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2-dimensional subshift of finite type

Student : Pei-Jiun Tsai Advisors : Song-Sun Lin
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National Chiao Tung University

ABSTRACT

In this paper, the primitivity of n-th-order transition matrices A, defined on

Z,.. are studied, this topics related to the mixing property of 2-dimensional shift

of finite type.

Our propose is to give some necessary conditions for A, to guarantee the p-
rimitivity of A . The results can be applied to study the primitivity of A which

has safe symbol. In the paper, we also check some examples related to the matr-
ix subshift of finite type A =Q(A,) be extensively weak mixing, and for these

examples, we all show that A, is primitive for all n>2. Finally, we describe

some results related to the primitivity of A .
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1 Introduction

Many systems have been studied as models for spatial pattern formation in
biology, chemistry, engineering and physics. Lattices play important roles in
modeling underlying spatial structures. We mention some works arising in
biology([1], [3], [22], [24], [25], [28], [29], [30]), chemical reaction and phase
transitions([4], [10], [15], [16], [17], [19], [23], [32], [36]), image processing
and pattern recognition([11], [13], [15], [16], [18], [20], [21], [26], [35]), as well
as materials science([12], [14], [27]). In Lattice Dynamical Systems(LDS),
especially Cellular Neural Networks(CNN), the complexity of the set of all
global patterns has received considerable attention in recent years([2], [5],
6], [9]). One of the interesting problem comes from the statistic mechanism,
is d-demensional shift of finite type, state as follows, given a list of patterns
with shape F' € Z?, consider the set

X =X,= {x EAZd{ for all € Z’, and " (z)| F € E} (1.1)

where A is a finite set, wescall itisymbol, and without loss of generality,
F' is d-demensional cube, i, = {(n,ng)) 1 <np <k, VE=1,...,d},
many invariants related to-the shift of finite will discussed likewise in [31],
e.g., the topological entropy, measure-theoretical entropy, variational princi-
ple, mixing property, and extension problem.Unfortunately, unlike the one
dimensional case, it’s extremely difficulty to compute and check those invari-
ants, for example, only a very few example of entropy of 2-dimensional shift
of finite type can be computed explicitly, also for mixing property. In this
Paper we start to study the mixing property of d-dimension shift of finite
type, and we focus on d=2. In [7], the authors construct a finite approxima-
tion scheme of higher dimensional shift of finite type, and call it the series of
transition matrices in multi-dimensional lattice model in Z2, we are going to
use the structure of such transition matrices to study the mixing property of
higher dimensional shift of finite type.

We first recall some results in [7], which are crucial in this study. For
simplicity, we only consider two symbols which are given on 2 x 2 lattice
Zaxa. We begin with a consideration of given horizontal transition matrix

hll h12 h13 h14

h21 h22 h23 h24
Hy = 1.2
>= | hay b g b (1.2)

h41 h42 h43 h44



which is related to a set of admissible local patterns on Z5» , and

hz‘j S {0, 1} for1 <i,j <4 (1.3)
The associated vertical transition matrix V5 is defined by
V11 V12 V13 V14
v v VU v
V, = 21 U2 V23 U4 (1' 4)
V31 Us2 U3z Us4
Vg1 Vg2 V43 Vyq

In 2-dimensional shift of finite type, one can immediate construct the Hs ac-
cording to the list of pattern with shape F' = {(ny,n2) |1 <mn; <2, Vi=1,2}
. In [7], Hy and V; possess the following property to each other

Hz_

V11
V13
V31
V33

V12
V14
V32
Vg4

V21
V23
Va1
V43

V22
V24
V42
V44

H2;1
H2;3

H2;2
H2;4

)

(1.5)

and
hi1 higy

V, = his hyg  hoshas y ( Vo Voo ) .
s haq Vaiz Vau
33 Pras

The recursive formula for n-th order horizontal transition matrices H,, defined

on Zsy, has been obtained [7] by the following procedure:

(1.6)

UllHk;l U12Hk;2 UQlHk;l U22Hk;2
H,., = UlBHk;?, U14Hk;4 U23Hk;3 U24Hk;4 (1.7)
U31Hk;1 Ussz;z U41Hk;1 U42Hk;2
U33Hk;3 U34Hk;4 U43Hk;3 U44Hk;4
whenever
Hk _ ( Hk;l Hk;? ) (18)
Hk;?) Hk:;4

for k£ > 2. The number of all admissible patterns defined on Z,,, which can
be generated from H, is now defined by

men(HZ) = ‘H:Lnil}

= the summation of all entries in H,’l”_1

(1.9)
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The quantitative properties of Hl,, for n > 2 are interesting problem in
matrix theory and combinatorial dynamics, the most important one is the
primitive property, in matrix analysis, the primitivity of a nonnegative matrix
will guarantee the positivity of the maximal eigenvalue of a given matrix,
and according to the discussion above, if some H, is induced from some 2-
dimensional shift of finite type, then primitivity of H,; demonstrate the shift
is mixing. And some interesting dynamics will appear therein, for example,
the periodic orbits is dense, and there exists a unique measure of maximal
entropy. Thus, it give rise to the study the primitivity of Hl,, Vn > 2.

