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摘         要 

 

在這篇論文中，討論 階置換矩陣n nΑ 的原始性質。而這些主題與 維有

限型的移位之混合性質有關。 

2

我們的目的是給定 階置換矩陣2 2Α 的某些必備條件，進而証得矩陣 nΑ 的

原始性質。這些結果可以被提供去研究有安全符號的矩陣 之原始性質。

在這篇論文中，我們也檢查一些與有限型的矩陣子移位 是弱擴張

混合相關的例子，對於這些例子，我們都可証得所有 的 階矩陣

nΑ

( 2ΑΩ=Λ )

2≥n n nΑ 是

原始的。最後，我們描述一些與 nΑ 的原始性質有關的結果。 
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ABSTRACT 

In this paper, the primitivity of n-th order transition matrices  defined on 

are studied, this topics related to the mixing property of 2-dimensional shift 

of finite type. 

nΑ

n×Ζ2

Our propose is to give some necessary conditions for 2Α  to guarantee the p- 

rimitivity of . The results can be applied to study the primitivity of which 

has safe symbol. In the paper, we also check some examples related to the matr- 

ix subshift of finite type 

nΑ nΑ

( )2ΑΩ=Λ  be extensively weak mixing, and for these 

examples, we all show that  is primitive for all . Finally, we describe 

some results related to the primitivity of 

nΑ 2≥n

nΑ . 
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1 Introduction

Many systems have been studied as models for spatial pattern formation in
biology, chemistry, engineering and physics. Lattices play important roles in
modeling underlying spatial structures. We mention some works arising in
biology([1], [3], [22], [24], [25], [28], [29], [30]), chemical reaction and phase
transitions([4], [10], [15], [16], [17], [19], [23], [32], [36]), image processing
and pattern recognition([11], [13], [15], [16], [18], [20], [21], [26], [35]), as well
as materials science([12], [14], [27]). In Lattice Dynamical Systems(LDS),
especially Cellular Neural Networks(CNN), the complexity of the set of all
global patterns has received considerable attention in recent years([2], [5],
[6], [9]). One of the interesting problem comes from the statistic mechanism,
is d-demensional shift of �nite type, state as follows, given a list of patterns
with shape F 2 Zd, consider the set

X = XL =
n
x 2 AZd

�� for all n 2 Zd; and �n (x)��F 2 Lo (1.1)

where A is a �nite set, we call it symbol, and without loss of generality,
F is d-demensional cube, i.e., F = f(n1; :::; nd) j 1 � nk � k; 8k = 1; :::; dg,
many invariants related to the shift of �nite will discussed likewise in [31],
e.g., the topological entropy, measure-theoretical entropy, variational princi-
ple, mixing property, and extension problem. Unfortunately, unlike the one
dimensional case, it�s extremely di¢ culty to compute and check those invari-
ants, for example, only a very few example of entropy of 2-dimensional shift
of �nite type can be computed explicitly, also for mixing property. In this
Paper we start to study the mixing property of d-dimension shift of �nite
type, and we focus on d=2. In [7], the authors construct a �nite approxima-
tion scheme of higher dimensional shift of �nite type, and call it the series of
transition matrices in multi-dimensional lattice model in Z2, we are going to
use the structure of such transition matrices to study the mixing property of
higher dimensional shift of �nite type.
We �rst recall some results in [7], which are crucial in this study. For

simplicity, we only consider two symbols which are given on 2 � 2 lattice
Z2�2. We begin with a consideration of given horizontal transition matrix

H2 =

0BB@
h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

1CCA (1.2)
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which is related to a set of admissible local patterns on Z2�2 , and

hij 2 f0; 1g for 1 � i; j � 4 (1.3)

The associated vertical transition matrix V2 is de�ned by

V2 =

0BB@
v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

1CCA (1.4)

In 2-dimensional shift of �nite type, one can immediate construct the H2 ac-
cording to the list of pattern with shape F = f(n1; n2) j 1 � ni � 2; 8i = 1; 2g
. In [7], H2 and V2 possess the following property to each other

H2 =

0BB@
v11 v12 v21 v22
v13 v14 v23 v24
v31 v32 v41 v42
v33 v34 v43 v44

1CCA =

�
H2;1 H2;2
H2;3 H2;4

�
; (1.5)

and

V2 =

0BB@
h11 h12 h21 h22
h13 h14 h23 h24
h31 h32 h41 h42
h33 h34 h43 h44

1CCA =

�
V2;1 V2;2
V2;3 V2;4

�
: (1.6)

The recursive formula for n-th order horizontal transition matricesHn de�ned
on Z2�n has been obtained [7] by the following procedure:

Hk+1 =

0BB@
v11Hk;1 v12Hk;2 v21Hk;1 v22Hk;2
v13Hk;3 v14Hk;4 v23Hk;3 v24Hk;4
v31Hk;1 v32Hk;2 v41Hk;1 v42Hk;2
v33Hk;3 v34Hk;4 v43Hk;3 v44Hk;4

