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Abstract

Stroke rehabilitation with EEG-based brain computer interface enables interaction
through brain signals and restoration of motor function of the brain. However,
conventional approaches require high complexity for reliable detection and fail to
achieve real time response. This thesis proposes a real time low complexity BCI
interface for stroke rehabilitation.

The proposed approach is based on the filter bank common spatial pattern (FBCSP)
method. To reduce complexity, the EEG channels are reduced from 19 channels to 4
channels, Fz, C3, Cz, C4 to detect the movement intention for normal and stroke people
with satisfying accuracy. Furthermore, the filter bank is reduced from five bands to
three bands, 4~7Hz, 8~12Hz, 13~30Hz to reduce the complexity. A real time on-line
scheme is developed with above method that uses one second time window for EEG
analysis and transition region for smooth BCI control. These approaches saves 90% of
computational complexity. The simulation results shows over 80% of accuracy for
offline analysis, and 67% accuracy for the on-line approach with less than one second

response time.
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Chapter 1. Introduction

1.1. Motivation

Stroke is the loss of brain function due to a disturbance in the blood supply to the
brain. This disturbance is due to either blockage of a blood vessel or bleeding of blood
vessels of the brain. As a result, the affected area of the brain cannot function normally,
and over 80% of patients suffer from the upper limb paralysis, which severely affects
the daily life of patients.

The rehabilitation methods in the past decades are by drug or active motor training;
however the later one is limited by the lack of mobility of stroke patient in clinical
rehabilitation. Hence, this thesis provided a Brain Computer Interface (BCI) based on
EEG to classify the subjects’ motor imagery, and detect the intention of hand movement.
After the detection of movement, we will trigger the robot arm to perform the
rehabilitation action, by doing so, we can enhance the connection of patients’ neural
network from brain to limb. This kind of approach raise the efficiency of rehabilitation,
also enhance to possibility of cure. The EEG also has the advantages of high time

resolution, non-invasive, and low cost, which is suitable for long-term monitor.

1.2. Thesis Organization

The rest of the thesis is organized as follow, in Chpater 2, we introduce the
background knowledge of BCI system. Then in Chpater 3, we present the experiment
materials and the offline analysis methods, results. In Chapter 4, proposes the online

methods and analysis results of our design. Last, in Chapter 5, we conclude the thesis.



Chapter 2. Background Overview

2.1. Overview of BCI

Brain Computer Interface (BCI) is a kind of neuro-prosthetic device that directly
connects the neural activity of the brain with a machine, also called Brain Machine
Interface (BMI).[2] The subjects can communicate the surrounding by producing neural
activity that provides enough information to control an artificial device. The common
flow of BCI is shown in Figure 2-1, including neuron signal recording, signal

processing, and communication to artificial device.

( sera N

Processing

Neural

! = Feat

Suble Activity Preprocessing N Classification 1
T Recording Extraction

Bio- K /

Feedpack
Artificial Device G t|.me.
Communication

Figure 2-1: Flow Diagram of BCI

There are two Kinds of ways to access the brain’s neural activity: non-invasive and
invasive techniques. The most common invasive technique is ECoG; however, it
requires the surgery to acquire the signal, which has some clinical risks and is
inconvenient for the subjects, but since the electrodes are closer to the brain, the
recorded signal has higher amplitudes and smaller spatial scales ranging from a single
neuron cell to distributed cell groups.

On the other hand, the non-invasive techniques recompense the drawback of

invasive techniques, which is doesn’t need the surgery, and in principle, they have good



temporal resolution, but poor spatial resolution. The most common invasive techniques
include EEG, fMRI, MEG, NIRS shown in Figure 2-2. In our thesis, we choose EEG
to be our approach of neural activity acquisition, for its low cost, and high portability;
nonetheless, EEG suffer from the blockage of cranium, cerebrospinal fluids and suffer

from the artifacts, such as eye-blink and surrounding noise.

(a) (b) (c) (d)

Figure 2-2: Most used noninvasive techniques. (a) EEG (b)fMRI (c)MEG

(d)NIRS [2]

2.2.. EEG Properties

EEG signal is the sum of the extra-cellular field potential caused by a large group
of neurons’ activity. The signal frequency bands range from 0.1 Hz to 100 Hz, and the

most common frequency bands are show in Table 2-1.

Table 2-1: EEG Frequency bands [2]

Band  Frequency (Hz)

8 0.5-4
a 4-8
o 2—13
i 13 —22
¥ 2240




The most important frequency bands that we concerned about when analyzing the
motor imagery or motor activity are S band and iz rhythm. The g rhythm is also
ranging from 8~12 Hz as « band does. However, the @ band are seen in the
posterior regions of the head on both sides. It emerges with closing of the eyes and with
relaxation, and attenuates with eye opening or mental exertion. The ¢z rhythm appears
in the motion limb’s contralateral side of sensory and motor cortical areas when imaging
the movement of the hands or the legs. The motor area’s position are shown in C3 and
C4 in Figure 2-3. [15]

The event related desynchronization (ERD) is the power decay within a certain
band due to the neuron activity that related to certain event. On the contrary, the event
related synchronization (ERS) is the power ascent. x and /S band’s ERD will
appear at the motion limb’s contralateral motor cortex. As the completion of motion,
the ERD transfers to both side of brain. After ERD vanishes, the 3 band’s ERS arises,
we can view it as the power re-bounce after the ERD. Motor imagery also produces the

similar pattern of ERD/ERS as the motor execution. [15]

Figure 2-3: The 19-Channels electrode position



2.3. Signal Processing

Signal processing is the core part of BCI system, it extracts the cognitive state’s
message from the brain. However, the EEG signal is very weak after it transfer through
the scalp, and it is bury in the background noise. So the main issue of signal processing
is to de-noising the signal, raise the signal to noise ratio (SNR) of the EEG, and finally
extract the feature for the input of future classification.

The common methods of BCI’s signal processing are, time-frequency domain
processing, and spatial filtering. The methods based on time-frequency domain
processing are band-pass filtering, Fourier transform, wavelet transform, etc. The
methods based on spatial filtering are Laplacian spatial filtering, principle component
analysis (PCA), independent component analysis (ICA), common spatial pattern (CSP),
etc. [15]

The idea of time-frequency domain processing is that, ERD/ERSof ¢ and S
band are non-phase locking event related response. Hence, the time-domain averaging
method can’t extract the feature of power that varies with time. Thus, the band power
is the simplest way to analyze the EEG.

The idea of spatial filtering is that by the linear combination of channels’ data, can
raise the SNR of EEG signal. The large/small Laplacian is computed by subtracting the
linear combination of neighbor’s electrodes from the original electrode’s signal. Large
Laplacian refers to the next-nearest-neighbor electrodes, and small Laplacian refers to
the nearest-neighbor electrodes.