The difficulties of this study is that the size of H,, grows exponentially,
i.e., H,, € Manyon, then it’s of nature and interesting to ask that which kind
of sufficient conditions will guarantee the primitivity for H,. To overcome
this problem, the powerful tool s,, S,, R, and C,, will be introduced, thus
we obtain some checkable conditions of Hy to guarantee the primitivity for
H,,Vn > 2.

The paper is organized as fellows. Section 2 introduce some definitions,
Sny Sp, R, and C),,, the main resultsandsproof will presented in section 3,
section 4 included some examples of 2 symbols'in Z? and some results related
to the primitivity of H,,, Vn->> 2.



2 Preliminaries

2.1 Definitions

In this section, we give some standard definitions in matrix analysis related
to our study. As mentioned in the introduction, horizontal transition matrix
Hs and vertical transition matrix V, are related to each other. However,
in application, usually it is better working on one matrix then the other.
Therefore, we use Ay and Bs to replace Hy and V, throughout this paper,
i.e., if Ay = H, then By = V5 and if Ay = V, then By = H,. Therefore, for
simplicity, only A, is stated herein.
First, we define the non-compressible property for a matrix.

Definition 1 We say a matriv A € M,«, (Z) is non-compressible if no
column and row of A are all zero.

In the other word ,if A is compressible; i.e., at least one column or row
of A is all zero.

Next, we follow the notation from:[7] to ‘denote the recursive formulae for
n-th order transition matriees'A,, defined on Zss, (or Z,x2), by

_ A2;1 A2;2
An = (Anfl)Qn—lxzn—l O (Egn—2><2n—2 ® ( A2;3 A2;4 . y (21)

for n > 2, where

bll b12 b21 b22

<A2;1 A2;2 ) _ b13 b14 b23 b24 — A
A2;3 A2;4 2

b31 b32 b41 b42
b33 b34 b43 b44

and Ay, € Mays (Z), Vo € {1,2,3,4}.
Then, we define the r,, and ¢,, below.

Definition 2 If A € M,,«,, (Z), we define
r(A)={i| A(i,j) =0, Vj}
and
c(A)={i| A(j,i) =0, Vj},

and from (2.1), we denote 1, and c, for given Ay as r, (As) = r(A,) and
Cn (Ag) = C (An) .



Therefore, we define the safe symbol of a matrix, and the conception of
safe symbol comes from [34].

Definition 3 If A € M, .« (Z), we say index i is a safe symbol if
A(j,i) =1, Vje{l,...,n}\r(4),

and
A7) =1, ¥je{l,...,n}\c(4).

<

Example 4 If Ay, = , then from Definition2 and 3, for

OHHH
O, O
OO R
coc oo

n = 2, we have
ro = {4}
ii=tiie)

and
=1 1s a safe symbol.

2.2 s,, S,, R, and ),

In this section, s,, S,, R, and €, are-introduced, these four concepts are
defined in, and is crucial for our study. First, we define the s,,.

Definition 5 If A = (a;;);,_; € Mux, (Z) has a safe symbol i, we denote
s(A) = ay, and from (2.1), we denote s, for given Ay as s, (Az) = s(A,).

Next, for (2.1), we define the S,,, R, and C,, below.

Definition 6 From (2.1), if A,, € Manyon (Z) has a safe symbol, we denote
S(A,) = Agpyg, for ag € {1,2,3,4}, be the 2 x 2 block that s (A,,) is inside
and we denote S, for given Ay as S, (A2) =S (A,).

Definition 7 From (2.1), if A,, € Manyan (Z) has a safe symbol, we define
R (A,) = {As | As and S (A,,) are on the same row} ,

C(A,) ={As.| Asn and S (A,) are on the same column}

and we denote R,, and C,, for given Ay as R, (A2) = R(A,) and C,, (Ay) =
C(A,).



Next, from (2.1) and Definition?7, if A, has a safe symbol, i.e., so exists,
we define the proposition below.

