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兩個耦合雙細胞類神經網路的動態系統 
 

研究生：劉玟毅           指導教授：林松山 博士 

國立交通大學應用數學系﹙研究所﹚ 碩士班 

摘      要 

在本篇論文中，我們研究具有四個細胞之類神經網路模型的

混沌行為，此模型可以視為兩個雙細胞類神經網路的組合，而且

這兩個類神經網路之間是有交互影響的；如果我們只考慮其中一

個類神經網路的話，這與 Zou & Nossek[19]以及楊定揮的博士論

文[22]的情況是不一樣的，他們所考慮的模型是一個有平滑輸入

函數的非自主性﹙non-autonomous﹚系統，而我們的模型是以片

段型線性函數作為輸入函數的自主性﹙autonomous﹚系統，此輸

入函數是跟細胞本身以及輸出函數有關係的。在某些參數範圍，

我們找到形如高跟鞋的混沌吸引子﹙chaotic attractor﹚。為了研究

四個細胞之類神經網路的分歧和混沌現象，我們使用快速傅利葉

轉換﹙Fast Fourier Transform﹚與計算 Lyapunov 指數﹙Lyapunov 
exponent﹚等數值方法。此外，我們也發展出一套用來計算

Lyapunov 指數的演算法，而且這個演算法是同時適用於自主性

與非自主性的系統。 

關鍵字：細胞類神經網路、混沌、Lyapunov 指數。 
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Abstract

In this thesis we study the chaotic behavior of four-neuron cellular
neural networks model, this model can be treated as the combina-
tion of two two-neuron cellular neural networks and there are inter-
actions between these two neural networks. If we only consider one
of them, this is different from the case in ZN-case[19] and T.H.Yang’s
Ph.D Thesis[22]. The model they considered is a non-autonomous
system with smooth input function. The one we consider is an au-
tonomous system with piecewise-linear input which is related to neu-
ron itself and output function. In some parameters ranges, we find
a ladyshoe-like chaotic attractor. The numerical methods employed
are of Fast Fourier Transform and Lyapunov exponents to study the
bifurcation and chaotic phenomena of four-neuron neural network.
Furthermore, an algorithm for computing Lyapunov exponents which
is both adapted for autonomous and non-autonomous system is devel-
oped.

Keywords: Cellular Neural Networks, CNN, chaos, lady’s shoe, Lya-
punov exponent.
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1 Introduction

1.1 Introduction to CNN and our works

Cellular Neural Networks(CNN) are complex dynamical systems described

by a large set of coupled nonlinear ordinary differential equations. The orig-

inal model was firstly introduced by Chua and Yang (see,e.g.,[1],[2],[3]), and

recently researchers devoted to study the stability, patterns , spatial chaos

and entropy of CNN (see,e.g.,[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]). Follow-

ing the development of technology, CNN have extensively applications in the

area of image processing, pattern recognition, artificial intelligence and signal

processing (see,e.g.,[14],[15],[16],[17],[18]).

Zou and Nossek discovered a chaotic attractor, so-called lady’s shoe,

in a two-neuron CNN with an anti-symmetric feedback template, a peri-

odic input function (forcing term) and typical piecewise-linear output func-

tion (see,e.g.,[19],[20],[21]). Afterward Lin, Lin and Yang investigate the

bifurcation and chaos of a two-neuron CNN with periodic inputs in a general

situation, such as varying templates, amplitude and period (see,e.g.,[22]).

Following their works in two-neuron CNN, this study concerns about the

dynamics behavior of a four-neuron CNN consisting of two two-neuron CNN

with mutual connection strength. In other words, we generalize our four-

neuron CNN from two-neuron CNN. The model is the combination of two

two-neuron subsystem, the connection strength depending on neuwon itself

and output function. In this thesis we concentrate on the numerical experi-

ment results and related computational analysis of chaotic phenomena.

Four main results for this thesis can be summarized as follows. Instead of

piecewise-linear output function, we use sigmoid C∞ function, for example,

hyperbolic tangent function. We also observe a chaotic attractor. In addition

to output function, we also use quasi-periodic function as input and this also

causes chaotic behavior. The results are presented in subsection 3.1. The

second one is a result about coupled four-neuron CNN, and Fast Fourier

Transform and Lyapunov exponents are employed to analyze. This part
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is in subsection 3.2 and discuss them in detail. Being different from the

coupled CNN, the third one we consider the uncoupled multi-layer CNN

and its dynamics, and we put it in section 4 alone. The last result is that

we establish a complete algorithm for computing Lyapunov exponents, this

helps us to explicitly determine whether a system is chaotic or not.

This thesis is organized as follows. In section 1, a brief introduction

of CNN model is introduced. In section 2, we establish the algorithm for

calculating Lyapunov exponents. And then show some interesting numerical

computation results in section 3 and section 4. In section 5, we conclude in

some remarks and address the future works.

