � F0 jP 2 ¼ j F1 [ ftg j and

j VðQ j;0
4 Þ � ðF0 [ fsgÞ j ¼ 5 >j F1 [ ftg j. If hðs; tÞ is odd, we choose a node x of V1ðQj;0

4 Þ � F0 such that ðxÞj is fault-free; otherwise,
we choose a node x of VðQ j;0

4 Þ � ðF0 [ fsgÞ such that ðxÞj R F1 [ ftg. By Lemma 7, Q j;0
4 � F0 contains a path H0 of length at least

7� 2f 0 (respectively, 6� 2f 0) between s and x when hðs; xÞ is odd (respectively, even). Similarly, Qj;1
4 � F1 contains a path H1 of

length at least 7� 2f 1 (respectively, 6� 2f 1) between ðxÞj and t when hððxÞj; tÞ is odd (respectively, even). As a result,
hs;H0; x; ðxÞj;H1; ti is a fault-free path of length at least 15� 2f (respectively, 14� 2f ) if hðs; tÞ is odd (respectively, even).

Case 2: Suppose Q4 has its faulty nodes distributed as in Fig. 2c. To be precise, we assume F ¼ f0000;0011;1100g. Then
we partition Q 4 into Q 4;0

4 and Q 4;1
4 . It is noticed that Q4;0

4 is not conditionally faulty.

Subcase 2.1. Both s and t are in Q4;0
4 � f0000;0011g. By Theorem 3, Q 4;0

4 � f0000g has a path T0 of length at least 5
(respectively, 4) between s and t if hðs; tÞ is odd (respectively, even).



Table 2
The required paths in Subcase 2.3 of Theorem 4.

s ¼ 1101 t ¼ 1110 hs ¼ 1101;1001; 0001; 0101;0100; 0110;0010;1010;1110 ¼ ti
t ¼ 1111 hs ¼ 1101;1001; 0001; 0101;0100; 0110;0010;1010;1110;1111 ¼ ti
t ¼ 1000 hs ¼ 1101;0101; 0001;1001;1011;1111;1110;1010;1000 ¼ ti
t ¼ 1001 hs ¼ 1101;0101; 0100; 0110;1110;1111;1011;1010;1000;1001 ¼ ti
t ¼ 1010 hs ¼ 1101;0101; 0100; 0110;1110;1111;1011;1001;1000;1010 ¼ ti
t ¼ 1011 hs ¼ 1101;0101; 0001;1001;1000;1010;1110;1111;1011 ¼ ti

s ¼ 1110 t ¼ 1111 hs ¼ 1110;1010;1000;1001;1101; 0101;0100; 0110;0111;1111 ¼ ti
t ¼ 1000 hs ¼ 1110;0110; 0100; 0101;0001;1001;1011;1010;1000 ¼ ti
t ¼ 1001 hs ¼ 1110;0110; 0100; 0101;1101;1111;1011;1010;1000;1001 ¼ ti
t ¼ 1010 hs ¼ 1110;0110; 0100; 0101;0001;1001;1101;1111;1011;1010 ¼ ti
t ¼ 1011 hs ¼ 1110;0110; 0100; 0101;0001;1001;1101;1111;1011 ¼ ti

s ¼ 1111 t ¼ 1000 hs ¼ 1111;0111; 0110;0100; 0101;0001;1001;1011;1010;1000 ¼ ti
t ¼ 1001 hs ¼ 1111;0111; 0101;0100; 0110;0010;1010;1000;1001 ¼ ti
t ¼ 1010 hs ¼ 1111;0111; 0110;0100; 0101;1101;1001;1000;1010 ¼ ti
t ¼ 1011 hs ¼ 1111;0111; 0101;0100; 0110;0010;1010;1000;1001;1011 ¼ ti