Proposition 8 For A, = Z“l Za2 ) ,Va € {1,2,3,4} , we say As,, has
a3 ad

property R if it satisfied one of the follow situations: Vi € {1,2} \r (Az.a) ,

(1) if sa = by, then A, (3,1) = 1,Va € {1,3};
(2) if sa = b, then Ag, (4,2) = 1,Va € {1,3};
(3) if 52 = ba1, then As, (i,1) = 1,Va € {2,4};
(4) if sa = bya, then Asy (i,2) = 1,Va € {2,4},

and we say Az has property C' if it satisfied one of the follow situations:
Vi€ {1,2}\c(Aza),

(1) if sa = b1, thei'Asa(lyj) =1,V e {1,2};
(2) Zf So9 = b14, then A2;a (2,]) = 1,VOZ € {1, 2},
(3) Zf So9 = b41, then Ag;a (]_,j) = ].,\V/Oé < {3,4},
(4) if sa = baa, then A5, (2,)) =1,V € {3,4}.
b1 bia bar Do 1 1
| bz bisibagebaa ) [ Asn Aoy |1 01
Example 9 [fA2 =1 1 " by by b | ( Ay s )| 11 0
b3z b3s baz bas 0O 0 O

then Ay has a safe symbol. Therefore, from Definitiond, 6, 7 and Proposition9,
for n = 2, we have
s3 = b,

11
S2:A2;a5:A2;1:<1 0)7

R2 = {A2;17A2;2}
Cy = {A21,As3}.

and

As.o has property R, Yoo € {1,3}
Ay has property C, Yo € {1,2}

o O OO



3 Main Theorem

In this section, we will formulate the main theorems of our study and proof.
First, we define the primitive property for a matrix.

Definition 10 Let A € M,y (Z) is called primitive if there exists an inte-
ger k > 1 such that A*¥ > E,.,, (full matriz), and let 7 (A) be the minimum

number of such k, i.e.,
7(A) = min{k: A* > E,y, } .

In this paper, we use the "generalized” primitive property for a matriz,
i.e., let A € My« (Z) is called "generalized" primitive if there exists an
integer k > 1 such that

AR (i, 5) > 1,Vi € {1,...,n}\r (A), Vj € {1,...,n} \c(A)

Before proving the main 'Theorem, we.show lemma first.

Lemma 11 If A € M,,«,, (Z) "has at least one safe symbol then A is primi-
tive.

Proof. By the definition of primutive, it suffices to show that there exists an
integer k > 1 such that

AR (i, 5) > 1,Vi € {1,....n}\r (A), Vi€ {1,...,n}\c(4).  (3.1)

Since A € Myxn (Z) has at least one safe symbol, we let A = (a;;) i',—; and
indexr 1 = m be a safe symbol. Then

mj = 1, ¥j € {1,..,n} \c(A), (3.2)

and
ajm =1, Vj € {1,...,n}\r(A). (3.3)

Indeed, let A* = (055) 7=y, then

5@' = Q1015 + Ai2a2; + ...+ + ...+ QinQnj- (34)

From (3.2) and (3.3), Vi € {1,....,n}\r (A),V j € {1,...n}\c(A), we get

Qi Amj = 1 (35)

7



and from (3.4) and (3.5) , we find, Vi € {1,...,n}\r(A), 7 €{1,...,n}\c(A),

Le.,
AR (i, 5) > 1,Vi € {1,..,n}\r (A), Vj € {1,...,n}\c(A).

Thus from (3.1), k = 2 is chose as we want. This complete the proof of
Lemmall. m

bir bz bar Do
: oo big bia Doz boy Agq Azp
Next, we give Ay and write it as Ay = = ’ ),
h WEENE Sy Emaw 27 ba be ba beo Azg Aoy
bss bsa baz bag
where As,, € Mays (Z), Va € {1,2,3,4}. And we follow the recursive for-
mulae for n-th order transition matrices A,, from (2.1). Then we prove the

main Theorem of this paper.

Theorem 12 If Ay € My, 4(7Z)| satisfies the following properties
(1) Ay and A have safe symbols.
(2) There exist sequences {5 1t ¢ Such that for allk =0, ...,q and g > 2,
we have
(a) 5, € (1,4}
(b) there exists 0 < m < q, such that 5, = By or B, = B1;
(C) S9 = bﬁoﬂl and S3 = b5051b5162 = Sgblglgz;
Then A, is primitive for all n > 2.

Proof. We prove it by induction, since A, has a safe symbol and s, = bg g,
then

AQ (82, 82) = 1, (37)
Ay (Sg,j) = 1, VJ € {122} \CQ, (38)
and
Ay (i,80) = 1, Vi € {1..22} \ra. (3.9)
Therefore
SQ = Ag;ﬁo, (310)

Ry = {Ass| a € {1,2} or {3,4}}, where Ay, has property C  (3.11)



and
Cy ={As| € {1,3} or {2,4}}, where Ay, has property R.
Since Az has a safe symbol and s3 = bg s,0s,5, = S2b3,5,, then
Ag (s3,83) =1,

Az (s3,j) =1, Vj € {1..2°} \¢s,

and
Az (i,s3) =1, Vi€ {1..2°} \rs.

Therefore
S3 - AQ;ﬁla

Rs ={As.| a € {1,2} or {3,4}}, where Ay, has property C

and

Cy ={As,| a€{1,3} or {2;4}}, -where Ao, has property R.

