X 2
A
'

L
<t
»t
-

f@
= 4B

Kdv BELREMEFEXNEZHirota FE

Generalized Hirota method of KdV type bilinear

equation

i ) =~F : 3
IS EELM ;. BIRE HET

PERKEBEMNLTNF — A



KdV Eﬁ']‘%ﬁfﬁt[‘gﬁ“fﬂ@?cEIC‘J’?{[%Hirota kR
Generalized Hirota method of KdV type bilinear
equation

Joa T S U L e Student : Chun-Chue Shen

?‘F’,Ei%’;#& : %{Béf}}f'[ Advisor : Dr. Jiin-Chang Shaw

RS R
e
CER

A thesis
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University
In partial Fulfilment of the Requirements

For the Degree of

Master
In
Applied Mathematics
January 2009

Hsinchu, Taiwan, Republic of China

L= I L B



Kdv IR SSEE 0 pu il S irota ik

POk E kD A

B 3 () 2

i fe!

LD R L RO - =0 SIS VR i
=S MIEH 2GS A UG oS At Fredholm 752
ARG | IS PIR [ GLM 053 DA | AP S o e 2
GLM H53 478 | 25 i[53 4 R ot e | 1



Generalized Hirota method of

KdV type bilinear equation

Student : Chun-Chue Shen Advisor : Dr. Jiin-Chang Shaw

Department of Applied Mathematics
National Chiao Tung University

Hsinchu, Taiwan, R.O.C

Abstract

F(D)f « f= 0 is an important bilinear equation into which many PDESs can be transformed. In
this thesis we try to derive the generalized soliton solutions for this bilinear equation. Owing to
the structure of Fredholm's determinant of generalized soliton solution we can develop a GLM
integral equation whose application is wider than GLM equation produced in inverse scattering

method.
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Chapter 1

Introduction

1.1 History

The story of soliton starts in 1834 from the findings of Russel[l] , but his
discovery didn’t evoke many ripples around the scientific circle in British and
suffered from attacks. It was not until the 1870’s that Russel’s work was finally
vindicated and its scientific importance can be measured by the eminence of the
men who did the job[2]. After 25 years Korteweg and de Vries were to derive
their famous equation

up + 6Uy A+ Uy (1.1)

,where subscript denote partial derivatives. However , the KdV equation didn’t
draw much attention until the remarkable-discoveries of Zabusky and Kruskal
, who were investigating Fermi-Pasta-Ulam problem , in 1965[3]. They observe
the particle-like nature of those interacting solitay waves in their numarical
experiment. The name ”soliton” was born. In a later analysis of the interaction
Lax[4] verified their observation rigorously. Afterwards, analytical methods of
soliton theory were developed prosperously.

1.2 Three major methods
We introduce briefly below three major methods of soliton theory
Inverse scattering transform

Gardner et al[5] were able to relate equation (1.1) to the eigenvalue problem

Paz +Up = Ap (1.2)

They proved that (1.2) is isospectral in time when u satisfies (1.1) Using inverse
scattering they were able to find a GLM equation for the initial value problem
of KdV equation and to derive a number of important results , including the



explicit solution for the interaction of any number of solitary waves. The success
of inverse scattering was explained by a deeper and more general argument by
Lax[4], opening the way for more equations to be solved. In 1972, Zakharov
and Shabat[6] found an eigenvalue problem with which they were able to solve
the nonlieanr Schrodinger equation

1ot + Pz + |<,0|2<,0: 0 (1'3)

Also in 1972, Waditi[7,8] applied essentially the same eigenvalue problem to
solve the modified KdV equation

up + 66Uy + Upyr = 0 (1.4)

Backlund transformation

Consider a pair of partial differential equations
A(u) =0 (1.5)

B(@) =0 (1.6)

in which u and @ denote the unknown functions, while A and B represent dif-
ferential operators in m independent variables. Then the set of relations

R]((u)7(ﬂ)v(£)) % =el,...,n

where (u) and (@) denote a finite sequence of partial derivatives of u and u
respectively.The number of each sequence need not be equal. (§) represent
parameters. In reality, A and B are not restricted to the average differential op-
erator. Hirota[9] created a new form of Backlund transformations,in which
case A and B are specialized differential operator, the combinations of D opera-
tor. For example, let f and f’ be two solutions of the bilinearized KdV equation
, in symbols

D.(Di+D3f-f=0 (1.7)
D.(D;+D3f - f =0 (1.8)
,where D, and D; will be explained later.
(Dy +3\D, +D3)f - f=0 (1.9)
Diff-f=X"-f (1.10)

constitute the Backlund transformation of the KdV equation in the bilinear
fornalism



Hirota direct method

A perturbational series is a commonly used technique to solve a PDE. The
same technique applies to Hirota bilinear equation. For example if we put
¢ = G/F then nonlinear Schrodinger equation ip; + @.. — 2|¢|>¢ = 0 can be
transformed into

(iDy+ D2 —\NG-F =0 (1.11)

(D2 —\) = —2G - G* (1.12)

(1.11) and (1.12) are nonlinear Schrodinger equation in the bilinear form. A is
an parameter to be determined. F and G can be set equal to:

F=1+¢efi+efo+-- (1.13)

G=go(1+egi+eg2+--) (1.14)

Substituting (1.13) and (1.14) into (1.11) and (1.12) and colleting terms with
the same power of €. In this case, the calculated result indicates that both F
and G turn out to have finite terms , ie , F =1+¢ef; +e2fo +---+ €™ f, and
G=go(l+eg1 +eg2+---+e"gn)(say), provided the solutions to f1, go and g1
are properly selected.

Generally speaking , a perturbational series applied to a PDE may not turn out
to have finite terms , perhaps not even be convergent. The advantage of Hirota
method is able to truncate the series after a number of finite terms.

The marvel of math is that different approaches may lead to the same con-
clusion. Hirota[9] used the concept of Backlund transformations to show that a
new forms of the Backlund transformations lead to the known inverse scatter-
ing methods of solutions of the initial-value problem for the respective nonlinear
evolution equations.

The drawback of bilinear method is unable to solve a initial value problem for
a soliton equation. QOishi studied using bilinear method to solve initial-value
problems whose solutions may be expressed as a determinant. The thesis is
primarily a review on Oishi’s papers[11][12].



