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Abstract

There are two partsin the thesis. In the first part, we discuss that electrons confine
in quantum nanostructures. We use self-consistence iteration method for solving the
nonlinear PDE system. The system consists of Poisson equation and Schrodinger
equation. It describes the electronic changes in quantum nanostructures by the
nonlinear PDE system. In the second part, we try to compute a new formulation derived
by Prof. Hsu. From the formulation, we hope to get good numerical results by using
finite element method. The main goal of thisthesis isto simulate electronic properties
of well-known atomic models by using our still under development finite element codes
for future research on density functional theory.
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Part |
Electron confinement in quantum
nanostructures

1 Introduction

In the world of quantum, the interesting problems are the problems in three-
dimension (3D). But the complicated problems are always constructed from the
simple problems. Thus, we compute the self-consistent electron states and con-
fining potential, V (r; T), for laterally confined cylindrical quantum wires at a
temperature T from a numerical solution of the coupled Poisson and Schr ddinger
(PS) equations.

Our purposes are two fold.

First, we compute the self-consistent electron density function n(r;T) and
confining potential V (r; T) for laterally confined cylindrical quantum wires from
a numerical solution of the coupled Poissen and Schrddinger (PS) equations.

The second purpose is to contrast the.results of the relatively simple Thomas-
Fermi approach with thaose of the coupled 'PS theory and thereby assess the
validity of the Thomas-Fermi approximation in;laterally confined nanostructures.

2 The Model Problem and Numerical Methods

We begin by obtaining the eigenstates of an electron that is bound in two dimen-
sions by a cylindrically symmetric nanostructure. The wave function factors in
the usual way,

1 . .
\If|;m;k = pfdh;m(r)e'mee'kz (21)

where m = 0; £1; £2; :::is the azimuthal quantum number, | = 1;2; 3; :::is the ra-
dial quantum number, and L is the length of the cylinder. The subband spectrum
is then labeled by three quantum numbers, Ejmx = (h?=2m*)k? + A\.;m, where
Ai:m 1S the eigenvalue associated with the eigenstate ®,.,, of the radial Schrddinger
equation,

—h? 1d d # m2#

om* rdr l’& I Pim(r) +V (N @rm(r) = Aim@im(r) (2.2)

and the boundary condition is :

®.m(R) = 0, at the exterior surface (2.3)



We assume that the ., have been normalized according to
z

R
2r  drrd? (r) = 1. (2.4)
0 ;
Using the one-electron wave function ¥,..,. , the density function is given by
=<
n(r)=Ni O (NF_1[8( — Aim)] (2.5)
I;m
where
N; = (2m*=mh?)'~
and

Zq

Fyl0— )] = B o H[L+ exp(x — (0 — AT

where F_1 is a Fermi-Dirac integral, § is 1=(KgT), KgT = h?(3m2Ng)?=3=2m*,
and p is the chemical potential(Fermi-level).
Equation (2.5) gives the density of the electron gas at a distance r from the
central axis.
We then obtain the electrostatic potential ¢ from Poisson’s equation ,
Ld'_ do(r)
Trdrl L dr
where Ny is the number density of donors.and where " is the dielectric constant.
The potential energy V of the'electron'is given by V. = —e¢. The boundary
condition of equation (2.6) is

J= SNg= nlo(n]g | (2.6)

V(R) — pu = 0:7eV

2.1 Finite Element Method
2.1.1 Introduction

The basic idea in the finite element method is to find the solution in infinite di-
mensional space by approximating it in a finite dimensional subspace. Moreover,
in the finite element method, it will often be possible to improve or refine the
approximate solution by spending more computational effort.

2.1.2 Numerical procedure

In this approach, starting from an initial guess for ¢, one repeats solving the
Schrddinger equation , computing n(r), and then updating ¢(r) , until the iterates
converge to a the self-consistent solution.

Employing the standard 1D finite element method, the radial Schradinger
equation (2.2) is equivalent to the matrix eigenvalue problem A¢ = AB¢, where
A and B are tridiagonal.



Algorithm)

(1)To get an initial guess ® by solving Poisson’s egnation.

(2)According to V (r) = —ex ®(r),we can know the potential energy V of the
electron.

(3)To Get ). (r) by sloving the %chrtidinger equation.

(4)Eigenvectors normalized by 27 X drr 7L (r) = 1.