The CSP method is to use linear transform to project the multi-channels’ EEG data
into low dimensional spatial subspace with a projection matrix, of which each row
consists of weights for channels. The transform matrix can maximize the variance of

one class while minimize for the other.[3][15]



The details of CSP algorithm are listed as below, Xm and Xr denote the EEG signal
matrices of “movement” and “rest”, with dimensions NxT, where N is the number of
channels and T is the number of samples per channel. The normalized spatial covariance

of the EEG can be represented as

_ XpmXm' Ro = XrXR'
- trace(XmXm') R~ trace(XgXgr")

Ry (2-1)

X'is the transpose of X and trace(B) is the sum of the diagonal elements of B. By
averaging the normalized covariance over all trials of each group, we get the Ry, and
Ry . The composite spatial covariance can be factorized as,

R=Ry+Rg=U,2U, (2-2)
where X is the diagonal matrix-of eigenvalues, and Up is the matrix of eigenvectors.
The whitening transformation matrix is as below.

p=1x"u, (2-3)
We transform the average covariance matrices Ry and Ry into Sy and Sr by P,

Sy = PRy P’ Sg = PRRP' (2-4)
then we can decompose the Sm and Sg as.

Sy = UpEnUn' Sg = URZRUR’ (2-5)
It can be proven that Sm and Sgr have the same common eigenvectors and the sum of
corresponding eigenvalues of these two matrices will be an identity matrix.

Uy=Ug=U e | (2-6)
The eigenvectors with the largest eigenvalues for Sm have the smallest eigenvalues for
Sr and the opposite is true. The transformation of whitened EEG onto the eigenvectors
corresponding to the largest eigenvalues in Xy and Xy is optimal for separating
variance in two signal matrices. The projection matrix W is denoted as

W=UP (2-7)



With the projection matrix W, the original EEG can be transformed into uncorrelated
components
Z=WwX (2-8)

Z can be seen as EEG source components including common and specific

components of different tasks. The original EEG X can be reconstructed by

X=w1z (2-9)
Where W is the inverse matrix of W. The columns of W are spatial patterns, which
can be considered as EEG source distribution vectors. The first and last columns of
W are the most important spatial patterns that explain the largest variance of one task
and the smallest variance. of the other.

There are some paper proposed the advanced CSP, called Filter-Bank Common
Spatial Pattern (FBCSP), which it pre-filter the EEG data into several bands, and then
each band will have their own CSP to enhance the classification rate, but it will also
raise the computation complexity [14]. The relation between FBCSP and CSP'is shown
in Figure 2-4. ICA is a kind of method of blind source separation (BSS) to recover

independent sources using multi-channel observations of mixtures of those sources. [8]



4 0.5~3 Hz » CSP
,‘ 4~7Hz > CSP
EEG data %‘ 8~12 Hz » CSP
“ 13-30 Hz > CSP
1 31~42 Hz » CSP
Frequency Spatial
Filtering \ Filtering

Figure 2-4: Schematic Diagram of FBCSP

2.4. .Summary

The characteristic of EEG varies with subjects, time, equipment, mental condition,
etc. This chapter provided an overview and simple background knowledge for BCI
system, the main part of BCI system is in the signal processing, and there are still many

ways to analyze the EEG raw data.



Chapter 3. Materials and Methods

3.1. Materials

The datasets include our collected datasets from Taoyuan Chang Gung Hospital

with 4 normal subjects, 2 stroke subjects, and BCI Competition IV dataset 1_b, 1 _f, and
1_g.[4][18]
3.1.1. Our Dataset

3.1.1.1. Participants

The normal 4 subjects were 2 males, 2 females, with age ranged from 23 to 33. All
participants labeled as TP, WR, WH, YC are right-handed, and are the research group
members of our own laboratory. All of them are the first time users of BCI.

The first stroke subject is Mr. Cheng, aged 66, with his left brain injured. The
second stroke subject is Mr. Lee, aged 46, with his right brain injured. These two
patients have been rehabilitating for a while, and are in the late phase of rehabilitation
treatment. The subjects are not severely damaged; both can perform easy instructions

by their own will, but not fluently. All these subjects are the first time users of BCI.

Table 3-1: Summary of subjects

TP WR WH YC Mrc Mrl
Aged 24 27 33 23 66 46
Gender M F M F M M
Handedness R R R R R R
left
Injured right ACA
X X X X putamenal
Parts infarction
hemorrhage




3.1.1.2. Experimental Paradigm

Figure 3-1 shows the timing scheme of the experiment. The 0~4 seconds is the rest
period, with blank screen. Our rest period is longer, so that it has the equal length of
movement period, for the convenience of analysis tool. Then at the 4s, the screen shows
a fixation cross to hint the subjects to concentrate for the coming cue. Finally, the 5~9s
is the movement period, the screen will show an arrow pointing left or right with equal

chance.

Event epoch Event epoch
0.5~3.5 sec 0.5~3.5 sec
Rest o Movement
| | | | | | | | | | |
1 2 3 4 5 6 7 8 9

Figure 3-1: Experiment Paradigm

For each subject, we collect 3 to 4 runs, with 80 trials (normal subjects), or 60
trials (stroke subjects) each run. The movement tasks in our test are listed as below.
(1) FH_fast: fast finger tapping, about 4 times per second.
(2) FH_comf: finger tapping with the comfortable speed, about 1~2 times per second.
(3) GR: grasp, we assume that grasp involves more muscle movement, and larger
movement than finger tapping, it might result in stronger EEG waveform.
(4) MI: motion imagery, imagine raising your hand.
(5) MIGR: motion imagery, imagine hand grasping.

(6) TMP_fast: thumb press, this is for the stroke subject, because he had difficulty
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tapping his finger, we modify the movement from finger to thumb.
(7) PF: upper limb pushing forward, this is also for the stroke patient, because there is
a push forward action in the rehabilitation movement, also the doctor said that pushing
movement have stronger EEG waveform, we assume it is easier for the movement
detection. The summary of subject’s task are listed in Table 3-2.

The task for each subject is slightly different though the whole collection series,
we keep modifying the task movement to get better result, and the collection of one
subject is finished within a day.

Table 3-2: Summary of subjects' task

TP WR WH YC mrc mrl

FH_fast(TMP_fast) V V V V \"% Vv
FH _comf V V V

GR V \Y V \Y

MI(MIGR) V \Y; V V Vv Vv

PF vV

3.1.1.3. Experimental Setup

The EEG was collected by the Mitsar EEG-201 amplifier (http://www.mitsar-
medical.com/eeg-machine/eeg-amplifier-compare/) with 19 channels showed in Figure
2-3. The sampling rate is at 250Hz, and the recorded EEG waveform is passed to the
compatible software, called WinEEG. The participants were asked to sit on a chair
toward the screen and to fix their body in a room with weak light. The instruction were
presented by visual cue from the computer screen with the software, called PSYTASK.
Also, the subjects were instructed to minimize eye blinking and to avoid physical

movement throughout the EEG recording progress.
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3.1.2. BCI Competition IV Dataset

3.1.2.1. Participants

The BCI competition IV dataset 1 b, 1 f, and 1_g were provided by Berlin
BCl group [18], the reference link about the detail information is at:
http://www.bbci.de/competition/iv/. The subjects were all healthy.