1.2 Model description

In the following, a 1-dimensional CNN with four neurons described by a sys-

tem of nonlinear ordinary differential equations is considered:





ẋ1 = −x1 + p1y1 + s1y2 + ry3 ,
ẋ2 = −x2 + r1y1 + p1y2 ,
ẋ3 = −x3 + p2y3 + s2y4 + sy1 ,
ẋ4 = −x4 + r2y3 + p2y4 ,

(1.1)

where x1, x2, x3 and x4 present the voltages of the neurons, and the output

function of a neuron is given as a piecewise-linear neuron-activation function

yi = f(xi) =
1

2
(|xi + 1| − |xi − 1|), (i = 1, 2, 3, 4), (1.2)

which is shown in Figure 1.
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Figure 2. Our model: an autonomous four-neuron CNN

Here, as in two-neuron CNN model, two feedback templates A1 = [r1, p1, s1]

and A2 = [r2, p2, s2] are considered. The internal state of A1 and A2 are de-

noted by x1, x2 and x3, x4, respectively. The parameters r and s are the

connection strengths between A1- and A2-subsystem and denote A = [r, 0, s]

as the connection template.

Motivated by [19] and [22], as we mentioned above, (1.1) is regarded as a

combination of two two-neuron subsystems. Without connection, these two

subsystems are independent to each other. In order to have periodic cycles,
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A1 and A2 are required to satisfy the following conditions:

p1 > 1, p1 − 1 < r1, p1 − 1 < −s1 (1.3)

and p2 > 1, p2 − 1 < r2, p2 − 1 < −s2 (1.4)

respectively.

Since (1.1) involves eight parameters: r1, p1, s1, r2, p2, s2, r and s, we begin

with the study of anti-symmetric templates A1 and A2. The study is divided

into three cases for our discussion.

(i) When s = 0, r = 0, these two subsystems generate respectively stable

limit cycles ΛA1 and ΛA2 .

(ii) When s = 0, r > 0, A2-subsystem will not be affected by A1-subsystem.

The periodic solution generated by A2-subsystem will be the input

function of A1-subsystem. Comparing with ZN-case, our system is

autonomous with input function ry3. For some r, (1.1) has chaotic

attractor later.

(iii) When s ∼ 0, r > 0, not only A2-subsystem influences A1-subsystem but

also A1-subsystem influenced A2-subsystem. Numerical results suggest

that chaotic attractor is sensitive dependence on parameters. In other

words the dynamic behaviors vary with the varied parameter s. For

instance, if s is close to zero the chaotic attractor still exists; if s is

larger than a critical number the chaotic attractor disappears.

These related numerical results are presented in subsection 3.2.

1.3 Preliminaries

We first recall some useful notions. An isolated periodic solution is called a

limit cycle. Positive Lypunov exponent is a criterion for chaotic attractor.

The Lyapunov exponent of a smooth map f from Rm to Rm is defined as

follows, [25].
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Definition 1.1. For a smooth map f on Rm, let Jn = Dfn(v0), and for k =

1, . . . ,m, let Rn
k be the length of k-th longest orthogonal axis of the ellipsoid

JnU for an orbit with initial point v0. Then Rn
k measures the contraction or

expansion near the orbit of v0 is defined by

λk = lim
n→∞

log((Rn
k)1/n), (1.5)

if the limit exists.

With the definition of Lyapunov exponent, chaotic orbit can be intro-

duced.

Definition 1.2. Let φt(x0) be a solution of ẋ = f(x) with initial condition

x(0) = x0, where x0 ∈ Rm. We say the orbit φt(x0) is chaotic if the following

conditions hold:

(i) φt(x0) is bounded, for t ≥ 0;

(ii) φt(x0) has at least one positive Lyapunov exponent; and

(iii) The ω-limit of φt(x0) is not periodic and does not consist solely of

equilibrium points, or solely of equilibrium points and connecting arcs.

Next, we state some symmetric property of the solutions of system (1.1)

with initial condition

(x1(0), x2(0), x3(0), x4(0)) = (η1, η2, η3, η4). (1.6)

Proposition 1.3. Assume f(−x) = −f(x). When r = s = 0 and both

templates A1 and A2 are anti-symmetric (i.e., s1 = −r1,s2 = −r2). If

(x1(t), x2(t), x3(t), x4(t) is a solution of (1.1), then (x2(t),−x1(t), x4(t),−x3(t)

is also a solution.

Proof. When r = s = 0, s1 = −r1 and s2 = −r2.

