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摘 要       
 
 
 

在這篇論文中，我們考慮在不規則區域上有著 Dirichlet邊界條件的二維
Poisson 方程，而此不規則區域將被限制在一個矩形區域中來做計算。在原不規
則區域內的網格點，我們的高階精度方法是用標準的緊緻九點格式來離散此

Poisson方程，但對於靠近邊界的點將要做些特別處理。在這些需要另外做處理
的點，我們利用外插法來造出仿真的值。使用的外插法有常數、線性以及二次的

外插法，並將分別可以得到一階、二階以及三階的精度。其中常數及線性的外插

法，可以使要解的線性系統仍保持對稱性。 
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ABSTRACT 

 
    In this thesis, we consider the 2D Poisson equation subject to 

Dirichlet boundary conditions on an irregular domain. The region of 

interest is embedded in a rectangular domain. For our higher-order 

accurate scheme, at internal grid points, the Poisson equation is 

discretized with the standard compact nine point stencil with special 

treatment at the edges. At the irregular point, we define ghost value 

constructed by extrapolations. This yields first, second and third order 

accuracy in the case of the constant, linear and quadratic extrapolations, 

       respectively. In the case of constant and linear extrapolations, the 

       linear system is symmetric. 
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1 Introduction

In this thesis, we consider the solution of the Poisson equation on an irregular
domain, subject to Dirichlet boundary conditions. The Poisson equation subject to
Dirichlet boundary conditions on an irregular domain can be treated by embedding
the region in a rectangular domain and solving by finite differences over the domain.
The crucial issue is the discretization of the boundaries of the irregular domain.

There are many other approaches to this problem in the literature. In [4], the
authors solved a variable coefficient Poisson equation in the presence of an irregular
interface where Dirichlet boundary conditions were imposed. They used a finite
volume method that results in a non-symmetric discretization matrix. Both multi-
grid methods and adaptive mesh refinement were used. In [5], this non-symmetric
discretization was coupled to a volume of fluid front tracking method in order to
solve Stefan problem.

In [9], the basic idea of the ghost fluid method [7] was employed to develop
a first-order-accurate symmetric finite difference scheme based on the Cartesian
grid to solve a variable Poisson equation in the presence of an irregular interface.
Subsequently in [1], the approach in [9] was modified to obtain a second order
accurate symmetric finite difference scheme based on the Cartesian grid to solve a
variable Poisson equation with a Dirichlet boundary condition. The modification
used the signed distance level set function to obtain a linear interpolation from the
boundary value and the solution values in coordinate-wise directions to determine
the ghost fluid values.

The intention of this paper is to extend the idea of [2,11]. In [2], the authors
exploit the methodology of [1] to derive a fourth order accurate finite difference dis-
cretization for the Laplace equation on irregular domains. But in order to guarantee
a fourth order accurate, the difference scheme that the authors used was a standard
long stencil. The primary objective of this paper is to keep higher-order accurate
and to make the scheme to be a compact one.

The rest of the paper is organized as follows: In Section 2 we deal with the
1-D Poisson equation with Dirichlet boundary conditions and try to solve Neumann
boundary problem as well. In Section 3 we extend the methodology discussed in
Section 2 to two spatial dimensions. Numerical examples are presented in Section 4
before we conclude with a summary in Section 5.
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2 One-dimensional Poisson equation

We consider a Cartesian computational domain, Ω = [a, b], with a lower dimen-
sional interface, Γ, that divides the computational domain into disjoint pieces, Ω−

and Ω+. The 1-D Poisson equation is given by

Txx = f, x ∈ Ω− = [a, xI ]. (2.1)

A uniform grid is taken over [a, b] . Dirichlet boundary conditions or Neumann
boundary conditions are assumed given at two boundary points x = a and xI , xI

typically is not grid point. In the other subdomain we set T = 0 , so that we have

{
Txx = f x ∈ Ω−

T = 0 x ∈ Ω+ . (2.2)

In general there is a discontinuity at xI .
The solution to the Poisson equation is computed at the grid points and is written

as Ti = T (xi). We consider the fourth order discretization :

Ti+1 − 2Ti + Ti−1

∆x2
+ O(∆x4) = (Txx)i +

∆x2

12
(Txxxx)i

Ti+1 − 2Ti + Ti−1

∆x2
≈ fi+1 + 10fi + fi−1

12
(2.3)