(3.18)

Next, we show that s, exists, such that A, (s4,84) = 1, Ay (s4,7) =1, Vj €

{1..24} \cy, and Ay (i, 54) =15 Vi€ {1222} \ e
By (2.1), we perform Aj and-A, for given'A, as follows

A3'1 A3'2
Ag=( 43 3
s ( A3;3 A3;4 ’

A _ balAQ;l ba2A2;2
o ba3A2;3 ba4A2;4

balbll ba1b12 ba2b21 ba2b22
balbli’) balbl4 ba2b23 ba2b24
ba?) b31 ba3b32 ba4b41 ba4b42
ba3 b33 ba3b34 boz4b43 ba4b44

where

for « € {1,2,3,4}, and
A4.1 A4.2
A, = ; ;
4 < A4;3 A4;4 > ’

9



where

A4- — < ba1A3;1 ba2A3;2
“ bazAsz  baaAsa

balbllAQ;l ba1b12A2;2 ba2b21A2;1 ba2b22A2;2
balbl3A2;3 ba1b14A2;4 ba2623A2;3 ba2b24A2;4
ba3b31A2;1 ba3b32A2;2 ba4b41A2;1 ba4b42A2;2 ’
ba3 b33A2;3 ba3 b34A2;4 ba4b43 A2;3 ba4 b44A2;4

(3.19)

for a € {1,2,3,4}.

Next, we use the conditions (2)-(a)~(2)-(b) to take the different s4 in the
follow situations:

(1) If 5, = B, then we take

Sq4 = bﬁoﬁobﬁoﬁobﬁoﬁo = 8365050'

o)
Sov=53 = Sy = As.3,,
and
Ry |=+l3 = Ry;
02 e 03 i 047
(2) If By # By and B # B, (i:e51P5=5,) , then we take
84 = bﬁoﬁlbﬁ1ﬁob5051 = S3b5051'
o)
S2 = AZ;BO;
SS = AZ;,Bl;
Sa = Agp,,
and

Ry = Ry # Rs;
02 - 04#01%

(3) If 5, # 5, and B, = [3;, then we take
Sa = bgyp,bp,8,b8,8, = S3bs,5, .

10



SO

52 = A?;Boa

and

RQ 7é R3, R3:R4;
CQ 7é 037 CY3 :C47

Then from (3.7) and (3.13), we get Ay (s4,54) = 1, from (3.14), (3.19) and
(3.11) or (3.17), we get Ay (s4,5) = 1, Vj € {1..2*} \¢y, and from (3.15),
(3.19) and (3.12) or (3.18), we get Ay (i,54) = 1, Vi € {1..2} \ry, i.e., Ay
has at least one safe symbol.

Now, we assume A, _» and A,,_; have safe symbols and s, = s,,_3b3,3,
and s,_1 = S,-3b3,8,03,8, = Sn-208;8y» iithe same fashion of proof of A4 has
at least one safe symbol, since A, _; has a safe symbol and s, = s,,_3b33,,
then

An_z (Sn_z, Sn_g) F— 1, (320)
Ans (sp-9g) =4V {1..2" 2} \¢,oo, (3.21)
and
Ap_s (i, 8p-0) = 1INGE{1..2" 2} \1rpps. (3.22)
Therefore
Sn—2 = Asp,, (3.23)

R,_o={Asn| a€{1,2} or {3,4}}, where Ay, has property C' (3.24)

and
Cho = {Asn| € {1,3} or {2,4}}, where Ay, has property R. (3.25)

Since A,,_; has a safe symbol and s,_1 = s,,_3bg,5,03,8, = Sn—20p,,, then

An—l (Sn_l, Sn—l) S 1, (326)
Ayq (Sno1,d) =1, Vi € {127 \epn, (3.27)

and
Api (iy80-1) =1, Vi€ {127 \rpy. (3.28)

11



Therefore
Sn,1 - AQ;ﬁl, (329)

R, 1 ={As.| a€{1,2} or {3,4}}, where Ay, has property C' (3.30)

and
Cho1={Asn| € {1,3} or {2,4}}, where Ay, has property R. (3.31)

Next, we show that s, exists, such that A, (s,,s,) = 1, A, (sp,j) = 1,
Vi e {1..2"} \¢c,, and A, (i,s,) = 1, Vi € {1..2"} \r,,.
By (2.1), we perform A, ; and A,, for given A,,_» as follows