(5)Compute n(r). The density function is given by

= 2
n(r) =Ny n(NF_1[6(1 — Aim)]
I;)m
(6)To obtain the electrostatic potential ® from Poisson’s equation.
(7)Repeating the procedures (1)~(6) until the iterates converge.

2.1.3 Discretization

Finite Element Method for 1D Poisson’s Equation

_1d 4o
rdr dr

Boundary Conditions:

] = SFNg — n[&(r)]g

V(R) = = 0:7eV

Multiply (2:6) by an aribitrary-test function'v(x), and integrate over (0; R).Now
choose v(x) satisfying v(R).= v(0) =0;-and then we get the form

R R
dodvii'V do _
A(D;v) = 0 (—dr rrie 7_dr)’ F(v) = 0 fvdr

=) A(®n;vh) = F(w), for all vy, 2 fv 2 S"v(0) = v(R) = 0g.Without
considerigg B.C.s, we have the matrix formulation AU = F.

li—1 1 ria 1 T
%a“ = |n(2h + ri_l)(w) + |n(2ri_1)(—ﬁ — ?) + |n(2h + 2]’.)(3 + E)
+|n(2ri)(%);i = 1N

A = ri_l ri_l - ')
§ di(i-1) = |n(2h + 2ri_1)(—?) + |n(2ri_1)(?), i=2:N
1 rig (N S .
= ai_ni = In@h+2ri_))(—— — —=)+In(@2r;_))(= + —); i =2:::N
5 :§ 1) ( 1)( h e ) ( 1)(h e )i
U,
U,
U=g :
Un



R-1
(Fi=  fo=f(rjh;ji=2:N -1

F — ri—1
- h h
Fl = Ef(rl), FN = Ef(rN)
Impose B.C,,

Solve AU = F by the Preconditional Conjugate Gradient Method.
2.1.4 Finite Element Method for 1D Schrédinger’s Equation

m2
2:1*[3—- ddr ddr r2 ]q)l;m(r) +V (r)q)l;m(r) = )\I;mq)l;m(r) (1)

Boundary condition:®(R) = 0.
The process of Finite Element Method:

1. (1)Choosing an arbitrary test function v(r) and integrate over (0; R).

=)

h2 2R1d dq>(r) ZrRm? Zr  ZRr
(o (g ) ?Q(r)v(r))+\? Sav=A v
=)

h? v(r), do&(r) = 4R de(r).  v(r) h? 2 RO(r)v(r)

2r9( (r dr )JO 0 (r dr )a( r ))+2m*m 0 r2

+ dv

z g’
=)\ dv

0
Set the test function v(0) =v(R) =0
=)

dv(r)
h2 2R dor), Fgr VD n AR LER. 4R
2m* o (r dr X r2 )+2m*m 0 r2 +v 0 PV =2 0 v
=)
h? 2R do(r)dv(r) do(r)v(r), h? L,ZRrRa@r)v(r) %R __ R
2m*o(dr dr  dr r)+2m*rn 0 r2 +\90q>v_/\0q>v
> » »
A( qu)j;vh) = )\B( qu)j;vh)
Jj=1 j=1
=)
h?2 2 dbdv 2 dbv, m2h?Z v z L Z

A(@,V)—Zm*( Ea— EF) e §d>+\7‘ dv B(q),V)— dv



aij = A(®5; ®i); bij = B((®;; i)
We have to only compute aj¢i_1); @ii; @ici+1); bii—1); bii; bici+1),0ther elements
are zero.
Example for ajg. 1) :

h° 2R dBiea(r) di(r)  ddis(r) &i(r)

Qici+1) = A(Djq; ;) =
G+1) ('1'2) 2m*o(drzdr dr . )
2 R &. . R
+h_m2 w_{_\? D1 D;
2m* 0 r2 0
Linear Transformation:
r-ri _¢+1
Figegr — T 2
+ 1)h
o=,

Linear shape function:y,(§) =55; 0, (&)= &£

he 21 dy,()dus(@)r 2 Z1dy()  va(® 2 h

_ h
ai(i+1)_2 ( ( de de (E)Z'Edf)—

= Lode @roh, h 2™
2 1
h2 Z, h Z h
- A A AGUACRE
( 5 +l’i)2
_hfr 12 %11 1-¢
Ai(i+1) ~om- _1(—Z'de)—m 1 def)
e %1 1 g2 h Z11_¢ 1+¢ h
o™ G nnrany 2%t g%
w1, n1?%i 1o¢ h2 , h%1  1-¢
W) =R "amz (Eronran @ e ™ 2 (@ Dhrany
8 '3