1CCA (1.7)

whenever

Hk =
�
Hk;1 Hk;2
Hk;3 Hk;4

�
(1.8)

for k � 2. The number of all admissible patterns de�ned on Zm�n which can
be generated from H2 is now de�ned by

�m�n (H2) =
��Hm�1

n

�� (1.9)

= the summation of all entries in Hm�1
n
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The quantitative properties of Hn for n � 2 are interesting problem in
matrix theory and combinatorial dynamics, the most important one is the
primitive property, in matrix analysis, the primitivity of a nonnegative matrix
will guarantee the positivity of the maximal eigenvalue of a given matrix,
and according to the discussion above, if some H2 is induced from some 2-
dimensional shift of �nite type, then primitivity of H2 demonstrate the shift
is mixing. And some interesting dynamics will appear therein, for example,
the periodic orbits is dense, and there exists a unique measure of maximal
entropy. Thus, it give rise to the study the primitivity of Hn;8n � 2:
The di¢ culties of this study is that the size of Hn grows exponentially,

i.e., Hn 2M2n�2n ; then it�s of nature and interesting to ask that which kind
of su¢ cient conditions will guarantee the primitivity for Hn. To overcome
this problem, the powerful tool sn; Sn; Rn and Cn will be introduced, thus
we obtain some checkable conditions of H2 to guarantee the primitivity for
Hn;8n � 2:
The paper is organized as follows. Section 2 introduce some de�nitions,

sn; Sn; Rn and Cn, the main result and proof will presented in section 3,
section 4 included some examples of 2 symbols in Z2 and some results related
to the primitivity of Hn;8n � 2:
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2 Preliminaries

2.1 De�nitions

In this section, we give some standard de�nitions in matrix analysis related
to our study. As mentioned in the introduction, horizontal transition matrix
H2 and vertical transition matrix V2 are related to each other. However,
in application, usually it is better working on one matrix then the other.
Therefore, we use A2 and B2 to replace H2 and V2 throughout this paper,
i.e., if A2 = H2 then B2 = V2 and if A2 = V2 then B2 = H2: Therefore, for
simplicity, only A2 is stated herein.
First, we de�ne the non-compressible property for a matrix.

De�nition 1 We say a matrix A 2 Mn�n (Z) is non-compressible if no
column and row of A are all zero.

In the other word ,if A is compressible, i.e., at least one column or row
of A is all zero.
Next, we follow the notation from [7] to denote the recursive formulae for

n-th order transition matrices An de�ned on Z2�n (or Zn�2) ; by

An = (An�1)2n�1�2n�1 �
�
E2n�2�2n�2 


�
A2;1 A2;2
A2;3 A2;4

��
2n�1�2n�1

; (2.1)

for n > 2; where

�
A2;1 A2;2
A2;3 A2;4

�
=

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA = A2

and A2;� 2M2�2 (Z), 8� 2 f1; 2; 3; 4g :
Then, we de�ne the rn and cn below:

De�nition 2 If A 2Mn�n (Z) ; we de�ne

r (A) = fi j A (i; j) = 0; 8j g

and
c (A) = fi j A (j; i) = 0; 8j g ;

and from (2:1), we denote rn and cn for given A2 as rn (A2) = r (An) and
cn (A2) = c (An) :
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Therefore, we de�ne the safe symbol of a matrix, and the conception of
safe symbol comes from [34].

De�nition 3 If A 2Mn�n (Z) ; we say index i is a safe symbol if

A (j; i) = 1; 8j 2 f1; :::; ng nr (A) ;

and
A (i; j) = 1; 8j 2 f1; :::; ng nc (A) :

Example 4 If A2 =

0BB@
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

1CCA ; then from De�nition2 and 3; for

n = 2; we have

r2 = f4g
c2 = f4g

and
i = 1 is a safe symbol.

2.2 sn; Sn; Rn and Cn
In this section, sn; Sn; Rn and Cn are introduced, these four concepts are
de�ned in, and is crucial for our study. First, we de�ne the sn:

De�nition 5 If A = (aij)
n
i;j=1 2 Mn�n (Z) has a safe symbol i; we denote

s (A) = aii, and from (2:1), we denote sn for given A2 as sn (A2) = s (An) :

Next, for (2:1) ; we de�ne the Sn; Rn and Cn below.

De�nition 6 From (2:1), if An 2M2n�2n (Z) has a safe symbol; we denote
S (An) = A2;�S , for �S 2 f1; 2; 3; 4g ; be the 2� 2 block that s (An) is inside
and we denote Sn for given A2 as Sn (A2) = S (An) :

De�nition 7 From (2:1), if An 2M2n�2n (Z) has a safe symbol; we de�ne

R (An) = fA2;� j A2;� and S (An) are on the same rowg ;

C (An) = fA2;� j A2;� and S (An) are on the same columng
and we denote Rn and Cn for given A2 as Rn (A2) = R (An) and Cn (A2) =
C (An) :
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Next, from (2:1) and De�nition7; if A2 has a safe symbol, i.e., s2 exists,
we de�ne the proposition below.

