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適用於中風復健之即時低複雜度腦機介面開發 

研究生: 周宗本                                  指導教授: 張添烜 博士 

國立交通大學 

電子工程學系電子研究所碩士班 

摘  要 

透過腦電波（EEG）的腦機介面（BCI）來幫助中風患者復健可以讓患者的

腦波與外界產生連結、溝通，並恢復掌管運動腦區的功能。然而在傳統的方法中，

需要大量的計算複雜度才能得到可信的偵測，並且無法達成即時反應。因此，本

論文提出了適用於中風復健之即時低複雜度腦機介面開發。 

本論文採用透過多頻帶空間濾波器（Frequency band common spatial pattern, 

FBCSP）來做為特徵擷取方法，並且為了節省計算複雜度，經由分析將 EEG 通

道的數目由原本的 19個通道降到只剩 Fz, C3, Cz, C4，僅這 4個通道來偵測正常

人以及中風病人的運動想像意念。此外，頻帶數量也由原本的 5 個頻帶降到 3個

頻帶，4~7赫茲, 8~12赫茲, 13~30赫茲以節省計算複雜度。進一步為達成即時線

上腦機介面，我們採用以上方法配合一秒取樣時間長度，並且搭配決定轉換區的

緩衝方法來平滑我們的 BCI控制。 

最後，分析結果顯示我們降低將近 9 成的計算複雜度並在離線分析可以達到

平均 80%以上的正確率，且在線上即時分析的情況下，可以在 1 秒內偵測出受測

者的運動想像意念，而正確率維持在平均 67%。  
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Abstract 

Stroke rehabilitation with EEG-based brain computer interface enables interaction 

through brain signals and restoration of motor function of the brain. However, 

conventional approaches require high complexity for reliable detection and fail to 

achieve real time response. This thesis proposes a real time low complexity BCI 

interface for stroke rehabilitation.  

The proposed approach is based on the filter bank common spatial pattern (FBCSP) 

method. To reduce complexity, the EEG channels are reduced from 19 channels to 4 

channels, Fz, C3, Cz, C4 to detect the movement intention for normal and stroke people 

with satisfying accuracy. Furthermore, the filter bank is reduced from five bands to 

three bands, 4~7Hz, 8~12Hz, 13~30Hz to reduce the complexity. A real time on-line 

scheme is developed with above method that uses one second time window for EEG 

analysis and transition region for smooth BCI control. These approaches saves 90% of 

computational complexity. The simulation results shows over 80% of accuracy for 

offline analysis, and 67% accuracy for the on-line approach with less than one second 

response time. 
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 Introduction 

 Motivation 

 Stroke is the loss of brain function due to a disturbance in the blood supply to the 

brain. This disturbance is due to either blockage of a blood vessel or bleeding of blood 

vessels of the brain. As a result, the affected area of the brain cannot function normally, 

and over 80% of patients suffer from the upper limb paralysis, which severely affects 

the daily life of patients.  

The rehabilitation methods in the past decades are by drug or active motor training; 

however the later one is limited by the lack of mobility of stroke patient in clinical 

rehabilitation. Hence, this thesis provided a Brain Computer Interface (BCI) based on 

EEG to classify the subjects’ motor imagery, and detect the intention of hand movement. 

After the detection of movement, we will trigger the robot arm to perform the 

rehabilitation action, by doing so, we can enhance the connection of patients’ neural 

network from brain to limb. This kind of approach raise the efficiency of rehabilitation, 

also enhance to possibility of cure. The EEG also has the advantages of high time 

resolution, non-invasive, and low cost, which is suitable for long-term monitor.  

 

 Thesis Organization 

The rest of the thesis is organized as follow, in Chpater 2, we introduce the 

background knowledge of BCI system. Then in Chpater 3, we present the experiment 

materials and the offline analysis methods, results. In Chapter 4, proposes the online 

methods and analysis results of our design. Last, in Chapter 5, we conclude the thesis.  
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 Background Overview 

 Overview of BCI 

Brain Computer Interface (BCI) is a kind of neuro-prosthetic device that directly 

connects the neural activity of the brain with a machine, also called Brain Machine 

Interface (BMI).[2] The subjects can communicate the surrounding by producing neural 

activity that provides enough information to control an artificial device. The common 

flow of BCI is shown in Figure 2-1, including neuron signal recording, signal 

processing, and communication to artificial device. 

 

There are two kinds of ways to access the brain’s neural activity: non-invasive and 

invasive techniques. The most common invasive technique is ECoG; however, it 

requires the surgery to acquire the signal, which has some clinical risks and is 

inconvenient for the subjects, but since the electrodes are closer to the brain, the 

recorded signal has higher amplitudes and smaller spatial scales ranging from a single 

neuron cell to distributed cell groups. 

On the other hand, the non-invasive techniques recompense the drawback of 

invasive techniques, which is doesn’t need the surgery, and in principle, they have good 

Figure 2-1: Flow Diagram of BCI 
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temporal resolution, but poor spatial resolution. The most common invasive techniques 

include EEG, fMRI, MEG, NIRS shown in Figure 2-2. In our thesis, we choose EEG 

to be our approach of neural activity acquisition, for its low cost, and high portability; 

nonetheless, EEG suffer from the blockage of cranium, cerebrospinal fluids and suffer 

from the artifacts, such as eye-blink and surrounding noise. 

 

 EEG Properties 

EEG signal is the sum of the extra-cellular field potential caused by a large group 

of neurons’ activity. The signal frequency bands range from 0.1 Hz to 100 Hz, and the 

most common frequency bands are show in Table 2-1.  

 

 

 

Table 2-1: EEG Frequency bands [2] 

Figure 2-2: Most used noninvasive techniques. (a) EEG (b)fMRI (c)MEG 

(d)NIRS [2] 
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The most important frequency bands that we concerned about when analyzing the 

motor imagery or motor activity are β band andμ rhythm. The μ rhythm is also 

ranging from 8~12 Hz as α band does. However, theα band  are seen in the 

posterior regions of the head on both sides. It emerges with closing of the eyes and with 

relaxation, and attenuates with eye opening or mental exertion. Theμ rhythm appears 

in the motion limb’s contralateral side of sensory and motor cortical areas when imaging 

the movement of the hands or the legs. The motor area’s position are shown in C3 and 

C4 in Figure 2-3. [15] 

The event related desynchronization (ERD) is the power decay within a certain 

band due to the neuron activity that related to certain event. On the contrary, the event 

related synchronization (ERS) is the power ascent. μ and β band’s ERD will 

appear at the motion limb’s contralateral motor cortex. As the completion of motion, 

the ERD transfers to both side of brain. After ERD vanishes, theβ band’s ERS arises, 

we can view it as the power re-bounce after the ERD. Motor imagery also produces the 

similar pattern of ERD/ERS as the motor execution. [15] 

 

Figure 2-3: The 19-Channels electrode position 
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 Signal Processing 

Signal processing is the core part of BCI system, it extracts the cognitive state’s 

message from the brain. However, the EEG signal is very weak after it transfer through 

the scalp, and it is bury in the background noise. So the main issue of signal processing 

is to de-noising the signal, raise the signal to noise ratio (SNR) of the EEG, and finally 

extract the feature for the input of future classification. 