Using Gaussian Quadrature(Zienkiewicz and Taylor, The FEM,#4th ed,McGraw-

Hill,1989)

1-¢ Ry 1-¢
€+ Dh+2r" 1 ((g+ Dh+2ry™
Hence we can get all values of aji+1y,i =1;2;::5N -1

R
compute 1 (

By the same way, the values of ajg_1y; aii; bi¢i—1); bii; bi¢i+1) Will be obtained
easily.

Discretization completed, and the next topic is how to find out the efficient
solver of AU = ABU .

For large scale matrix,we use Jacobi-Davidson method to compute the eigen-
pairs.

2.2 Linear system solvers
2.2.1 Jacobi-Davidson Method

Algorithm , Jacobi-Davidson method for linear eigenvalue problem:
Choose an initial unit vector v | ¥ =[w],

Inner Loop © For &=1.. = do:

o compute H, =V AV,

compute the desired eigenpair (A,,».) of H,;

compute the corresponding Ritz vector w, = F v, .

compute the residual », =4u, — A,

if convergence then exit;

Tar-l
u M n

compute the new direction ¢ =ad ™, - M r , e=——*
wy M Tay

o orthonormalize [B.¢,] into ¥,

Festart : use a few of the last Ritz vectors as initial wvector

Algorithm , JD method for Linear Eigenvalue Problem
2.2.2 Conjugate Gradient Method

The pseudocode for the Preconditioned Conjugate Gradient Method is given be-
low.

1. Compute r©® =b — Ax© for some initial guess x©.

6



Begin Loops for i = 1;2;::
. Solve Mz(-D = rG(i-1)

L piy = rDTZG-D

fi=1
p® =z©
Else

Bi—1 = Pi_17Pi2

p(i) = Z(i—l) + ﬁi—lp(i_l)

End If

. q® = Ap®

c i = i =p@Tq®

. X® = x(G-D 4 o;p®

Cr® =D _ giq®

. Check convergence continue if ‘necessary
End Loops.



2.3 Numerical Results
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FIG. 1. Self-consistent confining potentials (dashed curves,
right ordinate) and electron density functions (solid curves, left
ordinate) for (a) Poisson-Schrodinger theory and (b) finite-
temperature Thomas-Fermi approximation, for T =10 and 300
K and indicated doping densities (units of 10" em ™).
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FI1G. 3. Partial electron density functions at T = 10 K associ-

ated with various values of the angular momentum quantum
number, along with the total density function that results from
summing the individual contributions for all values of |m|.
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APPENDIX
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Part 11
3D Finite Element Method of

Self-consistent Density
Functional Theory

3 Introduction

Density functional theory is an extremely successful approach for the descrip-
tion of metals, semiconductors, and insulators. The last decade has witnessed a
proliferation in methodologies for numerically solving large-scale self-consistent
eigenvalue problems. The result of Kohn-Sham equation in density functional
theory will be reviewed. We mainly foucs on a new formulation in density func-
tional theory by HSU [HSU,2003] using the 3D finite element method. The new
formulation that drops the exchange-correlation term makes the computation po-
tentially much traceable in physics without.any ad hoc assumption. Single atoms
(e.g., H,He,Li,Be,B,...) will'be-included:in our test programs. Besides, we will
discuss some computations of excited state of single atomic system with consider-
ing Singlet and Triplet state. Summary of the above description, some objectives
of the thesis are

1.To Implement Kohn-Sham“equation in-order to review the results of single
atomic system.

2.To run programs for new Hsu’s DFT formulation.

3.To show the results of new Hsu’s DFT formulation imposing electrons of
Singlet and Triplet state.

4 Literature Survey

4.1 Theoretical Development

The key problem in the structure of matter is to solve the Schrodinger equation
for a system of N interacting electrons in the external coulombic field created by
a collection of atomic nuclei. It is a very difficult problem in many-body theory
and, in fact, the exact solution is known only in the case of the uniform electron
gas, for atoms with a small number of electrons and for a few small molecules. It
usually gets these solutions by numerical skill. At the analytic level, one always
has to resort to approximations.