. An—l;l An—l;?
Anil N < An71;3 An71;4 7

A . =] balAn_2§1 ba2An—2;2
n—1;a ba3Anf2;3 ba4An72;4

balbllAn—3;1 balbl2An—3;2 ba2b21An—3;1 ba2b22An—3;2
ba1b13An73;3 ba1b14An—3;4 ba2b23An73;3 ba2b24An73;4
ba3b31An73;1 ba3b32An~3;2 ba4b41An73;1 ba4b42An73;2 ’
ba3b33An—3;3 ba3b34An—3;4 ba4b43An—3;3 ba4b44An—3;4

for a € {1,2,3,4}, and

where

A = balAn—l;l bonAn—l;2
e ba3Anfl;3 ba4An71;4

balbllAan;l balbIZAnf2;2 ba2b21An72;1 ba2b22An72;2
_ ba1b13An—2;3 ba1b14An—2;4 ba2b23An—2;3 ba2b24An—2;4 (3 32)
ba3b31An—2;1 ba3b32An—2;2 ba4b41An—2;1 ba4b42An—2;2 ’ ‘

ba3b33An—2;3 ba3b34An—2;4 ba4b43An—2;3 ba4b44An—2;4

for « € {1,2,3,4}.
Next, we use the conditions (2)-(a)~(2)-(b) to take the different s, in the
follow situations:

12



(1) If 5, = B, then we take

Sp — S”—?’bﬁoﬂobﬁoﬁobﬂoﬂo = Sn—lbﬁoﬂo‘

SO
Snf2 = Snfl = Sn = A2;507

and

Rn—2 = Rn—l = Rn;

Cn_Q - Cn—l - Cn;

(2) If By # By and By # By (i-e., By = By), then we take
Sn = S”—3b5051b51f30b5051 = 8”—1b5051‘
SO
Sn—2 =1 A2;,30; :
Sn—l = A2;ﬂ1;
Sn = A2;607

and

Rn72 - Rn 3& Rnfl;

Cnf2 = Cn 7é C’nfla

(3) If By # 5, and (B, = ;, then we take
Sn = Sn—305,8,08,8,03,8, = Sn-10p,8, -

SO

Sn—2 — AQ;Bov

Snfl = Sn - AQ;,Blv
and

Rnf2 % Rnflu Rnfl = Rna
Cn—2 7£ C1n—1a Cn—l :Cn>

13



Then from (3.20) and (3.26) , we get A, (s,, $,) = 1, from (3.27), (3.32) and
(3.24) or (3.30), we get A, (s,,7) = 1, Vj € {1...2"} \¢,, and from (3.28),
(3.32) and (3.25) or (3.31), we get A, (i,s,) = 1, Vi € {1...2"}\r,, i.e., A,
has at least one safe symbol. Therefore, Lemmall is applied to show A, is
primitive. This complete the proof of Theorem12. m

14



4 Examples for safe symbol existing Case

For the section, we will show some examples in [33] to check primitivity of A,,,
Vn > 2. In [33], the authors prove the Theorem related to the extensively
weak mixing property. We will use the conditions of the extensively weak
mixing property to find H and V. Then we use some results in [33] to con-
struct horizontal transition matrix Hy and vertical transition matrix V,. And
to find the cases that if Ay = Hy or Ay = V5 can all let A,, be primitive for
all n > 2.

4.1 Find H and V

We first state the Theorem related to the extensively weak mixing property
in [33] .

Theorem 13 (Theorem 5.8'of [33]) Suppose A = Q (A, ..., A,) is a sub-
shift of finite type and each Aj 18 a px p matriz. Then A is extensively weak
mizing if and only if for all§ &E{—1,1}¥" there exists n satisfying

1< n&p—=2p H2 (4.1)

and
AET AE®D S ) (4.2)

v

For simplicity, we only consider two symbols which are given on 2 x 2
lattice Zaxo. So we just suppose A = Q(H,V),p=2and £ = 1. Since { = 1,
in [33], we know that the matrix subshift A = Q (H,V) is of finite type if
and only if HV =V H.

So by the above statement, we can get three conditions below, such that
A =Q(H,V) is extensively weak mixing.

Condition 1 HV =V H

Condition 2 1 <n <2

Condition 3 H"V" >0

From the above conditions, we can find eleven cases for H and V.

Case 1 H:V:(l 1)

10
01
Case 2 H_V_(ll)

15



Case 3 H:V:(ii)

Case 4 Hz(}é),Vz(é?)
Case 5 H:((l)(lj),\/:(i(l))
Case 6 Hz(?}),V:(é(;)
Case 7 Hz(é?),Vz(?})
Case 8 Hz(}}),Vz(é?)
Case 9 Hz(é?),Vz(}})
CaselOHz(}}),Vz(?é)
CasellH:((l)(l)),V:(}})

Next, we will take these-cases of H-and V' to:construct horizontal transi-
tion matrix Hy and vertical“tranSitienrmatrix Vs.