Let (w1(t), w2(t), w3(t), w4(t)) = (x2(t),−x1(t), x4(t),−x3(t)). Then, we have





ẇ1 = −w1 + p1f(w1) + s1f(w2) ,
ẇ2 = −w2 + r1f(w1) + p1f(w2) ,
ẇ3 = −w3 + p2f(w3) + s2f(w4) ,
ẇ4 = −w4 + r2f(w3) + p2f(w4) ,

(1.7)
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which implies that





ẋ2 = −x2 + r1f(x1) + p1f(x2) ,
ẋ1 = −x1 + p1f(x1) + s1f(x2) ,
ẋ4 = −x4 + r2f(x3) + p2f(x4) ,
ẋ3 = −x3 + p2f(x3) + s2f(x4) ,

(1.8)

since f(−xi) = −f(xi) and i=1,2,3,4. Hence, (x2(t),−x1(t), x4(t),−x3(t) is

also a solution. The proof is complete.
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2 Numerical methods

In this section, we introduce some numerical methods which include the com-

putation of trajectory, Poincaré section, Fast Fourier Transform (FFT) and

Lyapunov exponents. We also provide a complete algorithm for computing

Lyapunov exponents in subsection 2.2.

2.1 Introductory to some numerical methods

trajectory

Since the CNN model considered is a system of differential equations, fourth-

order Runge-Kutta numerical integration method (R.K-45) is used with fixed

step size h=0.001 and graphic libraries in MATLAB language.

Poincaré section

If the input function in the system is periodic with period T , the time-T

map is our Poincaré section. For instance, in two-neuron networks system,

suppose that the period of the input function is T and the step size is M t,

we can take sample points per T
Mt

as Poincaré section. However, for higher

dimensional system, the method has to be modified. For instance, in four-

neuron system, the method used here is that we take a point and a direction

to determine a hyper-plane, and this hyper-plane helps us to reduce to three-

dimensional space and then we project onto x1-x2 plane directly.

FFT

FFT is a classical algorithm which transforms time-domain into frequency-

domain. It helps to analyze the solution waveform. As for a chaotic attractor,

its FFT has a broad-band. In practical numeric, we call the built-in procedure

”fft” in MATLAB for our works.
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Lyapunov exponent

The Lyapunov exponents are computed by averaging the eigenvalues of deriva-

tive matrix DF (η1, η2) on every point of time-1 map. During the process

of computation, if the relative error is less than 1 × 10−4, the convergent

condition is attended. Furthermore, to accelerate the rate of convergence,

the first 1× 105 steps in the numerical integration is ignored.

2.2 Algorithm for Lyapunov exponents

In this section the Lyapunov exponent is established a complete algorithm.

The n-dim. autonomous differential equation is considered.

ẋ = f(x) , where x ∈ Rn. (2.1)

i.e.,





ẋ1 = f1(x1, x2, · · · , xn) ,
ẋ2 = f2(x1, x2, · · · , xn) ,
... =

...
ẋn = fn(x1, x2, · · · , xn) .

(2.2)

In general, the non-autonomous differential equation ẋ = f(t,x), can be

studied as
{

ẋ = f(t,x) ,
ṫ = 1 .

(2.3)

For clarity, we divide into several steps and explain them in each step.
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Description of algorithm

Step 1

In the first step, since the Lyapunov exponents measure the per-iterate chang-

ing rates of separation or expansion from the current orbit along each orthog-

onal directions, we recall the time-T map of a flow FT (v) at first. Note that

the flow FT (v) is the point which the orbit with initial condition v arrives at

after T time units and v satisfies v̇ = f(v). Then the Lyapunov exponents of

the flow FT (v) are defined to be the Lyapunov exponents of the associated

time-1 map.

Step 2

From the definition of the Lyapunov exponents we need to know the deriva-

tive of the time-1 map F1(v) with respect to the initial value v.

Step 3

In the third step, we arise a variational equation of the original differen-

tial equations (2.1) in order to solve out, DF1(v), the solution of the varia-

tional equation. We solve the n-variable differential equation and the vari-

ational equation simultaneously and obtain the solution named y which is

a (n2 + n) × 1 column vector. We denote y(k) to be the k-th element of y

and also denote the subscript i to be the i-th element of any column vector

mentioned in algorithm. We know the former n components of y is just the

solution of our n-dimensional differential equations and the rest n2 compo-

nents of y can be rearranged as the n× n square matrix named V .

Step 4

After multiplying V and W , we regard V W as a new matrix V . By Gram-

Schmidt orthogonal process, we obtain the Lyapunov exponents applying the

definition of the Lyapunov exponents in the first step. Furthermore, we ask

the basis matrix W in every recursive process be the normal basis so we or-

thonomalize these orthogonal basis. In addition, as the maximum iteration

number is attended or the result is convergent under our tolerance then the

process stops.

9



Algorithm for Lyapunov exponent

Input Niteration, Nmaximum iteration, M , M t, T , dimension, W

M t ← 0.01 (step size)

T ← 1

ε ← 10−4

dimension ← n

W ← In×n

for Niteration = 1, 2, . . . , M do

t ← 0 :M t : T

call SolveODE(t, x̃)

output t,y

V ←




y(n + 1) y(2n + 1) · · · y(n2 + 1)
y(n + 2) y(2n + 2) · · · y(n2 + 2)

...
...