The common methods of BCI’s signal processing are, time-frequency domain 

processing, and spatial filtering. The methods based on time-frequency domain 

processing are band-pass filtering, Fourier transform, wavelet transform, etc. The 

methods based on spatial filtering are Laplacian spatial filtering, principle component 

analysis (PCA), independent component analysis (ICA), common spatial pattern (CSP), 

etc. [15] 

The idea of time-frequency domain processing is that,  ERD/ERS of μ and β 

band are non-phase locking event related response. Hence, the time-domain averaging 

method can’t extract the feature of power that varies with time. Thus, the band power 

is the simplest way to analyze the EEG.  

The idea of spatial filtering is that by the linear combination of channels’ data, can 

raise the SNR of EEG signal. The large/small Laplacian is computed by subtracting the 

linear combination of neighbor’s electrodes from the original electrode’s signal. Large 

Laplacian refers to the next-nearest-neighbor electrodes, and small Laplacian refers to 

the nearest-neighbor electrodes. 

The CSP method is to use linear transform to project the multi-channels’ EEG data 

into low dimensional spatial subspace with a projection matrix, of which each row 

consists of weights for channels. The transform matrix can maximize the variance of 

one class while minimize for the other.[3][15]  
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The details of CSP algorithm are listed as below, XM and XR denote the EEG signal 

matrices of “movement” and “rest”, with dimensions N×T, where N is the number of 

channels and T is the number of samples per channel. The normalized spatial covariance 

of the EEG can be represented as 

𝑹M =
𝑿M𝑿M

′

trace(𝑿M𝑿M
′)

       𝑹R =
𝑿R𝑿R

′

trace(𝑿𝑅𝑿𝑅
′)

                 (2-1) 

𝑿′is the transpose of X and trace(B) is the sum of the diagonal elements of B. By 

averaging the normalized covariance over all trials of each group, we get the 𝑹M and 

𝑹R . The composite spatial covariance can be factorized as,   

𝑹 = 𝑹M + 𝑹R = 𝑼0𝚺𝑼0
′
                                                       (2-2) 

where Σis the diagonal matrix of eigenvalues, and U0 is the matrix of eigenvectors. 

The whitening transformation matrix is as below. 

𝑷 = 𝚺−1
2⁄ 𝑼0

′
                                                                     (2-3) 

We transform the average covariance matrices 𝑹M and 𝑹R into SM and SR by P,  

𝑺M = 𝑷𝑹M𝑷′
            𝑺R = 𝑷𝑹R𝑷′

                                             (2-4) 

then we can decompose the SM and SR as. 

𝑺M = 𝑼M𝚺M𝑼M
′      𝑺R = 𝑼R𝚺R𝑼R

′
                                    (2-5) 

It can be proven that SM and SR have the same common eigenvectors and the sum of 

corresponding eigenvalues of these two matrices will be an identity matrix. 

𝑼M = 𝑼R = 𝑼          𝚺M+𝚺R= I                                  (2-6) 

The eigenvectors with the largest eigenvalues for SM have the smallest eigenvalues for 

SR and the opposite is true. The transformation of whitened EEG onto the eigenvectors 

corresponding to the largest eigenvalues in 𝚺M  and 𝚺R  is optimal for separating 

variance in two signal matrices. The projection matrix W is denoted as  

𝑾 = 𝑼′𝑷                                       (2-7) 
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With the projection matrix W, the original EEG can be transformed into uncorrelated 

components 

𝒁 = 𝑾𝑿                                          (2-8) 

 Z can be seen as EEG source components including common and specific 

components of different tasks. The original EEG X can be reconstructed by  

𝑿 = 𝑾−1𝒁                                         (2-9) 

Where W-1 is the inverse matrix of W. The columns of W-1 are spatial patterns, which 

can be considered as EEG source distribution vectors. The first and last columns of  

W-1 are the most important spatial patterns that explain the largest variance of one task 

and the smallest variance of the other.  

There are some paper proposed the advanced CSP, called Filter-Bank Common 

Spatial Pattern (FBCSP), which it pre-filter the EEG data into several bands, and then 

each band will have their own CSP to enhance the classification rate, but it will also 

raise the computation complexity [14]. The relation between FBCSP and CSP is shown 

in Figure 2-4. ICA is a kind of method of blind source separation (BSS) to recover 

independent sources using multi-channel observations of mixtures of those sources. [8] 
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 Summary 

The characteristic of EEG varies with subjects, time, equipment, mental condition, 

etc. This chapter provided an overview and simple background knowledge for BCI 

system, the main part of BCI system is in the signal processing, and there are still many 

ways to analyze the EEG raw data. 

  

Figure 2-4: Schematic Diagram of FBCSP  
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 Materials and Methods 

 Materials 

 The datasets include our collected datasets from Taoyuan Chang Gung Hospital 

with 4 normal subjects, 2 stroke subjects, and BCI Competition IV dataset 1_b, 1_f, and 

1_g.[4][18] 

 Our Dataset 

 Participants 

The normal 4 subjects were 2 males, 2 females, with age ranged from 23 to 33. All 

participants labeled as TP, WR, WH, YC are right-handed, and are the research group 

members of our own laboratory. All of them are the first time users of BCI. 

 The first stroke subject is Mr. Cheng, aged 66, with his left brain injured. The 

second stroke subject is Mr. Lee, aged 46, with his right brain injured. These two 

patients have been rehabilitating for a while, and are in the late phase of rehabilitation 

treatment. The subjects are not severely damaged; both can perform easy instructions 

by their own will, but not fluently. All these subjects are the first time users of BCI. 

 

Table 3-1: Summary of subjects 

 TP WR WH YC Mrc Mrl 

Aged 24 27 33 23 66 46 

Gender M F M F M M 

Handedness R R R R R R 

Injured 

Parts 
X X X X 

left 

putamenal 

hemorrhage 

right ACA 

infarction 
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 Experimental Paradigm 

Figure 3-1 shows the timing scheme of the experiment. The 0~4 seconds is the rest 

period, with blank screen. Our rest period is longer, so that it has the equal length of 

movement period, for the convenience of analysis tool. Then at the 4s, the screen shows 

a fixation cross to hint the subjects to concentrate for the coming cue. Finally, the 5~9s 

is the movement period, the screen will show an arrow pointing left or right with equal 

chance. 

For each subject, we collect 3 to 4 runs, with 80 trials (normal subjects), or 60 

trials (stroke subjects) each run. The movement tasks in our test are listed as below. 