3.1.2.2. Experimental Paradigm

Calibration

+ || 4

---------

2s l 4s ' 4s
Evaluation

o @ @D @

' 1.5-8s ' 1.5-8s ' 1.5-8s ' 1.5-8s '

Figure 3-2: BCI Competition 1V dataset 1 paradigm [18]

The BCI competition IV datasets, there are two kinds set of data. One is for the
calibration (training), and one is for evaluation (testing). For calibration datasets, in the
first two runs, arrows pointing left, right, or down were presented as visual cues on a
computer screen, with each trial 8 seconds. First, the screen will show 2s fixation cross
to inform the subjects to be attention. Then, cues were displayed for a period of 4s
during which the subject was instructed to perform the cued motor imagery task. Finally,
2s of blank screen shown in the center of the screen. Then, for the evaluation datasets,
there are 4 runs, the motor imagery tasks were cued by soft acoustic stimuli (words left,

right, and foot) for periods of varying length between 1.5 and 8 seconds. The end of the
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motor imagery period was indicated by the word stop. Intermitting periods had also a
varying duration of 1.5 to 8s. Like shown in Figure 3-2.[18]
3.1.2.3. Experimental Setup

The BCI Competition IV datasets are recorded by 64 channels, 1000Hz sampling

rate, and 2 classes (+idle state).

3.2. Methods

After the EEG collection by the WIinEEG software, we transfer the EEG signal to
MATLAB platform though the format called EDF plus. The reason that we analyze the
waveform on MATLAB platform is that we are familiar with the toolbox called
EEGLAB (http://sccn.ucsd.edu/eeglab/)[6] and BCILAB
(http://scen.ucsd.edu/wiki/BCILAB)[7] these two toolbox are based on MATLAB, and
we have more transparency and plasticity to modify the code we want, and subtly
perform the instruction we gave.

From EDF format to MATLAB, first we cut the data out, then use the EEGLAB
to import new data, then we add the labels of each channel, and use the default channel
locations of EEGLAB. Last, we load the event types (left / right) and latencies
through .txt file exported from WIinEEG. After all these steps, we save it as .set file of
EEGLAB for the future processing by BCILAB toolbox.

Then we introduce the BCILAB toolbox to do the process. BCILAB is a powerful
toolbox based on EEGLAB, and it is also compatible with MATLAB. It comprise all
the key components for BCI analyzing, like Figure 3-3. All the components are
constructed in module form, also with GUI, and each module has different parameters.
We can choose different modules combine together, and define the parameters to fulfill
the BCI processing that we want. BCILAB also combines some machine learning

module function to classify the prediction, and finally, it has many ways (mean square
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error, kullback-leibler divergence, negative log-likelihood ...) to evaluate the

performance.
BCI Training phase
M Subject EEG » Preprocessing—| Featu_re » Classifier Result
MI selection

features Classifier model

Evaluation phase

v 3 Result/Action
EEG » Preprocessing— Selected » Classfier >
features

Figure 3-3: BCI flow diagram

3.2.1. Preprocessing

The purpose of preprocessing is to make the raw EEG data more clear, and reject
the artifacts (eye blink, background noise ...). The most common way includes band-
pass filtering, independent component analysis (ICA) [1][8][9], principle component
analysis (PCA)[8], or the simplest way is to manual removal of fuzzy EEG raw data,
which needs some experience, simple but lack of validity.

However, we don’t do any preprocessing in-our methods, and there are several
reasons:

1. For the band pass filtering, in section 3.2.2, we will mention our approach: FBCSP
(filter bank common spatial pattern), it already separates the raw EEG data to different
frequency bands, so there is no need to do the preprocessing of band pass filtering.

2. For ICA and PCA, the algorithm transform the raw EEG data into the components
(with the same number of channel numbers), and we have to manually reject the “noise”

component, or manually select just the C3/C4 component we want, and in some case it

14



is hard and has a lot uncertainty to pick up the right component we want; in addition,
although there are some algorithms that can select the component automatically, but
they require too much computation resources, which is not suitable for the purpose of
this thesis. Also, the EEG data varies with time; hence, the ICA varies with time greatly.
It takes quite amount of time to keep calculating the ICA with the updating income of
data while in the online application. Due to the above reasons, we don’t do the ICA/PCA

in the preprocessing part, and we still get quite satisfactory results.

3.2.2. Feature Extraction

For the training part, | choose the first 40% of the data to become the training data,
and the rest 60% are for the testing data. The target marker for training comes from the
event (O represents the rest, 1 represents the movement) that labels on the data. The rest
event Is at Osec, and the movement event is at the 5sec as shown in the Figure 3-1, so
we extract the epoch from 0.5sec to 3.5sec for each marker event.

Then we choose a feature extraction approach to transform the EEG data to the
most suitable feature for further classification by machine learning. There are many
approaches in BCILAB, the most common approaches are Log-Bandpower[15],
Common Spatial Pattern (CSP)[3][10][11], and Filter-Bank Common Spatial Pattern
(FBCSP)[5][12]-[14].

After choosing the approach, we combine the classification to train the model, then
we can use the model to test the testing data, and get the accuracy. The following Table
3-3 shows the result. All the three approaches are with 19 channels, LDA classifier,
0.5~3.5 sec epoch extracted. For Log Power and CSP approaches, the algorithm filtered
the 7~30Hz, and FBCSP filtered 0.5~3; 4~7; 8~12; 13~30; 31~42Hz by default

parameters.
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Table 3-3: Accuracy analysis respect to different approaches

Approach|  Log

CSP FBCSP

Dataset Power
TP_FH_fast | 70.83% | 82.29% 83.33%
TP_FH_comf | 65.48% | 70.24% 64.29%
TP_MI 53.13% | 62.50% 56.25%
WR_FH_fast | 59.38% | 84.38% 96.88%
WR_FH_comf | 59.38% | 60.42% 85.42%
WR_MI 66.67% | 71.88% 82.29%
WH_FH_fast | 90.48% | 76.19% 92.86%
WH_FH_comf| 82.29% | 77.08% 91.67%
WH_MI 72.92% | 65.63% 84.38%
WH_GR 88.54% | 92.71% 87.50%
YC FH_fast | 94.79% | 96.88% 98.96%
YC_MI 92.71% | 96.88% 96.88%
YC GR 100.00% | 96.88% 98.96%
mrc_GR 62.50% | 88.89% 91.67%
mrc_MIGR 65.28% | 81.94% 77.78%
mcr_TMP_fast | 65.28% | 79.17% 79.17%
mrl_FH 88.89% | 94.44% 93.06%
mrl_GR 75.00% | 88.89% 84.72%
mrl_MIGR | 93.06% | 98.61% 98.61%
mrl_PF 87.50% | 91.67% 94.44%
Average 76.70% | 82.88% 86.95%
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Figure 3-4: Feature extraction accuracy analysis