Chapter 2

D operator and
Bilinearization

2.1 The properties of D operator
The D operator is defined by
Dy D2a(t, @) - b(t',2') = (0 — 0" (D — Oa)"alt, 2)b(t's 2 rmtwrms (2.1)
For example:
D,a-b=a;b— ab,
D2a - b= azzb=2a,b; + aby.
D30 - b = ppeb — 300:by + 3020y — abyys
From the definition (2.1) we have the following lemma
Lemma 2.1
DTa(x)-1=0T"a(x) (2.2)
D;ﬂf D;r;z . D;’f:’a b= (_1>m1+m2+...+mnD;ﬂ11 D;r;z . Dgilnb -a (2_3)
Da-a =0 for odd m (2.4)
DIDtCL 1= Dth]. ca = 8x8ta (2 5)
Proof
i(2.3) DjnDp2...Dl'a-b
= (8961 - ax’l)ml (8902 - aﬂc’z)mQ e (axn - xi,,)mna . b|x/1:zl.,z'2:a:2 ...... ! =zp
— (_1)m1+m2+..-+mn (amll _ axl)nh (@ufam

)" (Oay, — Op, )" b|x§:z1,r’2:962
(—1)m1+m2+"'+m"D;’ilDZ;2 ...D'mb-a



ii(2.4) By (2.3) D™a-a=(-1)"D"a-a=—-D"a-a

=
D¥a-a=0
QED
Also using definition (2.1) we have
DD .. D exp(®y - x) - exp(Py - X)
= (61— ¢1)™ (d3 — 63)™2 -+ (b, — ¢3) """ exp[(P1 + B2) - X] (2.6)
with ®; and x being vectors
B; = (91, ¢, 0p) i =1,2
x = (x1,Z2,...25)
P, -x= Z D
k=1
In particular , we have
DDz Dy eap(®-x) - exp(® - x) =0 (2.7)

Generally speaking , if F'is a multipolynomial in° D, , Dy, ... D, , then
F(D) exp(®; - x) - exp(Py - x) = F(P1 — B3) exp[(P1 + P2) - X] (2.8)

FD)f 1= F(Ogy,009s:--,02,)f (2.9)

The following lemma are essential to bilinearize an evolution equation

Lemma 2.2
exp(0D;)a(x) - b(x) = a(x + 0)b(x — J) (2.10)

Proof

exp(6D,)a(x) - b(x) = exp[d(0y — Opr)]a(x)b(x")|pr=s
= exp(00;)a(x) exp(—80./)b(x!)| 1=
=[1 460, + (6202)/2! + - - -Ja(x) x

[1 — 060, + (5282)/2! - ']b(xl)lw’:x

From Taylor series we know the right hand side
= a(z + 8)b(x’ — 8)|w=z = a(z + §)b(x — J)

QED



2.2 Bilinearization
There are several techniques to transform nonlinear partial differential equation
L(U, Uty Ugy Utty Ugay Uty - - ) =0

into bilinear forms. We introduce some of them here. Let us do some calcula-
tions

5 [a(x)] _agb—bya (9, — 8$/)a(x)b(x')| _ Da-b
T b(l’) - b2 - b2 x'=x — b2
82[a(x)] _ b2 (agb — bpa)y — 2bby(azh — bya)
rh(x) b
Az — 2a5b, + aby, a 2

= b2 - gﬁ(b b— bi)
_Dia-b aD3b-b

o bob?

Therefore a change of dependent variable v = ¢ plays a natural role in bilin-
earization. To avoid tedious calculations in transforming 97 for n > 3 we need
a lemma

Lemma 2.3
exp(0Dy)a - b

a
XD (000 )= G Db b (2.11)
proof
By making use of (2.10) we have
cosh(8D,)b - b = [=POD) +2€Xp(_5D””>] boo= AT 6)2b(m =
I W — bz + 8)b(x — §)
Therefore
a a(r+0) alx+)bx—05) exp(dDy)a-b
xP002)3 = 325 0) ~ ble+ )bz —0) _ cosh(@Du)b- b
QED

Expanding Taylor series on both sides of (2.11) with respect to the parameter
6 , we have

2 3 1 1 212 1 33 .
(1+58+582+583 _)g:( +6Dw+2/2§Dz+ /4664DI+ Ja b
b (141/20°D? +1/246*D2 +-- )b - b
. 4
:(%+5Dzb‘; b 52/2Dba by x+epel? b b 54/24Db2 b



Expanding the denominator using (1 + X)™!' =1 - X + X2 + ..., and col-
lecting terms in powers of § , we can obtain formulae which express derivatives
of u = a/b in terms of the D-operator. The change of dependent variable
u = 2(log f)zx also plays a natural role in bilinearization. Likewise , we also
need a lemma to avoid those messy calculations

Lemma 2.4
2 cosh(00;) log f(x) = log[cosh(d Dy ) f(x) - f(z)] (2.12)

proof

2 cosh(00;)log f(x) = 2[exp(5am) + exp(—d0,)

llog f(z) =log f(x + 0) + log f(x — §)

2
=log f(z +6)f(x —4) = log[f($+6)2f(x —0) , fla— 5)2f(x+5)]

g SRUID S (0D -

= log[cosh(6 D) f(z) - f(x)]

QED
Expanding (2.12) with respect to § , we have
2
202 log f = Dx—;;'f (2.13)
20,0 log f = Dmlj)jzf ! (2.14)
4 2
204 log f = Dwfz' / _3(Dwa' f)? (2.15)
f f
6 4 2 2
288 log f = DI;' I _ 15D$f2' fDm;;' f +30(D$f2' f)3 (2.16)

Now we apply these formulae to some equations. Making the dependent
variable transformation u = 2(log f)z, to KdV equation (1.1) we obtain

Integrate with respect to x once
2(10g f)at + 3[(210g f)ax)? + (2108 f)awze = 0

By making use of (2.13) , (2.14) , (2.15) we have

Dif-fo, Dif-f
s &

Dif-f
f2

2 e

)’ +

+3( 3(



Multiplying f2 on both sides we have
Do(De+D3)f - f=0 (2.17)

Now we proceed to apply the same transformation of dependent variable to
K-P equation
(—4us + Ugpe + 6ulg)y + 3y, =0

Set u = 2(log f).. and integrate with respect to = twice we obtain
74(2 IOg f)zt + (2 log f)mcm + 3[(2 IOg f)xz]z + 3(2 10g f)yy = 0
Use (2.13) , (2.14) , and (2.15). Then
DuDif-f  Dif-f o Dif-fro o Daf-fo Dyf-f
2 + 2 B 2 2 )" +3 2 -
f f f f f

Multiplying f2 on both side we obtain the KP equation in the bilinear form

—4 )+ 3( 0

3(

(D; — 4Dy Dy +3D)f - f =0 (2.18)



Chapter 3

Generalized Soliton
Solution

3.1 Introduction

Many soliton equations can be transformed into bilinear equations such as:

Ex1 The KdV equation : wy + 6uty + tUyer =0 u = 2(10g f)za
= Dx(Dy+D23)f-f=0

Ex2 The Sawada-Kotera equation:
Ut + 15(“3 + Uuacac) + Ugzepe =0 U= 2(10g f)$I

Ex3 The K-P equation:(—4u; 4+ Upqzy + 6Ully)s + 3tyy =0 u = 2(log f)as
= (D3 —4D, D, +3D2)f - f =0

These equations , which can be written in the form
FD)=0

and F is a multipolynomial in D = (D, , D,,,... D, ) withz =21 , y = 22,
t = x3....etc. , have three conditions in common.

