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1. Introduction

The Riemann zeta function was first introduced by Euler and is defined by

ζ(s) =
∞∑

n=1

1

ns

The series is convergent when s is a complex number with Re s > 1. Some special

values of ζ(s) are well known. For example ζ(2) = π2/6 and ζ(4) = π4/90. In

general, when s = 2n is a positive even integer we have ζ(s) = π2nr for some

rational numbers r. In fact, the number r can be expressed in terms of the Bernoulli

numbers. For odd integer 2n + 1 ≥ 3, however, not much about ζ(2n + 1) is known.

It is not even known whether ζ(2n + 1) are rational, except for the case 2n + 1 = 3,

which was established relatively recently.

In 1970’s, R. Apéry [3] proved that ζ(3) =
∑∞

n=1 n−3 is an irrational number by

constructing two sequences

an =
n∑

k=0

(
n

k

)2(
n + k

k

)2

bn =
n∑

k=0

(
n

k

)2(
n + k

k

)2





n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3

(
n

m

)(
n + m

m

)





,

and then showing that bn/an converges to ζ(3) fast enough to ensure irrationality of

ζ(3). Another remarkable discovery of Apéry is that an and bn satisfy the recursive

relation

(n + 1)3un+1 = (34n3 + 51n2 + 27n + 5)un − n3un−1

Thus, if we set A(t) =
∑∞

n=0 ant
n and B(t) =

∑∞
n=0 bntn, then the functions A(t)

and B(t) satisfy the differential equations

(1− 34t + t2)D3
t A + (3t2 − 51t)D2

t A + (3t2 − 27t)DtA + (t2 − 5t)A = 0

and

(1− 34t + t2)D3
t B + (3t2 − 51t)D2

t B + (3t2 − 27t)DtB + (t2 − 5t)B = 6t,

where Dt denotes the differential operator td/dt. It turns out that these differential

equations have a modular-function origin. It can be shown that if we choose two

linearly independent solutions F1 and F2 appropriately, then t is a modular function

1



of τ = F2/F1 on Γ0(6), A a modular form of weight 2, and d3(B/A)/dτ 3 a modular

form of weight 4. This connection between ζ(3) and modular forms was discovered

by Beukers [1]. (Note that, in general, if F is a modular form of weight k and t

a modular function, then F as a function of t, satisfied an (k + 1)-st order linear

differential equation. See Section 5 below.)

In this thesis we will construct a sequence of rational numbers cn converging to

ζ(5) using Beukers’ idea [1]. Our result is as follows.

Theorem 1. Let an and bn be two sequences satisfying the recursive relation

n5un = A7un−1−A6un−2−A5un−3−A4un−4−A3un−5−A2un−6 +A1un−7−A0un−8,

where

A7 = 24n5 + 420n4 + 2960n3 + 10500n2 + 18744n + 13468,

A6 = 92n5 + 1380n4 + 8160n3 + 23760n2 + 33968n + 18960,

A5 = 600n5 + 7500n4 + 38480n3 + 101100n2 + 135704n + 74260,

A4 = 966n5 + 9660n4 + 40800n3 + 90240n2 + 103840n + 49472,

A3 = 600n5 + 4500n4 + 14480n3 + 24660n2 + 21944n + 8076,

A2 = 92n5 + 460n4 + 800n3 + 560n2 + 48n− 80,

A1 = 24n5 + 60n4 + 80n3 + 60n2 + 24n + 4,

A0 = n5

with initial values a0 = 1, a1 = 4, a2 = 34, a3 = 308, a4 = 3083, a5 = 32696, a6 =

361428, a7 = 4119288 and b0 = 0, b1 = 144/25, b2 = 333/10, b3 = 217042/675, b4 =

138004123/43200, b5 = 1144320384083/33750000, b6 = 25297127932859/67500000,

b7 = 2422896637170749569/567236250000. Then the series {bn/an} converges to

ζ(5). More precisely, we have

lim sup
n→∞

n

√∣∣∣∣
bn

an

− ζ(5)

∣∣∣∣ ≤ (
√

3− 1)4/4

Here we tabulate bn/an for n = 1 . . . 10 below. We remark that the error between

b10/a10 and ζ(5) is about 10−8. In order to get the same magnitude of error term

using
∑N

n=1 n−5. One would need N to be about 100.
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ζ(5) = 1.03692775

b1/a1 = 1.44000000

b2/a2 = 0.97941176

b3/a3 = 1.04397306

b4/a4 = 1.03617900

b5/a5 = 1.03700113

b6/a6 = 1.03692095

b7/a7 = 1.03692836

b8/a8 = 1.03692770

b9/a9 = 1.03692776

b10/a10 = 1.03692775

The rest of the thesis is organized as follows. We first introduce the basic

theory of modula groups, congruence subgroups and modular forms in section 2

and section 3. Then we will describe Beukers’ approach to irrationality proof using

modular forms in section 4. Next we introduce the result of P. F. Stiller [3] and the

method of Y.Yang [5] for determining the differential equation satisfied by modular

form in section 5. Finally, we will prove theorem 1 and apply the method of [5] to

find the recursive relation given above in the last section.

2. Modular group and congruence subgroup

In this section we briefly recall the definition of modular groups and congruence

subgroups. For a ring R with unity 1, we denote by R× the group of invertible

elements in R. The general linear group GL2(R) is defined by

GL2(R) =

{ (
a b

c d

)
| a, b, c, d ∈ R and ad− bc ∈ R×

}

Here we consider the situations when R = R or R = Z. We set

GL+
2 (R) =

{(
a b

c d

)
| a, b, c, d ∈ R and ad− bc > 0

}

SL2(R) =

{(
a b

c d

)
| a, b, c, d ∈ R and ad− bc = 1

}

3



We call SL2(Z) and its subgroups of finite index modular groups. The special linear

group SL2(Z) is also called the full modular group. A class of modular groups

that are of special interest to number theorists is the congruence subgroups. Their

definition is given as follows.

Definition 2.1. For a positive integer N , we define the subgroups Γ0(N), Γ1(N)

and Γ(N) of SL2(Z) by

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) | c ≡ 0 mod N

}

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) | c ≡ 0, a ≡ d ≡ 1 mod N

}

Γ(N) =

{(
a b

c d

)
∈ SL2(Z) | b ≡ c ≡ 0, a ≡ d ≡ 1 mod N

}

We note that

SL2(Z) = Γ0(1) = Γ1(1) = Γ(1)

and

SL2(Z) ⊃ Γ0(1) ⊃ Γ1(N) ⊃ Γ(N)

Further, if M |N , then

Γ0(M) ⊃ Γ0(N) , Γ1(M) ⊃ Γ1(N) , Γ(M) ⊃ Γ(N).

These subgroups are modular groups since [Γ(1) : Γ(N)] < ∞. We call Γ(N)

a principal congruence modular group, and Γ0(N) and Γ1(N) modular groups of

Hecke type. We call N the level of Γ0(N), Γ1(N) and Γ(N). A modular group

containing a principal congruence modular group is called a congruence modular

group.

There is another type of congruence subgroup that is of great interest to number

theorists. Let N be a positive integer and n be an integer such that gcd(n,N/n) = 1

wn =

{
1√
n

(
an b

cN dn

)
: adn2 − bcN = n

}

The elements wn are called Atkin-Lehner involutions. The set of all Γ∗0(N) of Γ0(N)

union all the Atkin-Lehner involutions lies in the normalizer of Γ0(N) in SL2(R)

4



and we have Γ∗0(N)/Γ0(N) ' Zk
2 , where k is the number of distinct prime divisors

of N .

Group action on the upper half-plane

Let H denote that upper half-plane {τ ∈ C : Im τ > 0}. We define a mapping

SL2(R)×H 7→ H by

(α, τ) 7→ ατ =
aτ + b

cτ + d
,

where τ ∈ H and α =

(
a b

c d

)
∈ SL2(R). Then we can check that this mapping is

a group action. Moreover, this mapping is called a linear fractional transformation

and is also a conformal mapping.