As we can see from the Table 3-3, FBCSP outperforms the rest algorithms greatly;
however, the FBCSP is the 5 more times the computation and calculation time of CSP
algorithm because of the 5 times more frequency band to compute. Therefore, in order
to cost down the computation time and complexity to reach our purpose and goal of
immediate online classification with almost 80% accuracy rate, we try out to modified
1. Channels selection 2. Frequency bands selection parameter to fit our requirement.

From Figure 3-4, we can see that CSP and FBCSP both are good approaches for
stroke patients, but FBCSP performs better for normal patients, this is because of that
normal subjects have more clear frequency bands than stroke subjects, we will mention

this furthermore in 3.2.4.

17



3.2.3. Channel Selection

(@) (b)

(d)

Figure 3-5: Normal vs. Patient fMRI plot for right hand grasping & elbow flexion

In Figure 3-5, provided by [16], (a) is the normal subject’s right hand grasping
fMRI plot, while (b) is the stroke patient subject’s right hand grasping fMRI plot. (c)
is the normal subject’s elbow flexion fMRI plot; on the other hand, (d) is the stroke

patient subject’s elbow flexion fMRI plot. We can clearly see that for normal subjects,
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the involved area in brain concentrate around the Cz, C3 (right hand movement,
triggered by contra-lateral brain). However, for stroke subjects, the response area spread
all over the brain, but still includes C3, Cz, C4, and even Fz. Therefore, according to
Figure 3-5, we try to cost down the channel computation in our FBCSP algorithm, but
still maintaining the accuracy.

Table 3-4 is the accuracy analysis respect to different channel number, with FBCSP
algorithm, training epoch extracted from each event’s 0.5~3.5 sec. 9 channels refer to
central 9 channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4), and the 6 channels refer to front-
central 6 channels (F3, Fz, F4, C3, Cz, C4). The interesting result shows that while we
choose only C3, Cz, C4, the accuracy still maintains over 80%, but with great channel
number reduction. Also proves the results in Figure 3-5 that the activation area involved
while hand motion or MI (motion imagery) are mostly in C3, Cz, C4.

From Figure 3-6, we also tried C3, Fz, C4 these 3 channels to analyze, and we
found that comparing to C3, Cz, C4, the normal subjects (TP, WR, WH, YC) showed
great progress in the accuracy, but the dataset mrc_GR and mcr_TMP_fast drop
dramatically. Due to the above reason, and we will show in the next chapter that normal
subject with Fz channel in training will reduce the response time of online classification.
Hence, we finally decided to use 4 channels (Fz, C3, Cz, C4) instead of 3 channels (C3,

Cz, C4 or C3, Fz, C4) to train the data for the convincing results.
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Table 3-4: Accuracy analysis respect to different channel numbers

Channel
19 9 6 3(C3,Cz,C4) | 3(C3,Fz,C4) | 4(Fz,C3,Cz,C4)

Dataset
TP_FH_fast | 83.33% | 87.50% | 78.13% 78.13% 79.17% 78.13%
TP_FH_comf | 64.29% | 66.67% | 65.48% 69.05% 67.86% 69.05%
TP_MI 56.25% | 47.92% | 47.92% 50.00% 55.21% 54.17%
WR_FH_fast | 96.88% | 94.79% | 88.54% 81.25% 88.54% 85.42%
WR_FH_comf | 85.42% | 83.33% | 64.58% 69.79% 70.83% 70.83%
WR_MI 82.29% | 83.33% | 89.58% 84.38% 83.33% 85.42%
WH_FH_fast | 92.86% | 91.67% | 92.86% 89.29% 94.05% 84.52%
WH_FH_comf | 91.67% | 86.46% | 88.54% 80.21% 85.42% 81.25%
WH_MI 84.38% | 86.46% | 80.21% 76.04% 82.29% 80.21%
WH_GR 87.50% | 71.88% | 85.42% 78.13% 78.13% 72.92%
YC_FH_fast | 98.96% | 97.92% | 88.54% 94.79% 92.71% 91.67%
YC_MI 96.88% | 93.75% | 90.63% 85.42% 94.79% 86.46%
YC_GR 98.96% | 98.96% | 98.96% 97.92% 95.83% 96.88%
mrc_GR 91.67% | 91.67% | 90.28% 86.11% 20.00% 58.33%
mrc_MIGR | 77.78% | 83.33% | 90.28% 79.17% 80.56% 90.28%
mcr_TMP_fast | 79.17% | 77.78% | 75.00% 70.83% 69.44% 75.00%
mrl_FH 93.06% | 94.44% | 87.50% 90.28% 86.11% 86.11%
mrl_GR 84.72% | 87.50% | 79.17% 83.33% 79.17% 83.33%
mrl_MIGR | 98.61% | 98.61% | 90.28% 90.28% 88.89% 84.72%
mrl_PF 94.44% | 97.22% | 93.06% 86.11% 84.72% 90.28%
Average 86.95% | 86.06% | 83.25% 81.02% 80.35% 80.25%
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3.2.4. Frequency Band Selection
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Figure 3-7 shows the Event Related Spectral Power (ERSP) of different subjects,
the x-axis of plot is time from 0~10,000(ms), the y-axis is the frequency from 0~50(Hz),
and the meter aside is the power of that channel. Plot (a), (b) are the representative
subjects of normal subjects with different tasks shown in row, and with different hand
movement’s C3/C4 channel shown in column. We clearly see that, at time 4~10 sec,
there are strong Event Related De-synchronization (ERD, with power decrease) in
8~12Hz ( 1 band) marked by the red circle, which strongly proves that while motion or
even motion imagery.(Ml) there are strong ERD in C3/C4’s . band.

Plot (c), (d) show the two stroke patient subjects’ ERSP. The energy band scatters
at all frequencies, not clear as-normal subjects’, but still, we can see that there are
stronger 12 band ERD at the un-damaged brain area no matter what hand moves. In plot
(c), subject mrc’s damaged area iS at left hemisphere of brain, so it shows C4 (right
hemisphere of brain) has stronger ERD; likewise, plot (d), subject mrl’s damaged area
is at right hemisphere of brain, so it shows C3 (left hemisphere of brain) has stronger
ERD.