F(-D) = F(D) (3.1)
F(0)=0 (3.2)

N (N)
> FO _oP)[[F(oiPi—0;P))oio; =0, for N=1,2,... (3.3)

o=1,-1 i=1 i<j

(3.3) is well known as Hirota condition. In this thesis we try to solve bilinear
equation

F(D)f-f=0

10



under these three conditions. In what follows we tacitly assume these conditions

Lemma 3.1 If F is a multipolynomial in D,,, D,,,... D, satisfying condi-
tion (3.1) , then
FD)f-g=FD)g-f (3-4)

pf: Since F(D) = F(Dy,, Ds,, ..., D, )is amultipolynomial in D, Dy, ... D,
, then by using (2.3)

FD)f-g= > nneem, DEDE . Dinfeg

0<ni,na..nm <N

_ 2 : (—1)n1+n2+"'+nmOlnlnz...nmD;lll D;Qz o D;l:bg . f

0<ni,nz..n, <N
=FD)g-f,if ni+na+...+n, is even

and the evenness of ny + ng + ... + n,, is exactly what (3.1) assures
QED

3.2 The pure N-soliton solutions
Now we proceed to solve
FD)f+f=F(Dg,Days- -, Da,))f - f=0
What we tackle this problem is making use of perturbation method , so we put
f=l+e'fi+efotefa+- -

Substituting this perturbational series of f into the above bilinear equation and
collecting like powers of € , we have

0
) F(D)1-1=0, thisis why (3.2) is required (3.5)

cl
FD)(fi-1+1-f1)=0 (3.6)

2
FD)(fo-1+fi-fi+1-f2)=0 (3.7)

&3
FDO)(fs-1+fo-fi+tfi-fat+1-f3)=0 (3.8)

o4
FO)fa-1+fs-fit+fo-fotfi-fs+1-f1)=0 (3.9)

11



Running through the above procedures with a proper solution to f; , for ex-
ample , f1 = exp(d121 + P22 + -+ + GmTim) = exp(P - x) , we can derive a
truncated series , thus an explicit solution is obtained without resorting to sum-
ming the series. Now we set f; = exp(® - x) then ¢!

FD)(fr-14+1-f1)=2FD)f1-1=2F(0y,,0zy,...0z,, ) exp(® - x)
= 2F (61,62 .. . bm) exp(® - x) = 0

= F(¢1,02...¢m) =0 (3.10)

the above equalities are on account of (2.9) and (3.4). (3.10) is a confinement
implying that each ¢;,i = 1,2...m can be expressed by (m — 1) independent
variables such as ¢; = ¢;(p,q, ..., 2)

62

2F(D)f2-1=—-F(D)f- fi
= —F(D)[exp(® - x)] - [exp(® - x)]
(@ ®) exp[(® + ) -x]
= —F(0)exp(2®:.x) =0

= fo can be assigned to zero
The above equalities are due to (2.8) and (3.2)

&3

2P(D)fs 1 = —2F(D)fs - f1 = 0

= f3 can be assigned to zero Going on the calculation for steps €",n > 3 it is
readily to have the conclusion that f,, = 0 for n > 3. Therefore we obtained
a truncated series as formerly promised. Collectively , u = 2(log f). , where
f=1+exp(pr121 + 222+ -+ + Gimy,) with condition F(¢1, ¢, ...¢0m) =0,
is a one-soliton solution

If we put f1 = exp(®; - xX) + exp(®y - x) , where ®; = (¢, ¢1,... L) and
D, = (¢7,¢3,...¢2,) , we have (note that ¢? does not mean square)

51

FD)(fi-1+1-f1)=2FD)f1-1=2F(0s,,0z,---,0z,, )|exp(®; - x)
+ exp(P3 - x)]
= 2[F(®1) exp(®1 - x) + F(P2) exp(P2 - x)] =0

= F(®,) = F(®,) =0 (3.11)

12



2F(D)f2-1=-FD)fi- f1
— 2P(D)[exp(®; )] - [exp(® - x)] — F(D)[exp(®; - )] - [exp(®; - x)]
— F(D)[exp(®2 - x)] - [exp(P2 - x)]

= —2F(® — ®y)exp[(P1 + P2) - x|

= To meet the above equation we can use (2.9) and put

F(®, — ®5)

o= TF(®, + @)

exp[(®1 + P2) - X]

2F(D)fs-1=—-2F[D)f>- f1
= (const)F(D){exp[(®1 + ®2) - x|} - {exp(P; - x) + exp(P3 - x)}
= (const){F(®1 + &3 — ®1)exp[(2®1 + P3) - X]
+ F(®1 + $o — Po)exp[(P1 +2P2) - x|}
=0 by (3.11)

= f3 can be assigned zero to meet the above equation

2F(D)fs 11 = —2F(D)fy - fi = F(D)fo - f» =0
= f4 can be assigned zero by f3 =0-, (2.7) and (3.2)

Going on the step for ™ it is readily to conclude that f, =0 for n >4
Collectively , u = 2(log f)zs , Where f = 1+ cfy + %fa = 1 + exp(®; -
X +10) + exp(®2 - x + no) + a2 exp[(®1 + L2) - x + 2] , expmy = € , and
alg = _F(®; — 8y) is a two-soliton solution

F(®, + @)’
If we put f; = Ziil exp ®; - x , then we obtain N-soliton solution? The answer
is yes. Here we directly quote N-soliton solution derived by Hirota[10]

N (N)
f= Z exp[z,uierzAij,uiﬂj] (3.12)
1=0,1 i=1 i<j
where exp A;; = —?Egzij_ggg and 1; = ®; - x + (const). Euzo,l means a

summation over all possible combinations of u; = 0,1, us = 0,1,...,uxy =0,1
, 2553) means a summation over all possible pairs (i,7) chosen from the set
{1,2,..., N} with the condition that i < j

13



3.3 Construction of generalized soliton solutions

As formerly stated , if we put f; = Z@Z\; exp(®;-x) , where ®; = (¢4, %, ..., %)
and x = (21, 22,...,%Zm) , we have a N-soliton solution for arbitrary integer N
The starting point of generalized soliton solutions is to express f; as a m — 1
multiple integral , i.e. ,

flz/Fl/FQ.--/Fmlexpcp-xdf(p,q...z) (3.13)

, which can be abbreviated as fr( L, exp ® - xdr,,_1 with the definitions

(I)XEZQf)l(]Lq,,Z)(El
i=1

and

/ dT(p,q,...,z)E/ / / e(p,qy...,2z)dpdg---dz
Tim—1) Ty JTe Tm—1

The integration represents a multiple complex integral along possibly differ-
ent path I';,;i = 1,2,...,m — 1 with a properly selected complex function

cp,q,---,2)

With f; specified by (3.13) now we go through the same perturbational ap-
proach as before

FO)fi 1= FO) [ exp® xdr, 1] 1
Lim—-1)
= / F(D)[exp(® - x)] - 1d7ym—1
LPim-1)
:/ F(®)[exp(® - x)|dr—1 =0 by (2.9)
Pim—1)

To meet the above equation
= F(®)=0 (3.14)

(3.14) explains why each component function ¢; = ¢;(p,q,...z) has m — 1 in-
dependable variables. This is also the reason for m—1 multiple complex integral.