Proposition 8 For A2;� =
�
b�1 b�2
b�3 b�4

�
; 8� 2 f1; 2; 3; 4g ; we say A2;� has

property R if it satis�ed one of the follow situations: 8i 2 f1; 2g nr (A2;�) ;

(1) if s2 = b11; then A2;� (i; 1) = 1;8� 2 f1; 3g ;
(2) if s2 = b14; then A2;� (i; 2) = 1;8� 2 f1; 3g ;
(3) if s2 = b41; then A2;� (i; 1) = 1;8� 2 f2; 4g ;
(4) if s2 = b44; then A2;� (i; 2) = 1;8� 2 f2; 4g ;

and we say A2;� has property C if it satis�ed one of the follow situations:
8j 2 f1; 2g nc (A2;�) ;

(1) if s2 = b11; then A2;� (1; j) = 1;8� 2 f1; 2g ;
(2) if s2 = b14; then A2;� (2; j) = 1;8� 2 f1; 2g ;
(3) if s2 = b41; then A2;� (1; j) = 1;8� 2 f3; 4g ;
(4) if s2 = b44; then A2;� (2; j) = 1;8� 2 f3; 4g :

Example 9 If A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA =

�
A2;1 A2;2
A2;3 A2;4

�
=

0BB@
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

1CCA ;
then A2 has a safe symbol. Therefore, from De�nition5, 6, 7 and Proposition9;
for n = 2; we have

s2 = b11;

S2 = A2;�s = A2;1 =

�
1 1
1 0

�
;

R2 = fA2;1; A2;2g
C2 = fA2;1; A2;3g :

and

A2;� has property R; 8� 2 f1; 3g
A2;� has property C; 8� 2 f1; 2g

6



3 Main Theorem

In this section, we will formulate the main theorems of our study and proof.
First, we de�ne the primitive property for a matrix.

De�nition 10 Let A 2Mn�n (Z) is called primitive if there exists an inte-
ger k � 1 such that Ak � En�n (full matrix), and let � (A) be the minimum
number of such k, i.e.,

� (A) � min
�
k : Ak � En�n

	
:

In this paper, we use the "generalized" primitive property for a matrix,
i.e., let A 2 Mn�n (Z) is called "generalized" primitive if there exists an
integer k � 1 such that

Ak (i; j) � 1;8i 2 f1; :::; ng nr (A) ; 8j 2 f1; :::; ng nc (A)

Before proving the main Theorem, we show lemma �rst.

Lemma 11 If A 2Mn�n (Z) has at least one safe symbol then A is primi-
tive.
Proof. By the de�nition of primitive, it su¢ ces to show that there exists an
integer k � 1 such that

Ak (i; j) � 1;8i 2 f1; :::; ng nr (A) ; 8j 2 f1; :::; ng nc (A) : (3.1)

Since A 2Mn�n (Z) has at least one safe symbol, we let A = (aij) ni;j=1 and
index i = m be a safe symbol. Then

amj = 1; 8j 2 f1; :::; ng nc (A) ; (3.2)

and
ajm = 1; 8j 2 f1; :::; ng nr (A) : (3.3)

Indeed, let A2 = (�ij) ni;j=1, then

�ij = ai1a1j + ai2a2j + :::+ aimamj + :::+ ainanj: (3.4)

From (3:2) and (3:3) ; 8i 2 f1; :::; ng nr (A) ;8 j 2 f1; :::; ng nc (A) ; we get

aimamj = 1 (3.5)

7



and from (3:4) and (3:5) ; we �nd, 8i 2 f1; :::; ng nr (A) ; j 2 f1; :::; ng nc (A) ;

�ij � 1: (3.6)

I.e.,
Ak (i; j) � 1;8i 2 f1; :::; ng nr (A) ; 8j 2 f1; :::; ng nc (A) :

Thus from (3:1) ; k = 2 is chose as we want. This complete the proof of
Lemma11.

Next, we giveA2 and write it asA2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA =

�
A2;1 A2;2
A2;3 A2;4

�
,

where A2;� 2 M2�2 (Z), 8� 2 f1; 2; 3; 4g : And we follow the recursive for-
mulae for n-th order transition matrices An from (2:1) : Then we prove the
main Theorem of this paper.