4.2 Construct Hy; and Vs

we consider first some results in [7], which are crucial to the constructs of Hp
and V,. We begin with 1 X 2 column pattern h;,

and

U2
Uy

o

) or

U2

U

Z:1+2U1+UQ

(4.3)

(4.4)

A 2 x 2 pattern U = (Ua,0,) can now be obtained by a horizontal direct
sum of two 1 x 2 pattern, i.e.,

h

1112

= hil @ hiQ

U12
U1

U22
U1

16

) or

U12

U22

U11

U21




where
=14 2up +upe, 1<k <2 (4.6)

Therefore, the complete set of all 16(= 22*?) 2 x 2 patterns in Yyy» can
be listed by a 4 x 4 matrix Hy = (h;,;,) with 2 X 2 pattern h;;, as its entries
in

0 1] 0 1
0 0| 1 1
0 0]0 01 0]0 01
0 0]0 0]0 01 01
1 170 1]1 170 1]1
0]0 0]0 01 01 (4.7)
0 0]0 e 0.0 01
1 110 10 L1 11
1 170 111 170 1]1
1 1]0 140 k| 1 11

Similarly, a 2 x 2 pattern can also.-beviewed as a vertical direct sum of
two 2 x 1 patterns, i.e.,

Vjrin = U5y B Uy, (4.8)
where
v = (uy ug ) or| uy | uy | (4.9)
and
Ji=142uy +uy, 1<1<2. (4.10)

17



A 4 x 4 matrix V5 = (vj,4,) can also be obtained for .5, i.e., we have

ofo) [oft} [t]o} [1ft1]

00 01 110 1)1
00 00 00 00

0 1)1

(4.11)

010 01 110 1)1
111 111 111 111

== g e
S
[e=) Naw]
== O
[e=) Naw]
= =
| =
—_
)
—_

From above, Hj, can also belrepresented by v;, ;, as

U1 | U121 V21, Va2

v v V2 Vo4q
U31~U39 V41 Ugo

U33r = U34 043« Vgq
In (4.12), the indices jij» are‘arranged by two Z-map successively, as

1 — 2

s, (4.13)
3 — 4

i.e., the path from 1 to 4 in (4.13) is Z shaped and is then called a Z-map.
More precisely, H, can be decomposed by

. ‘/2;1 ‘/2;2
H, = ( Ve Ve ) (4.14)

and

Vg3 Vka

Vore — ( ) (4.15)

Where, Hj is arranged by a Z-map (Va.x) in (4.14) and each Vs x is also
arranged by a Z-map (vg) in (4.15). Therefore, the indices of v in (4.12)
consist of two Z-map.

18



Then, we use the above mention to get the value of H, and V5. We first

[0]1]

let

where

So by (4.3) , (4.9)

and
U1

U3

a1

1 as

a2
Qg

ha

[l ewl } Re) Nan)

0
)i

a;,b; € {0,1}, fori,7 =1 to 4.

:b17 h2:

:b37 h4:

(0]1]

(

ROl

by
by

bs

= b27

(0[O T T 0
30 = fis [ 1 - o,

Zi ) (4.16)
(4.17)
(4.18)
(4.19)

But by (4.7) and (4.11)-, if we want to get the value of Hy and V5, we
must consider the value of H and V- at the same time. Therefore,

Hy

and

hll
h21

h12
h22
h31 h32
h41 h42

a1a1b1b
a3a1baby
ajazbsby
azazbyby

V12
V22
V32
V42

V11
V21
V31
V41
a1a1b1b;
a1a9 b1 b3
ajazbsby
a1a4b3bs

h13
has
h33 h34
h43 h44

201010y
401020y
aza3bsby
a4a3b4by

hix
haa

V14
V24
V34
V44

V13
V23
V33
V43
aza1b1by
aza2b1by
azazbsby
a2a4b3by

19

aiazb1b3
azazbabz
a1a4b3b3
a3a4b4b3

aza1baby
azazbabs
a4a3b4by
azasbsbs

202010y
azazbaby
a2a4b3b4
a404b4by

(4.20)

a4a1baby
aza2baby
a4a3b4by
a4a4b4by

(4.21)



From above, we can also find

V11 V12 V21 V22
V13 V14 V23 V24 Vaa Voo
Hs = = ' ’ 4.22
2 U3l Us2 V41 Vg2 ( Vaoz Vau ) ( )
U3z Us4 V43 V44
and
hir hia hoy ha
his his has hog Hyy Hao
YV, = = ’ ’ 4.23
2 hs1 hsa hay hao H2;3 H2;4 ( )
hss hsa has has

Therefore we get V5 for given Hl,.
Next, for those eleven cases of H and V' in section4.1. We also use the
introduced method above to get eleven cases below for Hy and V.

