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摘         要 

 

這篇論文主要之目的是使用多重網格法來解一些不可

分離的橢圓方程式有著 Dirichlet 條件在矩形的區域上(當然

這種方法也可應用在其他的邊界條件下)。首先，我們會學

習基本的多重網格網法。再來，我們簡要地介紹預加條件共

軛梯度法和 Concus and Golub 法。最後，我們會給一些例子

並且列出數值結果其中包含了達到判停條件所需的計算時

間和迭代次數，然後做出結論。 
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ABSTRACT 

 

The primary objective of this thesis is to use multigrid method (MG) 
for solving nonseparable elliptic equations with Dirichlet boundary 
condition on a rectangle. (Of course, this method can be applied with any 
boundary conditions.) First, we study elements of multigrid method. Next, 
we introduce roughly the preconditioned conjugate gradient (PCG) 
method and Concus and Golub's method to compare with MG. Finally, we 
give some examples and show numerical results including CPU time and 
the number of necessary iterations to achieve stopping criterion, and the 
conclusion follows. 
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1 Introduction

Solving Helmholtz equations is a fundamental problem of scientific computing. General-
ized Helmholtz equations

4v − g(x, y)v = f(x, y) in Ω (1)

v = p(x, y) on ∂Ω,

arise frequently in fields such as optic, geophysic, and plasma physics. In addition, non-
separable elliptic equations of the form

∇ · (a(x, y)∇u)− b(x, y)u = c(x, y) (2)

also can be transformed to the form of a generalized Helmholtz equation (1) through a
change of variable v = a1/2u , when a(x, y) is positive in the domain of definition.

v = a1/2u ⇒ u = a−1/2v

∇u = a−1/2∇v − 1

2
a−3/2v∇a

a∇u = a1/2∇v − 1

2
a−1/2v∇a

∇ · (a∇u) = a1/2∇2v +∇a1/2 · ∇v − 1

2
a−1/2∇a · ∇v − v∇ · (1

2
a−1/2∇a)

= a1/2∇2v −∇2a1/2v

So, we only need to be absorbed in eq. (1).
Multigrid methods have become a common approach for solving system arising form

discretizing elliptic equation. The basic multigrid principle is that the smoother damps
the oscillatory high frequency errors whereas the coarse grid correction reduces the smooth
low frequency errors. Multigrid method begins with a two-grid process. First, iterative
relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction
is applied, in which the smooth error is determined on a coarser grid. This error is
interpolated to the fine grid and used to correct the fine-grid approximation. Applying
this method recursively to solve the coarse-grid problem leads to multigrid.
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2 Multigrid Method

We usually use iterative methods for solving linear system when the matrix arising from
problem is sparse. A clear advantage of using iterative methods is that they require far less
computational effort. The principle of iterative method is beginning with an initial guess,
and improve approximation successively until it is as accurate as desired. Most of iterative
methods can reduce efficiently oscillatory components of the error, but it is much less
effective as smooth components remained (sometimes relaxation is also called smoother).
The notion of smooth and oscillatory components are relative to the grid size which the
solution is defined. The smooth error on the fine grid is more oscillatory when projected
on the coarse grid. Therefore, we might relax on the fine grid to reduce oscillatory
components of the error and then relax on the coarse grid when smooth components
remained.

What is the relationship between the error and the approximation? An important
scheme: residual correction gives a appropriate answer. Suppose that the system Au = f
has a unique solution and that v is a computed approximation to u. It is easy to compute
the residual r = f − Av. The error e = u − v satisfies the residual equation: Ae = r.
To improve the approximation v, we might solve the residual equation for e, and then
compute a new approximation using the definition of the error u = v + e.

Now, we can combine these two ideas to produce two-grid correction scheme, as out-
lined below [1].

Two-Grid Correction Scheme

vh ←− TG(vh, fh)

• Relax ν1 times on Ahuh = fh on Ωh with initial guess vh.

• Compute the fine-grid residual rh = fh − Ahvh and restrict it to the coarse grid by
r2h = I2h

h rh.

• Solve A2he2h = r2h on Ω2h.

• Interpolate the coarse-grid error to the fine grid by eh = Ih
2he

2h and correct the
fine-grid approximation by vh ←− vh + eh.

• Relax ν2 times on Ahuh = fh on Ωh with initial guess vh.