. . .
...

y(n + n) y(2n + n) · · · y(n2 + n)




V ← V W

call GramSchmidt(V )

output V

for each dimension from 1 to n

Lyapunov ← Lyapunov+ log ‖V ‖
end

result ← Lyapunov

NiterationT
for each dimension from 1 to n

W ← V

‖V ‖
end

x ←




y(1)
y(2)

...
y(n2 + n)
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if Niteration > Nmaximum iteration

then stop: Maximum iteration is attended.

if ‖resultnew − resultold‖∞ < ε

then stop: Result is convergent.

Niteration ← Niteration + 1

resultold ← resultnew

end

procedure SolveODE(t, x̃)


x1

x2
...

xn


←




X(1)
X(2)

...
X(n)




Qn×n←




X(n + 1) X(2n + 1) · · · X(n2 + 1)
X(n + 2) X(2n + 2) · · · X(n2 + 2)

...
...

. . .
...

X(n + n) X(2n + n) · · · X(n2 + n)







dx1

dx2
...

dxn


←




f1(x1, x2, · · · , xn)
f2(x1, x2, · · · , xn)

...
fn(x1, x2, · · · , xn)




Jn×n←




∂f1

∂x1

∂f1

∂x2

· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2

· · · ∂f2

∂xn
...

...
. . .

...
∂fn

∂x1

∂fn

∂x2

· · · ∂fn

∂xn
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dxn+1 dx2n+1 · · · dxn2+1

dxn+2 dx2n+2 · · · dxn2+2
...

...
. . .

...
dxn+n dx2n+n · · · dxn2+n


←Jn×nQn×n

x̃←




dx1

dx2
...

dxn

dxn+1

dxn+2
...

dxn2+n




y←ode45(t, x̃)

return

procedure GramSchmidt(V )

Input V

V̂←V

m← the column number of V

for i = 1, 2, . . . ,m do

V (i)←V̂ (i)

for j = 1, 2, . . . , i− 1 do

V (i)←V (i) − (V̂ (i))t V j

‖V j‖2
V j

end

end
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3 Some numerical results: PART I

Since CNNs are large-scale nonlinear dynamical systems, it is not surprising

that they may exhibit a complex dynamic behavior, including chaos. The

purpose of this section is to show that complex dynamics occur even in

very simple CNN structures. In this section, we take the two-neuron and

four-neuron CNN as our examples and the chaotic attractor in each case is

discovered. The algorithm developed in Section 2 and Fast Fourier Transform

(FFT) are also applied in order to make further analysis. The numerical

results will be presented in subsection 3.1 and subsection 3.2 respectively.

3.1 A new type of chaotic attractor in two-neuron CNN
with periodic inputs

In the beginning of this investigation, we try two-neuron CNN model ZN-case

i.e., the output function is piecewise-linear function, and input function is a

periodic function sin(2π
T

t). When template A = [1.2, 2,−1.2], input ampli-

tude r = 4 and input period T = 4, numerical results ensure that a chaotic

attractor with shape of lady’s shoe occurs. A broad range of these parame-

ters A, r and T are investigated in [22].

From the previous results, a natural question arises: if the output function

or input function is varied, is there still a chaotic attractor? In typical CNN

models, the output function is chosen to be a piecewise-linear. Instead of

piecewise-linear output function we try hyperbolic tangent function. To be

concrete, we write down the modified models as follow.

{
ẋ1 = −x1 + p1y1 + s1y2 + r sin(2π

T
t) ,

ẋ2 = −x2 + r1y1 + p1y2 ,
(3.1)

where the output function is a C∞, sigmoidal neuron-activation function (cf.

Figure. 3)

yi = f(xi) = tanh(mxi), i = 1, 2. (3.2)
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Figure 3. Hyperbolic tangent function f(x)=tanh(x)

The parameter m = f ′(0), the slope of curve, will play an important role

in this case. By solving (3.1) with the following parameter setting:

r1 = 1.2, p1 = 2, s1 = −1.2, r = 4, T = 4, m = 1.5 (3.3)

and initial condition (x1(0), x2(0)) = (0.1, 0.1), a chaotic attractor similar to

ZN-case can be observed numerically (cf. Figure 4).
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Figure 4. Cross-section for the trajectory of x1 and x2 when m=1.5
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Next we apply the algorithm for calculating Lyapunov exponents. Input

the parameter set (3.3), and the Lyapunov exponents of the system (3.1) are

calculated as

{
λ1 = 0.0617
λ2 = −0.4597 .

(3.4)

The largest Lyapunov exponents is greater than zero (even greater than 0.02),

and this ensures that this attractor is chaotic.

When m varies from 0.5 to 2.5, the Lyapunov exponents of system is

recorded as in Figure 5. It is clear that there are ranges of m exhibit chaotic

attractor.