Case 1 IfH:V:(11
1110 14 1 0
1010 15051 0
thenHy =y g ¢ 110 0
0000 000 0
Case 2 IfH:V:([l)
000 0 000 0
001 1 001 1
then®y =1 ¢ 1 ¢ 4 0101 |
0111 011 1
Case 3 If H = :(1
1111 1111
1111 1111
then By =y 1111 |
1111 1111
Case4 ItH—( 1} V—
ase 71077
100 1 1000
0000 0100
then®Hy =14 ¢ ¢ ¢ 0010 |
1000 000 0



— o oo oo o~ —\ O O oo o~ —\ o O — == =)
oo oo oo O o o o oo o oo oo o —A oo
) )
100000)0100)0000)0100)0000100010
o — O —
== oo oo oD —S o o OO0 —H 5 4 00O
— — O
N— (01(10(11([\(
N——
| o o o — A AN B — I I
N o o I o I} ~ | o ~ ~
- V7 V, V, N V> ~ Vw N V, ) V,
. \J 7\') 7) 7\}))
RS VRS o —={ o o
O~ oococo - —0o0 - o _ococoHll 00—~ _ ©SoOo— oo oo
—
100010010000100010110000100010(0110
(0100(0000(01OO(OOOO(OIOO ] O - - O
I
- —_ o oo h cocoo—n I cooco I mocooco~ I moc0oco m oo
= puan Gy Gy Gy =
Il I — Il = I — | o I
] H Q H ] H Q H ] H ] H
i § & § & § & § & 8§ & @8
® = @ = @) = @ = @) = @ =
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Case 11 If H = <
0
0
0
1

RR

then H, =

o O O

1 11
0 11
1 0 0
0 01
0 0 1
0 0 0

O~~~ O
o

Next, we want to check that for these cases, if Ay = Hy or Ay = V5, then
A, is primitive for all n > 2.

4.3 Checking all cases in section4.2 can let A, be prim-
itive for all n > 2

We separate these cases into four subsections.

4.3.1 sy = by; or by and one column and one row of A are all zero

We consider the casel and case2 in section4:2.

D127 bz | “hao 11
. bis bia Do | bay 1 01

E le 14 C der Ay = =H, =
xample onsider A, Ly A 9 11 0
bzz bzs baz™ baa 0O 0 O

By (2.1), it is easily checked that
1

(1) Ay and Az = have safe symbols.

oo —or |
—_

SO OO~ OO

DO DD O OO
O OO OO ==
D OO OO O = O
OO OO OO oo
DO OO OO oo

OO R Rk OO

(2) there exists
Bo=1, B1=1, By=1

and
So = b11, S3 = b11bi1 = S2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A,, is primitive for all n > 2.

22
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Example 15 Consider Ay — ‘;;j 2:2* zi’ zz —m=| ) 0]
bss  bsa baz | bas 0 1 1
By (2.1), it is easily checked that
0000 0 0 O0O0
000 0 0 O0O0O0
0 00 0 01 01
(1) Ay and Az = 8 8 8 8 g (1) é (1) have safe symbols.
0 01 1 0011
0001 01 01
0011011

(2) there exists

and
So =Oasy-S3 = baabys =+52b44

such that (2)-(a)~(2)-(¢) of Theoremi2 hold; then Theorem12 is applied
to show that A, is primitive for alln > 2.

4.3.2 A is full matrix

We consider the case3 in section4.2.

bi1 | biz bar Do 1 1 1
Example 16 Consider Ay = Z;i’ llj:; zii’ zz‘; = H, = i 1 1 1
bz bsa baz  bas 11 1 1

By (2.1), it is easily checked that

1111111
11111111
1 1111111

(1) As and Az = 1 1 1 } 1 1 1 1 have safe symbols.
1 1111111
11111111
11111111

23



(2) there exists
BO:L 61:17 62:1

and
So = bi1, S3 = bi1bi1 = S2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A,, is primitive for all n > 2.

4.3.3 sy = by; or by and two column and row of A are all zero
We consider the case4 ™ case9 in section4.2.

Example 17 Consider

biz b1 bao

b13 b14 b23 b24

S IS
bss i bsa  bazmn by
[TJjo 0 1
= one of Hy and Vs = 8 8 8 8
1 0 0 0
By (2.1), it is easily checked that
[1]0 0 0 0 0 0 1
000 0 0 O0O0O0
000 0 00 00
(1) Ay and Az = 8 8 8 8 8 8 8 8 have safe symbols.
0000 0 0 O0O0
0000 0 O0O0O0
10 00 0 0 01
(2) there exists
ﬁ():la 51:17 52:1

and
So = bi1, S3 = b11bi1 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A, is primitive for all n > 2.
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Example 18 Consider

bl 1 612 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

AQI

= one of Hy and V, =

_ o O O
O O OO
o O O O
HOO»—t

By (2.1), it is easily checked that
0 0 O

(1) AQ (l?’LdAgZ

have safe symbols.