The default frequency bands of BCILAB’s FBCSP algorithm are 0.5~3Hz; 4~7
Hz; 8~12 Hz; 13~30 Hz; 31~42Hz, these 5 bands, including the ¢ rhythm(8~12Hz),
and 5 (13~30Hz), which are known for the most related bands while motion &MI.
According Figure 3-7 above, we select different bands to analyze, to see whether we
can have a reduction of these frequency bands or not. We have several combination of
bands listed below:

(A): 0.5~3;4~7;8~12;13~30;31~42Hz, default frequency bands of FBCSP
(B): 0.5~3;4~7;8~12;13~30Hz, exclude the 31~42Hz
(C): 4~7;8~12;13~30;31~42Hz, exclude the 0.5~3Hz
(D): 4~7;8~12;13~30Hz , exclude both lowest & highest frequency bands

(E): 8~12;13~30;31~42Hz, exclude the lowest 2 bands
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(F): 0.5~3;8~12;13~30Hz, lowest band & 1z, 5 bands
(G): 8~12;13~30Hz, «, S bands
(H):4~8;8~12;12~16... 36~40Hz, four frequencies bands each, from 4~40Hz

The result of testing these combination of bands are listed in Table 3-5 and Figure
3-8, with FBCSP algorithm, 0.5~3.5 seconds epoch extracted, 4 channels (Fz, C3, Cz,
C4) trained for the model, and LDA for the classifier. The result shows that the
combination of (D) had best result in normal subjects, and quite satisfying result in
stroke subjects. The result was not surprising, because we can see from Figure 3-7 that
exclude the 8~12Hz, there are still some ERD in the 4~7 Hz. Thus, finally we decide

to choose 4~7Hz, 8~12Hz, 13~30Hz to be our training frequency bands.
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Figure 3-8: Frequency band selection accuracy analysis
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Table 3-5: Accuracy analysis respect to different frequency band

Frequency
A B | © | O 6B F | © | H

Dataset
TP_FH_fast | 78.13 | 78.13 | 77.08 | 82.29 | 81.25 | 81.25 | 80.21 | 77.08
TP_FH_comf | 69.05 | 65.48 | 69.05 | 71.43 | 67.86 | 65.48 | 70.24 | 69.05
TP_MI 54.17 | 52.08 | 55.21 | 51.04 | 52.08 | 45.83 | 48.96 | 53.13
WR_FH_fast | 85.42 | 81.25 | 85.42 | 82.29 | 81.25 | 79.17 | 82.29 | 93.75
WR_FH_comf | 70.83 | 70.83 | 67.71 | 73.96 | 69.79 | 71.88 | 68.75 | 68.75
WR_MI 85.42 | 81.25 | 86.46 | 81.25 | 76.04 | 78.13 | 73.96 | 87.50
WH_FH_fast | 84.52 | 94.05 | 83.33 | 90.48 | 77.38 | 95.24 | 89.29 | 79.76
WH_FH_comf | 81.25 [.84.38.| 75.00 | 77.08 | 70.83 | 83.33 | 73.96 | 73.96
WH_MI 80.21 | 76.04 | 78.13 | 77.08 | 79.17 | 77.08 | 78.13 | 78.13
WH_GR 7292 | 83.33 | 77.08 | 86.46 | 69.79 | 82.29 | 82.29 | 61.46
YC_FH_fast | 91.67 | 94.79 | 90.63 | 93.75 | 89.58 | 91.67 | 93.75 | 89.58
YC_MI 86.46 | 87.50 | 85.42 | 86.46 | 88.54 | 85.42 | 88.54 | 85.42
YC_GR 96.88 | 94.79 | 97.92 | 94.79 | 100.00 | 93.75 | 94.79 | 98.96
mrc_GR 58.33 | 86.11 | 62.50 | 90.28 | 61.11 | 91.67 | 93.06 | 84.72
mrc_MIGR [790.28 | 88.89 | 91.67 | 91.67 | 90.28 | 86.11 | 91.67 | 94.44
mer_TMP_fast | 75.00 | 75.00 | 72.22 | 73.61 | 70.83 | 76.39 | 72.22 | 70.83
mrl_FH 86.11 | 87.50 | 86.11 | 88.89 | 90.28 | 88.89 | 91.67 | 84.72
mrl_GR 83.33 | 81.94 | 8194 | 81.94 | 81.94 | 84.72 | 81.94 | 86.11
mrl_MIGR 84.72 | 84.72 | 84.72 | 81.94 | 83.33 | 84.72 | 81.94 | 86.11
mrl_PF 90.28 | 87.50 | 81.94 | 81.94 | 83.33 | 90.28 | 84.72 | 86.11
Average 80.25 | 81.78 | 79.48 | 81.93 | 78.23 | 81.66 | 81.12 | 80.48
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3.3. Summary

After all the analysis above, we find few parameters listed below.
1. Algorithm: FBCSP
2. Channels selection: Fz, C3, Cz, C4 (4 channls)
3. Frequency band selection: 4~7Hz, 8~12Hz, 13~30Hz

These parameters are to fit our application: fast, less computation, but still
convincing accuracy results shown in Figure 3-9(the complexity is compared to 19
channels 5 frequency bands FBCSP), for online instant react BCI system. Furthermore,
we hope to develop this BCI system into a portable, wearing device by the means of
ASIC IC design. First, the epoch is extracted respect to each event at 0.5~3.5 seconds
using the 4 channels (Fz, C3, Cz, C4) EEG data, and the prior 40% data are used for
training, the rest 60% are for the testing. Then we select the FBCSP algorithm, with
frequency bands cut at 4~7; 8~12; 13~30 Hz to be our feature extraction approach.
Finally, the features are fed into the LDA classifier to get the training model. The
BCILAB uses the module called bci_train to train the data by the approach we selected.
After the training, the model compares the event 0.5~3.5 seconds’ data that labeled by
the event marker to classifies this epoch’s type (rest or movement), gives it the
percentage to rest event or motion event; and uses 5-fold cross validation and mean
square error (MSE) to evaluate the performance. Then, we can use the rest 60% data
for the testing, same as evaluating the training data, getting the results of mean square
error. The results of training and testing are listed below in Table 3-6.

