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Abstract

In this thesis we study the chaotic behavior of four-neuron cellular
neural networks model, this model can be' treated as the combina-
tion of two two-neuron cellular neural networks and there are inter-
actions between these two.neural networks. If we only consider one
of them, this is different from the case in ZN-case[19] and T.H.Yang’s
Ph.D Thesis[22]. The model they considered is a non-autonomous
system with smooth input function. The one we consider is an au-
tonomous system with piecewise-linear input which is related to neu-
ron itself and output function. In some parameters ranges, we find
a ladyshoe-like chaotic attractor. The numerical methods employed
are of Fast Fourier Transform and Lyapunov exponents to study the
bifurcation and chaotic phenomena of four-neuron neural network.
Furthermore, an algorithm for computing Lyapunov exponents which
is both adapted for autonomous and non-autonomous system is devel-
oped.

Keywords: Cellular Neural Networks, CNN;, chaos, lady’s shoe, Lya-
punov exponent.
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1 Introduction

1.1 Introduction to CNN and our works

Cellular Neural Networks(CNN) are complex dynamical systems described
by a large set of coupled nonlinear ordinary differential equations. The orig-
inal model was firstly introduced by Chua and Yang (see,e.g.,[1],[2],[3]), and
recently researchers devoted to study the stability, patterns , spatial chaos
and entropy of CNN (see,e.g.,[4],[5],[6],]7],[8],[9],[10],[11],[12],[13]). Follow-
ing the development of technology, CNN have extensively applications in the
area of image processing, pattern recognition, artificial intelligence and signal
processing (see,e.g.,[14],[15],[16],[17],[18]).

Zou and Nossek discovered a chaotic attractor, so-called lady’s shoe,
in a two-neuron CNN with an anti-symmetric feedback template, a peri-
odic input function (forcing term) and typical piecewise-linear output func-
tion (see,e.g.,[19],[20],[21]). SAfterward .Lin;, Lin and Yang investigate the
bifurcation and chaos of atwo-neuron: CNN with periodic inputs in a general
situation, such as varying templates; amplitude and period (see,e.g.,[22]).
Following their works in two-neuron T @GNN, this study concerns about the
dynamics behavior of a four-nguron CNN-¢onsisting of two two-neuron CNN
with mutual connection strength. "In"other words, we generalize our four-
neuron CNN from two-neuron CNN. The model is the combination of two
two-neuron subsystem, the connection strength depending on neuwon itself
and output function. In this thesis we concentrate on the numerical experi-
ment results and related computational analysis of chaotic phenomena.

Four main results for this thesis can be summarized as follows. Instead of
piecewise-linear output function, we use sigmoid C'*° function, for example,
hyperbolic tangent function. We also observe a chaotic attractor. In addition
to output function, we also use quasi-periodic function as input and this also
causes chaotic behavior. The results are presented in subsection 3.1. The
second one is a result about coupled four-neuron CNN, and Fast Fourier

Transform and Lyapunov exponents are employed to analyze. This part



is in subsection 3.2 and discuss them in detail. Being different from the
coupled CNN, the third one we consider the uncoupled multi-layer CNN
and its dynamics, and we put it in section 4 alone. The last result is that
we establish a complete algorithm for computing Lyapunov exponents, this
helps us to explicitly determine whether a system is chaotic or not.

This thesis is organized as follows. In section 1, a brief introduction
of CNN model is introduced. In section 2, we establish the algorithm for
calculating Lyapunov exponents. And then show some interesting numerical
computation results in section 3 and section 4. In section 5, we conclude in

some remarks and address the future works.

1.2 Model description

In the following, a 1-dimensional CNN with four neurons described by a sys-

tem of nonlinear ordinary differéntial ‘equations is considered:

Ty = —Tpd pryr A=81y2 Y3,

sz = —Xa+T10 +PiYs, (1.1)
T3 = —T3t PalYs=SoUYs = SYi,

Ty = —T4E oyt Prys,

where x1, x9, 3 and x4 present the veoltages of the neurons, and the output

function of a neuron is given as a piecewise-linear neuron-activation function

yi:f(xi):%(]mi—l—ll—\xi—ﬂ), (i=1,2,3,4), (1.2)

which is shown in Figure 1.
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Figure 2. Our model: an autonomous four-neuron CNN

Here, as in two-neuron CNN model, two feedback templates A; = [r1, p1, $1]
and Ay = [ra, p2, S2] are considered. The internal state of A; and A, are de-
noted by xy, xo and w3, x4, respectively. The parameters r and s are the
connection strengths between A;- and Ay-subsystem and denote A = [r,0, s]
as the connection template.