Ω2h denotes coarse-grid has twice the grid spacing of the fine grid Ωh. The procedure
transferring the vectors from a fine-grid to a coarse-grid is called restriction, and this
operator is denoted by I2h

h ; the procedure transferring the vectors from a coarser-grid to
a fine-grid is called interpolation or prolongation, and this operator is denoted by Ih

2h.
The arrow notation stands for replacement or overwriting. The integers ν1 and ν2 are
parameters in the scheme that control the number of relaxation sweeps before and after

2



visiting the coarse grid. They are usually fixed at the start, based on either theoretical
considerations or on past experimental results, and they are often small.

In general, injection and full weighting operators are more common restriction we used;
linear and cubic interpolations are popular methods. The issue of intergrid transfers
is discussed at some books about multigrid method [1][2]. And some basic iterative
method like Jacobi, Gauss-Seidel (GS) or red-black Gauss-Seidel (RBGS) can be found
in elementary numerical books. Therefore, we do not mention all of them here. We only
give definition of full weighting restriction, linear interpolation and red-black Gauss-Seidel
method for two-dimensional problem since we will use these tools in the later numerical
experiment.

In order to illustrate them more conveniently, we consider a simple second-order bound-
ary value problem

{ −∆u = f(x, y), 0 < x < 1, 0 < y < 1
u = 0, on the boundary

on rectangle. The domain of the problem {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is partitioned
into n × n subrectangle by introducing the grid points xi = ih, yj = jh, where h = 1/n
is the constant width of the each edge of the subrectangle. We also introduce vij as an
approximation to the exact solution u(xi, yj) and introduce fij as the value of f(x, y) at
(xi, yj).

3



• Linear interpolation

If we let Ih
2hv

2h = vh, then the components of vh are given by

vh
2i,2j = v2h

ij ,

vh
2i+1,2j =

1

2
(v2h

ij + v2h
i+1,j),

vh
2i,2j+1 =

1

2
(v2h

ij + v2h
i,j+1),

vh
2i+1,2j+1 =

1

4
(v2h

ij + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1), 0 ≤ i, j ≤ n

2
− 1.

Linear interpolation is effective when the vector is smooth.

• Full weighting restriction

If we let I2h
h vh = v2h, then the components of v2h are given by

v2h
ij =

1

16
[vh

2i−1,2j−1 + vh
2i−1,2j+1 + vh

2i+1,2j−1 + vh
2i+1,2j+1

+ 2(vh
2i,2j−1 + vh

2i,2j+1 + vh
2i−1,2j + vh

2i+1,2j)

+ 4vh
2i,2j], 1 ≤ i, j ≤ n

2
− 1.

The values of the coarse-grid vector are weighted averages of values at neighboring fine-
grid points.

• Red-black Gauss-Seidel relaxation

This method may be expressed in component form as below procedure. First, update
red points vij by

vij ←− 1

4
(vi−1,j + vi+1,j + vi,j−1 + vi,j+1 + h2fij),

where sum of index i and j is even. Then update black points vij by

vij ←− 1

4
(vi−1,j + vi+1,j + vi,j−1 + vi,j+1 + h2fij),

where sum of index i and j is odd. Fig. 1 shows red and black points. Red-black Gauss-
Seidel has a clear advantage in terms of parallel computation.
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Figure 1: A one-dimensional grid (top) and a two-dimensional grid (bottom) showing the
red points ◦ and the black points • for red-black relaxation.

Two-grid correction is the basis of multigrid. Of course, we can repeat this process on
successively coarser grids until arriving the coarsest grid. This is so-called V-cycle. To
obtain more benefit from the coarser grids, where computations are cheaper, the W-cycle
zigzags among the lower-level grids before moving back up to the finest grid. We can also
join nested iteration idea which uses V-cycle on coarse grids to obtain improved initial
guesses for fine grids. This is so-called full multigrid V-cycle (FMG).

The schedule of grids for V-cycle, W-cycle, and FMG show in Fig. 2. The complete
algorithms of them are given in Algorithm 1,2,3 respectively. To describe Algorithm
conveniently, we change some notations. We call the right-side vector of the residual
equation f , rather than r, because it is just another right-side vector. Instead of calling
the solution of the residual equation e, we use u because it is just a solution vector. We
can then use v to denote approximations to u.