0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

m value

Figure 5. Lyapunov exponents diagram when m varies from 0.5 to
2.5

Finally, we make two remarks about the modified two-neuron network

model (3.1), (3.2).

Remark 3.1. If the input function is replaced by other periodic function,

for example cos(2π
T

t), then the results are similar.
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Remark 3.2. When the output function is hyperbolic tangent function, m

is a crucial value. Compare with ZN-case, the slope of the piecewise-linear

function evaluated at the origin is 1, while the slope of the hyperbolic tangent

function evaluated at the origin is 1.5 .

Recall the setting of [19] and [22], and the input function is chosen to

be sine function. In the rest part of subsection 1, the model we considered

originates from ZN-case with piecewise-linear output function. Nevertheless,

we add several periodic perturbation to the input function-sine function and

the perturbed input function is of the form:

r sin(
2π

T1

t) + ε sin(
nπ

T2

t), (3.5)

where we request n ≥ 3.

Under the following setting: r = 4, T1 = 4, ε = 1, n = 5, T2 = 2, the

waveform of the periodic perturbed input function is shown in Figure 6.
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0
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4

6

8

time

Figure 6. The input function: periodic perturbed sine function

We find its trajectory of solution is smooth but tremble. After taking ap-

propriate Poincaré-section, a chaotic attractor can be observed (cf. Figure

7).
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Figure 7. a chaotic attractor like lady’s shoe

Again, apply the algorithm for calculating Lyapunov exponents and the

Lyapunov exponents of the perturbed system are calculated as

{
λ1 = 0.1064
λ2 = −0.3805 .

(3.6)

Hence the attractor in Figure 7 is exactly chaotic

Before any periodic perturbation is added, T1 is the only period. Once we

add periodic perturbation, the input function becomes from single-periodic to

quasi-periodic and the system involves eight parameters: r1, p1, s1, r, T1, ε, n

and T2. For brevity, we hold the other seven parameters fixed and vary T2

only. Set [r1, p1, s1] = [1.2, 2,−1.2], r = 4, T1 = 4, ε = 1, n = 5, and let T2

runs from 1 to 10, and further study the effect of the external period T2 upon

the system. The Lyapunov exponents are calculated in the following table

as T2 varies from 1 to 10.
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T1 T2 λ1 λ2

4 1 0.01095 -0.45450
4 2 0.10638 -0.38051
4 3 -0.08864 -0.36511
4 4 -0.03669 -0.54255
4 5 -0.05543 -0.57615
4 6 -0.27744 -0.80849
4 7 -0.12011 -0.65675
4 8 -0.19732 -0.64681
4 9 -0.07363 -0.46564
4 10 -0.12908 -0.34245

Table 1. The Lyapunov exponents for fixed T1 = 4 with respect
to varying T2

Remark 3.3. The above data indicates that to produce a chaotic attrac-

tor, the period of perturbation cannot exceed the period of original input

function, otherwise, the chaotic attractor will disappear at once. Moreover,

if ones choose suitable parameters then chaotic attractor will be preserved

under small periodic perturbation.

3.2 The dynamic behavior of four-neuron CNN with
nonzero connection strength

It is well-known that the templates, output function and input function play

important roles in CNN models. To simplify our discussion later, the tem-

plates are fixed in later discussions. Before analyzing the dynamic behav-

ior of (1.1), we need to generate the periodic solutions for each subsystem

without connection strength. Moreover the periodic solution is related to

the template closely, in fact, template A = [r, 0, s] governs the connection

strength between A1-subsystem and A2-subsystem. Motivated by two-neuron

CNN, the templates A1 and A2 we select are also anti-symmetric. We choose

A1 = [r1, p1, s1] = [1.2, 2,−1.2] to generate a periodic solution with period

about 17 and choose A2 = [r2, p2, s2] = [2.9, 1.7,−2.9] to generation a peri-

odic solution with period about 4. Figure 8 and Figure 9 show the periodic

solutions for A1-subsystem and A2-subsystem.
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Figure 8. Periodic solution ΛA1 for A1-subsystem, TA1 = 17
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Figure 9. Periodic solution ΛA2 for A2-subsystem, TA2 = 4

In the following we hold the templates A1 and A2 fixed and study the

effect of connection strength upon the system (1.1). For clarity we divide

into three cases for discussion.

Case 1: s = 0, r = 0

When s and r are both equal to zero, it means that there is no any relations

between A1-subsystem and A2-subsystem. At this time the dynamic behavior

is trivial since the trajectory of (1.1) is only the periodic solution. As for the

existence and uniqueness of two-neuron networks system, this work was done

by C.-H. Hsu,et al. in 2004. Delicate proof can be founded in [23], and their
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work ensures that the periodic solution in individual subsystem is existent

and unique.