Motivated by [19] and [22], as we mentioned above, (1.1) is regarded as a
combination of two two-neuron subsystems. Without connection, these two

subsystems are independent to each other. In order to have periodic cycles,



A; and A, are required to satisfy the following conditions:

p1>1, p1—1<7”1, p1—1<—81 (13)
and py >1, ppo—1<ry, py—1< —59 (1.4)

respectively.

Since (1.1) involves eight parameters: 71, p1, 1, T2, P2, S2, 7 and s, we begin
with the study of anti-symmetric templates A; and As. The study is divided

into three cases for our discussion.

(i) When s =0, r = 0, these two subsystems generate respectively stable

limit cycles A, and Ay,.

(ii)) When s = 0, r > 0, As-subsystem will not be affected by A;-subsystem.
The periodic solution generated by, As-subsystem will be the input
function of Aj-subsystem. ,Comparing with ZN-case, our system is
autonomous with input. function rys. For some r, (1.1) has chaotic

attractor later.

(iii) When s ~ 0,7 > 0, not only As-subsystem influences A;-subsystem but
also A;-subsystem influenced’ As-subsystem. Numerical results suggest
that chaotic attractor is sensitive dependence on parameters. In other
words the dynamic behaviors vary with the varied parameter s. For
instance, if s is close to zero the chaotic attractor still exists; if s is

larger than a critical number the chaotic attractor disappears.

These related numerical results are presented in subsection 3.2.

1.3 Preliminaries

We first recall some useful notions. An isolated periodic solution is called a
limit cycle. Positive Lypunov exponent is a criterion for chaotic attractor.
The Lyapunov exponent of a smooth map f from R™ to R™ is defined as
follows, [25].



Definition 1.1. For a smooth map f on R™, let J, = D f"(vy), and for k =
1,...,m, let R} be the length of k-th longest orthogonal axis of the ellipsoid
JpU for an orbit with initial point vg. Then R} measures the contraction or

expansion near the orbit of vy is defined by
Ak = lim log((Rp)"™), (1.5)
if the limit exists.

With the definition of Lyapunov exponent, chaotic orbit can be intro-
duced.

Definition 1.2. Let ¢:(xo) be a solution of & = f(z) with initial condition
x(0) = xg, where xy € R™. We say the orbit ¢,(z¢) is chaotic if the following

conditions hold:

(i) ¢e(xo) is bounded, for t > 0;
(i1) ¢¢(zo) has at least one'positiveluyapuhov exponent; and

(iii) The w-limit of ¢;(xg) 'iS not periodi¢ and does not consist solely of

equilibrium points, or solelyof equilibrium points and connecting arcs.

Next, we state some symmetric property” of the solutions of system (1.1)

with initial condition

(21(0), 22(0), 23(0), 24(0)) = (M1, 2, 13, Ma)- (1.6)
Proposition 1.3. Assume f(—z) = —f(xz). When r = s = 0 and both
templates A; and A, are anti-symmetric (i.e., s; = —r,89 = —ry). If

(1(t), xo(t), x3(t), z4(t) is a solution of (1.1), then (zo(t), —z1(t), x4(t), —x3(t)

is also a solution.

Proof. When r =s =0, sy = —ry and sy = —rs.
Let (wy(t), wa(t), ws(t), ws(t)) = (wao(t), —x1(t), z4(t), —23(t)). Then, we have

wy = —wi+pf(w) +sif(ws)

Wy = —wo+rif(wr)+pif(ws), (1.7)
Wy = —ws+ paf(ws) + saf(ws), '
wy = —wy+rof(ws) +paf(ws),

5



which implies that

T = —zo+rif(x1) +pif(a2),
1 = —xz1+pif(en) +sif(x2) , (1.8)
Ty = —xg+r2f(x3) +paf(a), '
T3 = —x3+paf(ws) + saf(va),
since f(—xz;) = —f(z;) and i=1,2,3,4. Hence, (x2(t), —x1(t), z4(t), —x3(t) is
also a solution. The proof is complete. O




2 Numerical methods

In this section, we introduce some numerical methods which include the com-
putation of trajectory, Poincaré section, Fast Fourier Transform (FFT) and
Lyapunov exponents. We also provide a complete algorithm for computing

Lyapunov exponents in subsection 2.2.

2.1 Introductory to some numerical methods

trajectory

Since the CNN model considered is a system of differential equations, fourth-
order Runge-Kutta numerical integration method (R.K-45) is used with fixed
step size h=0.001 and graphic libraries in MATLAB language.

Poincaré section

If the input function in the systemissperiodic with period 7', the time-T'
map is our Poincaré sectiony.For instance,-in-two-neuron networks system,
suppose that the period ¢f the input functiontis 7' and the step size is A t,
we can take sample points:per % as Poincaré section. However, for higher
dimensional system, the method has to ' he modified. For instance, in four-
neuron system, the method used here is that we take a point and a direction
to determine a hyper-plane, and this hyper-plane helps us to reduce to three-

dimensional space and then we project onto x;-xo plane directly.