(1) FH_fast: fast finger tapping, about 4 times per second.  

(2) FH_comf: finger tapping with the comfortable speed, about 1~2 times per second. 

(3) GR: grasp, we assume that grasp involves more muscle movement, and larger 

movement than finger tapping, it might result in stronger EEG waveform.  

(4) MI: motion imagery, imagine raising your hand.  

(5) MIGR: motion imagery, imagine hand grasping.  

(6) TMP_fast: thumb press, this is for the stroke subject, because he had difficulty 

Figure 3-1: Experiment Paradigm 
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tapping his finger, we modify the movement from finger to thumb.  

(7) PF: upper limb pushing forward, this is also for the stroke patient, because there is 

a push forward action in the rehabilitation movement, also the doctor said that pushing 

movement have stronger EEG waveform, we assume it is easier for the movement 

detection. The summary of subject’s task are listed in Table 3-2. 

The task for each subject is slightly different though the whole collection series, 

we keep modifying the task movement to get better result, and the collection of one 

subject is finished within a day. 

Table 3-2: Summary of subjects' task 

 

 Experimental Setup 

 The EEG was collected by the Mitsar EEG-201 amplifier (http://www.mitsar-

medical.com/eeg-machine/eeg-amplifier-compare/) with 19 channels showed in Figure 

2-3. The sampling rate is at 250Hz, and the recorded EEG waveform is passed to the 

compatible software, called WinEEG. The participants were asked to sit on a chair 

toward the screen and to fix their body in a room with weak light. The instruction were 

presented by visual cue from the computer screen with the software, called PSYTASK. 

Also, the subjects were instructed to minimize eye blinking and to avoid physical 

movement throughout the EEG recording progress. 

 
TP WR WH YC mrc mrl 

FH_fast(TMP_fast) V V V V V V 

FH_comf V V V    

GR   V V V V 

MI(MIGR) V V V V V V 

PF      V 

http://www.mitsar-medical.com/eeg-machine/eeg-amplifier-compare/
http://www.mitsar-medical.com/eeg-machine/eeg-amplifier-compare/
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 BCI Competition IV Dataset 

 Participants 

The BCI competition IV dataset 1_b, 1_f, and 1_g were provided by Berlin 

BCI group [18], the reference link about the detail information is at: 

http://www.bbci.de/competition/iv/. The subjects were all healthy. 

 Experimental Paradigm 

 

 

The BCI competition IV datasets, there are two kinds set of data. One is for the 

calibration (training), and one is for evaluation (testing). For calibration datasets, in the 

first two runs, arrows pointing left, right, or down were presented as visual cues on a 

computer screen, with each trial 8 seconds. First, the screen will show 2s fixation cross 

to inform the subjects to be attention. Then, cues were displayed for a period of 4s 

during which the subject was instructed to perform the cued motor imagery task. Finally, 

2s of blank screen shown in the center of the screen. Then, for the evaluation datasets, 

there are 4 runs, the motor imagery tasks were cued by soft acoustic stimuli (words left, 

right, and foot) for periods of varying length between 1.5 and 8 seconds. The end of the 

Figure 3-2: BCI Competition IV dataset 1 paradigm [18] 

http://www.bbci.de/competition/iv/
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motor imagery period was indicated by the word stop. Intermitting periods had also a 

varying duration of 1.5 to 8s. Like shown in Figure 3-2.[18] 

 Experimental Setup 

The BCI Competition IV datasets are recorded by 64 channels, 1000Hz sampling 

rate, and 2 classes (+idle state). 

 Methods 

 After the EEG collection by the WinEEG software, we transfer the EEG signal to 

MATLAB platform though the format called EDF plus. The reason that we analyze the 

waveform on MATLAB platform is that we are familiar with the toolbox called 

EEGLAB (http://sccn.ucsd.edu/eeglab/)[6] and BCILAB 

(http://sccn.ucsd.edu/wiki/BCILAB)[7] these two toolbox are based on MATLAB, and 

we have more transparency and plasticity to modify the code we want, and subtly 

perform the instruction we gave.  

 From EDF format to MATLAB, first we cut the data out, then use the EEGLAB 

to import new data, then we add the labels of each channel, and use the default channel 

locations of EEGLAB. Last, we load the event types (left / right) and latencies 

through .txt file exported from WinEEG. After all these steps, we save it as .set file of 

EEGLAB for the future processing by BCILAB toolbox. 

 Then we introduce the BCILAB toolbox to do the process. BCILAB is a powerful 

toolbox based on EEGLAB, and it is also compatible with MATLAB. It comprise all 

the key components for BCI analyzing, like Figure 3-3. All the components are 

constructed in module form, also with GUI, and each module has different parameters. 

We can choose different modules combine together, and define the parameters to fulfill 

the BCI processing that we want. BCILAB also combines some machine learning 

module function to classify the prediction, and finally, it has many ways (mean square 

http://sccn.ucsd.edu/eeglab/
http://sccn.ucsd.edu/wiki/BCILAB
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error, kullback-leibler divergence, negative log-likelihood …) to evaluate the 

performance. 

 Preprocessing 

The purpose of preprocessing is to make the raw EEG data more clear, and reject 

the artifacts (eye blink, background noise …). The most common way includes band-

pass filtering, independent component analysis (ICA) [1][8][9], principle component 

analysis (PCA)[8], or the simplest way is to manual removal of fuzzy EEG raw data, 

which needs some experience, simple but lack of validity. 

However, we don’t do any preprocessing in our methods, and there are several 

reasons:  

1. For the band pass filtering, in section 3.2.2, we will mention our approach: FBCSP 

(filter bank common spatial pattern), it already separates the raw EEG data to different 

frequency bands, so there is no need to do the preprocessing of band pass filtering.  

2. For ICA and PCA, the algorithm transform the raw EEG data into the components 

(with the same number of channel numbers), and we have to manually reject the “noise” 

component, or manually select just the C3/C4 component we want, and in some case it 

Figure 3-3: BCI flow diagram 

Subject Preprocessing
Feature 

selection
Classifier

Preprocessing
Selected 

features
Classfier

BCI Training phase

Classifier model

Result/Action

Action/

MI

Evaluation phase

EEG

EEG

features

Result
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is hard and has a lot uncertainty to pick up the right component we want; in addition, 

although there are some algorithms that can select the component automatically, but 

they require too much computation resources, which is not suitable for the purpose of 

this thesis. Also, the EEG data varies with time; hence, the ICA varies with time greatly. 

It takes quite amount of time to keep calculating the ICA with the updating income of 

data while in the online application. Due to the above reasons, we don’t do the ICA/PCA 

in the preprocessing part, and we still get quite satisfactory results. 

