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ABSTRACT

In this thesis, we consider-the 2D Poisson equation subject to
Dirichlet boundary conditions on an irregular domain. The region of
interest is embedded in"a rectangular domain. For our higher-order
accurate scheme, at internal grid‘points, the Poisson equation is
discretized with the standard compact nine point stencil with special
treatment at the edges. At the irregular point, we define ghost value
constructed by extrapolations. This yields first, second and third order
accuracy in the case of the constant, linear and quadratic extrapolations,
respectively. In the case of constant and linear extrapolations, the

linear system is symmetric.
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1 Introduction

In this thesis, we consider the solution of the Poisson equation on an irregular
domain, subject to Dirichlet boundary conditions. The Poisson equation subject to
Dirichlet boundary conditions on an irregular domain can be treated by embedding
the region in a rectangular domain and solving by finite differences over the domain.
The crucial issue is the discretization of the boundaries of the irregular domain.

There are many other approaches to this problem in the literature. In [4], the
authors solved a variable coefficient Poisson equation in the presence of an irregular
interface where Dirichlet boundary conditions were imposed. They used a finite
volume method that results in a non-symmetric discretization matrix. Both multi-
grid methods and adaptive mesh refinement were used. In [5], this non-symmetric
discretization was coupled to a volume of fluid front tracking method in order to
solve Stefan problem.

In [9], the basic idea of the ghost fluid method [7] was employed to develop
a first-order-accurate symmetric finite difference scheme based on the Cartesian
grid to solve a variable Poisson equation in the presence of an irregular interface.
Subsequently in [1], the approachi-in [9] wds.modified to obtain a second order
accurate symmetric finite difference scheme based on the Cartesian grid to solve a
variable Poisson equation with a Dirichlet boundary condition. The modification
used the signed distance levelset function to obtain a linear interpolation from the
boundary value and the solution valdes in_coordinate-wise directions to determine
the ghost fluid values.

The intention of this paper is'fo.extend the idea of [2,11]. In [2], the authors
exploit the methodology of [1] to derive a fourth order accurate finite difference dis-
cretization for the Laplace equation on irregular domains. But in order to guarantee
a fourth order accurate, the difference scheme that the authors used was a standard
long stencil. The primary objective of this paper is to keep higher-order accurate
and to make the scheme to be a compact one.

The rest of the paper is organized as follows: In Section 2 we deal with the
1-D Poisson equation with Dirichlet boundary conditions and try to solve Neumann
boundary problem as well. In Section 3 we extend the methodology discussed in
Section 2 to two spatial dimensions. Numerical examples are presented in Section 4
before we conclude with a summary in Section 5.



2 One-dimensional Poisson equation

We consider a Cartesian computational domain, Q2 = [a, b], with a lower dimen-
sional interface, I', that divides the computational domain into disjoint pieces, €2~
and QF. The 1-D Poisson equation is given by

Tow = fox €Q™ = [a,z]. (2.1)

A uniform grid is taken over [a,b] . Dirichlet boundary conditions or Neumann
boundary conditions are assumed given at two boundary points x = a and xj, x;
typically is not grid point. In the other subdomain we set "= 0 , so that we have

{Txm:f x e

T=0 2e€Qf (2.2)

In general there is a discontinuity at x;.
The solution to the Poisson equation is computed at the grid points and is written
as T; = T'(z;). We consider the fourth order discretization :

Ty — 2T, + Tis " Axz?
T =20+ Tide  fiv1 £310/i + fina

A2 oL 12 (2.3)

For each unknown, 7T; , Eq(2:3):s used o fill in one row of a matrix creating a
linear system of equations. This discretization is valid if all the node values belong
to the same domain, but needs to be modified otherwise. For example, suppose the
interface location, zy is located in between the nodes z; and x;;; (see Fig.1) and
suppose that we seek to write the equation satisfied by 7;. Since the solution is
not defined across the interface, we need valid values for 7;,; and f;1; that emulate
the behavior of the solution defined to the left of the interface. We achieve this
by defining ghost values Tﬁrl and ﬁrl constructed by extrapolating the value of T’
across the interface. The discretization for such points in the neighborhood of the
interface is rewritten as