FFT

FFT is a classical algorithm which transforms time-domain into frequency-
domain. It helps to analyze the solution waveform. As for a chaotic attractor,
its FFT has a broad-band. In practical numeric, we call the built-in procedure
7fft” in MATLAB for our works.



Lyapunov exponent

The Lyapunov exponents are computed by averaging the eigenvalues of deriva-
tive matrix DF(nl,n2) on every point of time-1 map. During the process
of computation, if the relative error is less than 1 x 1074, the convergent
condition is attended. Furthermore, to accelerate the rate of convergence,

the first 1 x 10 steps in the numerical integration is ignored.

2.2 Algorithm for Lyapunov exponents

In this section the Lyapunov exponent is established a complete algorithm.

The n-dim. autonomous differential equation is considered.

x = f(x),where x € R". (2.1)
ie.,
1 = fi(Z1) B 2l
33:2 = f2<x17x27"' 73:71) 5 (2 2)
l;n = fn(xlwrb"' ’xn) .

In general, the non-autonomous differential equation x = f(¢,x), can be

studied as

{’f‘ = fltx), (2.3)

t = 1.

For clarity, we divide into several steps and explain them in each step.



Description of algorithm

Step 1

In the first step, since the Lyapunov exponents measure the per-iterate chang-
ing rates of separation or expansion from the current orbit along each orthog-
onal directions, we recall the time-T map of a flow Fr(v) at first. Note that
the flow Fr(v) is the point which the orbit with initial condition v arrives at
after T' time units and v satisfies © = f(v). Then the Lyapunov exponents of
the flow Fp(v) are defined to be the Lyapunov exponents of the associated
time-1 map.

Step 2

From the definition of the Lyapunov exponents we need to know the deriva-
tive of the time-1 map Fj(v) with respect to the initial value v.

Step 3

In the third step, we arise a,variational equation of the original differen-
tial equations (2.1) in order to solvé outy DIE(v), the solution of the varia-
tional equation. We solve-the n-variable differential equation and the vari-
ational equation simultaneously and obtain the solution named y which is
a (n? +n) x 1 column vector. “We denote y(k) to be the k-th element of y
and also denote the subscript‘i te.be.the ¢-th element of any column vector
mentioned in algorithm. We know the former n components of y is just the
solution of our n-dimensional differential equations and the rest n? compo-
nents of y can be rearranged as the n X n square matrix named V.

Step 4

After multiplying V' and W, we regard VW as a new matrix V. By Gram-
Schmidt orthogonal process, we obtain the Lyapunov exponents applying the
definition of the Lyapunov exponents in the first step. Furthermore, we ask
the basis matrix W in every recursive process be the normal basis so we or-
thonomalize these orthogonal basis. In addition, as the maximum iteration
number is attended or the result is convergent under our tolerance then the

process stops.



Algorithm for Lyapunov exponent

InI)Ut Niterationa Nmaximum iteration M7 A t, T7 dimension, W
At 0.01 (step size)

T+—1
e« 107
dimension « n
W — I,«n
for Nieration = 1,2,..., M do
t—0:At:T
call SolveODE(t, x)
output ¢,y
y(n+1) y@2n+1) -+ yn*+1)
Ve y(n ‘+ 2) y(2n'+ 2) iper y(n2.+ 2)
y(n+n) y@2ntn) - yn*+n)
V— VW
call GramSchmidt (V%)
output V

for each dimension from 1 to n

Lyapunov « Lyapunov+ log ||V||

end
Lyapunov
result «+— ————
iterationT
for each dimension from 1 to n
W %4
% [
V]l
end
y(1)
y(2)
X )
y(n® +n)
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if Niteration > Nmaximum iteration

then stop: Maximum iteration is attended.

if ||resultpey — resultoglleo < €
then stop: Result is convergent.
N; iteration < iteration + 1

resultyg « resultyey

end

procedure SolveODE(¢, X)

X(n+1) X{2rn+1)
X(n+2) X(2n42)
ann<_ . :
X(n+n) X(2n+mn)
d(L’l fl(l'l,l‘g,' g ,l’n)
dzy fo(@r, 2o, )
dl’n fn(xlax%'” ,In)
ox1 0Oxs ox,,
Jnxne— | 01 Ox9 ox,,
Of, Of Ol
| Ox1  Oxs ox, |