O O O OO0 O OO

O O OO0 O o oo

HOOOOOOH

S OoOoOo © o O O
PO O O O

_ o OO o oo
OO O O O o
OO0 O OO O O

(2) there exists
Bo =

=
=
Il
T
=)
[\o]
I
W

and
Sg = bya, 53 = byabay = S9byy

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A, is primitive for all n > 2.

Example 19 Consider

biz b2 bo2

b13 bl4 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44

A2:

= one of Hy and V5 =

— o[-
o O O O
o O OO
_ o O
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By (2.1), it is easily checked that
0 0

(1) AQ CWLdAgZ

have safe symbols.

»—nooooooH

OO DO OO oo
[eo BN en BN en B an Bl e B an B an l @)
_ o OO oo oo

O OO OO O OO
O OO OO O OO
OO OO OO oo

OO OO O oo

(2) there exists
/80:17 61:17 62:1

and
Sg = b1, s3 = b11b11 = s2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A, is primitive foralln >"2:

4.3.4 sy = by, s3 = bisbys-and two column and row of A are all zero

We consider the caselO and casell in'section4:2.

Example 20 Consider

bit bz bar ba
Ay, = bis bas b2y
bsi bs2 bar bao
bss b3y bag  Das

0 0 0 O
= one of Hy and V, = 81 8
0 0 0 O

By (2.1), it is easily checked that

26



(1) Ay and Az = have safe symbols.

S OO OO OO oo
SO DO DO OO OO
o O = O OHO =}
SO OO OO oo
S OO O OO oo
SO OO~k OO
SO DO DO OO OO
S OO O OO oo

(2) there exists

and
So = bia, S3 = biaba1 = S2ba

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A,, is primitive for all n > 2.

4.4 Conclusion

In the section we describe some Remarks and examples related to the prim-
itivity of A,,.

Remark 21 For the examples in the sectioni.3, we can find all cases for
Hy and Vo which satisfying the Theorem5.8 related to the extensively weak
mixing property in [33] can all let A,, be primitive for all n > 2. Therefore,
we can cover the Theoremb.8 in [35], i.e., the Theorem12 in our paper can be
used to show more examples that A,, is primitive therein for all n > 2 than
the Theoremb.8 in [33].

Remark 22 Observing the examples in the sectionj.3, we find

oneofHandV€{<1 1),(} (1)),((1) 1)}7

In fact, if H and V' satisfy one of the follow situations, and using the intro-
duced method to get Hy and Vy, then for Ay = one of Hy and Vo, Theorem12
is applied to show that A, is primitive for all n > 2.

(1) one of H and 'V = E, and the other ¢ {O};

(2) one of H and V = G, and the other € {U,L,I1,Ty,T5, K1} ;

(3) one of H and V- = G', and the other € {U, L, I,T5, Ty, K4} ;
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(4) one of H and V € {U, L, 1}, and the other € {K;, Ko, K3, K4} ;
(5) one of H and V € {11, Ty}, and the other € {K};
(6) one of H and V € {T3,T,}, and the other € {K,};

(7) H =YV and H,V S {Kl,K27K37K4}

, where

f (1) o=(30) o= (1) (21)
oo () (1) () (2
S ERCHERHENG
oo (30) e (33w (2 ) (!

Next, we give one examplefo show the statement given above.

Example 23 (from(1)) If

101 1
n- 53 N (
then
1 110 1 11
1 110 1 01
IHI2_1110’V2—11()
00 00O 1 00
Consider
bia bar  bao
bis bia baz  bos 1
A = :H g
2 bsi bza bar  bas 2 1
bz bza baz  bus 0

By (2.1), it is easily checked that
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(1) Ay and Az = have safe symbols.

OO RrRr RO RKFRRK
OO R Rk O
DO DD DO O OO
O O = = O ==
O OO OO OO oo
OO OO OO OO

1
1
0
1
1
0
0

(2) there exists

and
So = b11, S3 = bi1bi1 = S2b11

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A,, is primitive for all n > 2.

Remark 24 If A, is not constructed from H-and V, then Theorem12 is also
applied to show that A, is primitive for allxn > 2.

we give one example follow.

Example 25 (Simplified Golden Mean) Consider

biz b2 b2 1 10

As — bis big bag b2y | | 1 0 0 O

27 bst bz by b | [ 1 0 00

bss bss bsz by 0 0 0O

By (2.1), it is easily checked that
1101100
10 00 1 0 0O
10 000 0 0 O
(1) Ay and Az = (1) (1] 8 8 8 8 8 8 have safe symbols.

10 000 0 00
0000 0 0 O0O0
0000 0 0 O0O0

(2) there exists
Bo=1, B1=1, By=1
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and
Sg = b11, 83 = bi1bi1 = s2b1s

such that (2)-(a)~(2)-(c) of Theorem12 hold, then Theorem12 is applied
to show that A, is primitive for all n > 2.
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