For each unknown, Ti , Eq(2.3) is used to fill in one row of a matrix creating a
linear system of equations. This discretization is valid if all the node values belong
to the same domain, but needs to be modified otherwise. For example, suppose the
interface location, xI is located in between the nodes xi and xi+1 (see Fig.1) and
suppose that we seek to write the equation satisfied by Ti. Since the solution is
not defined across the interface, we need valid values for Ti+1 and fi+1 that emulate
the behavior of the solution defined to the left of the interface. We achieve this
by defining ghost values TG

i+1 and fG
i+1 constructed by extrapolating the value of T

across the interface. The discretization for such points in the neighborhood of the
interface is rewritten as

TG
i+1 − 2Ti + Ti−1

∆x2
≈ fG

i+1 + 10fi + fi−1

12
(2.4)

In the remainder of this section, we describe how to construct the ghost values
TG

i+1 and fG
i+1 more precisely.
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Figure 1: Definition of the ghost cells with linear extrapolation

2.1 Dirichlet boundary condition

In this section, we consider the situation that Dirichlet boundary conditions are
given at two boundary points, T (a) = Ta and T (xI) = TI . We first construct an

interpolant T̃ (x) of T (x) on the left of the interface, such that T̃ (0) = Ti, and then

we define TG
i+1 = T̃ (∆x). Fig.1 illustrates the definition of the ghost cell in the case

of the linear extrapolation.
We consider constant, linear, quadratic and cubic extrapolations defined by:

• Constant extrapolation
Take T̃ (x) = d with:

1. d = TI

• Linear extrapolation
Take T̃ (x) = cx + d with:

1. T̃ (0) = Ti

2. T̃ (θ∆x) = TI

3



• Quadratic extrapolation
Take T̃ (x) = bx2 + cx + d with:

1. T̃ (−∆x) = Ti−1

2. T̃ (0) = Ti

3. T̃ (θ∆x) = TI

• Cubic extrapolation
Take T̃ (x) = ax3 + bx2 + cx + d with:

1. T̃ (−∆x) = Ti−1

2. T̃ (0) = Ti

3. T̃ (θ∆x) = TI

4. T̃ ′′(θ∆x) = fI

Then we get
TG

i+1 = TI (2.5)

TG
i+1 = (1− 1

θ
)Ti +

1

θ
TI (2.6)

TG
i+1 =

1− θ

1 + θ
Ti−1 +

2(θ − 1)

θ
Ti +

2

θ(1 + θ)
TI (2.7)

and

TG
i+1 =

(1− θ)(2θ − 1)

(2θ + 1)(θ + 1)
Ti−1 +

4(θ − 1)

2θ + 1
Ti +

6

(2θ + 1)(θ + 1)
TI +

1− θ

2θ + 1
h2fI (2.8)

which are defined by constant, linear, quadratic and cubic extrapolations, respec-
tively.

Similarly, we construct an interpolant f̃(x) of f(x). The definitions of constant,

linear and quadratic extrapolations are the same as T̃ . So, we have

fG
i+1 = fI (2.9)

fG
i+1 = (1− 1

θ
)fi +

1

θ
fI (2.10)

and

fG
i+1 =

1− θ

1 + θ
fi−1 +

2(θ − 1)

θ
fi +

2

θ(1 + θ)
fI (2.11)

which are defined by constant, linear and quadratic extrapolations, respectively. But
there is a little different to the cubic extrapolation :
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• Cubic extrapolation
Take f̃(x) = ax3 + bx2 + cx + d with:

1. f̃(−2∆x) = fi−2

2. f̃(−∆x) = fi−1

3. f̃(0) = fi

4. f̃(θ∆x) = fI

then we have

fG
i+1 =

θ − 1

θ + 2
fi−2 +

(3− 3θ)

θ + 1
fi−1 +

3θ − 3

θ
fi +

6

θ3 + 3θ2 + 2θ
fI (2.12)

which is defined by cubic extrapolation. In these equations θ = (xI − xi)/∆x refers
to the cell fraction occupied by the subdomain Ω−. This yields first, second, third
and fourth order accuracy in the case of the constant, linear, quadratic and cubic
extrapolations, respectively.

If we were solving for the domain Ω+, the equation satisfied by Ti+1 and fi+1

requires the definition of the ghost cells TG
i and fG

i . In this case, we write TG
i =

T̃ (∆x) and fG
i = f̃(∆x) with the definition for T̃ modified as follows: θ = (xi+1 −

xI)/∆x, Ti is replaced by Ti+1, fi is replaced by fi+1, Ti−1 is replaced by Ti+2 and
fi−1 is replaced by fi+2.