Cusps and elliptic points

We now classify the linear fractional transformation defined above. A non-

constant element α of GL+
2 (R) is called elliptic, parabolic, or hyperbolic, when it

satisfies

tr(α)2 < 4 det(α) , tr(α)2 = 4 det(α), or tr(α)2 > 4 det(α),

respectively. When τ ∈ H∗ is a fixed point of an elliptic, parabolic or hyperbolic

element of Γ, we say that τ is an elliptic point, a parabolic point, or a hyperbolic

point, respectively. We also call a parabolic point of Γ a cusp of Γ.

Remark. In SL2(Z) the above classification implies that if tr(α) = 0, then α2 =

−I, and if tr(α) = ±1, then α is order 3 in PSL2(Z).

Fundamental domains

Let G denote any subgroup of the modular group Γ(1). Two points τ and τ ′

in the upper half-plane H are said to be equivalent under G if τ ′ = Aτ for some

A ∈ G. This is an equivalence relation since G is a group.

Let Γ be a discrete subgroup of SL2(R). A fundamental domain for Γ is a

connected open subset D of H such that no two points of D are equivalent under Γ

and H = ∪γD̄, where D̄ is the closure of D. The standard fundamental domain for

SL2(Z) is shown in Fig 1.

Γ := {τ ∈ H | −1

2
≤ Re τ ≤ 1

2
and |τ | ≥ 1}

5



Figure 1. Fundamental domain of Γ(1)

Next we consider the fundamental domain for congruence subgroups. The fol-

lowing fact is well-known.

Proposition 2.1. Let Γ be a discrete subgroup of SL2(R), and let D be a funda-

mental domain for Γ. Let Γ′ be a subgroup of Γ of finite index, and write Γ as a

disjoint union of right cosets of Γ′:

Γ = Γ′γ1
∪ · · · ∪ Γ′γm

Then D′ = ∪γiD is a fundamental domain for Γ′.

Proof. Let τ ∈ H. Then τ = γτ ′ for some τ ′ ∈ D̄, and γ = γ′γi for some γ′ ∈ Γ′

Thus τ = γ′γiτ ∈ Γ′. If γD′ ∩D′ 6= φ, then it would contain a transformation of D.

But then γγiD = γjD for some i 6= j, which would imply that γγi = γj and this is

a contradiction. ¤

The Riemann surface Γ\H∗

Let Γ be a discrete subgroup of SL2(R). We now consider the quotient space

Γ\H. It is in general a non-compact Riemann surface. To compactify it, we begin

by adding cusps of Γ to H. Let PΓ be the set of all cusps of Γ and put H∗ = H∪PΓ.

When Γ has no cusps, PΓ = φ and H∗ = H. We put

Ul = {τ ∈ H | Im (τ) > l} U∗ = Ul ∪ {∞} l > 0

Now we define the topology on H∗ as follows:

6
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(i) for τ ∈ H, we take as the fundamental neighborhood system at τ in H∗ that

at τ in H.

(ii) for x ∈ PΓ, we take as the fundamental neighborhood system at x the family

{σ−1U∗
l | l > 0} , where σ ∈ SL2(R) such that σx = ∞.

Then H∗ is also a Hausdorff space under this topology. In fact, put σ =

(
a b

c d

)

and x = −d/c. Then we see that

σ−1Ul = {τ ∈ H | Im (τ)/|cτ + d|2 > l}

and this is the inside of a circle with the radius (2lc2)−1 tangent to the real axis at

x. For x ∈ PΓ, we call {σ−1Ul} a neighborhood of x in H. Since the action of Γ on

H is a conformal mapping which maps circles or lines to those, Γ also acts on the

topological space H∗. Therefore, the quotient space Γ\H∗ can be defined, and we

conclude that Γ\H∗ is compact.

The genus of Γ\H∗

Let < be a compact Riemann surface and χ be the Euler-Poincaré characteristic

of <. We define the genus of < by

χ = 2− 2g

Then g is a non-negative integer. We now compute the genus of the Riemann surface

Γ\H∗ introduced above. The main tool we use is the Riemann-Hurwitz formula.

Assuming that <′ −→ < is a covering of Riemann surfaces, then the Riemann-

Hurwitz formula states that

2g′ − 2 = n(2g − 2) +
∑

b∈<′
(eb − 1)

where g′ is the genus of <′, n is the degree of the covering and eb is the ramification

index at the point b.

Proposition 2.2. Let Γ be a modular group, and g the genus of Γ\H∗ Then

g = 1 + m/12− v2/4− v3/3− v∞/2

7



where v2 is the number of inequivalent elliptic points of order 2; v3 is the number of

inequivalent elliptic points of order 3; v∞ is the number of inequivalent cusps; and

m = [Γ̄(1) : Γ̄].

Remark. Γ̄(N) is denoted the image of Γ(N) in Γ(1)\{±I}.

Proof. Since H∗Γ = H∗Γ(1), there exists a natural mapping

F : <Γ = Γ\H∗Γ −→ <Γ(1) = Γ(1)\H∗Γ(1)

We put H∗ = H∗Γ = H∗Γ(1), and < = <Γ(1). Let πΓ :H∗ → <Γ, and π :H∗ → < be the

natural mappings. For any point b of <Γ, take a point τ ∈ H∗ so that πΓ(τ) = b.

Hence {<Γ, F} is a covering of < of degree m. Let eb = eb,F be the ramification

index of the covering at b, and put F (b) = a. Let a2,a3 and a∞ be the elliptic points

of order 2 and 3,and the cusp on <, respectively. If a 6= a2, a3, a∞, then b is an

ordinary point and eb = 1. Suppose a = a2, then eb = 1 or 2. Put

t = # {b ∈ <Γ |F (b) = a2}.

Then m = v2 + 2(t− v2). Therefore

(1)
∑

2

(eb − 1) = m− t = (m− v2)/2,

where
∑

2 is the summation over the points b such that F (b) = a2. A similar

argument implies

(2)
∑

3

(eb − 1) = 2(m− v3)/3,

where
∑

3 is the summation over the points b such that F (b) = a3. Next assume

F (b) = a∞. Then b is a cusp in <Γ, and

v∞ = # {b ∈ <Γ |F (b) = a∞}.

Denote by
∑

∞ is the summation over the points b such that F (b) = a∞. Then∑
∞ eb = m, so that

(3)
∑
∞

(eb − 1) = m− v∞.

Consequently, the formula of genus follows from (1), (2), (3) and the Riemann-

Hurwitz formula. ¤

8



We now restrict our attention to Γ0(N)\H∗. The geometric data can be easily

seen to be

[Γ(1) : Γ0(N)] = N
∏

p|N
(1 +

1

p
)

v2(Γ0(N)) =





0, if 4 |N.
∏

p|N

(
1 +

(−1

p

))
if 4 6 |N.

v3(Γ0(N)) =





0, if 9 |N.
∏

p|N

(
1 +

(−3

p

))
if 9 6 |N.

v∞(Γ0(N)) =
∑

0<d|N
φ((d,N/d))

where φ(n) is the Euler function and (−) denote the Legendre symbol. Therefore

we can get the genus of Γ0(N)\H∗ by Proposition 2.2 .

Remark. Using the above formula we see that if Γ0(N) is of genus zero, then

N = 1, . . . , 10, 12, 13, 16, 18, 25.

3. Modular functions and Modular forms

In this section we are concerned with modular functions and modular forms. In

particular, we will introduce the classes of modular forms, namely, the Eisenstein

series and the Dedekind η−function.

Let γ =

(
a b

c d

)
∈ SL2(Z) and f(τ) be a function on H∗ with values in C∪{∞}.

Let k be an integer. The action of γ on f is defined to be

f(τ)
∣∣
[γ]k

= (cτ + d)−kf(γτ) for γ =

(
a b

c d

)
∈ SL2(Z)

More generally, for γ =

(
a b

c d

)
∈GL+

2 (Q). We define

f(τ)
∣∣
[γ]k

= (det γ)k/2(cτ + d)−kf(γτ) for γ =

(
a b

c d

)
∈ GL+

2 (Q)

9



We now define modular functions, modular forms and cusp forms for a congru-

ence subgroup Γ ⊂ SL2(Z). Let N be the level of Γ. We set qN = e2πiτ/N .