52
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1

FD)fz-1=-5FD)fi- fi
1
= —2F(D)[/F(m1) exp ® - xdry,_1] - [/F(mn exp @ - xdrm_1]
=gl FOlew(@ )o@ iy

2
(m—1)
where ®; (i = 1,2) means a vector function
(01(Pis Gis - 20), D2(Piy Qi - - - Zi)s - - o P (Pis Gy - - - 21)) for i=1,2

A simple example to clarify the above equation is that

[/r f(z)dz] x [/F f(z)dz] = . f(z1) f(22)dz1dzo

Making the substitution fo = ¢ ffn | exp[(®1 4+ ®2) - x|dr?_,; into the above
1)

m—1

equation to meet the identity corresponding to.e? , we have

C/F F(D){exp[(®1 + ®3) - x]} - 1d72,_,

{m-1)
—¢ / F(®1 4 B [op@1% &) - x]}dr2_, by (2.9)
F2
(m—1)
1
=3 F(®, — ®;)exp|(®) + o) - x|d72,_,
F2
(m—1)

Deriving ¢ by equating the above equation leads to

1F(<I>1—<I>2) 9
= it s o, +B,) - x|d
b2 / 3 F(e T o) CPI® B X

(m—1
For convenience , we define Is = 2F(D)f5 -1, as in (3.8) , we have

&3

15



I3 = —2F(D)f1 - fo
= 72F(D)[/ exp (P1 - x)dTm—1]
Cim-1)

| / . e g P2+ B0 xark
= /F?mrl) igzz J_r ii;F((bl By — P3) exp[(®g + Py + B3) - x|d7>_,
Since ®; ,i =1,2,3 are dummy variables we can write I3 in such a form
I3 = é o m (B3 — P — By) exp|(P1 + Py + B3) - X]dr> |+
/ FEiL—i ; (®y — &) — ®3) exp[(Py + Py + P3) - x|d72,_ 1+

1
3
1

F(‘I’2 ®s3) 3
—— L F (P11 —P,— P P, + Py + P3) - x|d
3/ F(®, T 3s) (R1= @5 — ®3) exp[(®y + P2 + P3) - X]dT,
Usmg leota condition’(3.3) we have(see Appendix A.1)

1 F(®) — 8,)F(®, — B3)F(By — B3)

Iy = —— F(® 0] 0]
8573 /F (®1 48+ Bg) G 3, F(®, 1 B5)F (D 1 Bs)

(m—1)

x exp[®1 + ®o + P3ld7, |
To satisfy the above equation f3 can be assigned

1 / F(®) — ®)F(®, — ®3)F(Dy — &)

_ B+ By +B3]dr3
fs="3 v F(®1+ 85)F (@1 + ®5)F(@5 + ) P[P+ By sy

The mathematical form of fs , f3 leads to a conjecture

1 F(®; - @ .
= / 11 [_M]GXWZ ®;-x)dry_y n>2

(m—-1) 1<j<k<n =1

To justify this conjecture such f, must be compatible in the original perturba-
tional series , i.e. ,

D)(Z fl : fn—l) =0 (315)
=0

Is (3.15) an identity? let us calculate the left hand side of (3.15). Firstly we
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define F(D)(}>.) o fi - fa—1) = I, Then
n—2
Ln=FMD)[1-fotfr o1+ > frfait faor-fr+ fu-1]
1=2

1 F(®; — ®;) -
== Il 5555 1FD)1-exp> ®;-xldr), +
L 1<j<k<n F(®; + @) i=1

1 / [ E®-2
— [——=L——"%|F (D) exp(®; - x) - exp( Z@ -x)dr_ +
(n — 1)! F?m,—l) 9<j<k<n F(@] + @k)

= 1 F(®; — &) F(®; — &)
Zu(n—z)!/rl 11 [_F(¢j+<1>2)] 11 [_F(cpj+q>i)]x

1=2 (m—1) 1<j<lc<l I+1<j<k<n

eXpZ{) - X) eXpZ@ -x)dr) 1+

=141

n—1

! /F 11 [_M}F(D)exp(z:@i-x).exp(¢n.x)drg_1+

— 1) )
(n—1)! tm-1) 1<j<k<n—1 F(®; + i) i=1
n

ST VS e ) SRR

(m—1) 1<j<k<n

Using (2.8) and we obtain

n

_1 F(®; — @) <! 3 | :
Pk A [‘mm—;%@g@-x>d7m,1+

(m—1) 1<j<k<n

1 / 0 F(®;
e [—— Z{) eXpZ@ x)dr) 1+
(n AR 2<j<k<n F(®;+ @)

=2 I(n =D nfl Tt 1y 1<j<k<l F(®; + @) I4+1<j<k<n F((I) + (I)k)

Z'I’—Zi)expz:@x o+

1=l+1

1 F
(n—l)'/ H [FE +(I)k ;‘I’ ®,) epo@ - X)dr 4

rn .
(m—1) 1<j<k<n—1

1 F(®; - ‘I)k
o) H [_F( o) Z‘IZ' ) exp( Z@ X)dT(p, 1)
(m-1) 1<j<k<n i=1

= Iy + Ln@) + In) + Inga) + Ines)

I,y (j =1,2,...5) denotes each integral term respectively

17



I,(1) can be written as

1 (I1-01)(1=09) (1 —0,) F(o;®; — 0, ®y)
Ly = —C8 Y [~ JOk] X
o=1,-1 2 Tl 1) 1<j<k<n F(®) + @)
20:1,71 means the summation over all possible combinationsof oy =1, —1 09 =
1,-1 ...0,=1,—-1 Sinceo; = -1 i=1,2,...n is the only combination
which contributes , (3.16) is valid
Similarly , we have
1 (I4+o01)(1—=02) (1 —0p) F(o;®; — 0xPy)
Loy = —CF Y I ——=Z 70k] X
n | n . J
L 2 T 1) 1<j<k<n F(®; + @)
F(Z o;®;) exp(z ®, - x)dr,,_4
i=1 i=1
I+o1)-Q+a)l—o041) (1 —0n)
SRR a x
o=1,—1
H [—F(gjq)j _Uk(pk)o-a ]F(zn:a-'lf)ex (zn:@'-x)dT”
o 4 F(@J = (Pk) 719k : i Eq P : i m—1
(m-1) 1<j<k<n =1 i=1
I 1 n (1+O’1)(1+0’n,1)(1—0'n) F(O’jq)j—qu}k)
n(4) = 1-n—1 Z on N H [~ F(®; + &) g
o=1,—1 1_‘(mfl) 1<j<k<n J k
F(OO oi®i)exp(Y_ ®; - x)dr
i=1 i=1
1 (I4+o01) - (140m) F(o;®; — 01, ®y)
Lz = =Cn > - / I ——2Z= o0k] %
n! o=1-1 2 Tty 1<j<k<n F(®; + @)
F(Z 0,%®;) exp(z ®, - x)dr)_4
i=1 i=1
=
I, = Ly + Ine) + Iny + Dy + Ing)
1 ~ (L ta) - (I+o)(l o)~ (1 —04)
= 2 2 > x
o=1,—-11=0
F(oj®; — 01 ®y) -
- o 0;®;)ex P, - x)dr) _
J R | R z Dexp(y_ @ x)dr_y
(m-1) 1<j<k<n i=1
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Due to the dummy variables ®; , we can choose (ry,rs,...,7;) from the set
{1,...,n} with the relation (r; < r3 < ... < 7;) and the left was denoted by
(r141, 7142, - - -, ) With the relation (141 < 742 < ... <ry,) Then

n 1 ” (1 ” 1— r (1 — r
el s et (o) o) (o),

T o=1,-11=0 2"
F(o,, ®,, —o,,P) n
/ H [_ o : Or; Urk Z 0'7‘1 T eXp Z P, - X)dngfl
D1y 1<j<k<n F(®r; + ®r,) i=1
We denote
F(oy, ®,, — 0., Py,
- H - F(®, +®,) "ﬁ"rk Z"h ri) €XP Z‘I’ x)dTy,
(m-1) 1<j<k<n J
by C Because C is independent of the selection of (rq,...,r;) from the set