Case 2: s = 0, r > 0

Once the periodic solution is generated in individual subsystem, let s = 0

and enlarge r. At this moment in time, the A2-subsystem starts to influence

A1-subsystem; as far as the A1-subsystem, ry3 is the only input function and

its waveform is shown in Figure 10. If we just consider A1-subsystem, this

is back to the two-neuron CNN case. Notice that our input function ”ry3”

contains no other independent variable, so A1-subsystem is an autonomous

system. Moreover, the most difference between A1-subsystem and ZN-case

is that ry3 is not differentiable in some points but r sin(2π
T

t) is differentiable

everywhere.
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Figure 10. Waveform of ry3

Numerically, keep r1, p1, s1, r2, p2, s2 and s = 0 and then increase r-value

to drive the periodic solution ΛA1 by means of the ry3-term. As we take

r-value from 0.01 to 3.40, the cross-sections are nothing more than equilib-

rium, periodic solution and quasi-periodic solution. When r is near 3.50, a
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ladyshoe-like chaotic attractor arises after taking Poincaré section and pro-

jecting onto x1-x2 plane. Figure 11 shows the chaotic attractor and its Lya-

punov exponents are





λ1 = 0.0755
λ2 = −0.3518
λ3 = −0.0131
λ4 = −0.7894

(3.7)
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Figure 11. The chaotic attractor when r = 3.5,s = 0

Under the setting of s = 0, the Lyapunov exponents are calculated from

r = 3.0 to r = 4.0 and recorded in the following diagram (cf. Figure 12) and

table list (cf. Table 2).
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Figure 12. The Lyapunov exponents diagram for the four-neuron
CNN when s = 0 and r = 3.0 ∼ 4.0

Table 2. Five chaotic regions when s = 0
regions range of parameter r

C1 [3.33,3.37]
C2 [3.39,3.40]
C3 [3.42,3.43]
C4 [3.48,3.52]
C5 [3.55,3.57]

Here we call the region where its Lyapunov exponent is positive ”chaotic

region” and call the region where its Lyapunov exponent is negative ”window

region”. In Table 2, we write capital C in short to stand for ”Chaotic”. Then

the largest Lyapunov exponent that is close to or above zero is recorded in

regions C1, C2, C3, C4 and C5, and the others are window regions except for

these five chaotic regions. In the following we present the Poincaré section

of the trajectory in each chaotic region (see Figure 13(a)-(e)).

Remark 3.4. In case 2, if we replace the output function with the hyper-

bolic tangent function and m is setting around 1.5, we will have the similar

dynamic result so we omit it here.
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(b) r = 3.395 ∈ C2
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(c) r = 3.421 ∈ C3
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(d) r = 3.510 ∈ C4
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(e) r = 3.552 ∈ C5

Figure 13. Some typical Poincaré section in chaotic regions, s = 0
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Case 3: s ∼ 0, r > 0

In case 2, we have found a chaotic attractor when r = 3.5, and proceed to

let A1-subsystem starts to influence A2. To see what range a chaotic attrac-

tor still exists in, assume that s is nonzero, small enough(either positive or

negative) and r is positive here. In this case, it is worth to notice that this

chaotic attractor is sensitively dependent on the choice of the parameters.

For example, when we fix r = 3.50, and s takes a value from 0.01 to 0.39,

a ladyshoe-like chaotic attractor still exists but when s value is greater than

0.40, the chaotic attractor disappears and the trajectory asymptotically con-

verges to a limit cycle or a quasi-periodic solution. On the other hand, keep

the templates A1, A2 constant and fixed s = 0.01, when r takes a value from

3.45 to 3.59, a ladyshoe-like chaotic attractor emerges and when r exceeds

3.60, the chaotic attractor disappear and the trajectory asymptotically con-

verges to a limit cycle.

The Lyapunov exponents diagram for fixed r and varying s are shown

below (cf. Figure 14). In order to investigate the effect of the parameters

r, s upon the chaotic attractor, the strategy is that hold one parameter fixed

and vary the other one. In the first sample, fix r = 3.50 and vary s from -0.3

to 0.3 and list their Lyapunov exponents (when s is negative)in the table in

detail (cf. Table 3).
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Figure 14. The Lyapunov exponents diagram for the four-neuron
CNN when r = 3.5 and s = −0.3 ∼ 0.3

r s λ1 λ2 λ3 λ4

3.50 -0.01 0.086595 -0.016514 -0.33726 -0.79049
3.50 -0.05 0.091612 -0.014737 -0.32491 -0.78995
3.50 -0.10 0.092231 -0.012774 -0.32857 -0.79027
3.50 -0.15 0.080732 -0.007268 -0.28292 -0.79172
3.50 -0.20 0.044199 -0.013886 -0.25791 -0.78829
3.50 -0.25 -0.001502 -0.006178 -0.24749 -0.78840
3.50 -0.30 0.026132 -0.011913 -0.26151 -0.78659