Theorem 12 If A2 2M4�4 (Z) satis�es the following properties
(1) A2 and A3 have safe symbols.
(2) There exist sequences f�kg

q
k=0 such that for all k = 0; :::; q and q � 2;

we have
(a) �k 2 f1; 4g ;
(b) there exists 0 � m � q; such that �m = �0 or �m+1 = �1;
(c) s2 = b�0�1 and s3 = b�0�1b�1�2 = s2b�1�2 ;

Then An is primitive for all n � 2:

Proof. We prove it by induction, since A2 has a safe symbol and s2 = b�0�1 ;
then

A2 (s2; s2) = 1; (3.7)

A2 (s2; j) = 1; 8j 2
�
1:::22

	
nc2; (3.8)

and
A2 (i; s2) = 1; 8i 2

�
1:::22

	
nr2: (3.9)

Therefore
S2 = A2;�0 ; (3.10)

R2 = fA2;� j � 2 f1; 2g or f3; 4gg ; where A2;� has property C (3.11)

8



and

C2 = fA2;� j � 2 f1; 3g or f2; 4gg ; where A2;� has property R: (3.12)

Since A3 has a safe symbol and s3 = b�0�1b�1�2 = s2b�1�2 ; then

A3 (s3; s3) = 1; (3.13)

A3 (s3; j) = 1; 8j 2
�
1:::23

	
nc3; (3.14)

and
A3 (i; s3) = 1; 8i 2

�
1:::23

	
nr3: (3.15)

Therefore
S3 = A2;�1 ; (3.16)

R3 = fA2;� j � 2 f1; 2g or f3; 4gg ; where A2;� has property C (3.17)

and

C3 = fA2;� j � 2 f1; 3g or f2; 4gg ; where A2;� has property R: (3.18)

Next, we show that s4 exists, such that A4 (s4; s4) = 1; A4 (s4; j) = 1; 8j 2
f1:::24g nc4; and A4 (i; s4) = 1; 8i 2 f1:::24g nr4:
By (2:1) ; we perform A3 and A4 for given A2 as follows

A3 =
�
A3;1 A3;2
A3;3 A3;4

�
;

where

A3;� =

�
b�1A2;1 b�2A2;2
b�3A2;3 b�4A2;4

�

=

0BB@
b�1b11 b�1b12 b�2b21 b�2b22
b�1b13 b�1b14 b�2b23 b�2b24
b�3b31 b�3b32 b�4b41 b�4b42
b�3b33 b�3b34 b�4b43 b�4b44

1CCA ;
for � 2 f1; 2; 3; 4g ; and

A4 =
�
A4;1 A4;2
A4;3 A4;4

�
;

9



where

A4;� =
�
b�1A3;1 b�2A3;2
b�3A3;3 b�4A3;4

�

=

0BB@
b�1b11A2;1 b�1b12A2;2 b�2b21A2;1 b�2b22A2;2
b�1b13A2;3 b�1b14A2;4 b�2b23A2;3 b�2b24A2;4
b�3b31A2;1 b�3b32A2;2 b�4b41A2;1 b�4b42A2;2
b�3b33A2;3 b�3b34A2;4 b�4b43A2;3 b�4b44A2;4

1CCA ; (3.19)

for � 2 f1; 2; 3; 4g :
Next, we use the conditions (2)-(a)~(2)-(b) to take the di¤erent s4 in the

follow situations:
(1) If �1 = �0; then we take

s4 = b�0�0b�0�0b�0�0 = s3b�0�0 :

so
S2 = S3 = S4 = A2;�0 ;

and

R2 = R3 = R4;

C2 = C3 = C4;

(2) If �0 6= �1 and �1 6= �2 (i:e:; �2 = �0) ; then we take

s4 = b�0�1b�1�0b�0�1 = s3b�0�1 :

so

S2 = A2;�0 ;

S3 = A2;�1 ;

S4 = A2;�0 ;

and

R2 = R4 6= R3;
C2 = C4 6= C3;

(3) If �0 6= �1 and �2 = �1; then we take

s4 = b�0�1b�1�1b�1�1 = s3b�1�1 :

10



so

S2 = A2;�0 ;

S3 = S4 = A2;�1 ;

and

R2 6= R3; R3 = R4;

C2 6= C3; C3 = C4;

Then from (3:7) and (3:13) ; we get A4 (s4; s4) = 1; from (3:14) ; (3:19) and
(3:11) or (3:17) ; we get A4 (s4; j) = 1; 8j 2 f1:::24g nc4; and from (3:15) ;
(3:19) and (3:12) or (3:18) ; we get A4 (i; s4) = 1; 8i 2 f1:::24g nr4, i.e., A4
has at least one safe symbol.
Now, we assume An�2 and An�1 have safe symbols and sn�2 = sn�3b�0�1

and sn�1 = sn�3b�0�1b�1�2 = sn�2b�1�2, in the same fashion of proof of A4 has
at least one safe symbol, since An�2 has a safe symbol and s2 = sn�3b�0�1 ;
then

An�2 (sn�2; sn�2) = 1; (3.20)

An�2 (sn�2; j) = 1; 8j 2
�
1:::2n�2

	
ncn�2; (3.21)

and
An�2 (i; sn�2) = 1; 8i 2

�
1:::2n�2

	
nrn�2: (3.22)

Therefore
Sn�2 = A2;�0 ; (3.23)

Rn�2 = fA2;� j � 2 f1; 2g or f3; 4gg ; where A2;� has property C (3.24)

and

Cn�2 = fA2;� j � 2 f1; 3g or f2; 4gg ; where A2;� has property R: (3.25)