11



dxn—l—l d172n+1 T dan—i-l

ATpio dToppo - d$n2+2
. . . — nannxn
danrn dx2n+n T dmnz—l—n
Cdey T
dl'g
S dz,
dmn—&—l
dxn+2
L dan_j’_n i
y«—oded5(t, x)
return
procedure GramSchmidt(V)
Input V
VeV
m+«— the column number ef V'
for:=1,2,...,m do
V@) 1)
for j=1,2,...,i—1do
. . vyt yi
V@ G _ (— j
V]2
end

end

12



3 Some numerical results: PART 1

Since CNNs are large-scale nonlinear dynamical systems, it is not surprising
that they may exhibit a complex dynamic behavior, including chaos. The
purpose of this section is to show that complex dynamics occur even in
very simple CNN structures. In this section, we take the two-neuron and
four-neuron CNN as our examples and the chaotic attractor in each case is
discovered. The algorithm developed in Section 2 and Fast Fourier Transform
(FFT) are also applied in order to make further analysis. The numerical

results will be presented in subsection 3.1 and subsection 3.2 respectively.

3.1 A new type of chaotic attractor in two-neuron CNN
with periodic inputs

In the beginning of this investigationswe try two-neuron CNN model ZN-case
i.e., the output function is piecewise-linear function, and input function is a
periodic function sin(2rt):s When template ‘4 = [1.2,2, —1.2], input ampli-
tude r = 4 and input pertod " = 4, numerical results ensure that a chaotic
attractor with shape of lady’s shoeroceurs. A-broad range of these parame-

ters A,r and T are investigated in [22].

From the previous results, a natural question arises: if the output function
or input function is varied, is there still a chaotic attractor? In typical CNN
models, the output function is chosen to be a piecewise-linear. Instead of
piecewise-linear output function we try hyperbolic tangent function. To be

concrete, we write down the modified models as follow.

(3.1)

Ty = —x1+ Py + siye +rsin(3)
Ty = —Ta2+7i%h +mys,

where the output function is a C*°, sigmoidal neuron-activation function (cf.

Figure. 3)

y; = f(z;) = tanh(maz;),i = 1, 2. (3.2)

13



f(x)=tanh(x)

-2 —1‘.5 —i —015 0 0‘.5 :‘l 1‘.5 2
Figure 3. Hyperbolic tangent function f(z)=tanh(z)

The parameter m = f’(0), the slope of curve, will play an important role

in this case. By solving (3.1).with the following parameter setting:
ri=12 p =2 s1==12,r=4,T=4 m=1.5 (3.3)

and initial condition (z1(0);z2(0))=(0.1,0.1); a chaotic attractor similar to

ZN-case can be observed numerically (cf. Figure 4).

s m=1.5
R \
gl R \
L0 e N,
05t - Wy ,"-'.'\;:- s
o N
N Y ey e
or e e
. .‘
¥ -05 AN s
X A N
.“l. \3
L
_1— .‘ .
"l“\
-5} Y
\
hY
ol
25 ‘ ‘ ‘ ‘ ‘
%5 -4 -3 -2 -1 0 1

x1

Figure 4. Cross-section for the trajectory of 1 and x5 when m=1.5
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Next we apply the algorithm for calculating Lyapunov exponents. Input
the parameter set (3.3), and the Lyapunov exponents of the system (3.1) are

calculated as

A= 0.0617
A2 = —0.4597 .

The largest Lyapunov exponents is greater than zero (even greater than 0.02),

(3.4)

and this ensures that this attractor is chaotic.

When m varies from 0.5 to 2.5, the Lyapunov exponents of system is
recorded as in Figure 5. It is clear that there are ranges of m exhibit chaotic

attractor.

m value

Figure 5. Lyapunov exponents diagram when m varies from 0.5 to
2.5

Finally, we make two remarks about the modified two-neuron network
model (3.1), (3.2).

Remark 3.1. If the input function is replaced by other periodic function,

for example cos(25t), then the results are similar.

15



Remark 3.2. When the output function is hyperbolic tangent function, m
is a crucial value. Compare with ZN-case, the slope of the piecewise-linear
function evaluated at the origin is 1, while the slope of the hyperbolic tangent

function evaluated at the origin is 1.5 .

Recall the setting of [19] and [22], and the input function is chosen to
be sine function. In the rest part of subsection 1, the model we considered
originates from ZN-case with piecewise-linear output function. Nevertheless,
we add several periodic perturbation to the input function-sine function and
the perturbed input function is of the form:

2
rsin(%t) + esin(%t), (3.5)

where we request n > 3.

Under the following setting: r = 4, Ty+= 4,¢ = 1,n = 5,T, = 2, the

waveform of the periodic perturbed mput.function is shown in Figure 6.