We note that the construction of T̃ and f̃ cannot be arbitrary. It is obviously
limited by the number of points within the domain, but also by how close the
interface from a grid node. The latter restriction comes from the fact that, as
θ → 0, the behavior of the interpolant deteriorates.

In the case of the constant extrapolation, the corresponding matrix

AConstant =




−2 1
1 −2 1

. . . . . . . . .

1 −2 0
0 1


 → ith row
→ (i + 1)th row

is symmetric and diagonally dominant. In the case of the linear extrapolation, the
corresponding matrix

ALinear =




−2 1
1 −2 1

. . . . . . . . .

1 −1− 1
θ

0
0 1


 → ith row
→ (i + 1)th row
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is symmetric and diagonally dominant. This allows for the use of fast iterative
solvers such as preconditioned conjugate gradient. But in the case of the quadratic
and cubic extrapolations, the corresponding matrices

AQuadratic =




−2 1
1 −2 1

. . . . . . . . .

1 + 1−θ
1+θ

−2 + 2(θ+1)
θ

0

0 1


 → ith row
→ (i + 1)th row

and

ACubic =




−2 1
1 −2 1

. . . . . . . . .

1 + (1−θ)(2θ−1)
(2θ+1)(θ+1)

−2 + 4(θ−1)
2θ+1

0

0 1


 → ith row
→ (i + 1)th row

are non-symmetric. So the non-symmetric linear system is solved with a BiCGSTAB
(see e.g. [10] ) using an incomplete LU factorization for the preconditioner. For the
linear solver that require an initial guess, setting all Ti identically zero is usually
sufficient.

2.2 Neumann boundary condition

We take little effort to replace the Dirichlet boundary conditions with Neumann
boundary conditions, reformulating the Poisson equation as

{
Txx = f, x ∈ [a, xI ]
Tx(a) = α, Tx(xI) = β

. (2.13)

So, we needs to do some modifications of the extrapolations T̃ (x). We discuss linear,
quadratic and cubic extrapolations defined by:

• Linear extrapolation
Take T̃ (x) = cx + d with:

1. T̃ (0) = Ti

2. T̃ ′(θ∆x) = β

• Quadratic extrapolation
Take T̃ (x) = bx2 + cx + d with:

6



1. T̃ (−∆x) = Ti−1

2. T̃ (0) = Ti

3. T̃ ′(θ∆x) = β

• Cubic extrapolation
Take T̃ (x) = ax3 + bx2 + cx + d with:

1. T̃ (−∆x) = Ti−1

2. T̃ (0) = Ti

3. T̃ ′(θ∆x) = β

4. T̃ ′′(θ∆x) = fI

The discussion above leads naturally to

TG
i+1 = Ti + β∆x (2.14)

TG
i+1 =

1− 2θ

1 + 2θ
Ti−1 +

4θ

1 + 2θ
Ti +

2β∆x

1 + 2θ
(2.15)

and

TG
i+1 =

−3θ2 + 3θ − 1

3θ2 + 3θ + 1
Ti−1 +

6θ2 + 2

3θ2 + 3θ + 1
Ti +

6θ

3θ2 + 3θ + 1
β∆x

+
−3θ2 + 1

3θ2 + 3θ + 1
fI∆x2 (2.16)

which are defined by linear, quadratic and cubic extrapolations, respectively. And
the coefficient matrices of the linear system are

ALinear =




−2 1
1 −2 1

. . . . . . . . .

1 −1 0
0 1


 → ith row
→ (i + 1)th row

AQuadratic =




−2 1
1 −2 1

. . . . . . . . .

1 + 1−2θ
1+2θ

−2 + 4θ
1+2θ

0

0 1


 → ith row
→ (i + 1)th row

7



and

ACubic =




−2 1
1 −2 1

. . . . . . . . .

1 + −3θ2+3θ−1
3θ2+3θ+1

−2 + 6θ2+2)
3θ2+3θ+1

0

0 1


 → ith row
→ (i + 1)th row

which are obtained by linear, quadratic and cubic extrapolations, respectively.The
extrapolations f̃ of f don’t have any modifications. Because we have the value of f
on the boundary exactly.

This yields first, second and third order accuracy in the case of the linear,
quadratic and cubic extrapolations, respectively. But this method has some short-
comings. It is unable to expand this method to solve two-dimensional Poisson
equation with Neumann boundary conditions. Because we do not have enough in-
formation on the boundary to use this method.