Tﬁr1 =21, + T,y N Srl +10f; + fiza
Az? 12

(2.4)

In the remainder of this section, we describe how to construct the ghost values
TS, and f&, more precisely.
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Figure 1: Definition of the ghost cells with linear extrapolation

2.1 Dirichlet boundary condition

In this section, we consider the situation that Dirichlet boundary conditions are
given at two boundary points, T'(a) = T, and T'(x;) = T;. We first construct an
interpolant 7T'(x) of T'(x) on the left of the interface, such that 7°(0) = 7;, and then

we define TS, = T(Az). Fig.1 illustrates the definition of the ghost cell in the case
of the linear extrapolation.
We consider constant, linear, quadratic and cubic extrapolations defined by:

e Constant extrapolation
Take T'(x) = d with:

1. d="1T;

e Linear extrapolation
Take T'(z) = cx + d with:

1. T(0) =T,

2. T(6Az) =T}



¢ Quadratic extrapolation
Take T'(z) = bx? + cx + d with:

1. T(-Az) =T,
2. T(0) =T,
3. T(0Az) =T,

e Cubic extrapolation
Take T'(x) = az® + bz® + cx + d with:

1. f(—AQZ’) = T;L—l

2. T(0) =T,
3. T(0Az) =Ty
4. T"(0A) = fi
Then we get
i, =T (2.5)
€ 1 1
3l =S E)TZ 4 gTI (2.6)
- 20— 1) 2
¢ _ 150 :
and
e (1-6)(20-1) 40 —1) 6 1-6 ,
o - Ti T, 2
G [ Y e R IS R N O IS T e L

which are defined by constant, linear, quadratic and cubic extrapolations, respec-
tively. B
Similarly, we construct an interpolant f(x) of f(z). The definitions of constant,

linear and quadratic extrapolations are the same as T'. So, we have

ffu =/ (2.9)
== i+ gh (2.10)

and - 200 — 1) 2
iGH = mfi—l + 7 fi+ 01+ 0) J1 (2.11)

which are defined by constant, linear and quadratic extrapolations, respectively. But
there is a little different to the cubic extrapolation :



e Cubic extrapolation
Take f(x) = ax® + bx* + cx + d with:

2. f(—A.]?) = fi,1
3. f(0)=fi
4. f(0Ax) = fr
then we have
f—1 (3 —30) 30 —3 6
O = fio L f : 2.12
i+1 9+2f’6 2+ 9+1 f’L 1+ 9 fl+03+302+29f1 ( )

which is defined by cubic extrapolation. In these equations 6 = (z; — z;)/ Az refers
to the cell fraction occupied by the subdomain 2~. This yields first, second, third
and fourth order accuracy in the case of the constant, linear, quadratic and cubic
extrapolations, respectively.

If we were solving for the domain 9%, the equation satisfied by Tj,; and f;4
requires the definition of the ghiost cells. Z< anid f&. In this case, we write TC =
T(Az) and 1 = f(Aaz) with:the definiition for T modified as follows: 6 = (Tip1 —
xr)/Ax, T; is replaced by T;, fi is replaced by f;.1, T;—1 is replaced by T;45 and
fi_1 is replaced by fiio. - -

We note that the constructionof I~and f cannot be arbitrary. It is obviously
limited by the number of points within the .domain, but also by how close the
interface from a grid node. The latter'restriction comes from the fact that, as
0 — 0, the behavior of the interpolant deteriorates.