[=2]
T

IN

—2F

-6

-8 . . . .
1000 1002 1004 1006 1008 1010
time

Figure 6. The input function: periodic perturbed sine function

We find its trajectory of solution is smooth but tremble. After taking ap-
propriate Poincaré-section, a chaotic attractor can be observed (cf. Figure
7).



. . . . . . .
-6 -5 -4 -3 -2 -1 0 1 2
x1

Figure 7. a chaotic attractor like lady’s shoe

Again, apply the algorithm for calculating Lyapunov exponents and the

Lyapunov exponents of the perturbed system are calculated as

{)\1 = 0.1064 (3.6)

Ao = —0.3805.

Hence the attractor in Figure 7.is-exaetly chaotic

Before any periodic perturbation‘is‘added, 77 is the only period. Once we
add periodic perturbation, the input function becomes from single-periodic to
quasi-periodic and the system involves eight parameters: ry,py, s1,r,T1,e,n
and T,. For brevity, we hold the other seven parameters fixed and vary T3
only. Set [ri,p1,s1] = [1.2,2,—1.2],r = 4,71 = 4,e = 1,n = 5, and let T
runs from 1 to 10, and further study the effect of the external period T upon
the system. The Lyapunov exponents are calculated in the following table

as Ty varies from 1 to 10.

17



T2 /\1 )\2
1 0.01095 -0.45450
2 0.10638 -0.38051
3 -0.08864 -0.36511
4 -0.03669 -0.54255
5 -0.05543 -0.57615
6
7
8
9

-0.27744  -0.80849
-0.12011  -0.65675
-0.19732  -0.64681
-0.07363 -0.46564
10 -0.12908 -0.34245

NSOV QNN SUIN NSOV SO SEIRN f

Table 1. The Lyapunov exponents for fixed T} = 4 with respect
to varying 75
Remark 3.3. The above data indicates that to produce a chaotic attrac-
tor, the period of perturbation cannot exceed the period of original input
function, otherwise, the chaoti¢ attractor will disappear at once. Moreover,
if ones choose suitable parameters then chaotic attractor will be preserved

under small periodic perturbation.

3.2 The dynamic behavior‘of four-neuron CNN with
nonzero connection strength

It is well-known that the templates, output function and input function play
important roles in CNN models. To simplify our discussion later, the tem-
plates are fixed in later discussions. Before analyzing the dynamic behav-
ior of (1.1), we need to generate the periodic solutions for each subsystem
without connection strength. Moreover the periodic solution is related to
the template closely, in fact, template A = [r,0, s] governs the connection
strength between A;-subsystem and As-subsystem. Motivated by two-neuron
CNN, the templates A; and Ay we select are also anti-symmetric. We choose
Ay = [r1,p1,51]) = [1.2,2,—1.2] to generate a periodic solution with period
about 17 and choose Ay = [ra, ps, $2] = [2.9,1.7, —2.9] to generation a peri-
odic solution with period about 4. Figure 8 and Figure 9 show the periodic

solutions for A;-subsystem and As-subsystem.

18
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-25 -2 -T5ffast-0.5 (0] 05 1 15 2 25
x3

Figure 9. Periodic solution A4, for As-subsystem, Ty, = 4

In the following we hold the templates A; and A, fixed and study the
effect of connection strength upon the system (1.1). For clarity we divide

into three cases for discussion.

Case 1: s=0,7=0

When s and r are both equal to zero, it means that there is no any relations
between A;-subsystem and As-subsystem. At this time the dynamic behavior
is trivial since the trajectory of (1.1) is only the periodic solution. As for the
existence and uniqueness of two-neuron networks system, this work was done
by C.-H. Hsu,et al. in 2004. Delicate proof can be founded in [23], and their

19



work ensures that the periodic solution in individual subsystem is existent

and unique.

Case 2: s=0,r>0

Once the periodic solution is generated in individual subsystem, let s = 0
and enlarge r. At this moment in time, the As-subsystem starts to influence
Aj-subsystem; as far as the A;-subsystem, ry3 is the only input function and
its waveform is shown in Figure 10. If we just consider A;-subsystem, this
is back to the two-neuron CNN case. Notice that our input function ”ry3”
contains no other independent variable, so A;-subsystem is an autonomous
system. Moreover, the most difference between A;-subsystem and ZN-case
is that ry3 is not differentiable in some points but rsin(25t) is differentiable

everywhere.