We see that there are still great variation among the subjects, some tasks have better
performance for some subjects, while others don’t, and each kind of task gets different
performances too, shown in Figure 3-10 (the task accuracy are the average of all

subjects who have done that kind of task). Nonetheless, our total average result had

27



over 80% of accuracy both in normal subjects and stroke subjects. From [17], we can
know that accuracy from 43~58% are accuracy by chance, which means our results are

not at chance, and convincing.
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Table 3-6: Final result of datasets training & testing performance

training | testing

TP_FH_fast | 79.62% | 82.29%

TP_FH_comf | 89.39% | 71.43%

TP_MI 74.87% | 51.04%

WR_FH_fast | 82.95% | 82.29%

WR_FH_comf | 56.41% | 73.96%

WR_MI 89.10% | 81.25%

WH_FH_fast | 81.97% | 90.48%

WH_FH_comf | 92.05% | 77.08%

WH_MI 87.05% | 77.08%

WH_GR 87.31% | 86.46%

YC_FH_fast | 90.51% | 93.75%

YC_MI 76.28% | 86.46%

YC_GR 95.26% | 94.79%

mrc_GR 87.56% | 90.28%

mrc_MIGR 75.78% | 91.67%

mcr_TMP_fast | 76.89% | 73.61%

mrl_FH 89.33% | 88.89%

mrl_GR 98.00% | 81.94%

mrl_MIGR 96.00% | 81.94%

mrl_PF 81.11% | 81.94%

Average 84.37% | 81.93%
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Chapter 4. Online BCI Implementation

4.1. Motivation

Our research topic is a project that cooperate with Chang Gung Hospital. We wish
to develop a BCI device to help stroke patients’ rehabilitation by the means of the online
instant BCI response triggering the robot arm that helps the stroke patient to move their
hand, enhancing the neural network communication from brain to limb. Hence, the
online BCI classification is the crucial part to fulfill our goal. Different from the
previous chapter that does the offline analysis, in this chapter, we want to develop an
online analysis method with quick response, high accuracy, based on the parameters

and algorithm of the pervious chapter.

4.2. Methods

The approach is the same as that in Chapter 3, we choose the following parameters:
1. Algorithm: FBCSP
2. Channels selection: Fz, C3, Cz, C4 (4 channls)
3. Frequency band selection: 4~7Hz, 8~12Hz, 13~30Hz

Then we can train the model by the module, bci_train in BCILAB as described in
the Chapter 3. After that we take the rest 60% data and the training model to another
BCILAB module called onl_simulate. This module has the parameter “sampling rate”.
It will use this sampling rate to update the simulate result with the same length of
training model. We choose 20Hz to be our sampling rate in our approach. The training
phase paradigm is shown in Figure 3-1, and the online simulated paradigm is shown in

Figure 4-1.
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Figure 4-1: Online simulate paradigm

After the onl_simulate module process, we get a vector of cognitive state at various
specified time points, called predictions, p(i), which is the simulated result with respect
to time. p(i) Is also the percentage of movement intention: 1 refers to movement, and 0
refers to rest, like the prediction line in the top picture of Figure 4-3. However, the
prediction results are a continuous, non-smooth line with many glitches, which will
result in abrupt movement for the robot arm. To avoid this, we will transform it to a
discrete (just 0 and 1) smooth line like the modified classification result showed in the

bottom picture of Figure 4-3, to better control the robot arm.

[ prediction (p) ]

threshold

Threshold
Count (C)

C<3

[ classification=0 ] [ classification=1 ]

Figure 4-2: Flow diagram of online BCI
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The whole algorithm for smooth movement is listed below, also the flow diagram
is shown in Figure 4-2. First, we set a variable, called “threshold(i)”, which is the
combination of constant value, 0.4, and the root mean square of previous 10 points (in
our 20Hz sampling rate case, 10 points refers to 0.5 seconds data). As we set the
threshold(i) to be the combination of previous data and a constant, the threshold(i) can
be updated with time, which gains more flexibility and accommodation to conquer the

variation of data though time.

N Y=o P(i)2
threshold(i) = 0.4 X 80% + [== — X 20% (4-1)

Then we define a counter, “C(i)”, with the range from 0~18, that counts how many
times the p(i) is larger than threshold(i), or smaller than threshold(i). We accumulate
the number that p(i) is larger than threshold(i), in such way, the glitches in p(i) can be
eliminated, and therefore, we can get a smoother waveform like the middle plot in

Figure 4-3. This flow is shown as below.

if p(i) = threshold(i),and C(i — 1) < 18 CH=Cci—-1+1;
elseif p(i) < threshold(i),and C(i —1) >0 _ CH) =C(i-1) -1, (4-2
else CiHy=Cl—1);

Finally, we can generate the classification result by “C(i)”. Ifthe C(i) value is larger
than 10, we set the final modified classification(i) result to be 1 (movement). On the
contrary, if the C(i) value is lower than 3, we set the final modified classification(i)

result to be O (rest). This flow is shown as below.

if C(i) =10 classification(i) = 1;
elseif C(i) <3 classification(i) = 0; (4-3)
else classification(i) = classification(i — 1);
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The reason why we left a range between 10 to 18, and 0 to 3 of value C(i), shown
in Figure 4-3, is that we can avoid the glitches in C(i). We leave it as a buffer, so that
the modified classification(i) won’t change too easily. For example, there is a glitch in
the third trapezium of the middle plot, if there aren’t any buffer range, the modified
classification(i) may drop to 0 due to the glitch. The parameters at each equation are

empirical, and are tuned to get the best performance.
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Figure 4-3: Demonstration of each steps in methods
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4.3. Results

In this section, we presented the result in two measures, response time and accuracy.
The smoothing movement method will result in the delay of the response time. Hence,
in order to compensate the delay, we tried shorter training epoch time to be our training
model. In Chapter 3, we select 0.5~3.5 seconds, total 3 seconds length of data to be our
training epoch. Then it come to us that if we select shorter training epoch length, the
higher the percentage of new data occupies the epoch data while the onl_simulate keep
updating the data, and this results in the shorter of response time.

We draw the online classification figure from 0 to 200 seconds, in these 200
seconds, there are averagely 10~20 movement events that can correctly classified, the
remain 2~3 movement events that can’t be classified are marked as red cirele in the plot.
The response time is computed by averaging these recognizable movement event’s

latencies between true label and the modified classification result, like the equation

A 1
Response Time = EZ(tclassification = Lrrue 1abel) (4-4),
where tessification refers to the time point that rest to-movement of classification result,
and tiue 1a0el refers to the time point that rest to movement of true label. The number of

movement events (N) that can be recognizable are listed in Table 4-1. However, the
response time showed in  Response Time = %Z(tdassiﬂmu-on — tirue label)

(4-4) doesn’t consider the computation time of processing unit. In our MATLAB
analysis, 200 sec data, with 20 Hz sampling rate, it takes about 0.0396 sec to process
the online classification, which means it takes 107 sec to compute every sample point.

The accuracy is computed by sample by sample comparing the true label and
modified classification result at the range of 1sec after the event marker till the end of
event. This kind of analysis is referred to the BCI competition IV’s accuracy analysis

[4][18]. We select three datasets for analysis, WH_FH_fast, mrl_FH, and BCI
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competition 1V dataset 1_b in represent of three kind of subjects, normal, stroke, and

un-cued for simplicity.