{1,..., N} we have

In: Z ZC +UT1 : '(1+‘7T1)(1_0r1+1)"'(1_0rn) % O

277,
o=1,—-11=0

Z ZZ 1+0T1 ] 1+Jrz);}l_o7“z+1)"'(1_JT") x C

'a 1,-11=0 Cp

where Z means the summation over all the selection possibilities
cr

From observation we have

1
[n:a Z 9—n Z (1+e101)(1+€02) - (14 €,0,) X C
o=1,—1 €1...€p=1,—1
1 —n
= > 2 > (140 + (1 =01+ e202) - (1+€n00) X C
o=1,—1 €...6p=1,—1
1 n 1
= Z g ntl Z (1+620’2)"'(1+€"O’n)XC:"':H Z xC
=1,—-1 €2...6p=1,—1 o=1,—1

= / Z H 0'7<I’ J_r(gcq)k jo'k ZUZ exp(i(}i.x)dTn
g =1

(m—1) o=1,-11<j<k<n
=0 by Hirota condition (3.3)

We summarize the discussion of this section into the following theorem

Theorem 3.1 If F(D) , a bilinear operator in a multipolynomial form of
Dy,,...D,, , satisfies (3.1)(3.2) and (3.3) , equation F(D)f - f = 0 has a
solution

f=1+4> "fa (3.17)
n=1

19



where

fi= / exp(® - x)dr,—1
Lim—-1)

and

1 F(®, — @ n §
fn= n! /F H [— M]exp(z &, x)dr”_,

(m—1) 1<j<k<n =1

3.4 Two Examples
(i)

KdV equation u; + 6uuy, + tzze = 0 can be transformed into

F(DilvDIQ)f'f:Dfl(sz+Dil)f'f:O with z1 = x, 22 :tau:2(10gf)xm

From (3.13) and (3.14) , in this case m = 2 , we have

fi= / exp[¢1(p1)z1 + d2(p1)z2]dr(p1)
I

and

F(¢1(p1); d2(p1)) = d1(¢2 + flﬁ)) =

From (3.19) we can assign
¢1(p1) = pr 5 P2(pr) = —p}

Using theorem3.1 we have

fi= / exp(p1a1 — pias)dr(pr)
N

p;) — d1(Pr), d2(ps) — d2(pr))
fn Tl /F H p;) + o1(pr), d2(ps) + d2(pr))

1<j<k<n

exp Z ¢1 pi)x1 + ¢2(pi)x2]d7"

/ pj — pi) (=P} + P 4+ (pj — )]
Irn

1<J<k<n (v +po) =02 — P + (0 + )7

exp( szm szxz

/n IT « pﬂka XPZP@*P il;[dT(pi)

1<j<k<n

20
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for n > 2 , where z; and x> have been replaced back by = and ¢ respectively.
Then

f—1+s/exp(p1x—p1 )dr(p1) +Z / [T &2
P T
X exp Zplx —pit) H dr(p;) (3.20)
=1 i=1

Now we set

/dT Di */ Zal(S — DPoi dpz
r

0 1=1

where a; and po (I =1,2,...,N) are real constants with po; # por for j # k
(1 <j,k < N) and § is Dirac’s delta function. Then from (3.20) f becomes

f=1+ Z / exp(prx — pit)aud(pr — po)dpy

n n N
+ Z ol / / B Phz o P[z; pix — pit H > o, 8(pi — por,)dp;
i i=11;=1

o0 1<]<k<n pj + Dr

Pot; — Pol
SIEDICTERNE LFD 515 S | e
g 1 1<j<k<n Pot; T Poiy

n
expY_(por,w — piy, 1)

i=1

Poi; = Doty

We observe that H1§j<k§n(m
respectively and if n > N it is impossible to make [; - - - [,, having different values
respectively thus the terms for n > N contribute nothing. Therefore f can be
written as

)2 makes [y - - - [,, having different values

N N

=1+ eaexplpoz —pot) + Y e Yy, x
e n=2  (l..1,)€CN
n
Poi; — Pol, :
H (JT’”)2 eXp[Z(Pozil’ - pa,t)]
1<j<k<n Poi; T Poly i=1
N

Por; — Pol
=1+ E exp(porx — poyt + cor) + E E H (——")?
( ln)ECN 1<j<k<?n p()lj +polk

n

eXP[Z(Pol,;l" — Py, t + cor,)]
i=1
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where cq, = log(eay,) and Z(ll_”l yecn denotes a summation over l,..., I,

which are chosen from a set {1,..., N} aswell as ] <lp < --- <1,
Now with

PoiT — pgit + coi =i
p pO])

2
= exp A;
Poi + Poj J

we have
=1+ Zexpm + Z Z exp Zm + Z Al (3.21)
l1,..., n)ECHN 1<j<k<n

Then f expressed in (3.21) equals to f in (3.12) , in other words , we can derive
pure N-soliton solution from generalized soliton solution.

(ii)

K-P equation (—4u; + Uzgs + 6uty )y + 3y, = 0 can be transformed into
F(D$17D$27D$3) = (D;ll - 4D3¢1D-ﬂ¢3 +3D9252)f . f =0

where 1 =2 20 =y, 3 =t and uw =2(log f),. From (3.13) and (3.14) , in
this case m = 3 , we have

fl = /1; Az exp[¢1 (pv Q)xl = ¢2(p7 Q)xz i ¢3 (p, q)xg}d'r(p7 q) (322)

and
F(¢1(p.q), $2(p, @), 3(p,q)) = &1 = 4103 + 3¢5 =0 (3.23)
From (3.23) we can assign
¢1(p,q) =p—q, ¢2(p,q) =p° — ¢° and ¢5(p,q) = p* — ¢ (3.24)

Hence from theorem 3.1 and Appendix A.2 we obtain

/ I | F(1(pj, 45) — 1Pk ak), 2P+ 45) — D2(Pk k), $3(P5 45) — ¢3(Pks k)
oy 1<jonen (@125 65) + o1(prs ar), 2P 45) + d2(Pk, ar) @3 (), 4j) + ¢3(Prs ax)
X exp Z $1(pi» ¢i)a1 + Ga2(piy gi)a2 + Gs(piy gi)ws) [ [ dr(pi i)
=1
= j_pk)(%’_q}c) - o 2 _ 2 3_ .3 nd o
/(2) 1<J<k<n ——r _pk)]eXp[;(pl gi)z1 + (p; — 4;)w2 + (p; qz)xs]il;[l 7(pi, @)

Now we set

/ dr(p, q / / dr(p, q / / Zazé(pfpoz)é(qfqoz)dpdq
F(2) Fl F2 OOl 1
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Then