Since An�1 has a safe symbol and sn�1 = sn�3b�0�1b�1�2 = sn�2b�1�2 ; then

An�1 (sn�1; sn�1) = 1; (3.26)

An�1 (sn�1; j) = 1; 8j 2
�
1:::2n�1

	
ncn�1; (3.27)

and
An�1 (i; sn�1) = 1; 8i 2

�
1:::2n�1

	
nrn�1: (3.28)
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Therefore
Sn�1 = A2;�1 ; (3.29)

Rn�1 = fA2;� j � 2 f1; 2g or f3; 4gg ; where A2;� has property C (3.30)

and

Cn�1 = fA2;� j � 2 f1; 3g or f2; 4gg ; where A2;� has property R: (3.31)

Next, we show that sn exists, such that An (sn; sn) = 1; An (sn; j) = 1;
8j 2 f1:::2ng ncn; and An (i; sn) = 1; 8i 2 f1:::2ng nrn:
By (2:1) ; we perform An�1 and An for given An�2 as follows

An�1 =
�
An�1;1 An�1;2
An�1;3 An�1;4

�
;

where

An�1;� =

�
b�1An�2;1 b�2An�2;2
b�3An�2;3 b�4An�2;4

�

=

0BB@
b�1b11An�3;1 b�1b12An�3;2 b�2b21An�3;1 b�2b22An�3;2
b�1b13An�3;3 b�1b14An�3;4 b�2b23An�3;3 b�2b24An�3;4
b�3b31An�3;1 b�3b32An�3;2 b�4b41An�3;1 b�4b42An�3;2
b�3b33An�3;3 b�3b34An�3;4 b�4b43An�3;3 b�4b44An�3;4

1CCA ;
for � 2 f1; 2; 3; 4g ; and

An =
�
An;1 An;2
An;3 An;4

�
;

where

An;� =
�
b�1An�1;1 b�2An�1;2
b�3An�1;3 b�4An�1;4

�

=

0BB@
b�1b11An�2;1 b�1b12An�2;2 b�2b21An�2;1 b�2b22An�2;2
b�1b13An�2;3 b�1b14An�2;4 b�2b23An�2;3 b�2b24An�2;4
b�3b31An�2;1 b�3b32An�2;2 b�4b41An�2;1 b�4b42An�2;2
b�3b33An�2;3 b�3b34An�2;4 b�4b43An�2;3 b�4b44An�2;4

1CCA ; (3.32)

for � 2 f1; 2; 3; 4g :
Next, we use the conditions (2)-(a)~(2)-(b) to take the di¤erent sn in the

follow situations:
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(1) If �1 = �0; then we take

sn = sn�3b�0�0b�0�0b�0�0 = sn�1b�0�0 :

so
Sn�2 = Sn�1 = Sn = A2;�0 ;

and

Rn�2 = Rn�1 = Rn;

Cn�2 = Cn�1 = Cn;

(2) If �0 6= �1 and �1 6= �2 (i:e:; �2 = �0) ; then we take

sn = sn�3b�0�1b�1�0b�0�1 = sn�1b�0�1 :

so

Sn�2 = A2;�0 ;

Sn�1 = A2;�1 ;

Sn = A2;�0 ;

and

Rn�2 = Rn 6= Rn�1;
Cn�2 = Cn 6= Cn�1;

(3) If �0 6= �1 and �2 = �1; then we take

sn = sn�3b�0�1b�1�1b�1�1 = sn�1b�1�1 :

so

Sn�2 = A2;�0 ;

Sn�1 = Sn = A2;�1 ;

and

Rn�2 6= Rn�1; Rn�1 = Rn;

Cn�2 6= Cn�1; Cn�1 = Cn;

13



Then from (3:20) and (3:26) ; we get An (sn; sn) = 1; from (3:27) ; (3:32) and
(3:24) or (3:30) ; we get An (sn; j) = 1; 8j 2 f1:::2ng ncn; and from (3:28) ;
(3:32) and (3:25) or (3:31) ; we get An (i; sn) = 1; 8i 2 f1:::2ng nrn, i.e., An
has at least one safe symbol. Therefore, Lemma11 is applied to show An is
primitive. This complete the proof of Theorem12.
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4 Examples for safe symbol existing Case

For the section, we will show some examples in [33] to check primitivity of An;
8n � 2. In [33], the authors prove the Theorem related to the extensively
weak mixing property. We will use the conditions of the extensively weak
mixing property to �nd H and V: Then we use some results in [33] to con-
struct horizontal transition matrix H2 and vertical transition matrix V2: And
to �nd the cases that if A2 = H2 or A2 = V2 can all let An be primitive for
all n � 2:

4.1 Find H and V

We �rst state the Theorem related to the extensively weak mixing property
in [33] .