. 1
Response Time = EZ(tclassification — ttrue label) (4'4)

classification==true lable

N
Accuracy = ( )1 safter event marker ~ end of event (4'5)

Ntotal

Table 4-1: Number of N for each Datsets

Dastsets number of N
WH_FH_fast, C3CzC4, 0.5~3.5 sec 19
WH_FH_fast, C3FzC4, 0.5~3.5 sec 19
WH_FH_fast, C3FzC4, 0~3 sec 19
WH_FH_fast, C3FzC4, 0~1 sec 19
WH_FH_fast, FzZC3CzC4, 0~1 sec 19
mrl_FH, C3CzC4, 0~3 sec 18
mrl_FH, FzC3CzC4, 0~3 sec 19
mrl_FH, FzC3CzC4, 0~1 sec 19
mrl_FH, FzC3CzC4, 0~0.5 sec 17
BCI Competition IV dataset 1_b, FzC3CzC4, 0~2 sec 16
BCI Competition IV dataset 1 b, FzC3CzC4, 0~1 sec 16
BCI Competition IV dataset 1_b, FzC3CzC4, 0~0.5 sec 17
BCI Competition IV dataset 1_b FzC3CzC4, 0~0.2 sec 14
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First, the WH_FH_fast dataset, we selected different parameters to test the

response time and accuracy. The parameters are listed below in Table 4-2.

Table 4-2: WH_FH_fast online parameters setting

Channels Extracted Time Window

paral C3CzC4 0.5~3.5sec

0.5~3.5sec

0~3sec
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As we can see from Figure 4-4 that as we change the channels from Cz to Fz, the
response time and accuracy enhances. Furthermore, we move the epoch to former part
(O sec started, not 0.5sec started) the performance also increases. Finally, the 1 sec
epoch’s performance is better than the 3 sec epoch’s performance, and the reason are
stated as before, the shorter the epoch is, the greater percentage the new data occupies,
which results in faster updating of classification. We showed the progress of response

time in Figure 4-5, and the full waveform are shown in Figure 4-6~Figure 4-10.
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Figure 4-5: Comparison of the response time for the subject WH_FH_fast under different parameters

38



(s) aun]
00l

08

0zl

ovl

03l

08l

Threshold Count

L ——

1
|
|
H
i
I
|
|
(s) awi)
{ua]

o

—————————

i

[

|

|

[

|

|

|
o8l

Figure 4-6: WH

| |
| | |

_ll_lN—]Jlf_lu’_l{_]f_llf—]l—l(_\I_lf—\J_l[_\

|
(s) awi]

|

|
|

i
JIUvwl v vuvuulbuul

_FH_fast, C3CzC4, 0.5~3.5 sec

39



Threshold Count

Label

z::j;:jzj:z

e L

qﬂ_[[i[[[[[,l

| | | | | | | _ _
0 20 40 60 a0 100 120 140 160 180
Time (s)

[ & Tl & BTl T ok - 2 Ja5 Ty =l Cirel S~y & r
ek IBRIERIERERIL IR IR IR T |
I'p &l &l S0 & | | | | o bl d FELD ] % |

I | | I [ | ) L O | el
| [ I [

= IBEERIIEA R LI IR RN IBE
N 10 (A4 A 0 AN 5 0 O O 01 O 0 -4 0 O 4 |
il il Bl 41§ Pl o el B (el ool el B s LEl G el El g if Ll |

I | | o et [ 1 TG L | il
0 1 ) oBL BN plal g Pl g1 b8 plal b Il ot J1] ;o Il el
| | | | | _ _

0 20 a0 100 120 140 160 180

FH_fast, C3FzC4, 0.5~3.5sec

Figure 4-7: WH

40



Threshold Count

Label

o
o

s

[=

HARETE

VAAANOAA N QO O
IR AR IR IR AN

e LY L L L LV L3 L8 L L L] L A L L
_ | _ | | _ | _ _
0 20 40 60 80 100 120 140 160 180
Time (s)
AR o IE=p] pIEs o AN O i A R r
o doal 1! o OEl 2 il ol |l 18 1RIBEN RN
AR EN ool sl 3l Lot g felal il el 4l gLel o JEl ]
| iloal 1l _ 1 i 6] A R H]
CLal g 41 o o ol e A oel e bl 1BIE R Lot o 12l
(0] " g I el I I
| | | | | | | | | | | | | | | | | | |
Ll R B el Pl el a el L
_ | | _ |
0 20 80 100 120 140

FH_fast, C3FzC4, 0~3 sec

Figure 4-8: WH

41



gl

(s) aun].
0ol
I

ysse|d

'7

Figu

3qe| an1} — — —

(s) aun].

0z

14

03

08

0ol

0zl

orl

(=]

08l

Threshold Count

S
al
=

‘E |

{_]{F”T Bl

|
LW U LT WU W L

=

WJ_\I_\I{_\ﬁﬂl_l

1[4_1.

ol ¢ O R

1_1{{_1

—1

— 0z

() swny

0z

oy

09

03

ool

ozi

oyl

03l

08l

i}
— S50
l
gl

L
L= 2 P p——
= |
R
|
T
-
| ===
). —]
)
¢
T
£ |
s 2 =]
I !
| {
_______
2 =
b
;==
e _
Ry~ ey,
¢ —
LS |
________
{
|
C—— =
|
e =F
|
|
et gk |
= ¥
_i_
ey s ]
2 S
=
\‘\
r——j~——
L
=
S—==
= (e e =
E
LS e i e
= |
2
—
———————
g B =l
= — A
)
i
-
7
| === ey
|
I | —
[ - i
|
. s ]
ey
B - —
'i-
[ T -
= 1 |
— | |
e |
ol
— oS =
TE®

re 4-9: WH_FH_fast, C3FzC4, 0~1 sec

42



(s) awi]
00l

Label

gl

ysse|d

3qe| 8ni} — —

(s) awi]
0ol

114

14

09

03

0zl

orl

091

08l

Threshold Count

0
g
oL
=

1

I_Jll'—lh

LU U YW W WL W LW L

=

|1

— 0z

(s) awi]
0oL

08

0zl

orl

09l

08l

n
&= —-
= |
=
= |
|
Ay
L
=
| o ey T .
|
A i)
. |
=
\
= |
e “ |
e R
= |
I = | _
i R |
g
=z
L == =] o]

| 8N} — — —

Figure 4-10: WH_FH_fast, FzC3CzC4, 0~1 sec

43



Next, we show the analysis of mrl_FH dataset. This subject is a stroke patient;

however, the performance is quite satisfying. The parameters that we tried out are listed

in Table 4-3, and the response time and accuracy are shown in Figure 4-11.