In the case of the constant extrapolation, the corresponding matrix

AC’(mstant = " ..
1 —2 0| — ithrow
0 1| — (i+1)throw

is symmetric and diagonally dominant. In the case of the linear extrapolation, the
corresponding matrix

ALinear =

1 —1—-1 o | —ithrow
1| — (¢+1)th row



is symmetric and diagonally dominant. This allows for the use of fast iterative
solvers such as preconditioned conjugate gradient. But in the case of the quadratic
and cubic extrapolations, the corresponding matrices

[ 2 1 _
1 =2 1
AQuadratic - . .
—0 2(0+1 .
1+}W _2+% 0 —>Zt'hrow
0 1| — (@4 1)th row
and
[ —2 1 i}
1 =2 1
ACubic = ) .
(1-6)(20—1) 4(0-1) '
1+ o o 2D o | —ith row
0 1 | — (@4 1)th row

are non-symmetric. So the non=symmetric linear system is solved with a BICGSTAB
(see e.g. [10] ) using an incomplete LU factorization for the preconditioner. For the
linear solver that require an jnitial guess; setting; all 7; identically zero is usually
sufficient.

2.2 Neumann boundary ‘condition

We take little effort to replace the Dirichlet boundary conditions with Neumann
boundary conditions, reformulating the Poisson equation as

Txx:f, T € [G,JZ[]
{ T.(a) = o, Ty(z1) = : (2.13)

So, we needs to do some modifications of the extrapolations T(x) We discuss linear,
quadratic and cubic extrapolations defined by:

e Linear extrapolation
Take T'(z) = cx + d with:

1. T(0) =T,
2. T'(0Az) = 3

¢ Quadratic extrapolation
Take T'(x) = bx? + cx + d with:



1. f(-AZL‘) = E—l
2. T(0) =T,
3. T'(0Az) = 3

e Cubic extrapolation
Take T'(z) = az® + bz® + cx + d with:

1. T(—Az) =T,

2. T(0) =T,
3. T'(0Az) = 8
4. T"(0Az) = f;

The discussion above leads naturally to

TS, =T, + Az (2.14)
1—926 40 28Ax
G
. T, 2.15
i1 = [Eop sk 3o i T T o (2.15)
and 362 + 30 =1 662 + 2 66
G - ‘|‘ - +
= T T; A
T RNy I s (R vy s AT P v e
—30% +1
B T A 2 2.16
AT Ay (2.16)

which are defined by linear, quadratic and cubic extrapolations, respectively. And
the coefficient matrices of the linear system are

o -
1 -2 1
ALinear = . .
1 —1 0 | — ithrow
0 1| — (i+1)throw
o -
1 =2 1
AQuadratic = . c.
14_};_32 _2_,_% 0 | — ith row
0 1| — (i+1)th row




and

-2 1
1 -2 1
AC’ubic - . .
—362436—1 602+2) ]
L+ 392+J59+1 -2+ 302+30+1 0 - Zt.h row
0 1 | — (@i+1)th row

which are obtained by linear, quadratic and cubic extrapolations, respectively.The
extrapolations f of f don’t have any modifications. Because we have the value of f
on the boundary exactly.

This yields first, second and third order accuracy in the case of the linear,
quadratic and cubic extrapolations, respectively. But this method has some short-
comings. It is unable to expand this method to solve two-dimensional Poisson
equation with Neumann boundary conditions. Because we do not have enough in-
formation on the boundary to use this method.

The overall accuracy for T" and the nature of the resulting linear system is deter-
mined by the degree of the interpolation funetion 7', which is summarized in Tab.
1.

Dirichlet boundary condition
Degree of extrapolation, ' Order of accuracy Linear system

Constant First Symmetric
Linear Second Symmetric
Quadratic Third Non-symmetric

Cubic Fourth Non-symmetric

Neumann boundary condition
Degree of extrapolation Order of accuracy  Linear system

Linear First Symmetric
Quadratic Second Non-symmetric
Cubic Third Non-symmetric

Table 1: Order of accuracy and nature of the linear system corresponding to the
constant, linear, quadratic and cubic case
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Figure 2: An irregular interface Lydividing the domain (2 into two subdomain 2~
and Q.