15

-15 . . . .
1000 1200 1400 1600 1800 2000
time

Figure 10. Waveform of rys

Numerically, keep 71, p1, S1, 72, P2, S2 and s = 0 and then increase r-value
to drive the periodic solution Ay, by means of the ry3-term. As we take
r-value from 0.01 to 3.40, the cross-sections are nothing more than equilib-

rium, periodic solution and quasi-periodic solution. When r is near 3.50, a

20



ladyshoe-like chaotic attractor arises after taking Poincaré section and pro-
jecting onto x1-x5 plane. Figure 11 shows the chaotic attractor and its Lya-

punov exponents are

A1 = 0.0755
Ay = —0.3518
s = —0.0131 (3.7)
Ay = —0.7894
1.5
1r \ B
R,
05} \ . .:'\ 1
SN,
ofr . . 1
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N -05} B Gy e, K -*,\ A
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Figure 11. The chaotic attractor when r = 3.5,5s = 0

Under the setting of s = 0, the Lyapunov exponents are calculated from
r = 3.0 to r = 4.0 and recorded in the following diagram (cf. Figure 12) and
table list (cf. Table 2).
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r value

Figure 12. The Lyapunov exponents diagram for the four-neuron
CNN when s =t0'and »=3.0 ~ 4.0

Table 2.*Five chaotictegions.when s = (

regions range of parameter r
C, [3:33,3137]
Cy [3.39,3:40]
Cs [3.42,3.43]
Cy [3.48,3.52]
Cs [3.55,3.57]

Here we call the region where its Lyapunov exponent is positive ”chaotic
region” and call the region where its Lyapunov exponent is negative ”window
region”. In Table 2, we write capital C' in short to stand for ” Chaotic”. Then
the largest Lyapunov exponent that is close to or above zero is recorded in
regions C', Cy, C3, Cy and (5, and the others are window regions except for
these five chaotic regions. In the following we present the Poincaré section

of the trajectory in each chaotic region (see Figure 13(a)-(e)).

Remark 3.4. In case 2, if we replace the output function with the hyper-
bolic tangent function and m is setting around 1.5, we will have the similar

dynamic result so we omit it here.
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(a) r = 3.369 € C,

(e) r =3.552 € Cs

Figure 13. Some typical Poincaré section in chaotic regions, s = 0
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Case 3: s~ 0,r >0

In case 2, we have found a chaotic attractor when r = 3.5, and proceed to
let Ai-subsystem starts to influence A,. To see what range a chaotic attrac-
tor still exists in, assume that s is nonzero, small enough(either positive or
negative) and r is positive here. In this case, it is worth to notice that this
chaotic attractor is sensitively dependent on the choice of the parameters.
For example, when we fix r = 3.50, and s takes a value from 0.01 to 0.39,
a ladyshoe-like chaotic attractor still exists but when s value is greater than
0.40, the chaotic attractor disappears and the trajectory asymptotically con-
verges to a limit cycle or a quasi-periodic solution. On the other hand, keep
the templates A, Ay constant and fixed s = 0.01, when r takes a value from
3.45 to 3.59, a ladyshoe-like chaoti¢ dttractor emerges and when r exceeds
3.60, the chaotic attractor disappear-and the trajectory asymptotically con-

verges to a limit cycle.

The Lyapunov exponents diagram-for fixed » and varying s are shown
below (cf. Figure 14). In ordet to investigate the effect of the parameters
r, s upon the chaotic attractor, the strategy is that hold one parameter fixed
and vary the other one. In the first sample, fix » = 3.50 and vary s from -0.3
to 0.3 and list their Lyapunov exponents (when s is negative)in the table in
detail (cf. Table 3).

24



0.1
0.08
0.06

0.04}
0.02 v/\
0

-0.02

-0.2 -0.1 0 0.1 0.2 0.3
s value

Figure 14. The Lyapunov exponents diagram for the four-neuron
CNN when r =135 and s= —0.3 ~ 0.3

T S Al )\2 )\3 )\4
3.50 -0.01 0086595 -0.016514 =-0.33726 -0.79049
3.50 -0.05 0.091612 <0.014737 ~-0.32491 -0.78995
3.50 -0.10 0.092231., =0:012774. -0.32857 -0.79027
3.50 -0.15 0.080732. -0.007268 -0.28292 -0.79172
3.50 -0.20 0.044199 7-0.013886 -0.25791 -0.78829
3.50 -0.25 -0.001502 -0.006178 -0.24749 -0.78840
3.50 -0.30 0.026132 -0.011913 -0.26151 -0.78659

Table 3. The Lyapunov exponents for fixed » = 3.50 with respect
to varying s (s < 0)
In the second sample, fix s = 0.1 and vary r from 3.20 to 3.70, and
calculate the Lyapunov exponents for each parameter pair. About the largest
Lyapunov exponent diagram when s = 0.1 and r=3.20 ~ 3.70 are shown in

Figure 15.
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Figure 15. The largest Lyapunov-exponents diagram for the four-
neuron CNNiwhen s = 0.Land r = 3.20 ~ 3.70