Algorithm 1 V h(vh, fh) V-cycle Method

if (h=coarsest) then
vh = (Ah)−1fh {solve Ahuh = fh directly}

else
vh=Relax(vh, fh, ν1) {pre-relax ν1 times with initial vh }
f2h = I2h

h (fh − Ahvh) {compute f2h by restricting residual}
v2h = 0
v2h = V 2h(v2h, f2h) {V-cycle on the coarser grid }
vh = vh + Ih

2hv
2h {correct vh by interpolating v2h}

vh=Relax(vh, fh, ν2) {post-relax ν2 times with modified vh }
end if
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Algorithm 2 W h(vh, fh) W-cycle Method

if (h=coarsest) then
vh = (Ah)−1fh {solve Ahuh = fh directly}

else
vh=Relax(vh, fh, ν1) {pre-relax ν1 times with initial vh }
f2h = I2h

h (fh − Ahvh) {compute f2h by restricting residual}
v2h = 0
v2h = V 2h(v2h, f2h) 2 times {V-cycle on the coarser grid 2 times}
vh = vh + Ih

2hv
2h {correct vh by interpolating v2h}

vh=Relax(vh, fh, ν2) {post-relax ν2 times with modified vh }
end if

Algorithm 3 FMGh(fh) Full Multigrid V-cycle Method

if (h=coarsest) then
vh = (Ah)−1fh {solve Ahuh = fh directly}

else
f2h = I2h

h (fh) {compute f2h by restricting fh}
v2h = FMG2h(f2h) {FMG on the coarser grid }
vh = Ih

2hv
2h {compute vh by interpolating v2h}

vh = V h(vh, fh) {V-cycle with modified vh }
end if

In this section, we have studied the elements of multigrid method. Although we don’t
introduce all the details of multigrid method, we have enough ability to solve Helmholtz
equations. [1] has complete introduction of multigrid method.

In brief, multigrid method integrate some easy ideas and schemes. In fact, these ideas
may have some individual defects. Multigrid method arrange them skillfully such that
they can work together, and result in a very useful numerical method.
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Figure 2: Schedule of grids for V-cycle, W-cycle and FMG method from top to bottom.

3 Preconditioned Conjugate Gradient Method

The conjugate gradient method is one of the popular methods for solving linear system
Ax = b. It is very suitable for large-scale sparse matrices arising form FD or FE approx-
imation of boundary-value problems. When the n× n symmetric positive definite matrix
has been preconditioned to make the calculations more effective, good results are obtain
in only about

√
n steps.

In this section, we introduce roughly the conjugate gradient method, and its complete
derivation can be found in [5].

First, we define the quadratic function

φ(x) =
1

2
〈Ax,x〉 − 〈b,x〉 =

1

2
xT Ax− xTb,

and let
h(α) = φ(x + αs).

We can prove that x∗ is a solution to Ax = b if and only if x∗ minimizes φ(x)[5]. We can
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Figure 3: Convergence of steepest descent.

also find that h(α) has a minimal value when

α =
〈s,b− Ax〉
〈s, As〉

Now, we denote x an approximate solution to Ax∗ = b, and vector s 6= 0 gives a
search direction to improve the approximation. Let r = b − Ax be the residual vector
associated with x and

α =
〈s,b− Ax〉
〈s, As〉 =

〈s, r〉
〈s, As〉 .

If r 6= 0 and if s and r are not orthogonal, then φ(x+αs) is smaller than φ(x) and x+αs
is presumably closer to x∗ than x. This suggest the following method.

Let x0 be an initial approximation to x∗, and let s0 6= 0 be an initial search direction.
For k = 0, 1, 2, . . . , we compute

αk =
〈sk,b− Axk〉
〈sk, Ask〉 ,

xk+1 = xk + αksk

and choose a new search direction sk+1. The object is to make this selection so that the
sequence of approximations {xk} converges rapidly to x∗.

Our direct idea is using −∇φ(x) as a search direction because it is the direction of
greatest decrease in the value of φ(x). And it is just the direction of the residual r. The
method that choose

sk+1 = rk+1 = b− Axk+1

is called the method of steepest descent. Unfortunately, the convergence rate of steepest
descent is often very poor owing to repeated searches in the same directions (see Fig. 3).
Therefore, the search direction requires some modifications not negative gradient direction
any more. The conjugate gradient method chooses search directions {s0, . . . , sn−1} so that
they are A-orthogonal set; that is,

〈si, Asj〉 = 0, if i 6= j.