 Feature Extraction 

For the training part, I choose the first 40% of the data to become the training data, 

and the rest 60% are for the testing data. The target marker for training comes from the 

event (0 represents the rest, 1 represents the movement) that labels on the data. The rest 

event is at 0sec, and the movement event is at the 5sec as shown in the Figure 3-1, so 

we extract the epoch from 0.5sec to 3.5sec for each marker event.  

Then we choose a feature extraction approach to transform the EEG data to the 

most suitable feature for further classification by machine learning. There are many 

approaches in BCILAB, the most common approaches are Log-Bandpower[15], 

Common Spatial Pattern (CSP)[3][10][11], and Filter-Bank Common Spatial Pattern 

(FBCSP)[5][12]-[14]. 

After choosing the approach, we combine the classification to train the model, then 

we can use the model to test the testing data, and get the accuracy. The following Table 

3-3 shows the result. All the three approaches are with 19 channels, LDA classifier, 

0.5~3.5 sec epoch extracted. For Log Power and CSP approaches, the algorithm filtered 

the 7~30Hz, and FBCSP filtered 0.5~3; 4~7; 8~12; 13~30; 31~42Hz by default 

parameters. 
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Table 3-3: Accuracy analysis respect to different approaches 

     Approach 

Dataset 

Log 

Power 
CSP FBCSP 

TP_FH_fast 70.83% 82.29% 83.33% 

TP_FH_comf 65.48% 70.24% 64.29% 

TP_MI 53.13% 62.50% 56.25% 

WR_FH_fast 59.38% 84.38% 96.88% 

WR_FH_comf 59.38% 60.42% 85.42% 

WR_MI 66.67% 71.88% 82.29% 

WH_FH_fast 90.48% 76.19% 92.86% 

WH_FH_comf 82.29% 77.08% 91.67% 

WH_MI 72.92% 65.63% 84.38% 

WH_GR 88.54% 92.71% 87.50% 

YC_FH_fast 94.79% 96.88% 98.96% 

YC_MI 92.71% 96.88% 96.88% 

YC_GR 100.00% 96.88% 98.96% 

mrc_GR 62.50% 88.89% 91.67% 

mrc_MIGR 65.28% 81.94% 77.78% 

mcr_TMP_fast 65.28% 79.17% 79.17% 

mrl_FH 88.89% 94.44% 93.06% 

mrl_GR 75.00% 88.89% 84.72% 

mrl_MIGR 93.06% 98.61% 98.61% 

mrl_PF 87.50% 91.67% 94.44% 

Average 76.70% 82.88% 86.95% 
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As we can see from the Table 3-3, FBCSP outperforms the rest algorithms greatly; 

however, the FBCSP is the 5 more times the computation and calculation time of CSP 

algorithm because of the 5 times more frequency band to compute. Therefore, in order 

to cost down the computation time and complexity to reach our purpose and goal of 

immediate online classification with almost 80% accuracy rate, we try out to modified 

1. Channels selection 2. Frequency bands selection parameter to fit our requirement. 

From Figure 3-4, we can see that CSP and FBCSP both are good approaches for 

stroke patients, but FBCSP performs better for normal patients, this is because of that 

normal subjects have more clear frequency bands than stroke subjects, we will mention 

this furthermore in 3.2.4.  

Figure 3-4: Feature extraction accuracy analysis 
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 Channel Selection 

    (a)                                            (b) 

(c)                                             (d) 

 

In Figure 3-5, provided by [16], (a) is the normal subject’s right hand grasping 

fMRI plot, while (b) is the stroke patient subject’s right hand grasping fMRI plot. (c)   

is the normal subject’s elbow flexion fMRI plot; on the other hand, (d) is the stroke 

patient subject’s elbow flexion fMRI plot. We can clearly see that for normal subjects, 

Figure 3-5: Normal vs. Patient fMRI plot for right hand grasping & elbow flexion 
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the involved area in brain concentrate around the Cz, C3 (right hand movement, 

triggered by contra-lateral brain). However, for stroke subjects, the response area spread 

all over the brain, but still includes C3, Cz, C4, and even Fz. Therefore, according to 

Figure 3-5, we try to cost down the channel computation in our FBCSP algorithm, but 

still maintaining the accuracy.  

 Table 3-4 is the accuracy analysis respect to different channel number, with FBCSP 

algorithm, training epoch extracted from each event’s 0.5~3.5 sec. 9 channels refer to 

central 9 channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4), and the 6 channels refer to front-

central 6 channels (F3, Fz, F4, C3, Cz, C4). The interesting result shows that while we 

choose only C3, Cz, C4, the accuracy still maintains over 80%, but with great channel 

number reduction. Also proves the results in Figure 3-5 that the activation area involved 

while hand motion or MI (motion imagery) are mostly in C3, Cz, C4. 

 From Figure 3-6, we also tried C3, Fz, C4 these 3 channels to analyze, and we 

found that comparing to C3, Cz, C4, the normal subjects (TP, WR, WH, YC) showed 

great progress in the accuracy, but the dataset mrc_GR and mcr_TMP_fast drop 

dramatically. Due to the above reason, and we will show in the next chapter that normal 

subject with Fz channel in training will reduce the response time of online classification. 

Hence, we finally decided to use 4 channels (Fz, C3, Cz, C4) instead of 3 channels (C3, 

Cz, C4 or C3, Fz, C4) to train the data for the convincing results.  
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Table 3-4: Accuracy analysis respect to different channel numbers 

     Channel 

Dataset 
19 9 6 3(C3,Cz,C4) 3(C3,Fz,C4) 4(Fz,C3,Cz,C4) 

TP_FH_fast 83.33% 87.50% 78.13% 78.13% 79.17% 78.13% 

TP_FH_comf 64.29% 66.67% 65.48% 69.05% 67.86% 69.05% 

TP_MI 56.25% 47.92% 47.92% 50.00% 55.21% 54.17% 

WR_FH_fast 96.88% 94.79% 88.54% 81.25% 88.54% 85.42% 

WR_FH_comf 85.42% 83.33% 64.58% 69.79% 70.83% 70.83% 

WR_MI 82.29% 83.33% 89.58% 84.38% 83.33% 85.42% 

WH_FH_fast 92.86% 91.67% 92.86% 89.29% 94.05% 84.52% 

WH_FH_comf 91.67% 86.46% 88.54% 80.21% 85.42% 81.25% 

WH_MI 84.38% 86.46% 80.21% 76.04% 82.29% 80.21% 

WH_GR 87.50% 71.88% 85.42% 78.13% 78.13% 72.92% 

YC_FH_fast 98.96% 97.92% 88.54% 94.79% 92.71% 91.67% 

YC_MI 96.88% 93.75% 90.63% 85.42% 94.79% 86.46% 

YC_GR 98.96% 98.96% 98.96% 97.92% 95.83% 96.88% 

mrc_GR 91.67% 91.67% 90.28% 86.11% 50.00% 58.33% 

mrc_MIGR 77.78% 83.33% 90.28% 79.17% 80.56% 90.28% 

mcr_TMP_fast 79.17% 77.78% 75.00% 70.83% 69.44% 75.00% 

mrl_FH 93.06% 94.44% 87.50% 90.28% 86.11% 86.11% 

mrl_GR 84.72% 87.50% 79.17% 83.33% 79.17% 83.33% 

mrl_MIGR 98.61% 98.61% 90.28% 90.28% 88.89% 84.72% 

mrl_PF 94.44% 97.22% 93.06% 86.11% 84.72% 90.28% 

Average 86.95% 86.06% 83.25% 81.02% 80.35% 80.25% 
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Figure 3-6: Channel selection accuracy analysis 
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 Frequency Band Selection 