Definition 3.1. Let f(τ) be a meromorphic function on H, and let Γ be a congruence

subgroup of level N , i.e., Γ ⊃ Γ(N). Let k ∈ Z. We call f(τ) a modular function of

weight k for Γ if it satisfies the following two conditions:

(a) f
∣∣
[γ]k

= f for all γ ∈ Γ and,

(b) if for any γ0 ∈ SL2(Z), f
∣∣
[γ0]k

has the form
∑

anq
n
N with an = 0 for n ¿ 0.

Here an = 0 for n ¿ 0 means that an = 0, for n ≤ −M for some fixed integer M .

We call such an f(τ) a modular form of weight k for Γ if it is holomorphic on H
and if for all γ0 ∈ SL2(Z) we have an = 0 for all n < 0 in condition (b). We call a

modular form a cusp-form if in addition a0 = 0 in condition (b) for all γ0 ∈ SL2(Z).

We let Mk(Γ) and Sk(Γ) denote the set of modular forms of weight k for Γ and the

set of cusp-forms of weight k for Γ, respectively. Now we illustrate two examples of

modular forms which will appear later.

Eisenstein series

Let k be an even integer greater than 2 and write

(4) Gk(Λ) =
∑
ω∈Λ

ω−k

define

Gk(τ) = Gk(τZ+ Z)

where Λ is denote the lattice spanned by 1 and τ . Because k is at least 4, the

double sum (4) is absolutely convergent and uniformly convergent in any compact

subset of H. Hence Gk(τ) is a holomorphic function on H. It is obvious that

Gk(τ) = Gk(τ + 1), and that the Fourier expansion of Gk(τ) =
∑

n∈Z anqn has no

negative terms. Because Gk(τ) approaches a finite limit as τ → i∞:

lim
τ→i∞

Gk(τ) =
∑

n∈Z,n6=0

n−k = 2ζ(k)

Finally, we easily check that

τ−kGk(−1/τ) = Gk(τ)

Thus we have proved that Gk ∈ Mk(SL2(Z)).

10



We now compute the q-expansion coefficients for Gk(τ). We shall find these

coefficients are essentially the arithmetic functions

(5) σk(n) =
∑

d|n
dk

of n.

Proposition 3.1. Let k be an even integer greater than 2, and let τ ∈ H. Then the

modular form Gk(τ) has q-expansion

Gk(τ) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn

)

where q = e2πiτ , and the Bernoulli number Bk are defined by setting

x

ex − 1
=

∞∑

k=0

Bk
xk

k!

Proof. The logarithmic derivative of the product formula for sine is

(6) π cot(πa) =
1

a
+

∞∑
n=1

(
1

a + n
+

1

a− n
) , a ∈ H

If we write the left side as πi(eπa +e−πa)/(eπa +e−πa) = π+2πi/(e2πia−1), multiply

both sides by a, replace 2πia by x, and expand both series in powers of x, we obtain

the well-known formula for ζ(k):

ζ(k) = −2(πi)k Bk

2k!
for k > 0 even

Next, if we successively differentiate both sides of (6) with respect to a and then

replace a by mτ , we obtain:

∞∑
n=−∞

1

(mτ + n)k
=

(2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πimnτ = − 2k

Bk

ζ(k)
∞∑

d=1

dk−1qdm

Thus

Gk(τ) = 2ζ(k) + 2
∞∑

m=1

∞∑
n=−∞

1

(mτ + n)k
= 2ζ(k)

(
1− 2k

Bk

∑

m,d=1

dk−1qdm

)

Collecting coefficient of a fixed power qn in the last double sum, we obtain the sum

in (5) as the coefficient of qn. This completes the proof. ¤
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Because of Proposition 3.1, it is useful to define the normalized Eisenstein series,

obtained by dividing Gk(τ) by the constant 2ζ(k) in:

Ek(τ) =
Gk

2ζ(k)
= 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

Thus, Ek(τ) is defined so as to have rational q-expansion coefficients.The first few

Ek are:

E4(τ) = 1 + 240
∞∑

n=1

σ3(n)qn;

E6(τ) = 1− 504
∞∑

n=1

σ5(n)qn;

E8(τ) = 1 + 480
∞∑

n=1

σ7(n)qn

Next we consider the second example.

Dedekind eta function

Definition 3.2. Let τ be a complex number with Im τ > 0.The ordinary Dedekind

eta function is defined by

η(τ) = eπiτ/12

∞∏
n=1

(1− e2πiτ )

This function plays an important role in the study of the theory of modular

function and its applications to other areas. One of the most important properties

of the eta function is the transformation formula, which will be used in this paper.

Proposition 3.2. For γ =

(
a b

c d

)
∈ SL2(Z), the transformation formula for η(τ)

is given by, for c = 0

η(τ + b) = eπib/12η(τ),

and,for c 6= 0

η(γτ) = ε(a, b, c, d)

√
cτ + d

i
η(τ)

with

ε(a, b, c, d) =





(
d

c

)
i(1−c)/2eπi(bd(1−c2)+c(a+d))/12, if c is odd.

( c

d

)
eπi(ac(1−d2)+d(b−c+3))/12, if d is odd.

12



where

(
d

c

)
is the Legendre-Jacobi symbol

M. Newman [2] gave criteria for a product of η−function to be modular on

Γ0(N)

Proposition 3.3. If f(τ) =
∏

d|N η(dτ)rd satisfies

(1)
∏

(drd) is a square,

(2)
∑

drd ≡ 0mod 24,

(3)
∑

N
d
rd ≡ 0 mod 24,

then f(τ) is a modular function on Γ0(N) of weight 1
2

∑
rd.

We will use these results to find modular functions suitable for our purpose.

Finally, we discuss the properties of the action of Atkin-Lehner involutions on

modular forms.

Proposition 3.4. Let n be a positive integer with gcd(n,N/n) = 1. Let f(τ) be a

modular form of weight k on Γ0(N). Then f
∣∣
[γ]

for γ ∈ wn is again a modular form

of weight k on Γ0(N), and that f
∣∣
[γ1]

= f
∣∣
[γ2]

for all γ1,γ2 ∈ wn.Note that f(τ)
∣∣
[γ]

is

defined by f(τ)
∣∣
[γ]

= (det γ)k/2(cτ + d)−kf(γτ)

Proof. Recall that wn normalizes Γ0(N). That is, wnΓ0(N)w−1
n = Γ0(N). We have,

for all α ∈ Γ0(N),

f
∣∣
[γ]

∣∣
[α]

= f
∣∣
[α′γ]

,

where α′ is an element in Γ0(N). Since f is a modular form on Γ0(N), it follows

that

f
∣∣
[γ]

∣∣
[α]

= f
∣∣
[γ]

.

That is, f
∣∣
[γ]

is modular on Γ0(N). The assertion that f
∣∣
[γ1]

= f
∣∣
[γ2]

for all γ1, γ2 ∈
wn follows from the fact that γ−1

1 γ2 ∈ Γ0(N). This proves the proposition. ¤

4. Beukers’ Proof

In [1], Beukers gave a modular form interpretation of the Apéry sequence. Now

we will describe the Beukers’ proof in this section.

Let t(q) =
∑∞

n=0 tnqn be a power series convergent for all |q| < 1 and W (q) be

another analytic function on |q| < 1. Then consider W as function of t. In general

it will be a multivalued function over which we have no control. However, we shall

13



introduce some assumptions. First, t0 = 0, t1 6= 0. Let q(t) be the local inverse

of t(q) with q(0) = 0. Choose W (q(t)) for the value of w around t = 0. Then in

order to determine the radius of convergence of power series W (q(t)) =
∑∞

n=0 wntn

we introduce branching values of t. We say that t branches above t0, if either t0

is not in the image of t, or if t′(q0) = 0 for some q0 with t(q0) = t0. Now assume

that t has a discrete set of branching values t1, t2, · · · where we have exclude zero

as a possible value and suppose |t1| < |t2| < · · · . It is clear now that the radius

of convergence is in general t1. We shall be interested in cases where the radius of

convergence is larger than |t1|. Let γ be a closed contour in the complex t-plane be-

ginning and ending at the origin, not passing through any ti and which encircles the

point t1 exactly once. Suppose that analytic continuation of W (q(t)) along γ again

yields the same branch of W (q(t)). Then W (q(t)) can be continued analytically to

the disc |t| < |t2| with exception of possible isolated singularity t1. If W (q(t)) re-

mains bound around t1 we can conclude that the radius of convergence is at least |t2|.