Aimed at the case s ~ 0 and >0, we apply the Fast Fourier Transform
to obtain more information about the behavior of the system (1.1) and focus
on the largest 1 mode in FFT. Fixed s ~ 0, there are five chaotic regions
and the others are windows regions. We apply the FFT in the windows
region (0, 3.2) and find the range r € (0, 1) of the windows region of periodic
solutions form a devil’s staircase. When s = 0 and s = 0.5 there are devil’s

staircase in both cases. See the following two figures.
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(i) Let s =0, r goes from 0 to 1 with step size 0.001;

frequency
18

17 1

15} - J
14} ;7 J

13f -

12

0 0.2 B 0.4 0.6 0.8 1
‘rivalue

Figure 16. Devil’s staircasejli;k‘ge funcﬁibn when s =0 and r € (0, 1)

(ii) Let s = 0.5, r goes erm 0 to 1 with steprsize 0.001;

frequency
17.5

17— — .
165} - .

16} - i
155} - .

15} - i
145} - .
14} —

1351 =

13 . . . .
0 0.2 0.4 0.6 0.8 1
r value

Figure 17. Devil’s staircase-like function when s = 0.5 and r € (0, 1)
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4 Some numerical results: PART 11

In the previous section, the CNNs we consider are coupled differential equa-
tions and there are nonzero connection strength between A; and A, subsys-
tem. This means that the neuron x; in A; and z3 in A, have influence upon
each other, so the direction of connection strength is both-side. From the
result stated in subsection 3.2 we know that a chaotic attractor occurs only
for suitable r and s, and r should be much larger than s.

Motivated by the 1-dimensional, coupled CNNs, in the following we will
consider the solid, uncoupled multi-layer CNNs. We start from two-layer
CNNs and present them in subsection 4.1, and generalize this idea to three-
layer CNNs next. We have derived some new and interesting results from

numerical computations and they will be shown in subsection 4.2 later.

4.1 Two-layer CNN. 1model

After considering the coupled two two-cell, CNN model, we will further con-
sider the two-layer CNN=model described by the following nonlinear au-

tonomous ordinary differential equationssystems:

T = —Ir1+ P ESsiYe

Ty = —To+7riy +piye, (4.1)
Ty = —3+ payz + Says + bigyr + bazya

Ty = —T4+Toy3 + paya + brayr + bagys

where x1, x9, 3 and x4 present the voltages of the neurons, and the output
function of a neuron is a piecewise-linear neuron-activation function as well.
The model consists of two layers and there are two neurons in each layer; we
call the subsystem formed by x; and x5 layer 1 and the subsystem formed
by x3 and x4 layer 2. Note that we denote b;; to stand for the connection
strength from the i-th neuron to j-th neuron to avoid confusing. For clarity,

we use a chart to signify the relations between these four neurons (cf. Figure
16).
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Figure 16. The two-layer autonomous CNN model

From the system (4.1) itself, we know that y; and y, are both taken to
be the input functions of =3.and x4. Moreover, the arrowheads in figure 16
also indicate that there arge single-diréction effects from layer 1 to layer 2. So,
being different from models in~Seetion*3, the system (4.1) is an uncoupled
system in practice since the layer-2 dees not influence layer 1 at all. From
another point of view, we attempt using layer 1 to drive layer 2 and observe
what happened in layer 2. At present the system (4.1) involves 10 parameters:
r1,P1, S1, T2, P2, S2, 013, bag, b1y and bgy. Generally speaking, for convenience,
we simplify the model by letting b1y = bag = byy = 0 in later discussion. The

simplified model and the corresponding figure are expressed as following.

T = —T1+py+siye,

Ty = —To+Triy1r+piye, (4.2)
T3 = —T3+ pPay3 + Says + bizyr

Ty = —T4+T2y3+ Pays,
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Figure 17. The simplified two-layer autonomous CNN model

Numerical results in Section'3 have exhibited a chaotic attractor in some
specific parameters in coupled two two-neuron CNN (cf. Figure 11). Follow-
ing their setting of case 2 in §ubsection 3.2, we-choose A; = [2.9,1.7, —2.9] as
template in layer 1, and Ay = [1.272, =1.2] as template in layer 2. Similarly,
when b3 = 3.5, a chaotic”attractor with pesitive Lyapunov exponent can

also be observed in z3-z4 plane (efeFigure 18).
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Figure 18. An chaotic attractor in 2-layer CNN when b13=3.5
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4.2 Three-layer CNN model

Motivated by two-layer CNN, we continue to consider three-layer CNN model
by adding the third layer behind the original case. The model is shown in
Figure 19.

1755 Py, 8, ]

[%, 58]

Figure 19. The simplified two-layer autonomous CNN model

Similar to 2-layer case, 3-layer CNN model can be described by the following

differential equations.