(a) 

(b) 

 



 

23 

 

(c) 

(d) 

Figure 3-7: Event Related Spectral Power of different subjects 
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 Figure 3-7 shows the Event Related Spectral Power (ERSP) of different subjects, 

the x-axis of plot is time from 0~10,000(ms), the y-axis is the frequency from 0~50(Hz), 

and the meter aside is the power of that channel. Plot (a), (b) are the representative 

subjects of normal subjects with different tasks shown in row, and with different hand 

movement’s C3/C4 channel shown in column. We clearly see that, at time 4~10 sec, 

there are strong Event Related De-synchronization (ERD, with power decrease) in 

8~12Hz (μband) marked by the red circle, which strongly proves that while motion or 

even motion imagery (MI) there are strong ERD in C3/C4’sμband. 

 Plot (c), (d) show the two stroke patient subjects’ ERSP. The energy band scatters 

at all frequencies, not clear as normal subjects’, but still, we can see that there are 

strongerμband ERD at the un-damaged brain area no matter what hand moves. In plot 

(c), subject mrc’s damaged area is at left hemisphere of brain, so it shows C4 (right 

hemisphere of brain) has stronger ERD; likewise, plot (d), subject mrl’s damaged area 

is at right hemisphere of brain, so it shows C3 (left hemisphere of brain) has stronger 

ERD. 

 The default frequency bands of BCILAB’s FBCSP algorithm are 0.5~3Hz; 4~7 

Hz; 8~12 Hz; 13~30 Hz; 31~42Hz, these 5 bands, including the μ rhythm(8~12Hz), 

and β(13~30Hz), which are known for the most related bands while motion &MI. 

According Figure 3-7 above, we select different bands to analyze, to see whether we 

can have a reduction of these frequency bands or not. We have several combination of 

bands listed below: 

(A): 0.5~3;4~7;8~12;13~30;31~42Hz, default frequency bands of FBCSP 

(B): 0.5~3;4~7;8~12;13~30Hz, exclude the 31~42Hz 

(C): 4~7;8~12;13~30;31~42Hz, exclude the 0.5~3Hz 

(D): 4~7;8~12;13~30Hz , exclude both lowest & highest frequency bands 

(E): 8~12;13~30;31~42Hz, exclude the lowest 2 bands 
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(F): 0.5~3;8~12;13~30Hz, lowest band &μ, β bands 

(G): 8~12;13~30Hz , μ, β bands 

(H):4~8;8~12;12~16… 36~40Hz, four frequencies bands each, from 4~40Hz 

 The result of testing these combination of bands are listed in Table 3-5 and Figure 

3-8, with FBCSP algorithm, 0.5~3.5 seconds epoch extracted, 4 channels (Fz, C3, Cz, 

C4) trained for the model, and LDA for the classifier. The result shows that the 

combination of (D) had best result in normal subjects, and quite satisfying result in 

stroke subjects. The result was not surprising, because we can see from Figure 3-7 that 

exclude the 8~12Hz, there are still some ERD in the 4~7 Hz. Thus, finally we decide 

to choose 4~7Hz, 8~12Hz, 13~30Hz to be our training frequency bands. 

 

Figure 3-8: Frequency band selection accuracy analysis 
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Table 3-5: Accuracy analysis respect to different frequency band 

Frequency 

Dataset 
(A) (B) (C) (D) (E) (F) (G) (H) 

TP_FH_fast 78.13 78.13 77.08 82.29 81.25 81.25 80.21 77.08 

TP_FH_comf 69.05 65.48 69.05 71.43 67.86 65.48 70.24 69.05 

TP_MI 54.17 52.08 55.21 51.04 52.08 45.83 48.96 53.13 

WR_FH_fast 85.42 81.25 85.42 82.29 81.25 79.17 82.29 93.75 

WR_FH_comf 70.83 70.83 67.71 73.96 69.79 71.88 68.75 68.75 

WR_MI 85.42 81.25 86.46 81.25 76.04 78.13 73.96 87.50 

WH_FH_fast 84.52 94.05 83.33 90.48 77.38 95.24 89.29 79.76 

WH_FH_comf 81.25 84.38 75.00 77.08 70.83 83.33 73.96 73.96 

WH_MI 80.21 76.04 78.13 77.08 79.17 77.08 78.13 78.13 

WH_GR 72.92 83.33 77.08 86.46 69.79 82.29 82.29 61.46 

YC_FH_fast 91.67 94.79 90.63 93.75 89.58 91.67 93.75 89.58 

YC_MI 86.46 87.50 85.42 86.46 88.54 85.42 88.54 85.42 

YC_GR 96.88 94.79 97.92 94.79 100.00 93.75 94.79 98.96 

mrc_GR 58.33 86.11 62.50 90.28 61.11 91.67 93.06 84.72 

mrc_MIGR 90.28 88.89 91.67 91.67 90.28 86.11 91.67 94.44 

mcr_TMP_fast 75.00 75.00 72.22 73.61 70.83 76.39 72.22 70.83 

mrl_FH 86.11 87.50 86.11 88.89 90.28 88.89 91.67 84.72 

mrl_GR 83.33 81.94 81.94 81.94 81.94 84.72 81.94 86.11 

mrl_MIGR 84.72 84.72 84.72 81.94 83.33 84.72 81.94 86.11 

mrl_PF 90.28 87.50 81.94 81.94 83.33 90.28 84.72 86.11 

Average 80.25 81.78 79.48 81.93 78.23 81.66 81.12 80.48 
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 Summary 

After all the analysis above, we find few parameters listed below. 

1. Algorithm: FBCSP 

2. Channels selection: Fz, C3, Cz, C4 (4 channls) 

3. Frequency band selection: 4~7Hz, 8~12Hz, 13~30Hz 

These parameters are to fit our application: fast, less computation, but still 

convincing accuracy results shown in Figure 3-9(the complexity is compared to 19 

channels 5 frequency bands FBCSP), for online instant react BCI system. Furthermore, 

we hope to develop this BCI system into a portable, wearing device by the means of 

ASIC IC design. First, the epoch is extracted respect to each event at 0.5~3.5 seconds 

using the 4 channels (Fz, C3, Cz, C4) EEG data, and the prior 40% data are used for 

training, the rest 60% are for the testing. Then we select the FBCSP algorithm, with 

frequency bands cut at 4~7; 8~12; 13~30 Hz to be our feature extraction approach. 