The construction of the function t(q) and W (q) will proceed using modular forms

and functions. The value for which Beukers obtain irrationality results are in fact

values at integral points of Dirichlet series associated to modular forms.

We recall two propositions of Beukers. For completeness we also include their

proofs.

Proposition 4.1 (Beukers). Let f0(t), f1(t), · · · , fk(t) be power series in t. Suppose

that for any n ∈ N, i = 0, 1 . . . , k the n-th coefficient in the Taylor series of fi

is rational and has denominator dividing dn[1, . . . , n]r where r, d are certain fixed

positive integers and [1, . . . , n] is the lowest common multiple of 1, . . . , n. Suppose

there exist real numbers θ1, θ2, . . . , θk such that f0(t)+θ1f1(t)+θ2f2(t)+ · · ·+θkfk(t)

has radius of convergence ρ and infinitely many nonzero Taylor coefficients. If ρ >

der,then at least one of θ1, θ2, · · · θk is irrational.

Proof. Choose ε > 0 such that ρ > der(1+ε). Let fi(t) =
∑∞

n=0 aint
n Since the radius

of convergence of f0(t)+ θ1f1(t)+ θ2f2(t)+ · · ·+ θkfk(t) is ρ, we have for sufficiently

large n, |a0n + a1nθ1 + · · · + aknθk|. Suppose θ1θ2, . . . , θk are all rational and we

have common denominator D. Then An = Ddn[1, . . . , n]r|a0n + a1nθ1 + · · · + aknθk|
is an integer smaller than Ddn[1, . . . , n]r(ρ − ε)−n. By the prime number theorem
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we have [1, . . . , n] < e(1+ε)n for sufficiently large n, hence |An| < D(de(1+ε)r

ρ−ε
)n. Since

der(1+ε)(ρ−ε)−1 < 1 this implies that An = 0 for sufficiently large n, in contradiction

with our assumption An 6= 0 for infinitely many n. Thus our proposition follows. ¤

Proposition 4.2 (Beukers). Let F (τ) =
∑∞

n=1 anqn , q = e2πiτ , be a Fourier series

convergent for |q| < 1,such that for some k,N ∈ N,

F (−1/Nτ) = ε(−iτ
√

N)kF (τ)

where ε = ±1. Let f(τ) be the Fourier series

f(τ) =
∞∑

n=1

an

nk−1
qn

Let

L(F, s) =
∞∑

n=1

an

ns

and finally,

h(τ) = f(τ)−
∑

0≤r< k−2
2

L(F, k − r − 1)

r!
(2πiτ)r

Then

h(τ)−D = (−1)k−1ε(−iτ
√

N)k−2h(−1/Nτ)

where D=0 if k is odd and D = L(F, k
2
)(2πiτ)

k
2
−1/(k

2
− 1)! if k is even. Moreover,

L(F, k
2
) = 0 if ε = −1

Proof. We apply a lemma of Hecke, see [4] with G(τ) = εF (τ)/(i
√

N)k

to obtain

f(τ)− ε(−1)k−1(−iτ
√

(N))k−2f(−1/Nτ) =
k−2∑
r=0

L(F, k − r − 1)

r!
(2πiτ)r

Split the summation on the right hand side into summation over r < k
2
−1, r > k

2
−1

and, possibly ,r = k
2
− 1.For the region r > k

2
− 1 we apply the functional equation

L(F, k − r − 1)

r!
= ε(−1)k(−i

√
N)k−2(−1/N)k−r−2(2πi)k−2r−2 L(F, r + 1)

(k − r − 2)!

and substitute r by k − 2− r. ¤
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Having introduced these two propositions, we start to describe Beukers’ proof.

He first defined a modular function t on Γ0(6)+w6, and found the branching values

t(i∞) = 0, t(i/
√

6) = (
√

2−1)4, t(2/5+i/5
√

6) = (
√

2+1)4, t(1/2) = ∞

of t. Thus, if one writes a modular form E(τ) on Γ0(6) as a series of t, the series in

general has a radius of convergence (
√

2− 1)4. Then Beukers found a modular form

F (τ) of weight 4 such that the conditions in Proposition 4.2 holds with F (−1/6τ) =

−36τ 4F (τ) (that is, ε = −1) and L(F, 3) = ζ(3). Thus, choosing E(τ) to be

of weight 2 with E(−1/6τ) = −6τ 2E(τ) and setting ( d
dτ

)3f(τ) = (2πi)3F (τ), by

Proposition 4.2, we see that

E(−1/6τ)(f(−1/6τ)− ζ(3)) = E(τ)(f(τ)− ζ(3))

From this Beukers concluded that the radius of convergence of E(t)(f(t) − ζ(3))

equals at least the next branching value. He also checked that the coefficients of

E(t) ∈ Z[t] and E(t)f(t) =
∑∞

n=1 bnt
n,where bn ∈ Z/[1, 2 . . . n]3. Finally, he proved

that ζ(3) is irrational by applying Proposition 4.1.

Our construction of sequences converging to ζ(5) basically follows Beuker’s ap-

proach. However, our result is not strong enough to conclude that ζ(5) is irrational.

Here we give a weaker version of Proposition 4.1 applicable to our situation.

Proposition 4.3. Let f0(t) =
∑

ant
n, f1(t) =

∑
bnt

n be power series in t. Suppose

that θ is a real number such that f0(t)− θf1(t) has radius of convergence α and

lim sup
n→∞

1/(α|bn|1/n) < 1,

then an/bn converges to θ.
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5. Differential equations satisfied by modular forms

In this section, we will give the result of [3] and introduce the the method of

[5].

Theorem 2 (Stiller). Let Γ be a discrete subgroup of SL2(R) commensurable with

SL2(Z). Suppose that t = t(q) is a non-constant (meromorphic) modular function

invariant under Γ, and F (t) = F (t(q)) is a (meromorphic) modular form of weight

k on the group Γ with respect to a multiplier system χ. Then the functions F (t),

τF (t), . . ., τ kF (t) are linearly independent solutions of a (k + 1)-st order linear

differential equation.

The idea of Theorem 2 is to consider the vector-valued function

V (τ) = (F (τ), τF (τ), . . . , τ kF (τ)).

This function behaves like a modular function (of weight 0), and so do the deriv-

atives dmV/dtm. Thus the coefficients of the linear relation among k + 2 vectors

dmV/dtm,m = 0 . . . k + 1, are Γ-invariant, and thus are algebraic functions of t.

From the general theory of differential equations, we know that the differential

equations in Theorem 2 can be expressed in terms of the Wronskians. In practice,

we find the following proof of Y. Yang more suitable for the computational purpose.

Theorem 3 (Yang). Setting

G1 =
Dqt

t
, G2 =

DqF

F

and

p1(t) =
DqG1 − 2G1G2/k

G2
1

, p2(t) = −DqG2 −G2
2/k

G2
1

,

then the differential equations satisfied by F and t are

for k = 1,

D2
t F + p1DtF + p2F = 0,

for k = 2,

D3
t F + 3p1D

2
t F + (2p2

1 + tp′1 + 2p2)DtF + (2p1p2 + tp′2)F = 0,

and in general rm(t) are polynomials of t, p1, p2, and derivatives of p1 and p2.
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Remark. The notation in Theorem 3 Dt and Dq are denoted by Dt = t d
dt

, Dq = t d
dq

Y. Yang first prove a lemma showing that the functions p1 and p2 in the state-

ment of Theorem 3 are indeed algebraic functions of t.