Theorem 13 (Theorem 5.8 of [33]) Suppose � = 
 (A1; :::; Av) is a sub-
shift of �nite type and each Ai is a p� p matrix. Then � is extensively weak
mixing if and only if for all � 2 � f�1; 1gv there exists n satisfying

1 � n � p2 � 2p+ 2 (4.1)

and
A
(�1)n
1 :::A(�v)nv > 0: (4.2)

For simplicity, we only consider two symbols which are given on 2 � 2
lattice Z2�2: So we just suppose � = 
 (H; V ) ; p = 2 and � = 1: Since � = 1;
in [33], we know that the matrix subshift � = 
 (H; V ) is of �nite type if
and only if HV = V H:
So by the above statement, we can get three conditions below, such that

� = 
 (H; V ) is extensively weak mixing.
Condition 1 HV = V H
Condition 2 1 � n � 2
Condition 3 HnV n > 0
From the above conditions, we can �nd eleven cases for H and V:

Case 1 H = V =

�
1 1
1 0

�
Case 2 H = V =

�
0 1
1 1

�
15



Case 3 H = V =

�
1 1
1 1

�
Case 4 H =

�
1 1
1 0

�
, V =

�
1 0
0 1

�
Case 5 H =

�
1 0
0 1

�
, V =

�
1 1
1 0

�
Case 6 H =

�
0 1
1 1

�
, V =

�
1 0
0 1

�
Case 7 H =

�
1 0
0 1

�
, V =

�
0 1
1 1

�
Case 8 H =

�
1 1
1 1

�
, V =

�
1 0
0 1

�
Case 9 H =

�
1 0
0 1

�
, V =

�
1 1
1 1

�
Case 10 H =

�
1 1
1 1

�
, V =

�
0 1
1 0

�
Case 11 H =

�
0 1
1 0

�
, V =

�
1 1
1 1

�
Next, we will take these cases of H and V to construct horizontal transi-

tion matrix H2 and vertical transition matrix V2:

4.2 Construct H2 and V2
we consider �rst some results in [7], which are crucial to the constructs of H2
and V2: We begin with 1� 2 column pattern hi;

hi =

�
u2
u1

�
or

u2
u1

(4.3)

and
i = 1 + 2u1 + u2: (4.4)

A 2� 2 pattern U = (u�1�2) can now be obtained by a horizontal direct
sum of two 1� 2 pattern, i.e.,

hi1i2 � hi1 � hi2

�
�
u12 u22
u11 u21

�
or

u12 u22
u11 u21

; (4.5)
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where
ik = 1 + 2uk1 + uk2; 1 � k � 2: (4.6)

Therefore, the complete set of all 16(= 22�2) 2 � 2 patterns in �2�2 can
be listed by a 4� 4 matrix H2 = (hi1i2) with 2� 2 pattern hi1i2 as its entries
in

0
0

1
0

0
1

1
1

0
0

1
0

0
1

1
1

0BBBBBBBBBBBBBBBB@

0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1

1 0 1 1 1 0 1 1
0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 1
1 0 1 0 1 1 1 1

1 0 1 1 1 0 1 1
1 0 1 0 1 1 1 1

1CCCCCCCCCCCCCCCCA

(4.7)

Similarly, a 2 � 2 pattern can also be viewed as a vertical direct sum of
two 2� 1 patterns, i.e.,

vj1j2 � vj1 � vj2 ; (4.8)

where
vjl =

�
u1l u2l

�
or u1l u2l ; (4.9)

and
jl = 1 + 2u1l + u2l; 1 � l � 2: (4.10)
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A 4� 4 matrix V2 = (vj1j2) can also be obtained for �2�2; i.e., we have

0 0 0 1 1 0 1 1

0 0

0 1

1 0

1 1

0BBBBBBBBBBBBBBBB@

0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1
0 1 0 1 0 1 0 1

0 0 0 1 1 0 1 1
1 0 1 0 1 0 1 0

0 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCA

(4.11)

From above, H2 can also be represented by vj1j2 as

H2 =

0BB@
v11 v12 v21 v22
v13 v14 v23 v24
v31 v32 v41 v42
v33 v34 v43 v44

1CCA : (4.12)

In (4:12) ; the indices j1j2 are arranged by two Z-map successively, as0@ 1 ! 2
.

3 ! 4

1A ; (4.13)

i.e., the path from 1 to 4 in (4:13) is Z shaped and is then called a Z-map.
More precisely, H2 can be decomposed by

H2 =
�
V2;1 V2;2
V2;3 V2;4

�
(4.14)

and

V2;K =

�
vk1 vk2
vk3 vk4

�
: (4.15)

Where, H2 is arranged by a Z-map (V2;K) in (4:14) and each V2;K is also
arranged by a Z-map (vkl) in (4:15) : Therefore, the indices of v in (4:12)
consist of two Z-map.
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Then, we use the above mention to get the value of H2 and V2. We �rst
let

H =
0
1

0 1�
a1 a2
a3 a4

�
; V =

0
1

0 1�
b1 b3
b2 b4

�
(4.16)

where
ai; bj 2 f0,1g ; for i; j = 1 to 4. (4.17)