Finally, the features are fed into the LDA classifier to get the training model. The 

BCILAB uses the module called bci_train to train the data by the approach we selected. 

After the training, the model compares the event 0.5~3.5 seconds’ data that labeled by 

the event marker to classifies this epoch’s type (rest or movement), gives it the 

percentage to rest event or motion event, and uses 5-fold cross validation and mean 

square error (MSE) to evaluate the performance. Then, we can use the rest 60% data 

for the testing, same as evaluating the training data, getting the results of mean square 

error. The results of training and testing are listed below in Table 3-6. 

We see that there are still great variation among the subjects, some tasks have better 

performance for some subjects, while others don’t, and each kind of task gets different 

performances too, shown in Figure 3-10 (the task accuracy are the average of all 

subjects who have done that kind of task). Nonetheless, our total average result had 
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over 80% of accuracy both in normal subjects and stroke subjects. From [17], we can 

know that accuracy from 43~58% are accuracy by chance, which means our results are 

not at chance, and convincing.   

Figure 3-10: Tasks summary analysis 

Figure 3-9: Performance analysis of final result 
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Table 3-6: Final result of datasets training & testing performance 

 training testing 

TP_FH_fast 79.62% 82.29% 

TP_FH_comf 89.39% 71.43% 

TP_MI 74.87% 51.04% 

WR_FH_fast 82.95% 82.29% 

WR_FH_comf 56.41% 73.96% 

WR_MI 89.10% 81.25% 

WH_FH_fast 81.97% 90.48% 

WH_FH_comf 92.05% 77.08% 

WH_MI 87.05% 77.08% 

WH_GR 87.31% 86.46% 

YC_FH_fast 90.51% 93.75% 

YC_MI 76.28% 86.46% 

YC_GR 95.26% 94.79% 

mrc_GR 87.56% 90.28% 

mrc_MIGR 75.78% 91.67% 

mcr_TMP_fast 76.89% 73.61% 

mrl_FH 89.33% 88.89% 

mrl_GR 98.00% 81.94% 

mrl_MIGR 96.00% 81.94% 

mrl_PF 81.11% 81.94% 

Average 84.37% 81.93% 
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 Online BCI Implementation 

 Motivation 

Our research topic is a project that cooperate with Chang Gung Hospital. We wish 

to develop a BCI device to help stroke patients’ rehabilitation by the means of the online 

instant BCI response triggering the robot arm that helps the stroke patient to move their 

hand, enhancing the neural network communication from brain to limb. Hence, the 

online BCI classification is the crucial part to fulfill our goal. Different from the 

previous chapter that does the offline analysis, in this chapter, we want to develop an 

online analysis method with quick response, high accuracy, based on the parameters 

and algorithm of the pervious chapter. 

 Methods 

The approach is the same as that in Chapter 3, we choose the following parameters: 

1. Algorithm: FBCSP 

2. Channels selection: Fz, C3, Cz, C4 (4 channls) 

3. Frequency band selection: 4~7Hz, 8~12Hz, 13~30Hz 

Then we can train the model by the module, bci_train in BCILAB as described in 

the Chapter 3. After that we take the rest 60% data and the training model to another 

BCILAB module called onl_simulate. This module has the parameter “sampling rate”. 

It will use this sampling rate to update the simulate result with the same length of 

training model. We choose 20Hz to be our sampling rate in our approach. The training 

phase paradigm is shown in Figure 3-1, and the online simulated paradigm is shown in 

Figure 4-1. 
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After the onl_simulate module process, we get a vector of cognitive state at various 

specified time points, called predictions, p(i), which is the simulated result with respect 

to time. p(i) is also the percentage of movement intention: 1 refers to movement, and 0 

refers to rest, like the prediction line in the top picture of Figure 4-3. However, the 

prediction results are a continuous, non-smooth line with many glitches, which will 

result in abrupt movement for the robot arm. To avoid this, we will transform it to a 

discrete (just 0 and 1) smooth line like the modified classification result showed in the 

bottom picture of Figure 4-3, to better control the robot arm. 

 

Figure 4-2: Flow diagram of online BCI 

Figure 4-1: Online simulate paradigm 



 

32 

 

The whole algorithm for smooth movement is listed below, also the flow diagram 

is shown in Figure 4-2. First, we set a variable, called “threshold(i)”, which is the 

combination of constant value, 0.4, and the root mean square of previous 10 points (in 

our 20Hz sampling rate case, 10 points refers to 0.5 seconds data). As we set the 

threshold(i) to be the combination of previous data and a constant, the threshold(i) can 

be updated with time, which gains more flexibility and accommodation to conquer the 

variation of data though time. 

threshold(i) = 0.4 × 80% + √∑ 𝑝(𝑖)2𝑖
𝑖−9

10
× 20%                          (4-1) 

 

Then we define a counter, “C(i)”, with the range from 0~18, that counts how many 

times the p(i) is larger than threshold(i), or smaller than threshold(i). We accumulate 

the number that p(i) is larger than threshold(i), in such way, the glitches in p(i) can be 

eliminated, and therefore, we can get a smoother waveform like the middle plot in 

Figure 4-3. This flow is shown as below. 

 {

𝑖𝑓 𝑝(𝑖) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑖), 𝑎𝑛𝑑 𝐶(𝑖 − 1) < 18             𝐶(𝑖) = 𝐶(𝑖 − 1) + 1;
𝑒𝑙𝑠𝑒 𝑖𝑓 𝑝(𝑖) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑖), 𝑎𝑛𝑑 𝐶(𝑖 − 1) > 0      𝐶(𝑖) = 𝐶(𝑖 − 1) − 1;
 𝑒𝑙𝑠𝑒                                                                                               𝐶(𝑖) = 𝐶(𝑖 − 1);

   (4-2) 

 

Finally, we can generate the classification result by “C(i)”. If the C(i) value is larger 

than 10, we set the final modified classification(i) result to be 1 (movement). On the 

contrary, if the C(i) value is lower than 3, we set the final modified classification(i) 

result to be 0 (rest). This flow is shown as below. 

{

𝑖𝑓 𝐶(𝑖) ≥ 10                                        𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑖)  = 1;  
𝑒𝑙𝑠𝑒 𝑖𝑓 𝐶(𝑖) < 3                                𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑖)  = 0;
𝑒𝑙𝑠𝑒                  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑖) = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑖 − 1);

           (4-3) 
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The reason why we left a range between 10 to 18, and 0 to 3 of value C(i), shown 

in Figure 4-3, is that we can avoid the glitches in C(i). We leave it as a buffer, so that 

the modified classification(i) won’t change too easily. For example, there is a glitch in 

the third trapezium of the middle plot, if there aren’t any buffer range, the modified 

classification(i) may drop to 0 due to the glitch. The parameters at each equation are 

empirical, and are tuned to get the best performance. 