8



Now, we use rk+1 to generate sk+1 by setting

sk+1 = rk+1 + βk+1sk.

We want to choose βk+1 so that
〈sk, Ask+1〉 = 0.

We can obtain

βk+1 = −〈sk, Ark+1〉
〈sk, Ask〉 .

It can be shown that with this choice of βk+1, {s0, . . . , sk+1} is an A-orthogonal set. Then
we can simplify

αk =
〈rk, rk〉
〈sk, Ask〉 .

Thus,
xk+1 = xk + αksk.

To compute rk+1, we multiply by A and subtract b to obtain

rk+1 = rk − αkAsk.

Then we can change

βk+1 =
〈rk+1, rk+1〉
〈rk, rk〉 .

Above derivation is the process of conjugate gradient method. The algorithm of conjugate
gradient method is given in algorithm 4.

Algorithm 4 Conjugate Gradient Method

x0 =initial guess
r0 = b− Ax0

s0 = r0

for k = 0, 1, 2, . . .
αk = rT

k rk/s
T
k Ask {compute search parameter}

xk+1 = xk + αksk {update solution}
rk+1 = rk − αkAsk {compute new residual}
βk+1 = rT

k+1rk+1/r
T
k rk

sk+1 = rk+1 + βk+1sk {compute new search direction}
end

Although conjugate gradient method has a significant improvement over steepest de-
scent, it can still converge very slowly if the matrix A is ill-condition. The convergence of
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conjugate gradient method can be accelerated by preconditioning. Preconditioning means
that choose a matrix M for which systems of the form Mz = y are easily solved. And
M−1 ≈ A−1 so that M−1A is relatively well-conditioned. In fact, we should apply con-
jugate gradient to L−1AL−T instead of M−1A to preserve symmetry of matrix, where
M = LLT . However, the algorithm can be suitably rearrange so that only M is used and
the corresponding matrix L is not required explicitly. The algorithm of preconditioned
conjugate gradient method is given in algorithm 5.

Algorithm 5 Preconditioned Conjugate Gradient Method

x0 =initial guess
r0 = b− Ax0

s0 = M−1r0

for k = 0, 1, 2, . . .
αk = rT

k M−1rk/s
T
k Ask {compute search parameter}

xk+1 = xk + αksk {update solution}
rk+1 = rk − αkAsk {compute new residual}
βk+1 = rT

k+1M
−1rk+1/r

T
k M−1rk

sk+1 = M−1rk+1 + βk+1sk {compute new search direction}
end

Choosing an appropriate preconditioner is very important. The choice of precondi-
tioner depends on the usual trade-off between the gain in the convergence rate and the
increased cost per iteration that results from applying the preconditioner. Many types of
preconditioner can be find in [6]. We only introduce some of them.

• Jacobi : M is taken to be a diagonal matrix with diagonal entries equal to those
of A. This is the easiest preconditioner since M−1 is also a diagonal matrix (can
be regarded as vector when we compute) whose entries are reciprocal of the diag-
onal entries of A. Although it only increases less storage and cost per iteration, it
need more number of necessary iterations than the following incomplete Cholesky
factorization.

• Incomplete Cholesky factorization : Ideally, we can factor A into LLT by Cholesky
factorization, but this may incur unacceptable fill. We may instead compute an ap-
proximate factorization A ≈ L̂L̂T that allows little or no fill (e. g. restricting the
nonzero entries of L̂ to be in the same positions as those of the lower triangle of A)
to save storage and CPU time, then use M = L̂L̂T as a preconditioner.

• Multigrid preconditioner : We choose directly M = A and find M−1r by multi-
grid method. This is so-called multigrid conjugate gradient method (MGCG). This
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method is also researched widely in many papers. We will use MGCG in the later
numerical experiments.

Up to now, We have introduced MG and PCG. These methods belong to iterative method.
In fact, fast direct methods have been developed for solving general poisson equation [9].
The following Concus and Golub method make a little modification to Helmholtz equation
so that fast direct method can be used.

4 Concus and Golub Method

Concus and Golub propose an iterative scheme which uses fast direct solvers for the
repeated solution of a Helmholtz problem [7]. Suppose original equation is

Ψu = −4u + g(x, y)u = f(x, y).