(

¥y = —r1+py+siye,
Ty = —To+Ty1+pryz2
T3 = —T3+ Pays + Sa¥s + bizyr (4.3)
Ty = —T4+Toy3+ Pays, ‘
Ts = —Ts+ P3Ys + S3Ys + b3sys

(| 6 = —Te+T3Ys + DP3Ys
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From the previous section we know that there is a chaotic attractor occurs
in layer 2. Next, we attempt to take the chaotic attractor to drive the periodic
solution in layer 3. Although the attractor in layer 2 is chaotic, we can still
apply methods to find its average period. This method has been used in
physics and engineering widely. We evaluate the average period of chaotic
attractor in Figure 18 and the result is around 5.26. So we may divide into
two cases for the period of solution generated in layer 3. One is larger than
5.26, and the other one is smaller than 5.26. The possible candidates for
template As are listed in table 4.

template As period of Ths

3,1.2,—3] 2.55
2.8,1.3,2.8] 3.00
[2.5,1.5, —2.5] 4.00
2,1.5,~2] 5.04
[2.1,1.7;2221] 5.64
24,2, —2.4] 6.10
[1,1.1, =1] 7.00
[15,1.9,— 5] 10:08
[12,1.7, —1:2] 11:02
[1,1.6, —1] 12.50
[1.1,1:8;=1.1] 14.39
[1.2, 2,-112] 17.01
[1.1, 2, —1.1] 21.92
1,19, 1] 22.25

Table 4. The various templates and its corresponding period

In order to study how the chaotic attractor influence various periodic
solution with different period, we classify them according to periods. For
example, in the following, we select four kinds of templates; case one is
smaller than 5, and case two is nearly 5, and case three is larger than 5, and
the last case is far larger than 5. From the candidates in table 4, we select a

representative template in each case and arrange them in table 5.
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template As T4, result
Case 1 [3,1.2,—-3] 255 Figure 20
Case 2 [1,1.1,—1] 7.00 Figure 21
Case 3 [1,1.6,—1] 12.50 Figure 22
Case4 [1,1.9,—1] 22.25 Figure 23

Table 5. The representative templates with different periods

In the following numerical results, we hold b3 = 3.5 and template Aj
fixed in each case, so the only parameter is bs;. By varying bs; we can see
the evolution of the new chaotic attractor occurs in xs-xg plane. From the
figure 20 to 23, it seems that chaotic attractor are preserved when we take
the chaotic attractor to drive the periodic solution. The Lyapunov exponents
in each cases are computed, and result ensures that the system is chaotic.
We have tried our best to investigate the phenomena about 3-layer CNN,
however, there are still many wmiknownsfNext the follow-up we may further

consider 4-layer or 5-layer CNN, dandrexpect.that we can understand more

on the dynamics of multi<layer CNN meodels in the future.
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Figure 20. A3 = [3,1.2, —3], T4, = 2.55.
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A3:[1‘,1.1,—1],T3:7.00,P35:O.4 A‘3:[1,111,—1],T3:7.0‘O,b35:‘1.0
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Figure 21. A3 = [1,1.1, —1], T4, = 7.00
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A3=[1,?I..6,—l],T‘3=12.50,‘b35=0.6 A3:[1,‘1.6,—1],T‘3212.50,‘b35:1.l
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Figure 22. As = [1,1.6, —1], T4, = 12.50
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Figure 23. Az = [1,1.9, —1], T4, = 22.25
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5 Conclusions and future works

The chaos in cellular neural networks are popular all the time. About the
research on the stability and phenomena, researchers proved that a two-
neural autonomous networks system will always have no chaotic behavior.
However in this thesis, from the four-neuron case combined by two two-
neuron cases, a chaotic attractor under suitable parameters is discovered.

Whether two-neuron or four-neuron CNN, we find that when we take the
input function with small period to drive the periodic solution with larger
period then it is possible to discover the chaos. On the other hand, if we
take the periodic solution with larger period to drive the periodic solution
with smaller period, then numerical results indicate that there are at most
three phenomena: equilibrium, periodic solution and quasi-periodic solution.
We have found several possible chaotic attractor in several neural networks
models and do qualitative amalysis about’.them in this study, however our
discussion was relatively réugh. In-orderito tinderstand complex dynamical
behavior of the CNN deeply, rigorous theoretical analysis is needed. We will
try our best to deal with them,in-the future.

To sum up ,we just foeus on some typical output function and input
function, however, if the output funetion and input function are varied, other
interesting phenomena may occur. There are still much unknown about the
CNN model. The CNN we consider is just a simple case, but we can do
something about five-neuron, six-neuron in the future works. In other words,
we can extend our model to more complicated cases based on the two-neuron

and four-neuron CNN models.
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