So by (4:3) , (4:9)

h1 =
0
0
= b1; h2 =

1
0
= b2;

h3 =
0
1
= b3; h4 =

1
1
= b4 (4.18)

and

v1 = 0 0 = a1; v2 = 0 1 = a2;

v3 = 1 0 = a3; v4 = 1 1 = a4 (4.19)

But by (4:7) and (4:11) ; if we want to get the value of H2 and V2, we
must consider the value of H and V at the same time. Therefore,

H2 =

0BB@
h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

1CCA

=

0BB@
a1a1b1b1 a2a1b1b2 a1a2b1b3 a2a2b1b4
a3a1b2b1 a4a1b2b2 a3a2b2b3 a3a2b2b4
a1a3b3b1 a2a3b3b2 a1a4b3b3 a2a4b3b4
a3a3b4b1 a4a3b4b2 a3a4b4b3 a4a4b4b4

1CCA (4.20)

and

V2 =

0BB@
v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

1CCA

=

0BB@
a1a1b1b1 a2a1b1b2 a3a1b2b1 a4a1b2b2
a1a2b1b3 a2a2b1b4 a3a2b2b3 a3a2b2b4
a1a3b3b1 a2a3b3b2 a4a3b4b1 a4a3b4b2
a1a4b3b3 a2a4b3b4 a3a4b4b3 a4a4b4b4

1CCA (4.21)
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From above, we can also �nd

H2 =

0BB@
v11 v12 v21 v22
v13 v14 v23 v24
v31 v32 v41 v42
v33 v34 v43 v44

1CCA =

�
V2;1 V2;2
V2;3 V2;4

�
(4.22)

and

V2 =

0BB@
h11 h12 h21 h22
h13 h14 h23 h24
h31 h32 h41 h42
h33 h34 h43 h44

1CCA =

�
H2;1 H2;2
H2;3 H2;4

�
(4.23)

Therefore we get V2 for given H2:
Next, for those eleven cases of H and V in section4.1: We also use the

introduced method above to get eleven cases below for H2 and V2:

Case 1 If H = V =

�
1 1
1 0

�

then H2 =

0BB@
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

1CCA ; V2 =
0BB@
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

1CCA :
Case 2 If H = V =

�
0 1
1 1

�

then H2 =

0BB@
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1

1CCA ; V2 =
0BB@
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1

1CCA :
Case 3 If H = V =

�
1 1
1 1

�

then H2 =

0BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1CCA ; V2 =
0BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1CCA :
Case 4 If H =

�
1 1
1 0

�
, V =

�
1 0
0 1

�

then H2 =

0BB@
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1CCA ; V2 =
0BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1CCA :
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Case 5 If H =

�
1 0
0 1

�
, V =

�
1 1
1 0

�

then H2 =

0BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1CCA ; V2 =
0BB@
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1CCA :
Case 6 If H =

�
0 1
1 1

�
, V =

�
1 0
0 1

�

then H2 =

0BB@
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1CCA ; V2 =
0BB@
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA :
Case 7 If H =

�
1 0
0 1

�
, V =

�
0 1
1 1

�

then H2 =

0BB@
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA ; V2 =
0BB@
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1CCA :
Case 8 If H =

�
1 1
1 1

�
, V =

�
1 0
0 1

�

then H2 =

0BB@
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1CCA ; V2 =
0BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA :
Case 9 If H =

�
1 0
0 1

�
, V =

�
1 1
1 1

�

then H2 =

0BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA ; V2 =
0BB@
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1CCA :
Case 10 If H =

�
1 1
1 1

�
, V =

�
0 1
1 0

�

then H2 =

0BB@
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

1CCA ; V2 =
0BB@
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1CCA :
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Case 11 If H =

�
0 1
1 0

�
, V =

�
1 1
1 1

�

then H2 =

0BB@
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1CCA ; V2 =
0BB@
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

1CCA :
Next, we want to check that for these cases, if A2 = H2 or A2 = V2; then

An is primitive for all n � 2:

4.3 Checking all cases in section4.2 can let An be prim-
itive for all n � 2

We separate these cases into four subsections.

4.3.1 s2 = b11 or b44 and one column and one row of A are all zero

We consider the case1 and case2 in section4.2.

Example 14 Consider A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA = H2 =

0BB@
1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

1CCA.
By (2:1) ; it is easily checked that

(1) A2 and A3 =

0BBBBBBBBBB@

1 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 1; �1 = 1; �2 = 1

and
s2 = b11; s3 = b11b11 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:
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Example 15 Consider A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA = H2 =

0BB@
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1

1CCA.
By (2:1) ; it is easily checked that

(1) A2 and A3 =

0BBBBBBBBBB@

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1
0 0 1 1 0 1 1 1

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 4; �1 = 4; �2 = 4

and
s2 = b44; s3 = b44b44 = s2b44

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:

4.3.2 A is full matrix

We consider the case3 in section4.2.