N
f=1+e> arexpl(po — qo) =1 + (0% — a2 + (P — aby)ws]
=1
en al (poi; — po,,)(qor; — qouy.)
+ - Z ap,...Qp H ! ! X
n: Lol=1 1<j<k<n (pozj - QOlk)(QOlj — Pou;.)

n

eXP[Z(pOLi — qo,)x1 + (D1, — a8, )x2 + (D01, — day, ) s
i=1

Now with
2 2 3 3 _
ea; exp|(Por, — doi,)T1 + (POr, — doi,)%2 + (Por, — dou, ) 23] = exp,

(Poj — pox)(q0; — qox)
(pOj - QOk)(QOj - pOk)

The same way as in case (i) such f is equivalent to the one in (3.12)

=exp Aji
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Chapter 4

Relation with GLM
equation

In this chapter , we relate the generalized soliton solution for KdV equation
to the GLM integral equation. To begin , we need the following lemma

Lemma 4.1 H1§i<j§n(H>2 = det/\,; , where /\,, is an nxn matrix with
2pi

Dpi +Dpj
pf see Appendix A.3

i-j element

Using Lemmad4.1 and letting ¢ = 1, (3.20) becomes

n n

f= 1—|-/Fexp(px—p3t)d7(p)+z % /n det(N,) exp[Z(pix—p?t)] HdT(pi)

n=22 i=1 i=1

Using the definition of determinant

A= (a;;), det A = Z sgn(a)alg(l)agg(Q) g (n)

, a summation over all permutations , f becomes

> 1 2p 2pn
f=1+ /F exp(px —p3t)d7'(p) + Z:Q o] ngn(a) /F : o

. X
n P1+ Po(1) Pn + Po(n)

n n

expY_(piz — pit)] [ [ dr ()

=1 i=1
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Meanwhile

2p; -
sgn(o) / : pix — pit dr(p:)
zg: r» P1 +pa(1) pn +po(n) Z 1:[ (

i=1
- 2 2 "\ Pi + Do) T
3
= E sgn(o / D1 Pn €XP E —p;t exp E —x dr(p
= (@) rn [i:1( )}pl + Doty PntDo(n) [izl 2 ]};[1 (e)

=wawwﬁp~%mﬁxﬁmf3/%mszmwﬂmnmw
:ngn / / /"pl pnexpz pl+p0() pzt HdT Di Hdsz
= ngn(a)(—l)"/ / / P Dn exp[X:(pZ;z + B 802 1) HdT(pi) Hdsi

o =1

rename o ' = p. The above equation becomes

_/Oo"'/oongn(pl)(l)”/F P - PneXPZ SZ +2Sp() pl HdT Di Hd&
x xT p—l

It is noteworthy that we can restrict the path I' on the left complex plane
to avoid the explosion of \improper integral at infinity. Now let F(t,s) =
—frpexp(% — p3t)dr(p) and we know that >, = > _. = >, as well
as sgn(p) = sgn(p™)

Then the above equation becomes

00 00 n
= / / ngn(p)F(t7sl +Sp(1))F(t752 +Sp(2)) F(ta Sn +Sp(n))Hdsl
x T p i=1
o] o] n
z/ / det\I/ansi
v v i=1

where U, is a matrix with ¢ — j element F'(¢,s; + s;)
And

oo 0 s14+s
/exp(px —pt)dr(p) = —/ / pexp(ps — p*t)dsdr(p) = —/ /pexp(p% — p3t)dr(p)ds;
r r r
. xr xr
= / F(t, S1 + 81)d81
which can be written as f;o detWUqdsy with F (¢, 81 + s1) = det¥,

Therefore f becomes
0 1 o] o]
f:1+z:1n!/w /x dei‘I’n(t;81~~Sn)1_[1d8i (4.1)
n= 1=
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(4.1) has a form of Fredholm’s determinant of a certain integral equation. In-
spired by Fredholm’s trick[13] we introduce Fredholm’s first minor

Ft,e+z) F(t,x+s1) Ft,x+s2) - Ft,ox+sy)
F(t,si+z) F(t,si+s1) F(t,si+s2) - F(t, 51+ sn)

F(t7 S2 + Sn)

detQ, (t,x, 2581 ... 8p) F(t,sa+2) F(t,s2+s1) F(ts2+s2)

F(t,sn+z) F(t,sp+s1) F(t,sp+s2) - F(t sp+sn)
(4.2)

And particularly
(4.3)

detQo(t, z,z) = F(t,z + 2)

Take cofactor expansion along the first row of (4.2)

detQ), = F(t,x + z)detV,, + Z(fl)jF(t, s+ )%
j=1

F(t,x + s1) F(t,x + s2)

F(t,sl +51) F(t,81+82)

F(t,x + sp)
F(tv S1 + Sn)

F(t7 Sj—1 + Sn)

F(t, Sj—1+ 81) F(t, s 82)
F(t7 Sj+1 =+ STL)

F(t, Sj4+1 81) F(t, Sj+1+ 82)

F(t, sn + sn)

F(t, s, +.51) F(t;sp+ s2)
Rearrange the j-th column to the first one
det2,, =
n . .
F(t, o+ 2)det®, + Y (1) F(t,s; + 2)(=1) ' x
j=1
F(t,z + s;) F(t,x+s1) - F(t,x+s;-1) F(t,x+sj11) -+ F(t,x+sp)
F(t,81+8j_1) F(t,S1 +8j+1) F(t,81—|—8n)

F(t751 +Sj) F(t,Sl—l-Sl)
F‘(t7 Sj—1+ Sn)

Ft,sjo1+s-1) F(t,sj-1+sj41)
F(t’ Sj+1+ Sn)

F(t, Sj—1+ Sj) F(t, Sj—1+ 81)
F(t,sjp1+sj-1) F(t,sj41 +541)

F(t,sjy1+s;) F(t, sj41+s1)

F(t,sp+sj)  F(t, s, +s1) F(t,sn+sj-1) F(t,sp+ sj4+1) F(t,sp + $n)

=F(t,x + 2)detV, (t;$1...5,) — Z F(t,s; +z)detQ,_1(t,z,8;5581,...,8j-15j+1,
j=1
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Imposing > "7, % L%+ [2°TI7, ds; on both sides of the above equation

[e'S) 1 ) oo n
Zﬁ/ / deth(t,x7z;sl...sn)Hdsi
=F(t,xz+ 2) Z / / det¥,, tsl,...,sn)ﬁdsi

o] 1 00 co n n
_ E ~ / E F(t,s; + z)det,—1(t, z, 8],81,...,Sj_1$j+1,...,8n)HdS,'
n=1 v T 4=1 i=1
Renaming s; = 5,541 = 5, 5j42 = Sj+1,--.,5n = Sp—1 for the second summa-

tion integral and using (4.1) , the above equation becomes

0o 1 00 o :
Zﬁ/ / deth(t,x,Z;Slwsn)Hdsi
e T =1

o0

=F(t,x—|—z)(f—1)—/ F(t,s+2)]

n—1(t,z,s;51. SandSz

n:l

Now define E(t,z,2) = > o | ﬁl[ L5 [ detQ, (t @, 281 ... sn) [T1, dsi and
recall (4.3). Then from the above we obtain