The overall accuracy for T and the nature of the resulting linear system is deter-
mined by the degree of the interpolation function T̃ , which is summarized in Tab.
1.

Dirichlet boundary condition
Degree of extrapolation Order of accuracy Linear system

Constant First Symmetric
Linear Second Symmetric

Quadratic Third Non-symmetric
Cubic Fourth Non-symmetric

Neumann boundary condition
Degree of extrapolation Order of accuracy Linear system

Linear First Symmetric
Quadratic Second Non-symmetric

Cubic Third Non-symmetric

Table 1: Order of accuracy and nature of the linear system corresponding to the
constant, linear, quadratic and cubic case

8
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Figure 2: An irregular interface Γ dividing the domain Ω into two subdomain Ω−

and Ω+.

3 Two-dimensional Poisson equation

Consider the two spatial dimension Poisson equation

∆T = f(x, y)

and let Ω− be any irregular 2-D shape inscribed within a rectangle with boundary
Γ at which Dirichlet conditions T (x, y) = g(x, y) are specified.We can regard the
boundary Γ as a interface that divies the domain Ω into two disjoint pieces, Ω− and
Ω+(see Fig.2). As T = 0 outside the physical domain, there may be jumps on Γ.

We use the standard compact nine point stencil scheme, the 9-point Laplacian,
denote by ∆9Ti,j,

∆9Ti,j =
1

6h2
[4Ti−1,j+4Ti+1,j+4Ti,j−1+4Ti,j+1+Ti−1,j−1+Ti−1,j+1+Ti+1,j−1+Ti+1,j+1−20Ti,j]

If we apply this to the true solution and expand in Taylor series we find that

∆9Ti,j = ∆Ti,j +
h2

12
[(Txxxx)i,j + 2(Txxyy)i,j + (Tyyyy)i,j] + O(h4).

The additional terms lead to a very nice form for the dominant error term, since

Txxxx + 2Txxyy + Tyyyy = ∆(∆T ).

9
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Figure 3: A diagram of an irregular grid point P0.

This is the Laplacian of Laplacian of T which is known as the biharmonic. Because
we are solving ∆T = f , then we have

Txxxx + 2Txxyy + Tyyyy = ∆f.

Hence we can compute the dominant term in the truncation error easily from the
known function f without knowing the true solution T to the problem. So,we can
obtain a fourth-order accurate method of the form

∆9Ti,j ≈ fi−1,j + fi+1,j + fi,j−1 + fi,j+1 + 8fi,j

12
. (3.17)

This discretization is valid if all the node values belong to the same domain, but
needs to be modified otherwise. The methodology discussed in Section 2.1 extends
naturally to two spatial dimensions. Before we modify the Eq.(3.17), we define a
grid node (xi, yj) as regular if all neighbouring nodes are on the same side of the
interface.On contrary, a grid node (xi, yj) as irregular if at least one adjacent node is
on the other side of the interface. In order to illustrate our methodology, we suppose

10
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Figure 4: The ghost values TG
i−1,j and TG

i−1,j+1 which were constructed along x-
direction and the line segment L, respectively.

P0 = (xi, yj) is a irregular grid node and the distribution of its neighbouring nodes
were displayed in Fig.3.

The discretization for the irregular point P0 = (xi, yj) is then written as

1

6h2
[4TG

i−1,j +4Ti+1,j +4Ti,j−1+4TG
i,j+1+Ti−1,j−1+TG

i−1,j+1+Ti+1,j−1+Ti+1,j+1−20Ti,j]

≈ fG
i−1,j + fi+1,j + fi,j−1 + fG

i,j+1 + 8fi,j

12
.

About the ghost values TG
i−1,j and fG

i−1,j,we consider the left arm of the stencil,
i.e. the line segment connecting (xi−1, yj) and (xi, yj). We first find the interface
location (xI , yj) that is the intersection point of the interface and the line segment.
In order to find (xI , yj), we solve a nonlinear equation. In our example section we
use Newton’s Method to solve nonlinear equation. Then we define θx = xi−xI

∆x
. So

we can construct a constant, linear, or quadratic extrapolation T̃ x and f̃x of T and
f in the x-direction. The procedure to find TG

i,j+1 and fG
i,j+1 are similar.