Example 16 Consider A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA = H2 =

0BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1CCA.
By (2:1) ; it is easily checked that

(1) A2 and A3 =

0BBBBBBBBBB@

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1CCCCCCCCCCA
have safe symbols.
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(2) there exists
�0 = 1; �1 = 1; �2 = 1

and
s2 = b11; s3 = b11b11 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:

4.3.3 s2 = b11 or b44 and two column and row of A are all zero

We consider the case4~case9 in section4.2.

Example 17 Consider

A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA

= one of H2 and V2 =

0BB@
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1CCA :
By (2:1) ; it is easily checked that

(1) A2 and A3 =

0BBBBBBBBBB@

1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 1; �1 = 1; �2 = 1

and
s2 = b11; s3 = b11b11 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:
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Example 18 Consider

A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA

= one of H2 and V2 =

0BB@
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1CCA :
By (2:1) ; it is easily checked that

(1) A2 and A3 =

0BBBBBBBBBB@

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 4; �1 = 4; �2 = 4

and
s2 = b44; s3 = b44b44 = s2b44

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:

Example 19 Consider

A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA

= one of H2 and V2 =

0BB@
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1CCA :
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By (2:1) ; it is easily checked that

(1) A2 and A3 =

0BBBBBBBBBB@

1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 1; �1 = 1; �2 = 1

and
s2 = b11; s3 = b11b11 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:

4.3.4 s2 = b14; s3 = b14b44 and two column and row of A are all zero

We consider the case10 and case11 in section4.2.

Example 20 Consider

A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA

= one of H2 and V2 =

0BB@
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

1CCA :
By (2:1) ; it is easily checked that
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(1) A2 and A3 =

0BBBBBBBBBB@

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 1; �1 = 4; �2 = 1

and
s2 = b14; s3 = b14b41 = s2b41

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:

4.4 Conclusion

In the section we describe some Remarks and examples related to the prim-
itivity of An:

Remark 21 For the examples in the section4.3; we can �nd all cases for
H2 and V2 which satisfying the Theorem5.8 related to the extensively weak
mixing property in [33] can all let An be primitive for all n � 2: Therefore,
we can cover the Theorem5.8 in [33], i.e., the Theorem12 in our paper can be
used to show more examples that An is primitive therein for all n � 2 than
the Theorem5.8 in [33].

Remark 22 Observing the examples in the section4.3; we �nd

one of H and V 2
��

1 1
1 1

�
;

�
1 1
1 0

�
;

�
0 1
1 1

��
;

In fact, if H and V satisfy one of the follow situations, and using the intro-
duced method to get H2 and V2; then for A2 = one of H2 and V2; Theorem12
is applied to show that An is primitive for all n � 2:
(1) one of H and V = E; and the other =2 fOg ;
(2) one of H and V = G; and the other 2 fU;L; I; T1; T2; K1g ;
(3) one of H and V = G0; and the other 2 fU;L; I; T3; T4; K4g ;
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(4) one of H and V 2 fU;L; Ig ; and the other 2 fK1; K2; K3; K4g ;
(5) one of H and V 2 fT1; T2g ; and the other 2 fK1g ;
(6) one of H and V 2 fT3; T4g ; and the other 2 fK4g ;
(7) H = V and H; V 2 fK1; K2; K3; K4g
, where

E =

�
1 1
1 1

�
; O =

�
0 0
0 0

�
; G =

�
1 1
1 0

�
; G0 =

�
0 1
1 1

�
;

U =

�
1 1
0 1

�
; L =

�
1 0
1 1

�
; I =

�
1 0
0 1

�
; J =

�
0 1
1 0

�
;

T1 =

�
1 0
1 0

�
; T2 =

�
1 1
0 0

�
; T3 =

�
0 1
0 1

�
; T4 =

�
0 0
1 1

�
;

K1 =

�
1 0
0 0

�
; K2 =

�
0 1
0 0

�
; K3 =

�
0 0
1 0

�
; K4 =

�
0 0
0 1

�
:

Next, we give one example to show the statement given above.

Example 23 (from(1)) If

H = E =

�
1 1
1 1

�
; V = G =

�
1 1
1 0

�
then

H2 =

0BB@
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

1CCA ;V2 =
0BB@
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

1CCA :
Consider

A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA = H2 =

0BB@
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

1CCA :
By (2:1) ; it is easily checked that
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(1) A2 and A3 =

0BBBBBBBBBB@

1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 1; �1 = 1; �2 = 1

and
s2 = b11; s3 = b11b11 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:

Remark 24 If A2 is not constructed from H and V; then Theorem12 is also
applied to show that An is primitive for all n � 2:

we give one example follow.

Example 25 (Simpli�ed Golden Mean) Consider

A2 =

0BB@
b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

1CCA =

0BB@
1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

1CCA :
By (2:1) ; it is easily checked that

(1) A2 and A3 =

0BBBBBBBBBB@

1 1 1 0 1 1 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1CCCCCCCCCCA
have safe symbols.

(2) there exists
�0 = 1; �1 = 1; �2 = 1
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and
s2 = b11; s3 = b11b11 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that An is primitive for all n � 2:
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