Table 4-3: mrl_FH online parameters setting

Channels Extracted Time Window
paral C3CzC4 0~3sec
para2 FzC3CzC4 0~3sec
para3 FzC3CzC4 0~1sec
parad FzC3CzC4 0~0.5sec
4.00
3.25
3.10
300 2.84
2.65
& 2.00
H
= N —1%35
@ 1.00 S BN ST
@ S T e
S e
& —0:38 o] gog
& 0.00
-0.41
-1.00
10 -1.27
-1.52
-2.00
C3CzC4 FzC3CzC4 FzC3CzC4 FzC3CzC4
0~3 0~3 0~1 0~0.5
(a)
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Figure 4-11: Response time & Accuracy analysis of mrl_FH dataset

From the result in Figure 4-11, the addition of Fz channel result in worse
performance In response time and accuracy for stroke patient, which is in accordance
with the result in Figure 3-6. Notwithstanding, we can compensate the performance by
picking shorter time window, and the outcome shows it promising. The 1sec window
had better performances, but the 0.5 sec window drops the performance in accuracy
aspect, the reason may be the over-short period of time window, which we can see the

fuzzy prediction result in Figure 4-15.
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Finally, we show the analysis of BCI Competition IV dataset 1_b dataset, which
is an un-cued dataset with the evaluation data event period ranging from 1.5sec~8sec.
The un-cued dataset has bigger challenge for the online analysis, for the uncertainty at
event period; however, the result of BClI Competition IV dataset 1 b are still quite
satisfying. The parameters that we tried out are listed in Table 4-4, and the response

time and accuracy are shown in Figure 4-16.

Table 4-4: BCI Competition IV dataset 1_b online parameters setting

Channels Extracted Time Window
paral FzC3CzC4 0~2sec
para2 FzC3CzC4 0~1sec
para3 FzC3CzC4 0~0.5sec
para4 FzC3CzC4 0~0.2sec

Since the BCI 1b subject is a normal subject, we didn’t show the effect of channel
selection, just directly set the channels to FzC3CzC4, and focus on the effect of
extracted epoch’s length. The result in Figure 4-16 shows that the response time
generally decreases with the shorter epoch length, but it re-bounce when the epoch is
too short. Equally, the accuracy is better when epoch is shorter, but it also drops
dramatically when the epoch is too short. In summary, the performance shows best at
1sec epoch length in both response time and accuracy aspect, and the 0.2sec epoch
length is too short so that it has too fuzzy prediction result and lacks of the stability

shown in Figure 4-20.
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Figure 4-16: Response time & Accuracy analysis of BCI Competition 1V dataset 1_b
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After the analysis above, we finally set the online prediction parameters as listed
below, and we show the accuracies for the rest of the datasets in Table 4-5, waveforms
in Figure 4-21~Figure 4-27 (WH_FH_fast, mrl_FH, BCI Competition IV dataset 1_b
are shown above in Figure 4-10, Figure 4-14, Figure 4-18). Also mention that we had
analyzed one motion imagery dataset, YC_MI, which performance is not so much
different from others.

1. Algorithm: FBCSP

2. Channels selection: Fz, C3, Cz, C4 (4 channls)

3. Frequency band selection: 4~7Hz, 8~12Hz, 13~30Hz
4. Extracted time window: 0~1sec

Table 4-5: Online accuracy analysis of all subjects

Datasets Accuracy
TP_FH_fast 60.53%
WR_FH_fast 68.78%
WH_FH_fast 73.21%

YC Ml 67.95%

YC_GR 69.34%

mrc_GR 66.79%

mrl_FH 75.34%

BCI Competition IV 1 b 73.83%
BCI Competition IV 1 _f 54.22%
BCI Competition IV .1_g 57.94%

The online sample by sample performance is generally 10%~15% lower than the
offline performance in Chapter 3, because of the response time latency, and the property
of online analysis. The results in Table 4-5 show that the accuracy performance
generally are above 60%, but few of them are not. We deduced the main reason is the
variance among the subjects, we can also see that the variance between the tasks (GR

and M), but still, the motion imagery task still has satisfying performance.
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Finally, we compare our performance with [17] in Table 4-6. However, the
accuracy in [17] is not fully well defined, so the number are just for reference. Our
algorithm has slightly poor performance in accuracy compared to [17], but the
complexity in channels and frequency bands dramatically costs down. Furthermore, we

provided the algorithm that can response within averagely, 1 second.

Table 4-6: Performance Comparison with [17]

Proposed [17]
2 stroke patients 54 stroke patients
Dataset . .
4 healthy subjects 16 healthy subjects
Channels 4 27
Method FBCSP FBCSP
Frequency Bands 3 9
Offline Accuracy
0.74 0.87
Stroke Motor Imagery
Offline Accuracy
; . 0.87 0.9
Stroke Finger Tapping
Offline Accuracy
Normal Motor 0.78 0.74
Imagery
Online Stroke
0.71 0.82
Accuracy
Online Normal
0.68 NA
Accuracy
Response Time <1 sec NA

64



Chapter 5. Conclusion and Future Work

5.1. Conclusion

In summary, this thesis contributes an online real-time BCI system with low
computation complexity.

First, we propose an offline BCI system that can detect the subjects’ motion
intension in Chapter 3. A series of analysis have be done though the BCILAB toolbox
to find the best accuracy with lowest computation complexity. We choose the feature
extraction algorithm to be FBCSP, for the finest accuracy, but the drawback of FBCSP
is its computation complexity. In.order to compensate the drawback, we choose to use
less channel number, from 19 channels down to only Fz, C3, Cz, C4 these 4 channels.
Moreover, we further reduce the computation complexity by cost down the frequency
bands, from default BCILAB’s 5 bands to only 4~7Hz, 8~12Hz, 13~30Hz, these 3
bands. The final results show that we have averagely 84.33% accuracy for stroke
subjects; and 80.64% accuracy for normal subjects.

Second, the online implementation method is introduced in Chapter 4. The method
was based on the algorithm in Chapter 3, and we choose short timing window to keep
updating the prediction result. After the prediction, we provided an algorithm to smooth
the prediction, and discretize the prediction result to classification result by setting a
threshold Count with de-glitch buffer range. The analysis shows that with shorter timing
window, we can have quicker response time, but if the window becomes too short, the
accuracy drops greatly. Finally, choose the time window to be 1second, and we can

detect the subjects’ motion intension within 1second, with about 67% accuracy.
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5.2. Future Work

For the future work, the proposed BCI system can be further improved by adding
complicated preprocessing unit, like ICA, or modifying the feature extraction algorithm
to get better accuracy results. Furthermore, we can realized our design by ASIC
hardware approach, which will result in faster response time, and faster computation

capability for the more complicated algorithm.
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