s ¼ 1000 t ¼ 1001 hs ¼ 1000;1010;1110; 0110;0100; 0101;1101;1111;1011;1001 ¼ ti
t ¼ 1010 hs ¼ 1000;1001;1101; 0101;0100; 0110;1110;1111;1011;1010 ¼ ti
t ¼ 1011 hs ¼ 1000;1001;1101; 0101;0100; 0110;1110;1111;1011 ¼ ti

s ¼ 1001 t ¼ 1010 hs ¼ 1001;1011;1111;0111;0101; 0100; 0110;1110;1010 ¼ ti
t ¼ 1011 hs ¼ 1001;1000;1010;1110;0110; 0100;0101;1101;1111;1011 ¼ ti

s ¼ 1010 t ¼ 1011 hs ¼ 1010;1000;1001;1101;0101; 0100;0110;0111;1111;1011 ¼ ti
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We consider first that hðs; tÞ is odd. Thus the length of path T0 is greater than or equal to 5. Then T0 passes through every
node of V0ðQ 4;0

4 Þ � f0000g. In particular, the faulty node 0011 is on T0. Hence T0 can be written as hs; T 00; x; 0011; y; T 000; ti. Since
hð0011;1100Þ ¼ 4, both ðxÞ4 and ðyÞ4 are fault-free. Since hððxÞ4; ðyÞ4Þ is even, Theorem 3 ensures that Q4;1

4 � f1100g has a
path T1 of length at least 4 between ðxÞ4 and ðyÞ4. As a result, hs; T 00; x; ðxÞ

4
; T1; ðyÞ4; y; T 000; ti is a fault-free path of length at least

9 ¼ 15� 2f .
Next, we consider the case that hðs; tÞ is even. We distinguish whether the faulty node 0011 is on T0. If node 0011 is on T0,

then a path of length at least 8 can be constructed to join s and t in a way similar to that described earlier. Otherwise, there
exists a link ðw; bÞ on T0 such that both ðwÞ4 and ðbÞ4 are fault-free. Hence T0 can be written as hs;R00;w; b;R

00
0; ti. By Theorem 3,

Q4;1
4 � f1100g has a path T1 of length at least 5 between ðwÞ4 and ðbÞ4. Then hs;R00;w; ðwÞ

4; T1; ðbÞ4; b;R000; ti turns out to be a
fault-free path of length at least 10 > 14� 2f .

Subcase 2.2. Suppose that s is in Q 4;0
4 � f0000;0011g and t is in Q4;1

4 � f1100g. By Theorem 3, Q4;0
4 � f0000g has a path T0 of

length at least 5 (respectively, 4) between nodes s and 0011 if hðs;0011Þ is odd (respectively, even). Accordingly, we write T0

as hs; T 00; x; y;0011i. Since hð0011;1100Þ ¼ 4, both ðxÞ4 and ðyÞ4 is fault-free. On the one hand, we assume ðyÞ4 – t. By
Theorem 3, Q4;1

4 � f1100g has a path T1 of length at least 5 (respectively, 4) between ðyÞ4 and t if hððyÞ4; tÞ is odd
(respectively, even). As a result, hs; T 00; x; y; ðyÞ

4; T1; ti is a fault-free path of length at least 9 ¼ 15� 2f (respectively,
8 ¼ 14� 2f ) if hðs; tÞ is odd (respectively, even). On the other hand, if ðyÞ4 ¼ t, then Theorem 3 ensures that Q 4;1

4 � f1100g
has a path R1 of length at least 5 between ðxÞ4 and ðyÞ4. Then hs; T 00; x; ðxÞ

4;R1; ðyÞ4 ¼ ti turns out to be a fault-free path of
length at least 9 ¼ 15� 2f (respectively, 8 ¼ 14� 2f ) if hðs; tÞ is odd (respectively, even).

Subcase 2.3. Both s and t are in Q 4;1
4 � f1100g. We list the required paths obtained by brute force in Table 2.

Therefore the proof is completed. h
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