E(t,z,z) =F(t,z+2)(f—1) — /OO F(t, s+ 2)[Qo(t,z,s) + E(t,x, s)]ds

=F(t,e+2)(f—1)— /00 F(t,s+ z)[F(t,x + s) + E(t,x, s)]ds

=
o0
E(t,z,2)+ F(t,x+z) = F(t,z + 2) f(t,x) —/ F(t,s+ 2)[F(t,x + s) + E(t, z, s))
x
It is natural to define

D(t,x,z) = —E(t,x,z) — F(t,x + 2) (4.4)

Then the above equation becomes

D(t,x,z)+ F(t,z + 2)f(t,x) + / F(t,s+ z)D(t,x, s)ds
Divide f on both side(of course we assume f is not identical to zero) and put
K(t,xz,z) = D]fff;;)z) Then we obtain the GLM equation

K(t,x,z)+ F(t,x + z) + /00 K(t,z,s)F(t,s+ z)ds (4.5)
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Recall F(t,s) = — [pexp(3E — p*t)dr(p) and [.d7(p) = [;c(p)dp with an
properly selected ¢(p) as well as suitable path I'. Now we set I' lie in the real-
axis and imaginary-axis such that

00 s N
Flt,s) = — / plexp(Z2 — )[=2 37 2 (0)3(p + 2pn)]dp

- 2

- / 2iplexp(isp + Sip>t)][ p’po)]dp

— 00

where 7 is imaginary number p,, are different real values and the first integral of
right hand side involves the path on real axis while the second integral on the
imaginary. Then

N 00
F(t,s) = Z 2 (0) exp(8p3 t)exp(—pns) + S / 7(p, 0) exp(8ip>t)exp(ips)dp
n=1

2 J_ o

which can be abbreviated as

N 1 00
Fit.s) = Y- O exp(-pus) + o [ rlp.0)explips)dp

—00
with ¢, (t) = ¢, (0) exp(4p3t) and r(p,t) =r(p,0) exp(8ip>t)

GLM equation (4.5) with F defined as above entirely coincides with GLM equa-
tion described in [14]. Those familiar with[5] would aware that ¢, (t) and r(p, t)
are nothing but scattering data. [15] also has a result that

u=20,[K(t,z,z)]

Now we prove the same result in our approach. Firstly , we need the following
lemma,

Lemma 4.2
fo(t,x) = D(t,z, )

f

p
81/ / detq’n@;«glv"'?S”)HdSi
x z i=1

n oo e’}
:—Z/ / det\I/n(t;Sl,...7Si,1,$,8i+1,...78n)d81...d8i71d8i+1...d8n
i=17% z
(4.6)
From the structure of matrix ¥,, we know we can construct a matrix

W (S1y ey Sim1y Sit1s Sis Sit2y---»5n)
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by interchanging i-th and (i4+1)-th columns as well as i-th and (i41)-th rows of
U, (s1,...,8,) respectively. Hence we have

detW,, (81, .oy Sim1y Sidt1s Siy Sit2y .- 8n) = (—1)2det\I/n(sl, ceeySn)

Therefore the r.h.s of (4.6) becomes

n e} o )
= — E / / (—1)2(1_1)det\11n(t;x,31,...,si,l,sHh...,sn)dsl---dsi,ldsiﬂ---dsn
i=17% z

Rename s;41 = S;, Si+2 = Si+1,--.,5n = Sp—1 the above equation becomes

e’} e’} n—1
:—n/ / detﬁ/n(t;x,sl,...,sn_l)Hdsi
x * i=1

From the structure of €2, it is readily to derive
detW,(t;z,81, ..., 8n—1) = detQp_1(t, T, 2581, ..., Sn—1)

Now imposing 9, on both sides of (4.1)

o'} 1 00 00 n
8Ifzzaax/ / det\I/n(t;sl,...,sn)HdSi
n=1 x o =1
00 1 0o =1 n—1
— oo | detQu_ i (t 2, 351, Sn ds;
Z(n—l)!/w /w e 1(t, @, x5 81 s 1)};[1 s

n=1

= D(t,z,z) by(4.3) and (4.4)

QED
And we know u = 2(log f) . = Q(f—]f)m Then by lemma 4.2
u(t,z) = Q(W)z = 20,[K(t, 2, )]
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Chapter 5

Perspective

In chapter 4 we derive GLM equation from generalized soliton solutions
K(t,z,z)+ F(t,z + 2) +/ K(t,x,s)F(t, s+ z)ds (5.1)

with
Ft9) == [ pexn( ~#*0)aro) (52)

As previously stated if the integral path I is restricted along the real and imag-
inary axis , F(t,s) will be transformed into

N 00
F(t,s) = Z c:(t) exp(—pas) + % / r(p, t) exp(ips)dp (5.3)
=1 —00

The first term of r.h.s of (5.3) represents solitons and the second one represents
an oscillatory wave train. Segur[15] has gained the result that an initial dis-
turbance , in general , evolves into solitons as well as an oscillatory wave train
and there appears to be no permanent effect on the solitons from the interaction
with the oscillatory wave train. Apparently F'(¢, s) in (5.2) owns more flexibility
for us to investigate the interaction between solitons and oscillatory wave train
than F(¢,s) in (5.3). This is the value of (5.2).
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Appendix A

Al

Here we shall prove
F(®; — ®,) F(®; — ®3)
——— L F(P3—-®) —Py)+ ——— S F (P —P, - P
F(®, + @) (B3 = @, — ) F(®, + ®3) (@2 — @, — )

F(®y — &)
WF(’% — Py — ®3)
F(®) — o) F (P — ®3)F (P — P3)

=—F(® )] P
(14224 3)F(‘I’1-i-‘1>2)F(‘I>1+<I>3)1[7(‘I’2-*-‘1’3)

this relation in p16 We recall Hirota condition

N
Z F(Zaz HF o P; Pj)oio; =0, for N=1,2,...

o=1,—-1 i=1 1<j

For N = 3 the summation has eight terms. They are

F(®1 + By + B3)F(®1 — o) F (D1 — B3)F(y — )
F(®1 4+ @2 — 3)F(®1 — $2)F(P1 + P3)F (P2 + P3)

F(®1 — By + B3)F(®1 + Bo)F(B1 — B3)F(—By — &3)
F(®) — ®y — ®3)F(®, + B)F(®) + ®3)F(— By + &)
F(=®1+ @2+ @3)F(—P1 — 82)F (= Py — 03)F(P2 — B3)
F(=®1 + @5 — @3)F(—P1 — $2)F(—P1 + ®3)F (P2 + 3)
F(—®, — P+ @3)F(*§1 + @) F(—Py — 3)F(— Py — ®3)
F(—®1 — 3 — ®3)F(—P1 + P2)F(—P1 + @3)F(— P2 + P3)
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Because F'(—®) = F(®) then (A.1) = (4.8),(A.2) = (A.7),(A4.3) = (A.6),(A4) =
(A.5) Therefore Hirota condition for N = 3 reduces to (A.5)+ ((A4.6) + ((A.7)+
((A.8) =0 i.e.