Concus and Golub provide a approach to utilize a modified form of the iterative procedure

−∆un+1 = −∆un − τ(Ψun − f),

where τ is a parameter. We use the shifted iteration

(−4+ K)un+1 = (−4+ K)un − τ(Ψun − f).

The discrete form is given by

(−4h + KI)Vn+1 = (−4h + KI)Vn − τ [(−4h + G)Vn − F )],

where K is a parameter, V is approximation to exact u, −4h is a matrix from operator−4
discretization with mesh space h, G is a diagonal matrix with elements Gij = g(ih, jh),
F is a vector with elements Fij = f(ih, jh), and I is the identity matrix.

Now, we want to find spectral radius ρ for above iteration. We denote M ≡ −4h +
G operator, Φ is a vector, and νm,νM are the minimum and maximum eigenvalues of
eigenvalue problem MΦ = ν(−4h + KI)Φ. To obtain it,

ρ(I − τ [−4h + KI]−1M) = max{|1− τνm|, |1− τνM |}.

To estimate νm and νM , we use the Rayleigh quotient for ν,

ΦT MΦ

ΦT (−4h + KI)Φ
= 1 +

ΦT (G−KI)Φ

ΦT (−4h + KI)Φ

then

1 + min{ β −K

λm + K
,

β −K

λM + K
} ≤ νm ≤ νM ≤ 1 + max{ B −K

λm + K
,

B −K

λM + K
},
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where β and B are the minimal and maximal of function g(x, y),λm and λM are the
smallest and largest eigenvalue of −∆h, and K is between β and B.

In this, the Lemma in [7] help us finding the optimal choice of τ

τ =
2

νm + νM

=
2(λm + K)

(2λm + B + β)

therefore

ρ ≤ B − β

2λm + B + β
.

We will use this formula to observe the convergence rate of Concus and Golub method in
the later numerical examples.

In an attempt to make the operator −4+ K on the left-hand side agree closely with
Ψ, we usually set K the so-called min-max value,

1

2
(min(g(x, y)) + max(g(x, y)))

so the optimal τ = 1. And then, the shifted iteration formula can be simplified

(−4h + KI)Vn+1 = (KI −G)Vn + F.

According to above discrete form, we give an initial guess first, and compute right-hand
side. Now, we can solve “Poisson equation” by FPS to gain the approximation and then
update right-hand side again. Repeat this action until it reaches stopping criterion.

In fact, K can also be optimized for higher rates of convergence. The efficiency of
Concus and Golub’s method can be increased by extending its formulation to accommo-
date the use of a parameter K which is a one-dimensional function instead of a constant
[7]. Unfortunately, for a special solution, that would have required a prohibitively large
computational time since there is no fast Helmholtz solver available for variable coefficient.

In the past it has been demonstrated that the number of necessary iterations can
vary dramatically, depending on the function g(x, y) which has a critical role on the rate
of convergence. The smoother g(x, y) is, the faster rate of convergence. We will give a
example in the next section.

5 Numerical Examples

We will solve Helmholtz equations with Dirichlet boundary condition

−4u(x, y) + g(x, y)u = f(x, y), (x, y) ∈ Ω (3)

u(x, y) = p(x, y), (x, y) ∈ ∂Ω

on domain Ω = [−1, 1]× [−1, 1].
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First, we use five-point finite difference formula to discretize e.q. (3). Assume domain
is partitioned into n× n subdomain by introducing the grid points

xi = ih, yj = jh, 0 ≤ i, j ≤ n

, where h = 2
n

is the uniform mesh size.
We denote

vij : as an approximation to the exact solution u(xi, yj)
Fij : as the value of f(x, y) at (xi, yj)
Gij : as the value of g(x, y) at (xi, yj)
Pij : as the value of p(x, y) at (xi, yj).

Then, we can obtain discrete component form

−1

h2
(vi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vij) + Gijvij = Fij,

and we can use iterative method to improve approximation vij according to

vij =
1

4 + h2Gij

(vi−1,j + vi+1,j + vi,j−1 + vi,j+1 + h2Fij),

for i = 1, ..., n− 1, j = 1, ..., n− 1
with

v0j = P0j, vnj = Pnj, for j = 0, ..., n

and
vi0 = Pi0, vin = Pin, for i = 0, ..., n.

We may also represent system in matrix form as Av = b.
A is an (n − 1) × (n − 1) block matrix, T is an (n − 1) × (n − 1) matrix and I is the
identity matrix of order n− 1.