The remainder ghost value TG
i−1,j+1, we consider the line segment, L, connecting

(xi−1, yj+1) and (xi, yj). Because the line segment and the interface are crossing in

a point, so we have the interface locate LI(see Fig.3). Then we define θL = |LI−P0|
|P−P1| .

Finally, we can construct a constant, linear, or quadratic extrapolation T̃L of T

11
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Figure 5: 1D Poisson equation, Txx = f ,on [0,0.5] with Dirichlet boundary condi-
tions. The exact solution is T = x7 − x3 + 12x2 − 2.5x + 2. The grid size is 64 and
the ghost cells are defined by quadratic extrapolation.

along the line segment L(see Fig.4). Note that on irregular domains, the number
of available grid nodes within the domain might limit the extrapolation to a lower
degree for some grid resolution.

4 Examples

We test our methodology on the following examples. In the case where the
linear system is symmetric, we use a preconditioned conjugate gradient method
with an incomplete Cholesky preconditioner. In the case where the linear system is
non-symmetric, we use the BICGSTAB method. The order of the scheme is given
as

order =

∣∣∣∣
log(‖Errorn‖∞/‖Error2n‖∞)

log(2)

∣∣∣∣ .

4.1 Example 1

Consider Txx = f on Ω = [0, 0.5] with an exact solution of T = x7−x3 +12x2−
2.5x + 2. The computational domain is discretized into cell of size ∆x where the
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Figure 6: 1D Poisson equation, Txx = f ,on [0,0.5] with Neumann boundary condi-
tions. The exact solution is T = 4x2 sin(2πx). The grid size is 64 and the ghost cells
are defined by cubic extrapolation.

cell centers are referred to as grid nodes. The Dirichlet boundary conditions are
specified. Tab.2 shows the results of the numerical accuracy test and the ghost cells
are defined by constant, linear, quadratic and cubic extrapolations. Fig.5 shows the
numerical solution with 64 grid points and the ghost cells are defined by quadratic
extrapolation.

4.2 Example 2

Consider Txx = f on Ω = [0, 0.5] with an exact solution of T = 4x2 sin(2πx).
The computational domain is discretized into cell of size ∆x where the cell centers
are referred to as grid nodes. The boundary conditions are given as T (0) = α
and Tx(0.5) = β. Tab.3 shows the results of the numerical accuracy test and the
ghost cells are defined by linear, quadratic and cubic extrapolations. Fig.6 shows
the numerical solution with 64 grid points and the ghost cells are defined by cubic
extrapolation.
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Constant extrapolation
Number of points L∞- error Order

16 0.13531
32 0.06839 0.984
64 3.4395E-02 0.992
128 1.7200E-02 1.000
256 8.6382E-03 0.994

Linear extrapolation
Number of points L∞- error Order

16 2.9232E-03
32 7.3162E-04 1.998
64 1.8300E-04 1.999
128 4.5764E-05 2.000
256 1.1443E-05 2.000

Quadratic extrapolation
Number of points L∞- error Order

16 1.1525E-05
32 1.5525E-06 2.892
64 2.0306E-07 2.935
128 2.5958E-08 2.968
256 3.2811E-09 2.984

Cubic extrapolation
Number of points L∞- error Order

16 3.2479E-07
32 2.0668E-08 3.974
64 1.2974E-09 3.994
128 8.1219E-11 3.998
256 5.2820E-12 3.943

Table 2: The results of the numerical accuracy test and the ghost cells are defined
by constant, linear, quadratic and cuic extrapolations.
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Linear extrapolation
Number of points L∞- error Order

16 8.2213E-04
32 3.4943E-04 1.234
64 1.0548E-04 1.728
128 2.8641E-05 1.881
256 7.4445E-06 1.944

Quadratic extrapolation
Number of points L∞- error Order

16 1.9985E-03
32 5.0238E-04 1.992
64 1.2491E-04 2.008
128 3.1088E-05 2.006
256 7.7515E-06 2.004

Cubic extrapolation
Number of points L∞- error Order

16 1.1580E-03
32 1.4326E-04 3.015
64 1.7887E-05 3.002
128 2.2373E-06 2.999
256 2.7984E-07 2.999

Table 3: The results of the numerical accuracy test and the ghost cells are defined
by linear, quadratic and cubic extrapolations.
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Figure 7: Solution of the Poisson equation on the unit circle. The exact solution is
T = cos(x+ y). The grid size is 64× 64 and the ghost cells are defined by quadratic
extrapolation.