Table 3. The Lyapunov exponents for fixed r = 3.50 with respect
to varying s (s < 0)

In the second sample, fix s = 0.1 and vary r from 3.20 to 3.70, and

calculate the Lyapunov exponents for each parameter pair. About the largest

Lyapunov exponent diagram when s = 0.1 and r=3.20 ∼ 3.70 are shown in

Figure 15.
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Figure 15. The largest Lyapunov exponents diagram for the four-
neuron CNN when s = 0.1 and r = 3.20 ∼ 3.70

Aimed at the case s ∼ 0 and r > 0, we apply the Fast Fourier Transform

to obtain more information about the behavior of the system (1.1) and focus

on the largest 1 mode in FFT. Fixed s ∼ 0, there are five chaotic regions

and the others are windows regions. We apply the FFT in the windows

region (0, 3.2) and find the range r ∈ (0, 1) of the windows region of periodic

solutions form a devil’s staircase. When s = 0 and s = 0.5 there are devil’s

staircase in both cases. See the following two figures.
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(i) Let s = 0, r goes from 0 to 1 with step size 0.001;
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Figure 16. Devil’s staircase-like function when s = 0 and r ∈ (0, 1)

(ii) Let s = 0.5, r goes from 0 to 1 with step size 0.001;
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Figure 17. Devil’s staircase-like function when s = 0.5 and r ∈ (0, 1)
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4 Some numerical results: PART II

In the previous section, the CNNs we consider are coupled differential equa-

tions and there are nonzero connection strength between A1 and A2 subsys-

tem. This means that the neuron x1 in A1 and x3 in A2 have influence upon

each other, so the direction of connection strength is both-side. From the

result stated in subsection 3.2 we know that a chaotic attractor occurs only

for suitable r and s, and r should be much larger than s.

Motivated by the 1-dimensional, coupled CNNs, in the following we will

consider the solid, uncoupled multi-layer CNNs. We start from two-layer

CNNs and present them in subsection 4.1, and generalize this idea to three-

layer CNNs next. We have derived some new and interesting results from

numerical computations and they will be shown in subsection 4.2 later.

4.1 Two-layer CNN model

After considering the coupled two two-cell CNN model, we will further con-

sider the two-layer CNN model described by the following nonlinear au-

tonomous ordinary differential equations systems:





ẋ1 = −x1 + p1y1 + s1y2 ,
ẋ2 = −x2 + r1y1 + p1y2 ,
ẋ3 = −x3 + p2y3 + s2y4 + b13y1 + b23y2 ,
ẋ4 = −x4 + r2y3 + p2y4 + b14y1 + b24y2 ,

(4.1)

where x1, x2, x3 and x4 present the voltages of the neurons, and the output

function of a neuron is a piecewise-linear neuron-activation function as well.

The model consists of two layers and there are two neurons in each layer; we

call the subsystem formed by x1 and x2 layer 1 and the subsystem formed

by x3 and x4 layer 2. Note that we denote bij to stand for the connection

strength from the i-th neuron to j-th neuron to avoid confusing. For clarity,

we use a chart to signify the relations between these four neurons (cf. Figure

16).
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Figure 16. The two-layer autonomous CNN model

From the system (4.1) itself, we know that y1 and y2 are both taken to

be the input functions of x3 and x4. Moreover, the arrowheads in figure 16

also indicate that there are single-direction effects from layer 1 to layer 2. So,

being different from models in Section 3, the system (4.1) is an uncoupled

system in practice since the layer 2 does not influence layer 1 at all. From

another point of view, we attempt using layer 1 to drive layer 2 and observe

what happened in layer 2. At present the system (4.1) involves 10 parameters:

r1, p1, s1, r2, p2, s2, b13, b23, b14 and b24. Generally speaking, for convenience,

we simplify the model by letting b14 = b23 = b24 = 0 in later discussion. The

simplified model and the corresponding figure are expressed as following.





ẋ1 = −x1 + p1y1 + s1y2 ,
ẋ2 = −x2 + r1y1 + p1y2 ,
ẋ3 = −x3 + p2y3 + s2y4 + b13y1 ,
ẋ4 = −x4 + r2y3 + p2y4 ,

(4.2)
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Figure 17. The simplified two-layer autonomous CNN model

Numerical results in Section 3 have exhibited a chaotic attractor in some

specific parameters in coupled two two-neuron CNN (cf. Figure 11). Follow-

ing their setting of case 2 in subsection 3.2, we choose A1 = [2.9, 1.7,−2.9] as

template in layer 1, and A2 = [1.2, 2,−1.2] as template in layer 2. Similarly,

when b13 = 3.5, a chaotic attractor with positive Lyapunov exponent can

also be observed in x3-x4 plane (cf. Figure 18).
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Figure 18. An chaotic attractor in 2-layer CNN when b13=3.5
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4.2 Three-layer CNN model

Motivated by two-layer CNN, we continue to consider three-layer CNN model

by adding the third layer behind the original case. The model is shown in

Figure 19.
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Figure 19. The simplified two-layer autonomous CNN model

Similar to 2-layer case, 3-layer CNN model can be described by the following

differential equations.