Lemma 5.1. Let t, F , G1 and G2 be given as in Theorem 3. Then G1 is a mero-

morphic modular form of weight 2, while DqG1 − 2G1G2/k and DqG2 − G2
2/k are

meromorphic modular forms of weight 4.

Proof. Throughout the proof of the lemma we let ḟ(τ) denote the derivative of a

function f(τ) with respect to τ .

The meromorphic property of the functions concerned is clear. We now show

that the functions have the claimed modular property. Since, for all γ =

(
a b

c d

)
∈

Γ,

t(γτ) = t(τ), F (γτ) = χ(γ)(cτ + d)kF (τ),

taking the logarithmic derivatives of the above equalities with respect to τ , we obtain

ṫ

t
(γτ) = (cτ + d)2 ṫ

t
(τ),

Ḟ

F
(γτ) = kc(cτ + d) + (cτ + d)2 Ḟ

F
(τ),

or equivalently,

(7) G1(γτ) = (cτ + d)2G1(τ), G2(γτ) =
1

2πi
kc(cτ + d) + (cτ + d)2G2(τ).

This shows that G1 is a meromorphic modular form of weight 2.

Differentiating the expressions in (7) with respect to τ again, we obtain

Ġ1(γτ) = 2c(cτ + d)3G1(τ) + (cτ + d)4Ġ1(τ)

and

Ġ2(γτ) =
1

2πi
kc2(cτ + d)2 + 2c(cτ + d)3G2(τ) + (cτ + d)4Ġ2(τ).

It follows that

Ġ1(γτ)− 4πi

k
G1(γτ)G2(γτ) = (cτ + d)4

{
Ġ1(τ)− 4πi

k
G1(τ)G2(τ)

}

and

Ġ2(γτ)− 2πi

k
G2(γτ)2 = (cτ + d)4

{
Ġ2(τ)− 2πi

k
G2(τ)2

}
.

This shows that DqG1−2G1G2/k and DqG2−G2
2/k are meromorphic modular forms

of weight 4, and the proof of the lemma is completed. ¤
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We are now ready to prove our Theorem 3.

Proof of Theorem 3. With a slight abuse of notation we will alternate the use of

F (τ), F (q) and F (t) freely. We first show that F satisfies a (k+1)-st order differential

equation. By the definitions of Dt, Dq, G1 and G2 we have

(8) DtF = t
DqF

Dqt
= t

FG2

tG1

= F
G2

G1

,

and

Dt
G2

G1

=
t

G1

DqG2

Dqt
− t

G2

G2
1

DqG1

Dqt
=

DqG2

G2
1

− G2

G3
1

DqG1.

By Lemma 5.1 the functions DqG1 − 2G1G2/k and DqG2 − G2
2/k are meromor-

phic modular forms of weight 4, and so is G2
1. Therefore we can write (DqG1 −

2G1G2/k)/G2
1 and (DqG2 −G2

2/k)/G2
1 as algebraic functions of t, say,

p1(t) =
DqG1 − 2G1G2/k

G2
1

, p2(t) = −DqG2 −G2
2/k

G2
1

.

Thus, we have

(9) Dt
G2

G1

= − G2
2

kG2
1

− p1
G2

G1

− p2.

Using (8) and (9) we can now compute higher order derivatives of F inductively.

We have

D2
t F = Dt

(
F

G2

G1

)
= F

{
(1− 1/k)

G2
2

G2
1

− p1
G2

G1

− p2

}

and

D3
t F = F

G2

G1

{
(1− 1/k)

G2
2

G2
1

− p1
G2

G1

− p2

}

+ F

{
2(1− 1/k)

G2

G1

Dt
G2

G1

− tp′1
G2

G1

− p1Dt
G2

G1

− tp′2

}

= F

{
(1− 1/k)(1− 2/k)

G3
2

G3
1

+ (3/k − 3)p1
G2

2

G2
1

+
(
(2/k − 3)p2 − tp′1 + p2

1

) G2

G1

+ p1p2 − tp′2

}
.

It follows that, for k = 1,

D2
t F = −p1F

G2

G1

− p2F = −p1DtF − p2F,
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and, for k = 2,

D3
t F = −3p1D

2
t F + F

{
(−2p2

1 − tp′1 − 2p2)
G2

G1

− 2p1p2 − tp′2

}

= −3p1D
2
t F + (−2p2

1 − tp′1 − 2p2)DtF − (2p1p2 + tp′2)F.

In general, the n-th derivative takes the form

Dn
t F = F

{
Gn

2

Gn
1

n−1∏
j=1

(1− j/k) + sn,n−1
Gn−1

2

Gn−1
1

+ sn,n−2
Gn−2

2

Gn−2
1

+ · · ·
}

,

where sn,j are polynomials of t, p1, p2 and their derivatives. When n = k + 1, the

term involving Gk+1
2 /Gk+1

1 is annihilated, and we see that Dk+1
t F is equal to a linear

sum of lower order derivatives of F (with algebraic functions of t as coefficients). ¤

In the final section, we will apply the method of [5] to find the differential

equations for n = 5. Moreover, we will obtain the recursive relation of sequences an

and bn from these differential equations.
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6. Construction of series converging to ζ(5)

Now we start to construct a sequence {cn} of rational numbers converging to

ζ(5) in this section. According to our idea described in section 4, we have to find

three functions F (τ), E(τ) and t(τ) appropriately and consider the power series

E(t)(f(t) − ζ(5)). Now we will divide this section into two parts. We will find the

sequence cn and prove it converges to ζ(5) in first part. Then we will apply the

method of [5] to find the recursive relations in the second part.

6.1

To find suitable t, E and F , our first task is to determine the congruence

subgroup that they should be modular on.

First of all, we notice that the zeta functions appear naturally in the L-function

associated with an Eisenstien series. Namely, we have

∞∑
n=1

σk−1(n)

ns
=

∞∑
n=1

1

ns

∑

d|n
dk−1 =

∞∑

d=1

1

ds+1−k

∞∑
n=1

1

ns
= ζ(s + 1− k)ζ(s).

From Proposition 4.2 we see that in order to get ζ(5) we require the weight k to be 6.

Furthermore, taking account that the Atkin-Lehner involution wN identitify cusps

by pairs and that we have two conditions L(F, 4) = 0, L(F, 3) = 0 in Proposition 4.2

that must be fulfilled, the congruence subgroup Γ0(N) must have at least 6 cusps.

The smallest positive integer N with this property is 12. That is, we shall choose t,

E, F to be modular on Γ0(12).

We first consider the E function. To make the computation of the differential

equation satisfied by E easier, we choose E to be a product
∏

d|12 η(dτ)ed of η-

functions, where
∑

ed = 8. Thus, if E is to satisfy E(−1/12τ) = ±122τ 4E(τ), then

the sign must be positive. In other words, E satisfies

(1) E(τ) ∈ M4(Γ0(12)),

(2) E(−1/12τ) = 122τ 4E(τ).

Accordingly, by Proposition 3.3, the exponents ed should satisfy

(i)
∑

ed = 8,

(ii) e1 = e12 , e2 = e6 , e3 = e4,

(iii)
∏

d|12 is a square,

(iv)
∑

ded,

(v) E(τ) is holomorphic at τ = 1/2 and τ = 1/3,
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Then from these conditions we find that we have the following five choices for E-

function:

(e1, e2, e3) = (−4,−4, 12) (−5, 2, 7) (−6, 8.2) (−7, 14,−3) (−8, 20,−8).

We now consider the possible choices of the modular form F . Let f(τ) be

determined by d5f(τ)/dτ 5 with the constant term in the Fourier expansion being 0.