  

Figure 4-3: Demonstration of each steps in methods 
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 Results 

In this section, we presented the result in two measures, response time and accuracy. 

The smoothing movement method will result in the delay of the response time. Hence, 

in order to compensate the delay, we tried shorter training epoch time to be our training 

model. In Chapter 3, we select 0.5~3.5 seconds, total 3 seconds length of data to be our 

training epoch. Then it come to us that if we select shorter training epoch length, the 

higher the percentage of new data occupies the epoch data while the onl_simulate keep 

updating the data, and this results in the shorter of response time.  

We draw the online classification figure from 0 to 200 seconds, in these 200 

seconds, there are averagely 10~20 movement events that can correctly classified, the 

remain 2~3 movement events that can’t be classified are marked as red circle in the plot. 

The response time is computed by averaging these recognizable movement event’s 

latencies between true label and the modified classification result, like the equation 

Response Time =
1

𝑁
∑(𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙)                        (4-4), 

where tclassification refers to the time point that rest to movement of classification result, 

and ttrue label refers to the time point that rest to movement of true label. The number of 

movement events (N) that can be recognizable are listed in Table 4-1. However, the 

response time showed in Response Time =
1

𝑁
∑(𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙)                        

(4-4) doesn’t consider the computation time of processing unit. In our MATLAB 

analysis, 200 sec data, with 20 Hz sampling rate, it takes about 0.0396 sec to process 

the online classification, which means it takes 10-5 sec to compute every sample point. 

The accuracy is computed by sample by sample comparing the true label and 

modified classification result at the range of 1sec after the event marker till the end of 

event. This kind of analysis is referred to the BCI competition IV’s accuracy analysis 

[4][18]. We select three datasets for analysis, WH_FH_fast, mrl_FH, and BCI 
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competition IV dataset 1_b in represent of three kind of subjects, normal, stroke, and 

un-cued for simplicity. 

 

 

Response Time =
1

𝑁
∑(𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙)                        (4-4) 

 

Accuracy = (
𝑁𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛==𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑙𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
)1 s 𝑎𝑓𝑡𝑒𝑟 𝑒𝑣𝑒𝑛𝑡 𝑚𝑎𝑟𝑘𝑒𝑟 ~ 𝑒𝑛𝑑 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡          (4-5) 

 

Table 4-1: Number of N for each Datsets 

Dastsets number of N 

WH_FH_fast, C3CzC4, 0.5~3.5 sec 19 

WH_FH_fast, C3FzC4, 0.5~3.5 sec 19 

WH_FH_fast, C3FzC4, 0~3 sec 19 

WH_FH_fast, C3FzC4, 0~1 sec 19 

WH_FH_fast, FzC3CzC4, 0~1 sec 19 

mrl_FH, C3CzC4, 0~3 sec 18 

mrl_FH, FzC3CzC4, 0~3 sec 19 

mrl_FH, FzC3CzC4, 0~1 sec 19 

mrl_FH, FzC3CzC4, 0~0.5 sec 17 

BCI Competition IV dataset 1_b, FzC3CzC4, 0~2 sec 16 

BCI Competition IV dataset 1_b, FzC3CzC4, 0~1 sec 16 

BCI Competition IV dataset 1_b, FzC3CzC4, 0~0.5 sec 17 

BCI Competition IV dataset 1_b FzC3CzC4, 0~0.2 sec 14 
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First, the WH_FH_fast dataset, we selected different parameters to test the 

response time and accuracy. The parameters are listed below in Table 4-2. 

 

Table 4-2: WH_FH_fast online parameters setting 

 Channels Extracted Time Window 

para1 C3CzC4 0.5~3.5sec 

para2 C3FzC4 0.5~3.5sec 

para3 C3FzC4 0~3sec 

para4 C3FzC4 0~1sec 

para5 FzC3CzC4 0~1sec 
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(a) 

(b) 

 

  

Figure 4-4: Response time & Accuracy analysis of WH_FH_fast dataset 
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As we can see from Figure 4-4 that as we change the channels from Cz to Fz, the 

response time and accuracy enhances. Furthermore, we move the epoch to former part 

(0 sec started, not 0.5sec started) the performance also increases. Finally, the 1 sec 

epoch’s performance is better than the 3 sec epoch’s performance, and the reason are 

stated as before, the shorter the epoch is, the greater percentage the new data occupies, 

which results in faster updating of classification. We showed the progress of response 

time in Figure 4-5, and the full waveform are shown in Figure 4-6~Figure 4-10. 

Figure 4-5: Comparison of the response time for the subject WH_FH_fast under different parameters  
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Figure 4-6: WH_FH_fast, C3CzC4, 0.5~3.5 sec 
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Figure 4-7: WH_FH_fast, C3FzC4, 0.5~3.5 sec 
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Figure 4-8: WH_FH_fast, C3FzC4, 0~3 sec 
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Figure 4-9: WH_FH_fast, C3FzC4, 0~1 sec 
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Figure 4-10: WH_FH_fast, FzC3CzC4, 0~1 sec 
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 Next, we show the analysis of mrl_FH dataset. This subject is a stroke patient; 

however, the performance is quite satisfying. The parameters that we tried out are listed 

in Table 4-3, and the response time and accuracy are shown in Figure 4-11.  

Table 4-3: mrl_FH online parameters setting 

 Channels Extracted Time Window 

para1 C3CzC4 0~3sec 

para2 FzC3CzC4 0~3sec 

para3 FzC3CzC4 0~1sec 

para4 FzC3CzC4 0~0.5sec 

 

(a) 
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(b) 

 

 From the result in Figure 4-11, the addition of Fz channel result in worse 

performance in response time and accuracy for stroke patient, which is in accordance 

with the result in Figure 3-6. Notwithstanding, we can compensate the performance by 

picking shorter time window, and the outcome shows it promising. The 1sec window 

had better performances, but the 0.5 sec window drops the performance in accuracy 

aspect, the reason may be the over-short period of time window, which we can see the 

fuzzy prediction result in Figure 4-15. 

 

 

  

Figure 4-11: Response time & Accuracy analysis of mrl_FH dataset 
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Figure 4-12: mrl_FH, C3CzC4, 0~3 sec 
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Figure 4-13: mrl_FH, FzC3CzC4, 0~3 sec 
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Figure 4-14: mrl_FH, FzC3CzC4, 0~1 sec 
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Figure 4-15: mrl_FH, FzC3CzC4, 0~0.5 sec 
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 Finally, we show the analysis of BCI Competition IV dataset 1_b dataset, which 

is an un-cued dataset with the evaluation data event period ranging from 1.5sec~8sec. 