ẋ1 = −x1 + p1y1 + s1y2 ,
ẋ2 = −x2 + r1y1 + p1y2 ,
ẋ3 = −x3 + p2y3 + s2y4 + b13y1 ,
ẋ4 = −x4 + r2y3 + p2y4 ,
ẋ5 = −x5 + p3y5 + s3y6 + b35y3 ,
ẋ6 = −x6 + r3y5 + p3y6 ,

(4.3)
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From the previous section we know that there is a chaotic attractor occurs

in layer 2. Next, we attempt to take the chaotic attractor to drive the periodic

solution in layer 3. Although the attractor in layer 2 is chaotic, we can still

apply methods to find its average period. This method has been used in

physics and engineering widely. We evaluate the average period of chaotic

attractor in Figure 18 and the result is around 5.26. So we may divide into

two cases for the period of solution generated in layer 3. One is larger than

5.26, and the other one is smaller than 5.26. The possible candidates for

template A3 are listed in table 4.

template A3 period of TΛ3

[3, 1.2,−3] 2.55
[2.8, 1.3, 2.8] 3.00
[2.5, 1.5,−2.5] 4.00
[2, 1.5,−2] 5.04
[2.1, 1.7,−2.1] 5.64
[2.4, 2,−2.4] 6.10
[1, 1.1,−1] 7.00
[1.5, 1.9,−1.5] 10.08
[1.2, 1.7,−1.2] 11.02
[1, 1.6,−1] 12.50
[1.1, 1.8,−1.1] 14.39
[1.2, 2,−1.2] 17.01
[1.1, 2,−1.1] 21.92
[1, 1.9,−1] 22.25

Table 4. The various templates and its corresponding period

In order to study how the chaotic attractor influence various periodic

solution with different period, we classify them according to periods. For

example, in the following, we select four kinds of templates; case one is

smaller than 5, and case two is nearly 5, and case three is larger than 5, and

the last case is far larger than 5. From the candidates in table 4, we select a

representative template in each case and arrange them in table 5.
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template A3 TA3 result
Case 1 [3, 1.2,−3] 2.55 Figure 20
Case 2 [1, 1.1,−1] 7.00 Figure 21
Case 3 [1, 1.6,−1] 12.50 Figure 22
Case 4 [1, 1.9,−1] 22.25 Figure 23

Table 5. The representative templates with different periods

In the following numerical results, we hold b13 = 3.5 and template A3

fixed in each case, so the only parameter is b35. By varying b35 we can see

the evolution of the new chaotic attractor occurs in x5-x6 plane. From the

figure 20 to 23, it seems that chaotic attractor are preserved when we take

the chaotic attractor to drive the periodic solution. The Lyapunov exponents

in each cases are computed, and result ensures that the system is chaotic.

We have tried our best to investigate the phenomena about 3-layer CNN,

however, there are still many unknowns. Next the follow-up we may further

consider 4-layer or 5-layer CNN, and expect that we can understand more

on the dynamics of multi-layer CNN models in the future.
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Figure 20. A3 = [3, 1.2,−3], TA3 = 2.55.
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Figure 21. A3 = [1, 1.1,−1], TA3 = 7.00
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Figure 22. A3 = [1, 1.6,−1], TA3 = 12.50
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Figure 23. A3 = [1, 1.9,−1], TA3 = 22.25
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5 Conclusions and future works

The chaos in cellular neural networks are popular all the time. About the

research on the stability and phenomena, researchers proved that a two-

neural autonomous networks system will always have no chaotic behavior.

However in this thesis, from the four-neuron case combined by two two-

neuron cases, a chaotic attractor under suitable parameters is discovered.

Whether two-neuron or four-neuron CNN, we find that when we take the

input function with small period to drive the periodic solution with larger

period then it is possible to discover the chaos. On the other hand, if we

take the periodic solution with larger period to drive the periodic solution

with smaller period, then numerical results indicate that there are at most

three phenomena: equilibrium, periodic solution and quasi-periodic solution.

We have found several possible chaotic attractor in several neural networks

models and do qualitative analysis about them in this study, however our

discussion was relatively rough. In order to understand complex dynamical

behavior of the CNN deeply, rigorous theoretical analysis is needed. We will

try our best to deal with them in the future.

To sum up ,we just focus on some typical output function and input

function, however, if the output function and input function are varied, other

interesting phenomena may occur. There are still much unknown about the

CNN model. The CNN we consider is just a simple case, but we can do

something about five-neuron, six-neuron in the future works. In other words,

we can extend our model to more complicated cases based on the two-neuron

and four-neuron CNN models.
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