F(—®, 4+ $5 + $3)F(—P; — )F

+ F(=®1 + @3 — ®3)F(—P; —
F(—®; — 3+ $3)F(—P1 + i’z

+ F(—® — Py — P3)F(—P1 + Py

Now divide F(®1 + ®2)F(®1 + ®3)F (P2 + P3)) on both sides. Then

F(®, — P») F(<I>1—<I>)

F@ ) 70T g g, (P
F(®y — ®3)
P,y (PP

F(®) — ®)F(®, — ®3)F (P, — &)

= —F(P 0] P
(®1 4P+ ®s) 5 G T, F(®, & Bs) F(®s 1 Bs)

A.2

This is a proof for p22

o1(pq) =p—q, b2(p,@Q) =p° —¢° , ¢3(p.q) =p° — ¢*
F(a,b,¢)=a* — 4ac + 3V*

F(é1(pj,q5) — ¢1(pk,%)7¢2(pj,qg) d2(Pr> i), ¢3(pg,qg) &3(Pk> Qi)
=[pj — 5 — (e — )" — 4lps — @5 — (pr — @)1} — @& — (D} — @)
+3[p2 — ¢ — (0} — @}))?

[p; — a5 = (P = %)]4

= p] +q; +pk+qk Aplq; — 4p]qj —4pjpk —4pgpk+4pj Q4P g +4¢ P+ qiph —
4¢3 qr — 44545 — 4piar — 4praqy, + 6p3 q] + 6p3p; + 6p] qi + 6437 + 643 ¢ +6pig; +
12p3 gk — 12p3q5q1 — 12p5pr — 12¢3pipk + 1263050k — 1243 Pkqr — 12pp;q5 +
12pipiar — 12p345qx — 12630505 — 120Dk + 126345 pk + 24D;4; Pk

—Alp; —a; — (s —a)llp — ¢} — (R —a)] , [ (
= —A(p} — p; — piv} + pidy — 4P} + ¢+ 4pd — 4@ — pepd + prd + P —
Pray + P} — GG — Py + 4i)

3[]0? - q] (Pk - Qk)]
=3(p] + ¢} +pp + a¢ — 20545 — 205p% + 2054k + 24305 — 243 4k — 2DRdi)

Adding the three terms we obtain
F(¢1(pj,aj) — 01 (ks r)s 92(ps, ;) — 2Pk @), #3(pjs 45) — d3(Pr, ax)) = 12(pj —
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Pr)(Piqk + PigiPr — PiqiqE — DiPRAK — qu‘pk + Q?Qk — ¢;9} + ¢4;Prak)
= 12(p; — pr)(q5 — qx)(2jq% — Pjqk + PPk — ¢iDk)

Likewise

F(¢1(pj,q5) + 01(pr, qr), ¢2(pj, ¢5) + d2(Dk, qx), ¢3(Ps, ¢5) + d3(Dks qx))

=[pj — a4+ ok — a@)]* — 4lp; — 45 + ok — )15 — ¢ + (B} — 4]

+3[p? — ¢} + (0p — })?

= [pj—aqj—(ar—pr)]* —4[p; —a;—(ax—pw) [P} =4} — (@2 =) +3[p} = — (a7 —p})]?
= 12(p; — qr)(q5 — Pr)(qiPk — PjPK + DjQk — 4qk)

= —12(p; — qr)(@5 — Pr)(qjqr — Pjqk + PjPE — ¢iPk)

Therefore
_ F(o1(pj,q5) — ¢1(Pry Gr), 92(pj, 45) — &
F(¢1(pj, q5) + 61(0ks ar), 02(pj> a5) + 62 (P, qk),
(p] )(QJ - Qk)
~(pj— Qk)( — D)

A.3

This is a proof for lemma 4.1 The following proof can be readily extended to
n X n matrix. Now we consider a'3 X 3 matrix

1 1 1
o/ [ (2 CClIOéQ l‘lIO@

2(Pk, i), $3(Pj, 45) — P3(Prs Q)
#3(pj, qj) + ¢3(pk, qr))

(A.9)

D3((E1,.’IJ2,£L’3;OZ1,C!27O[3): To — O Ty — Qg To — Q3
1 1 1

3 — Q1 T3 — Q2 I3 — Q3

If we set x; = x; or ay = e for 4.7 j-, then D3 = 0. Hence D3 is divisible by

C% (1,22, SC3)C% (a1, e, a3) ‘where

) 1 =z m% .
C2(x1,w0,23) = |1 @y 23| = H (Tk —x;) = (-1)" 7 H (25 — k)
1 zg 23| 1<j<k<s 1<j<k<3

Now multiplying the i-th row of D3 with w; = (x; — aq)(x; — a2)(x; — asz) we
obtain

ugusuz D3
(21 —a2)(z1 —as) (v1—a1)(@1 —a3) (21— a1)(z1 — o2)
= |(z2 —a2)(r2 —a3) (22 —a1)(v2 —az) (22 —a1)(r2 — ag)
(x3 —az)(zs —az) (w3 —a1)(ws —a3) (23 —a1)(z3 —az)

Owing to D3 being divisible by (%(ml, To, .1?3)4.% (a1, g, a3) and uquguz D3 hav-
ing the same polynomial degree on x1, x2, X3, i1, (g, 3 as C% (1,2, xg)C% (a1, a0,a3)
we have

uruguz D3 = (CO’I’LSt)C%(l'l,Z‘Q,.733)(%(&1,0[2,0(3)
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Now put a; = z; for i = 1,2, 3 then the above equation becomes

(331 — 332)(.131 — $3) 0 0
0 (g — x1) (22 — 23) 0 = (const)((x1,x2,T3)
0 0 (3 — 21)(23 — T2)
3(3—1) 2 2
= (-1)" 2 H (xj — x1)* = (const) H (x; — k)
1<j<k<3 1<j<k<3
3(3—1)
(const) = (—1)" 2
Therefore -
- 1 1
D2 = (_1) 2 C5($1,$2,$3)C§(a1,a2,a3)
¥ U1 U2U3
Now replace a; = —x; for ¢ = 1,2,3 then

1 1
i i i

5 Tml 5 me 5 Tms = D3(21, %2, T3} —T1, —T2, —T3)
¥ ¥ ¥

3(3—1) .1 1
2 (é(l‘l,xg,xg)gé(—xl’—1‘2’—]}3)

23:L'1x2$3 Hl§j<k§3(xj —+ l'k)2

while
1 3(3—1) 3(3—1) 3(3—1)
(i (—mr,—wa,—w3) = (1) 2 = [ @—a) =07 ()77 [ (@)
1<j<k<3 1<j<k<3
= JI @—=
1<j<k<3
1 1 1
r1+x T+ T+
:>111 112 113_ 1 T — Ty
To+2T1 To+x2 X2+ T3| 93 .
1 1 1 25712223 1<j<k<3 LI Tk
Tz+x1 23+T2 23+ 23
2331 21‘1 21’1
r1+x1 1 +x2 T+ 23 ,
- 2x9 2x9 2xo _ H Lj— Tkyo
To + 1 To + o £C2+ZL'3 T+ T
21’3 21}3 2{E3 1<j<k<3 J

Tz +x1 T3+x2 T3+23
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