A =
1

h2




T1 I
I T2 I

. . . . . . . . .

I Tn−2 I
I Tn−1




,

Tj =




4 + h2G1j −1
−1 4 + h2G2j −1

. . . . . . . . .

−1 4 + h2G(n−2),j −1
−1 4 + h2G(n−1),j




.
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And the unknown vector v is defined by

v =




v1

v2
...

vn−2

vn−1




, vj =




v1j

v2j
...

v(n−2),j

v(n−1),j




.

And the right-hand side vector b is defined by

b =




b1

b2
...

bn−2

bn−1




, bj =




b1j

b2j
...

b(n−2),j

b(n−1),j




.

Then set
bij = Fij, for i, j = 2, ..., n− 2

b1j = F1j + P0j/h
2, bn−1,j = Fn−1,j + Pnj/h

2, for j = 2, ..., n− 2

bi1 = Fi1 + Pi0/h
2, bi,n−1 = Fi,n−1 + Pi,n/h

2, for i = 2, ..., n− 2

and

b1,1 = F1,1 + P0,1/h
2 + P1,0/h

2, bn−1,1 = Fn−1,1 + Pn−1,0/h
2 + Pn,1/h

2

b1,n−1 = F1,n−1 + P0,n−1/h
2 + P1,n/h

2, bn−1,n−1 = Fn−1,n−1 + Pn−1,n/h2 + Pn,n−1/h
2.

Our stopping criterion is
‖r‖h

‖b‖h

< 10−8, where r = b−Av is residual, and ‖•‖h means

discrete L2 norm.

We use the following methods for solving later examples.

• Concus and Golub method: Choose K equal to min-max value, and use “GEN-
BUN” routine which is in “FISHPACK” as our fast poisson solver.

• V-cycle method: Use RBGS relaxation with 2 sweeps before the correction step
and 1 sweep after the correction step. And use full weighting restriction and linear
interpolation operators.

• ICCG method: Use Incomplete Cholesky factorization as a preconditioner of con-
jugate gradient method.

• MGCG method: Use V-cycle method as a preconditioner of conjugate gradient
method.
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We choose two coefficient functions

gs(x, y) = − sin(π(x + y))
3
2

+ sin(π(x + y))

and

go(x, y) = − 80 sin(2π(x + y))
3
2

+ sin(2π(x + y))
.

Clearly, gs(x, y) is a smoother function. The maximum of gs(x, y) is about equal to 2.0,
and the minimum of gs(x, y) is about equal to −4.0 on the domain [−1, 1]×[−1, 1]. On the
contrary, go(x, y) is a large amplitude function. The maximum and minimum of go(x, y)
are 160 and −32 respectively.

We also choose two functions

us(x, y) = sin(πx) + cos(πy)

and
uo(x, y) = (y2 − 1)(y − 1)(e5y sin(4πx) + e−5y cos(4πx))

as our exact solutions. The function us(x, y) is smoother than uo(x, y). This also means
that the approximation of us(x, y) is more accurate than the approximation of uo(x, y)
under the same conditions.

Now, we use these functions gs(x, y), go(x, y), us(x, y) and uo(x, y) to result four
examples, and show numerical results including CPU time (sec.) and necessary iterations
to achieve stopping criterion on different grid numbers N = 1282, 2562, 5122, 10242.

Example 1.1: gs(x, y) uo(x, y)

Iterations Concus and Golub ICCG MGCG V-cycle
N = 1282 5 117 7 7
N = 2562 5 218 7 7
N = 5122 5 428 7 6
N = 10242 5 796 7 6

CPU time Concus and Golub ICCG MGCG V-cycle
N = 1282 0.3 0.7 0.6 0.6
N = 2562 1.1 4.6 2.3 2.2
N = 5122 4.8 34.0 9.2 7.8
N = 10242 23.0 264.0 36.6 31.0

In this example, we can find that ICCG is not a good method since it need longer CPU
time to achieve stopping criterion. So incomplete Cholesky factorization is not a good
preconditioner for conjugate gradient method here. We can try to use modified incomplete
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Cholesky factorization (MIC) for construction of the preconditioning matrix, see [6]. We
also find that the number of iterations of ICCG increases when N becomes larger.

The other methods like Concus and Golub, MGCG, V-cycle converge with very few
iterations. And their number of iterations is almost independent of N. Therefore, the
CPU time needed for these methods reach stopping criterion is much less than ICCG
when N is very large.