The un-cued dataset has bigger challenge for the online analysis, for the uncertainty at 

event period; however, the result of BCI Competition IV dataset 1_b are still quite 

satisfying. The parameters that we tried out are listed in Table 4-4, and the response 

time and accuracy are shown in Figure 4-16. 

Table 4-4: BCI Competition IV dataset 1_b online parameters setting 

 Channels Extracted Time Window 

para1 FzC3CzC4 0~2sec 

para2 FzC3CzC4 0~1sec 

para3 FzC3CzC4 0~0.5sec 

para4 FzC3CzC4 0~0.2sec 

 

 Since the BCI_1b subject is a normal subject, we didn’t show the effect of channel 

selection, just directly set the channels to FzC3CzC4, and focus on the effect of 

extracted epoch’s length. The result in Figure 4-16 shows that the response time 

generally decreases with the shorter epoch length, but it re-bounce when the epoch is 

too short. Equally, the accuracy is better when epoch is shorter, but it also drops 

dramatically when the epoch is too short. In summary, the performance shows best at 

1sec epoch length in both response time and accuracy aspect, and the 0.2sec epoch 

length is too short so that it has too fuzzy prediction result and lacks of the stability 

shown in Figure 4-20. 
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(a) 

(b) 

 

  

Figure 4-16: Response time & Accuracy analysis of BCI Competition IV dataset 1_b 
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Figure 4-17: BCI Competition IV dataset 1_b, FzC3CzC4, 0~2 sec 
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Figure 4-18: BCI Competition IV dataset 1_b, FzC3CzC4, 0~1 sec 
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Figure 4-19: BCI Competition IV dataset 1_b, FzC3CzC4, 0~0.5 sec 
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Figure 4-20: BCI Competition IV dataset 1_b FzC3CzC4, 0~0.2 sec 



 

56 

 

 After the analysis above, we finally set the online prediction parameters as listed 

below, and we show the accuracies for the rest of the datasets in Table 4-5, waveforms 

in Figure 4-21~Figure 4-27 (WH_FH_fast, mrl_FH, BCI Competition IV dataset 1_b 

are shown above in Figure 4-10, Figure 4-14, Figure 4-18). Also mention that we had 

analyzed one motion imagery dataset, YC_MI, which performance is not so much 

different from others. 

1. Algorithm: FBCSP 

2. Channels selection: Fz, C3, Cz, C4 (4 channls) 

3. Frequency band selection: 4~7Hz, 8~12Hz, 13~30Hz 

4. Extracted time window: 0~1sec 

Table 4-5: Online accuracy analysis of all subjects 

Datasets Accuracy 

TP_FH_fast 60.53% 

WR_FH_fast 68.78% 

WH_FH_fast 73.21% 

YC_MI 67.95% 

YC_GR 69.34% 

mrc_GR 66.79% 

mrl_FH 75.34% 

BCI Competition IV 1_b 73.83% 

BCI Competition IV 1_f 54.22% 

BCI Competition IV 1_g 57.94% 

The online sample by sample performance is generally 10%~15% lower than the 

offline performance in Chapter 3, because of the response time latency, and the property 

of online analysis. The results in Table 4-5 show that the accuracy performance 

generally are above 60%, but few of them are not. We deduced the main reason is the 

variance among the subjects, we can also see that the variance between the tasks (GR 

and MI), but still, the motion imagery task still has satisfying performance. 
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Figure 4-21: TP_FH_fast, FzC3CzC4, 0~1 sec 
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Figure 4-22: WR_FH_fast, FzC3CzC4, 0~1 sec 
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Figure 4-23: YC_MI, FzC3CzC4, 0~1 sec 
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Figure 4-24: YC_GR, FzC3CzC4, 0~1 sec 
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Figure 4-25: mrc_GR, FzC3CzC4, 0~1 sec 



 

62 

 

  

Figure 4-26: BCI Competition IV dataset 1_f, FzC3CzC4, 0~1 sec 
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Figure 4-27: BCI Competition IV dataset 1_g, FzC3CzC4, 0~1 sec 
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Finally, we compare our performance with [17] in Table 4-6. However, the 

accuracy in [17] is not fully well defined, so the number are just for reference. Our 

algorithm has slightly poor performance in accuracy compared to [17], but the 

complexity in channels and frequency bands dramatically costs down. Furthermore, we 

provided the algorithm that can response within averagely, 1 second. 

 

Table 4-6: Performance Comparison with [17] 

 Proposed [17] 

Dataset 
2 stroke patients 

4 healthy subjects 

54 stroke patients 

16 healthy subjects 

Channels 4 27 

Method FBCSP FBCSP 

Frequency Bands 3 9 

Offline Accuracy 

Stroke Motor Imagery 
0.74 0.87 

Offline Accuracy 

Stroke Finger Tapping 
0.87 0.9 

Offline Accuracy 

Normal Motor 

Imagery 

0.78 0.74 

Online Stroke 

Accuracy 
0.71 0.82 

Online Normal 

Accuracy 
0.68 NA 

Response Time <1 sec NA 
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 Conclusion and Future Work 

 Conclusion 

In summary, this thesis contributes an online real-time BCI system with low 

computation complexity. 

First, we propose an offline BCI system that can detect the subjects’ motion 

intension in Chapter 3. A series of analysis have be done though the BCILAB toolbox 

to find the best accuracy with lowest computation complexity. We choose the feature 

extraction algorithm to be FBCSP, for the finest accuracy, but the drawback of FBCSP 

is its computation complexity. In order to compensate the drawback, we choose to use 

less channel number, from 19 channels down to only Fz, C3, Cz, C4 these 4 channels. 

Moreover, we further reduce the computation complexity by cost down the frequency 

bands, from default BCILAB’s 5 bands to only 4~7Hz, 8~12Hz, 13~30Hz, these 3 

bands. The final results show that we have averagely 84.33% accuracy for stroke 

subjects, and 80.64% accuracy for normal subjects. 

Second, the online implementation method is introduced in Chapter 4. The method 

was based on the algorithm in Chapter 3, and we choose short timing window to keep 

updating the prediction result. After the prediction, we provided an algorithm to smooth 

the prediction, and discretize the prediction result to classification result by setting a 

threshold Count with de-glitch buffer range. The analysis shows that with shorter timing 

window, we can have quicker response time, but if the window becomes too short, the 

accuracy drops greatly. Finally, choose the time window to be 1second, and we can 

detect the subjects’ motion intension within 1second, with about 67% accuracy.  
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 Future Work 

For the future work, the proposed BCI system can be further improved by adding 

complicated preprocessing unit, like ICA, or modifying the feature extraction algorithm 

to get better accuracy results. Furthermore, we can realized our design by ASIC 

hardware approach, which will result in faster response time, and faster computation 

capability for the more complicated algorithm.  
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