4.3 Example 3

Consider the Poisson equation ∆T = −2 cos(x + y) on the unit circle with
Dirichlet boundary conditions. The exact solution is T = cos(x + y). The domain
is embedded in a square. Outside the unit circle we set T = 0. Tab.4 shows the
results of the numerical accuracy test and the ghost cells are defined by constant,
linear, and quadratic extrapolations. Fig.7 depicts the solution on a 64 × 64 grid
and the ghost cells are defined by quadratic extrapolation.

4.4 Example 4

Consider the Poisson equation ∆T = −π2(sin(πx)+sin(πy)+cos(πx)+cos(πy)+
30x4 + 30y4) on an irregular domain Ω− with Dirichlet boundary conditions. The
exact solution is T = sin(πx)+sin(πy)+cos(πx)+cos(πy)+x6 +y6. The domain is
embedded in a square Ω. So we can regard the boundary of Ω− as a interface that
divies Ω into two disjoint pieces, Ω− and Ω+. Outside the interface we set T = 0.
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Constant extrapolation
Number of points L∞- error Order

16 6.6055E-02
32 4.4915E-02 0.556
64 2.3703E-02 0.922
128 1.2745E-02 0.895

Linear extrapolation
Number of points L∞- error Order

16 1.5867E-03
32 3.3722E-04 2.234
64 9.6290E-05 1.808
128 2.2966E-05 2.068

Quadratic extrapolation
Number of points L∞- error Order

16 3.2722E-04
32 2.9732E-05 3.46017
64 4.2617E-06 2.80252
128 4.8286E-07 3.14175

Table 4: The results of the numerical accuracy test and the ghost cells are defined
by constant, linear, and quadratic extrapolations.
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Figure 8: Solution of the Poisson equation on an irregular domain in two spatial
dimensions. The exact solution is T = sin(πx)+sin(πy)+cos(πx)+cos(πy)+x6+y6.
The grid size is 64× 64 and the ghost cells are defined by quadratic extrapolation.

The interface is parameterized by (x(α), y(α)),where

{
x(α) = 0.02

√
5 + (0.5 + 0.2 sin(5α)) cos(α),

y(α) = 0.02
√

5 + (0.5 + 0.2 sin(5α)) sin(α),
(4.18)

with α ∈ [0, 2π]. Tab.5 shows the results of the numerical accuracy test and the
ghost cells are defined by constant, linear, and quadratic extrapolations. Fig.8
depicts the solution on a 64 × 64 grid and the ghost cells are defined by quadratic
extrapolation. Note that on irregular domains, the number of available grid nodes
within the domain might limit the extrapolation to a lower degree for some grid
resolution.

It is difficult to solve the 2D Poisson equation with Neumann boundary condition
on irregular domain. Because we have no idea of the values of Txx and Tyy on the
boundary. So we can’t extend the methodology discussed in Section 2.2 to two
spatial dimensions.
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Constant extrapolation
Number of points L∞- error Order

16 0.2176
32 0.1306 0.737
64 6.5600E-02 0.993
128 3.4000E-02 0.948

Linear extrapolation
Number of points L∞- error Order

16 7.2809E-02
32 3.4237E-03 4.410
64 8.2815E-04 2.048
128 2.0285E-04 2.030

Quadratic extrapolation
Number of points L∞- error Order

16 6.4135E-02
32 3.4870E-04 7.523
64 5.1107E-05 2.770
128 6.1969E-06 3.044

Table 5: The results of the numerical accuracy test and the ghost cells are defined
by constant, linear, and quadratic extrapolations.
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5 Conclusions

We have proposed a simple finite difference algorithm for obtaining higher-order
accurate solutions for the Poisson equation subject to Dirichlet boundary conditions
on irregular domains. The crucial issue is the discretization of the boundaries of the
irregular domain. At the irregular point, we define ghost value constructed by
extrapolation. In 1D Poisson equation with Dirichlet boundary condition problem,
we get first, second, third and fourth order accuracy in the case of the constant,
linear, quadratic and cubic extrapolations, respectively. In 1D Poisson equation with
Neumann boundary condition problem, we get first, second and third order accuracy
in the case of the linear and quadratic, and cubic extrapolations, respectively. In 2D
Poisson equation with Dirichlet boundary condition problem, we get first, second and
third order accuracy in the case of the constant, linear and quadratic extrapolations,
respectively. And except the quadratic and cubic extrapolations, the linear system
is symmetric.
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