Up to now, Concus and Golub method seem to converge rapidly. It is even better
than multigrid method. Let us continue seeing the next example.

Example 1.2: go(x, y) uo(x, y)

Iterations Concus and Golub ICCG MGCG V-cycle
N = 1282 271 144 9 11
N = 2562 267 282 9 10
N = 5122 266 533 9 9
N = 10242 266 1006 9 8

CPU time Concus and Golub ICCG MGCG V-cycle
N = 1282 9.0 0.73 0.7 0.8
N = 2562 36.0 5.2 2.8 3.0
N = 5122 158.0 39.0 11.6 10.8
N = 10242 784.0 305.0 46.0 40.0

This example uses a high amplitude function go(x, y) as coefficient. Clearly, the iterations
and CPU time of all methods increase. But we note that Concus and Golub method
results in very very slow convergence. Its CPU time needed is even longer than ICCG.
This phenomenon can be explained by below inequality introduced in the last section.

ρ ≤ M −m

2λ + M + m
< 1,

where M and m denote the maximum and minimum of g(x, y) respectively. λ is the
smallest eigenvalue of the discrete matrix of Laplace operator, and ρ is the spectral radius
of iterative matrix of Concus and Golub method. In example 1.1

M −m

2λ + M + m
≈ 0.08,

but in example 1.2
M −m

2λ + M + m
≈ 0.93.

That is why Concus and Golub method need so many iterations to reach stopping criterion
here. In next two examples 2.1,2.2 we replace uo(x, y) in examples 1.1,1.2 with us(x, y).

Example 2.1: gs(x, y) us(x, y)
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Iterations Concus and Golub ICCG MGCG V-cycle
N = 1282 9 124 7 7
N = 2562 9 232 7 6
N = 5122 9 442 7 6
N = 10242 9 869 6 6

CPU time Concus and Golub ICCG MGCG V-cycle
N = 1282 0.3 0.6 0.5 0.5
N = 2562 1.3 4.1 1.9 1.6
N = 5122 5.6 30.6 7.8 6.4
N = 10242 28.3 257.0 27.3 25.6

Example 2.2: go(x, y) us(x, y)

Iterations Concus and Golub ICCG MGCG V-cycle
N = 1282 394 144 9 12
N = 2562 393 282 9 10
N = 5122 392 554 9 10
N = 10242 392 1078 9 8

CPU time Concus and Golub ICCG MGCG V-cycle
N = 1282 12.0 0.63 0.6 0.8
N = 2562 53.0 4.9 2.6 2.6
N = 5122 228.0 38.0 10.2 10.6
N = 10242 1153.0 317.0 41.0 35.0

After observing results of these two examples, we get the same conclusion discussed
before. But we can find another phenomenon by comparing with example 1.1 and example
1.2. The number of iterations and CPU time needed of Concus and Golub method and
ICCG increase, but MGCG and V-cycle almost remain the same number of iterations
even if us(x, y) may cause smoother error in these examples. That is because multigrid
method can reduce smooth error efficiently.

In this thesis, we do not compare MGCG and V-cycle (ordinary multigrid) methods.
Which is the better method? What is the difference of behaviors between the MCCG and
multigrid methods? We can find answer in [10]. In [10], it gives a special example. The
matrix produced by the discretization of this example has scattered eigenvalues. This
scattered eigenvalues prevent the ordinary multigrid method from converging rapidly.
We can observe the eigenvalue’s distribution after multigrid preconditioning from [10].
Almost all eigenvalues are clustered, and a few eigenvalues are scattered. The conjugate
gradient method hides the defect of the multigrid method. Therefore, the MGCG method
is superior to the multigrid in this situation.
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6 Conclusion

After testing above examples, we know that multigrid method suits to be used for solving
general nonseparable elliptic equations. Since no matter g(x, y) is smooth or oscillatory
and smooth or oscillatory error resulted, multigrid method always converges in very few
iterations. This means that multigrid method convergence stably. We also know an
important advantage of multigrid method from our nu- merical examples. That is the
number of necessary iterations is independent of mesh size.

There is another advantage of multigrid method. It is easy to be parallelized. We do
not introduce the parallelism of multigrid method in this thesis. The content of parallel
multigrid can be studied from [11]. These above reasons explain why we use multigrid
method for solving Helmholtz equation here.
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