3 Two-dimensional Peisson equation

Consider the two spatial dimension Poisson equation
AT = f(z,y)

and let Q™ be any irregular 2-D shape inscribed within a rectangle with boundary
I' at which Dirichlet conditions T'(z,y) = g(z,y) are specified.We can regard the
boundary I' as a interface that divies the domain €2 into two disjoint pieces, {2~ and
Q" (see Fig.2). As T = 0 outside the physical domain, there may be jumps on T.
We use the standard compact nine point stencil scheme, the 9-point Laplacian,
denote by AgT;

7.7’

1
AgT ;= @[4Tz‘—1,j+4Tz‘+1,j+4Ti,j—1+4Ti,j+1+Tz‘—1,j—1+ﬂ—1,j+1+ﬂ+1,j—1+ﬂ+1,j+1—20Tz‘,j]
If we apply this to the true solution and expand in Taylor series we find that
h? 4
AoTij = ATy + 5 [(Tawaa)ij + 2(Toayy)ij + (Tyyyy)isl + O(R7).

The additional terms lead to a very nice form for the dominant error term, since

Tyzzz + 2 payy + Tyyyy = A(AT).



A= (X1 ¥;.1)

( Interface

O Ghost point

Figure 3: A diagrami of'an irregular grid point Fj.

This is the Laplacian of Laplacian of T which is known as the biharmonic. Because
we are solving AT = f, then we have

Tma:a::v + 2szyy + Tyyyy = Af

Hence we can compute the dominant term in the truncation error easily from the
known function f without knowing the true solution T to the problem. So,we can
obtain a fourth-order accurate method of the form

U Jicvgt fivng + figoa+ fige 81

AT}, ~ " . (3.17)

This discretization is valid if all the node values belong to the same domain, but
needs to be modified otherwise. The methodology discussed in Section 2.1 extends
naturally to two spatial dimensions. Before we modify the Eq.(3.17), we define a
grid node (z;,y;) as regular if all neighbouring nodes are on the same side of the
interface.On contrary, a grid node (z;, y;) as irregular if at least one adjacent node is
on the other side of the interface. In order to illustrate our methodology, we suppose

10
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Figure 4: The ghost values Tfil,j and Tﬁm 1 which were constructed along z-

direction and the line segment £, respectively.

Py = (z4,y,) is a irregular grid node-and the distribution of its neighbouring nodes
were displayed in Fig.3.
The discretization for the irregular point Py = (z;,y;) is then written as

1
W[Mﬁl,j +4T5 1 j+4T; 5 +4Ti§'+1+Tifl,jfl +T£1J+1 +Ti -1+ i —QOTi,j]
TSy fig L+ f 8y
12 '
G

About the ghost values Tﬁm and f;7, ;,we consider the left arm of the stencil,
i.e. the line segment connecting (z;_1,y;) and (x;,y;). We first find the interface
location (z,y;) that is the intersection point of the interface and the line segment.
In order to find (x;,y;), we solve a nonlinear equation. In our example section we
use Newton’s Method to solve nonlinear equation. Then we define 6% = ==L, So
we can construct a constant, linear, or quadratic extrapolation 7% and fx of T" and
f in the z-direction. The procedure to find TZGJ 41 and fZGJ 41 are similar.

The remainder ghost value TZ-G_Lj 41, we consider the line segment, L, connecting
(i—1,yj+1) and (z4,y;). Because the line segment and the interface are crossing in

a point, so we have the interface locate L;(see Fig.3). Then we define 6% = %.

Finally, we can construct a constant, linear, or quadratic extrapolation TL of T

11
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Figure 5: 1D Poisson equationgiT,, =.f,on. [0,0.5] with Dirichlet boundary condi-
tions. The exact solution is Ti= 27 — 22+ 122% = 2.5z + 2. The grid size is 64 and
the ghost cells are defined by=quadratic extrapolation.

along the line segment L(see Figi4).. Note that on irregular domains, the number
of available grid nodes within the domain might limit the extrapolation to a lower
degree for some grid resolution.