In order for f(τ) to satisfy

E(−1/12τ)(f(−1/12τ)− ζ(5)) = E(τ)(f(τ)− ζ(5)),

by Proposition 4.2, the function F should meet the conditions

(i) F (τ) ∈ M6(Γ0(12)), F (i∞) = 0,

(ii) F (−1/12τ) = 123τ 6F (τ),

(iii) L(F, 3) = L(F, 4) = 0 and L(F, 5) = ζ(5),

where L denotes the Dirichlet series associated with F (τ). The first condition means

that the q-expansion of F start from q. That is F (q) = a1q+a2q
2 + · · · . Meanwhile,

to fulfill condition (ii), the function F should be a linear combination of

f1(τ) = E6(τ)+123E6(12τ) , f2(τ) = E6(2τ)+33E6(6τ) , f3(τ) = 33E6(3τ)+26E6(4τ)

where fi(1/12τ) = 123τ 6fi(τ), for i = 1, 2, 3. That is, we have

xF (τ) = A[E6(τ) + 123E6(12τ)] + B[E6(2τ) + 33E6(6τ)] + C[33E6(3τ) + 26E6(4τ)]

where A, B, C, x are constants. Then from the conditions (i) and (iii) we have the

following equations: 



13A + B + 7C = 0

145A + 5B + 25C =
4

7
x

1729A + 28B + 91C = 0

=⇒ A = A , B = −104A , C = 13A , x = −175A/2

where A is a constant. Thus the F function can be decided.

Finally, we consider the t function. Referring to Beukers’ proof, now we want

to define a t-function which is modular with respect to Γ0(12) + w12. The choice of
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t-function is similarly with E-function. We also construct the t-function by Propo-

sition 3.3 and Proposition 3.4 as follows:

t(τ) =
∏

d|12

η(dτ)ed

where d and ed satisfy the following conditions:

(i)
∑

ed = o,

(ii) e1 = e12 , e2 = e6 , e3 = e4,

(iii)
∑

ded = 24( mod 24),

(iv) t has only one simple zero at τ = i∞,

From these above conditions we choose the t-function to be

t =

(
η(τ)η(12τ)

η(3τ)η(4τ)

)4

We now determine the branching values of t, which occurs at either the elliptic

points or the cusps. In other words, we need to evaluate the values of t at τ =

1/2, 1/3, i/
√

12, and (2+
√−12)/5. We first note that t and E are modular on Γ0(12),

which has six inequivalent cusps 1, 1/2, 1/3, 1/4 and 1/6, 1/12. Furthermore, the

function field of modular functions is generated by

g =

(
η(τ)η(12τ)3

η(4τ)η(3τ)3

)

and the value of g at cusps are given by

g(0) = 1/4 g(1/2) = −1/2 g(1/3) = ∞

g(1/4) = 1 g(1/6) = 1/2 g(1/12) = 0

The function y(−1/12τ) is again invariant on Γ0(12) and one easily checks that

(10) y(−1/12τ) =
y(τ)− 1/4

y(τ)− 1

Moreover, the modular function t and g have the following relation

(11) t(τ) = g(τ)
1− 4g(τ)

1− g(τ)

That t(i∞) = 0, t(1/3) = ∞ can been seen from the values g(i∞) = 0 , g(1/3) = ∞.

From (10) it follows that for τ = i/
√

12 and g0 = g(i/
√

12) we have g0 = (g0 −
1/4)/(g0− 1), hence g0 = 1±√5/2 and correspondingly , t(i/

√
12) = (

√
3± 1)4/4.
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On other hand, the next branching value is t(1/6) = −1. Therefore, we have the

branching values of t as follows:

t(i∞) = 0, t(i/
√

12) =
(
√

3− 1)4

4
, t(1/6) = −1, t((2 +

√−12)/5) =
(
√

3 + 1)4

4

Now we are ready to give the proof of Theorem 1

Proof of Theorem 1. Let

−175
2

F (τ) =

(
E6(τ) + 123E6(12τ)

)
− 104

(
E6(2τ) + 27E6(6τ)

)
+ 13

(
27E6(3τ) + 26E6(4τ)

)

E(τ) = (η(3τ)η(4τ))12

(η(2τ)η(6τ)η(τ)η(12τ))4

Notice that F (τ) ∈ M6(Γ0(12)) and F (−1/12τ) = 123τ 6F (τ), F (i∞) = 0 and

E(τ) ∈ M4(Γ0(12)), E(−1/12τ) = 122τ 4E(τ) . Then the Dirichlet series corre-

sponding to F (τ) reads:

L(F, s) =
∞∑

n=1

{ (−504σ5(n)

ns
+ 123−504σ5(n)

(12n)s

)
− 104

(−504σ5(n)

(2n)s
+
−504σ5(n)

(6n)s

)

+13

(
27
−504σ5(n)

(3n)s
+ 26−504σ5(n)

(4n)s

) }

=
1008

175

(
1 + 123−s − 104(2−s + 336−s) + 13(33−s + 26−2s)

)
ζ(s)ζ(s− 5)

Define f(τ) by ( d
dτ

)5f(τ) = (2πi)5F (τ) , f(i∞) = 0 . From Proposition 4.2 and

the fact that F (−1/12τ) = 123τ 6F (τ) follows

122τ 4[f(−1/12τ)− L(F, 5)] = [f(τ)− L(F, 5)]

and since L(F, 5) = ζ(5) , E(−1/12τ) = 122τ 4E(τ), we have

122τ 4[f(−1/12τ)− ζ(5)] = [f(τ)− ζ(5)]

Multiplication with E(−1/12τ) = 122τ 4E(τ) yields

(12) E(−1/12τ)[f(−1/12τ)− ζ(5)] = E(τ)[f(τ)− ζ(5)]

The function E(τ)[f(τ)− ζ(5)] can be considered as a multivalued function of

t(τ). We choose it at t = 0 as follows. From the expansion t = q − 4q2 + 2q3 + · · ·
one infers the inverse expansion q = t + 4t2 + 30t3 + · · · . Then, from E(τ) =
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1 + 4q + 18q2 + · · · one finds E(t) = 1 + 4t + 34t2 + 308t3 + · · · and similarly ,

E(t)f(t) = 144/25t + 1665/50t2 + · · · .
Since the inverse function t 7→ τ branches at t = (

√
3−1)4

4
one expects the radius

of convergence of E(t)[f(t) − ζ(5)] to be (
√

3−1)4

4
. However, by (12), the function

t 7→ E(t)[f(t)−ζ(5)] has no branch point at t = (
√

3−1)4

4
, and its radius of convergence

equals at least the next branching value, which is −1 . Then we can conclude that

lim sup
n→∞

n
√
| bn − anζ(5)| ¿ 1

β
where β = 1

where bn and an are the coefficients of E(t)f(t) and E(t). On other hand, we know

the coefficients an of E(t) from the branching values. That is

lim sup
n→∞

n
√
|an| ≤ 1

α
where α = (

√
3− 1)4/4 as n −→∞

Thus,

lim sup
n→∞

n

√∣∣∣∣
bn

an

− ζ(5)

∣∣∣∣ ≤
α

β

since α/β = (
√

3 − 1)4/4 < 1. Then (α/β)n tends to 0 as n−→∞ . Thus bn/an

converges to ζ(5). This completes the proof of Theorem 1. ¤

6.2

In this subsection, we will find the sequences an and bn by applying the method

of Y.Yang. The main purpose of this part is to prove the following proposition.

Proposition 6.1. Let

t =

(
η(τ)η(12τ)

η(3τ)η(4τ)

)4

E(τ) =
(η(3τ)η(4τ))12

(η(2τ)η(6τ)η(τ)η(12τ))4

Then we have

(13) D5
t E + r4(t)D

4
t E + r3(t)D

3
t E + r2(t)D

2
t E + r1(t)DtE + r0(t)E = 0,

r4(t) = 20
(t2 − 10t− 3)t

(1 + t)(t2 − 14t + 1)

r3(t) = 80
(2t5 − 41t4 + 182t3 + 158t2 + 12t− 1)t

(t + 1)2(t2 − 14t + 1)2

r2(t) = 20
(32t6 − 557t5 + 1745t4 + 3310t3 + 1202t2 + 31t− 3)t

(t + 1)3(t2 − 14t + 1)2
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r1(t) = 8
(160t7 − 2343t6 + 4246t5 + 16963t4 + 12980t3 + 2743t2 + 6t− 3)t

(t + 1)4(t2 − 14t + 1)2

r0(t) = 4
(256t7 − 3367t6 + 4740t5 + 18565t4 + 12368t3 + 2019t2 − 20t− 1)t

(t + 1)4(t2 − 14t + 1)2

If we set E(t) =
∑∞

n=0 antn which satisfy the differential equation (13), then we

can easily obtain the recursive relation with the initial conditions:

n5an = A7an−1 −A6an−2 −A5an−3 −A4an−4−A3an−5−A2an−6 + A1an−7 −A0an−8

a0 = 1 , a1 = 4 , a2 = 34 , a3 = 308 , a4 = 3083 , a5 = 32696 , a6 = 361428

a7 = 4119288 . Thus we get the sequence an from the recursive relation. On other

hand, we introduce the following proposition to find the sequence bn.