4 Examples

We test our methodology on the following examples. In the case where the
linear system is symmetric, we use a preconditioned conjugate gradient method
with an incomplete Cholesky preconditioner. In the case where the linear system is
non-symmetric, we use the BICGSTAB method. The order of the scheme is given

as
log(||Errory||eo /| ETT0r2m | 00)

log(2)

order =

4.1 Example 1

Consider T}, = f on Q = [0,0.5] with an exact solution of T' = 7 — 23 4 1222 —
2.5x + 2. The computational domain is discretized into cell of size Ax where the

12
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Figure 6: 1D Poisson equationy T}, =.f,0n./0,0:5] with Neumann boundary condi-
tions. The exact solution is 7= 4z%sin(272). The grid size is 64 and the ghost cells
are defined by cubic extrapolation. !

cell centers are referred to as grid modes...The Dirichlet boundary conditions are
specified. Tab.2 shows the results of the numerical accuracy test and the ghost cells
are defined by constant, linear, quadratic and cubic extrapolations. Fig.5 shows the
numerical solution with 64 grid points and the ghost cells are defined by quadratic
extrapolation.

4.2 Example 2

Consider T}, = f on = [0,0.5] with an exact solution of T" = 422 sin(27x).
The computational domain is discretized into cell of size Az where the cell centers
are referred to as grid nodes. The boundary conditions are given as T'(0) = «
and 7,(0.5) = 8. Tab.3 shows the results of the numerical accuracy test and the
ghost cells are defined by linear, quadratic and cubic extrapolations. Fig.6 shows
the numerical solution with 64 grid points and the ghost cells are defined by cubic
extrapolation.

13



Constant extrapolation
Number of points  L*°- error  Order

16 0.13531

32 0.06839 0.984
64 3.4395E-02  0.992
128 1.7200E-02  1.000
256 8.6382E-03  0.994

Linear extrapolation
Number of points  L*- error  Order

16 2.9232E-03

32 7.3162E-04 1.998
64 1.8300E-04  1.999
128 4.5764E-05 2.000
256 1.1443E-05  2.000

Quadratic extrapolation
Numbert of points — £°°- error  Order

16 1.1525E-05

32 1:5525E-06 2.892
64 2.0306E-07  2.935
128 2.5958E-08  2.968
256 3.2811E-09 2.984

Cubic extrapolation
Number of points  L*°- error  Order

16 3.2479E-07

32 2.0668E-08 3.974
64 1.2974E-09  3.994
128 8.1219E-11  3.998
256 5.2820E-12  3.943

Table 2: The results of the numerical accuracy test and the ghost cells are defined
by constant, linear, quadratic and cuic extrapolations.

14



Linear extrapolation
Number of points  L*°- error  Order

16 8.2213E-04

32 3.4943E-04 1.234
64 1.0548E-04 1.728
128 2.8641E-05 1.881
256 7.4445E-06 1.944

Quadratic extrapolation
Number of pointsi124°°- error  Order

16 1.9985E-03

32 0.0238E-04 1.992
64 1£.2491E-04 2.008
128 3.1088E=05 2.006
256 77515E-06  2.004

Cubic extrapolation
Number of points  L*°- error  Order

16 1.1580E-03

32 1.4326E-04 3.015
64 1.7887E-05  3.002
128 2.2373E-06  2.999
256 2.7984E-07  2.999

Table 3: The results of the numerical accuracy test and the ghost cells are defined
by linear, quadratic and cubic extrapolations.

15



Figure 7: Solution of the Poiss_.o"rli -eQu@t'on _@h ‘.t"'he unit circle. The exact solution is
T = cos(z +y). The grid size is 64 x 64-and the ghost cells are defined by quadratic
extrapolation. =3\ s =

4.3 Example 3

Consider the Poisson equation AT = —2cos(z + y) on the unit circle with
Dirichlet boundary conditions. The exact solution is T' = cos(z + y). The domain
is embedded in a square. Outside the unit circle we set T' = 0. Tab.4 shows the
results of the numerical accuracy test and the ghost cells are defined by constant,
linear, and quadratic extrapolations. Fig.7 depicts the solution on a 64 x 64 grid
and the ghost cells are defined by quadratic extrapolation.

4.4 Example 4

Consider the Poisson equation AT = —72(sin(7x)+sin(7y)+cos(rz)+cos(my)+
30z* + 30y*) on an irregular domain Q= with Dirichlet boundary conditions. The
exact solution is T = sin(7x) + sin(my) + cos(mx) + cos(my) + 2%+ y°. The domain is
embedded in a square €2. So we can regard the boundary of {2~ as a interface that
divies Q into two disjoint pieces, 2~ and Q*t. Outside the interface we set T' = 0.

16



Constant extrapolation

Number of points  L*>- error  Order
16 6.6055E-02
32 4.4915E-02  0.556
64 2.3703E-02  0.922
128 1.2745E-02  0.895

Linear extrapolation

Number of points L error  Order
16 1.5867E-03
32 3.3722E-04  2.234
64 9:6290E-05  1.808
128 2.2966E-05  2.068

Quadratic extrapolation

Number of points  L*- error  Order
16 3.2722E-04
32 2.9732E-05 3.46017
64 4.2617E-06 2.80252
128 4.8286E-07 3.14175

Table 4: The results of the numerical accuracy test and the ghost cells are defined

by constant, linear, and quadratic extrapolations.

17



Figure 8: Solution of the Poigsbh 'eqlua ion‘-'f.oﬁ""a.n irregular domain in two spatial
dimensions. The exact solutioft is T-= sin{ra )<+ sin (my) +cos(mx) +cos(my) + 20 +y°.
The grid size is 64 x 64 and the'ghost cells are defined by quadratic extrapolation.

! N ]

The interface is parameterized by (w(), y(a):)-,"v\;here

-A" | B

z(a) = 0.02v/5 + (05 + 0.2sin(5a))) cos(a),

y(a) = 0.02v/5 4 (0.5 + 0.2sin(5a)) sin(a), (4.18)

with o € [0,27]. Tab.5 shows the results of the numerical accuracy test and the
ghost cells are defined by constant, linear, and quadratic extrapolations. Fig.8
depicts the solution on a 64 x 64 grid and the ghost cells are defined by quadratic
extrapolation. Note that on irregular domains, the number of available grid nodes
within the domain might limit the extrapolation to a lower degree for some grid
resolution.

It is difficult to solve the 2D Poisson equation with Neumann boundary condition
on irregular domain. Because we have no idea of the values of T}, and T}, on the
boundary. So we can’t extend the methodology discussed in Section 2.2 to two
spatial dimensions.

18



Constant extrapolation
Number of points  L*- error  Order

16 0.2176

32 0.1306 0.737
64 6.5600E-02  0.993
128 3.4000E-02  0.948

Linear extrapolation
Number of peints L% error  Order

16 7:2809E-02

32 3.4237E-03 4.410
64 8.2815E-04 2.048
128 2.0285E-04 2.030

Quadratic extrapolation
Number of points  L*- error  Order

16 6.4135E-02

32 3.4870E-04  7.523
64 5.1107E-05  2.770
128 6.1969E-06  3.044

Table 5: The results of the numerical accuracy test and the ghost cells are defined
by constant, linear, and quadratic extrapolations.
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5 Conclusions

We have proposed a simple finite difference algorithm for obtaining higher-order
accurate solutions for the Poisson equation subject to Dirichlet boundary conditions
on irregular domains. The crucial issue is the discretization of the boundaries of the
irregular domain. At the irregular point, we define ghost value constructed by
extrapolation. In 1D Poisson equation with Dirichlet boundary condition problem,
we get first, second, third and fourth order accuracy in the case of the constant,
linear, quadratic and cubic extrapolations, respectively. In 1D Poisson equation with
Neumann boundary condition problem, we get first, second and third order accuracy
in the case of the linear and quadratic, and cubic extrapolations, respectively. In 2D
Poisson equation with Dirichlet boundary condition problem, we get first, second and
third order accuracy in the case of the constant, linear and quadratic extrapolations,
respectively. And except the quadratic and cubic extrapolations, the linear system
is symmetric.
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