Proposition 6.2. Suppose that t(τ) and E(τ) are given in Proposition 6.1, and

that F (τ) and f(τ) be defined as in the proof of Theorem 1. Then A(τ) = E(τ)f(τ)

satisfies the inhomogeneous differential equations

(14) D5
t A + r4(t)D

4
t A + r3(t)D

3
t A + r2(t)D

2
t A + r1(t)DtA + r0(t)A = H(t)

where

H(t) =
144

25
t− 9504

25
t2 +

3744

25
t4 +

5616

25
t5

and G1 = Dqt/t. Moreover, if we set E(t)f(t) =
∑∞

n=0 bntn. Then bn satisfy

the recursive relation given in the statement of Theorem 1 with the initial values

b0 = 0 b1 = 144/25 b2 = 333/10

b3 = 217042/675 b4 = 138004123/43200 b5 = 1144320384083/33750000

b6 = 25297127932859/67500000 b7 = 2422896637170749569/567236250000.

Before we prove the proposition 6.1 and 6.2, we introduce the formula for the

number of zeros of modular form with respect to Γ0(12). This result will be used in

the proof of Proposition 6.1.

Lemma 6.1. Let f be a nonzero modular function of weight k for Γ0(12). For

p ∈ H, let vp(f) denote the order of zero of f(τ) at the point p. Let v∞(f) denote

the index of the first nonvanishing term in the q−expansion of f(τ). Then we have

the formula
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Figure 2. Fundamental domain of Γ0(12)

(15) v∞(f) +
∑

p∈Γ0(12)\H
vp(f) = 2k

Proof. The idea of the proof is to count the zeros and poles in Γ0(12)\H by inte-

grating the logarithmic derivative of f(τ) around the boundary of the fundamental

domain F . More precisely, let L be the contour in Figure 2. The top of L is a

horizontal line from K = 1 + iT to A = 0 + iT , where T is taken larger than the

imaginary part of any of the zeros or poles of f(τ). The rest contour follows around

the boundary of F , except that it detours around any zeros or poles on the boundary

along circular arcs of small radius ε.

According to the residue theorem, we have

(16)
1

2πi

∫

L

f ′(τ)

f(τ)
dτ =

∑

p∈Γ\H
vp(f)

On the other hand, we evaluate the integral in (16) section by section.

First of all, the integral from A to B cancels the integral from J to K. Next, we

evaluate the integral over KA. To do this we make the change of variables q = e2πiτ .

Let f̃(q) = f(τ) =
∑

anqn be the q-expansion. Since f ′(τ) = d
dq

f̃(q) dq
dτ

, we find that

this section of the integral in (15) is equal to the following integral over the circle of

radius e−2πT centered at zero :

1

2πi

∫
df̃/dq

f̃(q)
dq.

Since the circle is traversed in a clockwise direction as τ goes from K to A, it follows

that this integral is minus the order of zero or pole of f̃(q) at 0, and this is what we

mean by −v∞(f).
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Finally, we consider the integral from B to J . Since f(τ) is a nonzero modular

function of weight k for Γ0(12), we have

f(A(τ)) = (cτ + d)kf(τ),

where A(τ) = aτ+b
cτ+d

. Differentiation of this equation gives us

f ′(A(τ))(A′(τ)) = (cτ + d)kf ′(τ) + kc(cτ + d)k−1f(τ)

From this we find
f ′(A(τ))(A′(τ))

f(A(τ))
=

f ′(τ)

f(τ)
+

kc

cτ + d

Consequently, for any path γ not through a zero we have

(17)
1

2πi

∫

A(γ)

f ′(u)

f(u)
du =

1

2πi

∫

γ

f ′(τ)

f(τ)
dτ +

1

2πi

∫

γ

kc

cτ + d
dτ

Therefore the integrals of semicircles along the B to J in Figure do not cancel

unless k = 0. Now there are eight semicircles between B and J . We note that

the transformation γ1 =

(
7 −1

36 −5

)
takes BC to DC, i.e., γ1τ goes from D to C

along the contour as τ goes from B to C along the contour. Similarly, we can

find that γ2 =

(
−19 4

−24 5

)
takes DE to JI, γ3 =

(
−17 5

−24 7

)
takes EF to IH and

γ4 =

(
−7 3

−12 5

)
takes FG to HG. So the integral from B to J can be evaluated as

follows:

1

2πi

∫

BJ

f ′(τ)

f(τ)
=

1

2πi

{ ∫

BC

+

∫

CD

+

∫

DE

+

∫

DE

+

∫

FG

+

∫

GH

+

∫

HI

+

∫

IJ

}

=
1

2πi

{ ∫

BC

−
∫

γ1(BC)

+

∫

DE

−
∫

γ2(DE)

+

∫

FG

−
∫

γ3(FG)

+

∫

HI

−
∫

γ4(HI)

}

=
1

2πi

{ ∫

BC

36k

36τ − 5
dτ +

∫

DE

−24k

−24τ + 5
dτ +

∫

FG

−12k

−12τ + 5
dτ +

∫

EF

−24k

−24τ + 7
dτ

}

Therefore, we have the following conclusion:

1

2πi

∫

BJ

f ′(τ)

f(τ)
= 2k

28



This completes the proof. ¤

Proof of Proposition 6.1. Referring to the proof of Y.Yang, by using (8) and (9) we

can now compute higher order derivatives of F inductively. We have

D2
t F = Dt

(
F

G2

G1

)
= F

{
(1− 1/k)

G2
2

G2
1

− p1
G2

G1

− p2

}

and

D3
t F = F

G2

G1

{
(1− 1/k)

G2
2

G2
1

− p1
G2

G1

− p2

}

+ F

{
2(1− 1/k)

G2

G1

Dt
G2

G1

− tp′1
G2

G1

− p1Dt
G2

G1

− tp′2

}

= F

{
(1− 1/k)(1− 2/k)

G3
2

G3
1

+ (3/k − 3)p1
G2

2

G2
1

+
(
(2/k − 3)p2 − tp′1 + p2

1

) G2

G1

+ p1p2 − tp′2

}
.

D4
t F = F

{
(1− 1/k)(1− 2/k)(1− 3/k)

G4
2

G4
1

+ 6p1(1− 1/k)(1− 2/k)
G3

2

G3
1

+

(7p1 − 6p2 − 4p′1t + (−7p2
1 + 14p2 + 4p′1t)/k − 8p2/k

2)
G2

2

G2
1

−

(p3
1 − 10p1p2 + p′1t + p

(2)
1 t2 + 4p′2t− 3p′1tp1 + (8p1p2 − 2p′2t)/k)

G2

G1

−

(p′2t + p
(2)
2 t2 + p2

1p2 − p1p
′
2t− 2p′1tp2 − 3p2

1 + (2p2
2)/k)

}
.
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D5
t F = F

{
− p′1t

G2

G1

− 9/2p′2t
G2

G1

− 15/4p′1t− 3p
(2)
2 t2 + p1p

′
2t + 3p′1tp2+

p
(4)
1

G2

G1

− 8p1p
2
2 − 15/16p1

G4
2

G4
1

− 15/4p′1t
G2

G1
− 15/8p2

G3
2

G3
1

+ p3
1p2+

75/8p2
1

G3
2

G3
1

− p
(3)
2 t3 + 17/2p′2tp2 − 45/4p3

1

G2
2

G2
1

+ 39/2p2
1p2

G2

G1

− p1p
′
2t+

17/2p2
2

G2

G1

− p′2t− p′2t− 3p
(2)
1 t2

G2

G1

+ 4p′1tp1
G2

G1

− 45/8p′2t
G2

2

G2
1

−

9/2p
(2)
2 t2

G2

G1

− 15/4p
(2)
1 t2

G2
2

G2
1

+ 75/4p1p2
G2

2

G2
1

+ 16p′1tp2
G2

G1

+ 25/2p1p
′
2t

G2

G1

+

75/4p′1tp1
G2

2

G2
1

+ 3p′1t
2p′2 + p1p

(2)
2 t2 + 3p

(2)
1 t2p2 − p1(3)t3

G2

G1

+ 4p
(2)
1 t2p1

G2

G1

+

3(p′1)
2t2

G2

G1

− 6p′1tp
2
1

G2

G1

− 5p′1tp1p2

}

= −10p1D4
t F − (5p2 + 35p2

1 + 10p′1t)D
3
t F − (5p′1t + 50p3

1 + 15/2p′2t + 5p
(2)
1 t2+

45p′1tp1 + 30p1p2)D
2
t F − (p′1t + 4p2

2 + 7p1′2t2 + 46p′1tp
2
1 + 11p

(2)
1 t2p1+

24p4
1 + p

(3)
1 t3 + 9/2p

(2)
2 t2 + 30p1p

′
2t + 3p

(2)
1 t2 + 14p′1tp2 + 52p2

1p2 + 11p′1tp1+

9/2p′2t)DtF − (24p3
1p2 + 4p′2tp2 + p

(3)
2 t3 + 7p′1t

2p′2 + 9p1p
(2)
2 t2 + 3p

(2)
2 t2+

20p′1tp1p2 + 2p
(2)
1 t2p2 + 26p2

1p
′
2t + 9p1p

′
2t + 2p′1tp2 + p′2t + 8p1p

2
2)

Then we find that D5
t F can be represented as follows:

(18) D5
t F + r4(t)D

4
t F + r3(t)D

3
t F + r2(t)D

2
t F + r1(t)DtF + r0(t)F = 0,

where rm(t) are polynomials of t, p1, p2 and their derivatives.

Next we want to express the modular functions p1 = (DqG1 − G1G2)/G
2
1 and

p2 = (DqG2 −G2
2)/G

2
1 as a rational functions of t. By Lemam5.1 we know that G1

is a meromorphic modular form of weight 2, so G2
1 is a modular form of weight 4 on

Γ0(12). On the other hand, by Lemma 6.1 we know that a modular form of weight

4 on Γ0(12) has eight zeros and by (11), the expression for (DqG1 − G1G2)/G
2
1 in

terms of t takes the form (a0 + a1t+ a2t
2 + a3t

3 + a4t
4)/(b0 + b1t+ b2t

2 + b3t
3 + b4t

4).

Comparing the first terms of (DqG1 − G1G2)/G
2
1 with (a0 + a1t + a2t

2 + a3t
3 +

a4t
4)/(b0 + b1t + b2t

2 + b3t
3 + b4t

4), we obtain p1 as follows:

p1(t) =
2t4 − 18t3 − 26t2 − 6t

(t2 − 14t + 1)(t + 1)2
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Similarly, we have

p2(t) =
4t4 − 28t3 − 36t2 − 4t

(t2 − 14t + 1)(t + 1)2

Finally, from (18) we complete the proof. ¤

Proof of Proposition 6.2. Recall the the method of variation goes as follows. If u1,

u2, u3, u4, u5 are solutions of

D5
t A + r4(t)D

4
t A + r3(t)D

3
t A + r2(t)D

2
t A + r1(t)DtA + r0(t)A = 0

then a solution v of

D5
t A + r4(t)D

4
t A + r3(t)D

3
t A + r2(t)D

2
t A + r1(t)DtA + r0(t)A = H(t)

can be solved by assuming v = p1u1 + p2u2 + p3u3 + p4u4 + p5u5 with




(Dtp1)u1 + (Dtp2)u2 + (Dtp3)u3 + (Dtp4)u4 + (Dtp5)u5 = 0

Dtp1Dtu1 + Dtp2Dtu2 + Dtp3Dtu3 + Dtp4Dtu4 + Dtp5Dtu5 = 0

Dtp1D
2
t u1 + Dtp2D

2
t u2 + Dtp3D

2
t u3 + Dtp4D

2
t u4 + Dtp5D

2
t u5 = 0

Dtp1D
3
t u1 + Dtp2D

3
t u2 + Dtp3D

3
t u3 + Dtp4D

3
t u4 + Dtp5D

3
t u5 = 0

Dtp1D
4
t u1 + Dtp2D

4
t u2 + Dtp3D

4
t u3 + Dtp4D

4
t u4 + Dtp5D

4
t u5 = H(t).

and then solving Dtp1, Dtp2, Dtp3, Dtp4, Dtp5. Now, by Stiller’s theorem, we have

u1 = E, u2 = τE, u3 = τ 2E, u4 = τ 3E, u5 = τ 4E. Thus, using the definition

of G1 and G2, it follows that Dtu1 = EG2/G1, Dtu2 = E(1 + τG2)/G1, Dtu3 =

τE(2 + τG2)/G1, Dtu4 = τ 2E(3 + τG2)/G1 ,Dtu5 = τ 3E(4 + τG2)/G1, where

G2 = DqE/E. The higher derivatives can be computed analogously. At the end, we

find

Dtp1 =
Hτ 4G4

1

24E
, Dtp2 =

−Hτ 3G4
1

6E
, Dtp3 =

Hτ 2G4
1

4E
, Dtp4 =

−HτG4
1

6E
, Dtp5 =

HG4
1

24E

Now let

D5
t A + r4(t)D

4
t A + r3(t)D

3
t A + r2(t)D

2
t A + r1(t)DtA + r0(t)A = H(t)

be a differential equation satisfied by Ef . Reversing the procedure above, we have

p1u1 + p2u2 + p3u3 + p4u4 + p5u5 = Ef

Then

p1 + τp2 + τ 2p3 + τ 3p4 + τ 4p5 = f = (2πi)5

∫

τ

∫

τ

∫

τ

∫

τ

∫

τ

F
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Dtp1 + τDtp2 + τ 2Dtp3 + τ 3Dtp4 + τ 4Dtp5

+ p2/G1 + 2τp3/G1 + 3τ 2p4/G1 + 4τ 3p5/G1 = − 1

G1

∫

τ

∫

τ

∫

τ

∫

τ

F

Then

=⇒ p2 + 2τp3 + 3τ 2p4 + 4τ 3p5 = −
∫

τ

∫

τ

∫

τ

∫

τ

F

Dtp2 + 2τDtp3 + 3τ 3Dtp4 + 4τ 3Dtp5

+ 2p3/G1 + 6τp4/G1 + 12τ 2p5/G1 =
1

G1

∫

τ

∫

τ

∫

τ

F

=⇒ 2p3 + 6τp4 + 12τ 2p5 =

∫

τ

∫

τ

∫

τ

F

2Dtp3 + 6τDtp4 + 12τ 2Dtp5 + 6p4/G1 + 24τp5/G1 = − 1

G1

∫

τ

∫

τ

F

=⇒ 6p4 + 24τp5 = −
∫

τ

∫

τ

F

6Dtp4 + 24τDtp5 + 24p5/G1 =
1

G1

∫

τ

∫

τ

F

=⇒ 24p5 =

∫

τ

F

24Dtp5 =
HG4

1

E
=
−1

G1

F

Thus

H(t) = −EF/G5
1 =

144

25
t− 9504

25
t2 +

3744

25
t4 +

5616

25
t5.

where the expression of H in terms of t is determined in the same way as in Propo-

sition 6.1. This completes the proof of Proposition 6.2. ¤
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