4.1.1 Hartree approximation

The first approximation may be considered the one proposed by Hartree. It
consists of postulating that the many-electron wave function can be written as a

12



simple product of one-electron wave functions. The Hartree approximation treats
the electrons as distinguishable particles.

4.1.2 Hartree-Fock (HF) or self-consistent field (SCF) approximation

It is to introduce Pauli exclusion principle (Fermi statistics for electrons) by
proposing an antisymmetrized many-electron wave function in the form of a Slater
determinant. It has been for a long time the way of choice of chemists for calcu-
lating the electronic structure of molecules. In fact, it provides a very reasonable
picture for atomic systems and also provides a reasonably good description of
inter-atomic bonding.

4.1.3 Thomas-Fermi (TF) approximation

Parallel to the development of this line in electronic structure theory, Thomas
and Fermi proposed, at about the same time as Hartree (1927-1928), that the full
electronic density was the fundamental variable of the many-body problem and
derived a differential equation for the density without resorting to one-electron
orbitals. The Thomas-Fermi (TF) approximation was actually too crude because
it did not include exchange andicorrelation effects and was also unable to sus-
tain bound states because of the approximation used for the kinetic energy of
the electrons. However, it set up:the basis for the later development of den-
sity functional theory (DFT), which has been the way of choice in electronic
structure calculations in condensed: matter physics and it also became accepted
by the quantum chemistry. community bécause of its computational advantages
compared to HF-based methods.

4.1.4 Hohenberg-Kohn theorem

In 1964, Hohenberg and Kohn formulated and proved a theorem that put on solid
mathematical grounds the former ideas, which were first proposed by Thomas and
Fermi. In Hohenberg-Kohn theorem the electronic density determines the exter-
nal potential, but it is also needed that the density corresponds to some ground
state antisymmetric wave function, and this is not always the case. Up till now,
both the exact ground state density as well as the Hohenberg-Kohn functional
is still unknown, so one cannot make use of the Hohenberg-Kohn theorems to
calculate the molecular properties.

4.1.5 Kohn-Sham equations

In 1965, Kohn and Sham proposed the idea of replacing the kinetic energy of the
interacting electrons with that of an equivalent non-interacting system, because
this latter can be easily calculated. Kohn and Sham introduced a fictitious sys-
tem of N non-interacting electrons to be described by a single determinant wave
function in N ”orbits.” We have seen that a reasonably good description can be
obtained by separating the electrostatic (classical Coulomb energy), exchange and
correlation contributions. The biggest difficulty is to deal with correlation.This

13



is, in fact, an active field of research that has produced significant improvements
in the past decade. This correlation term has to tread on an approximate man-
ner. Although there are many different functions available, almost all of them
are derived from the electron density of a uniform electron gas, which can be
calculated by means of statistical thermodynamics.

4.1.6 Hsu Formulation

A generic derivation from cluster expansion results in a new DFT formulation
without the exchange-correlation term that makes the computation much trace-
able in physics without ad hoc (e.g., local density spin approximation (LDSA))
assumption.[J.Y.Hsu, PRL 2003]

4.2 Numerical Methods

The last decade has witnessed a proliferation in methodologies for numerically
solving large-scale problems in physics. The rapid growth has been driven because
a wide variety of computational methods and numerical algorithms have exploited
that physical locality. This review examines one subset of these new computa-
tional methods, namely real-space technigues. Real space methods can be loosely
categorized as one of three types: finite-differences (FD), finite elements (FE), or
wavelets. All three lead to structured, very sparse matrix representations of the
underlying differential equations on meshes in real space. Applications of wavelets
in electronic structure calculations’have been thoroughly reviewed recently [Arias,
1999]. Asimplied in the title, the'primary focus is on calculations in density func-
tional theory (DFT); real-space methods are in no way limited to DFT, but since
DFT calculations comprise a dominant theme in modern electrostatics and elec-
tronic structure, the discussion here will mainly be restricted to this particular
theoretical approach. The early development of FD and FE methods for solving
partial differential equations stemmed from engineering problems involving com-
plex geometries, where analytical approaches were not possible [Strang and Fix,
1973]. Example applications include structural mechanics and fluid dynamics in
complicated geometries. However, even in the early days of quantum mechanics,
attention was paid to FD numerical solutions of the Schrodinger equation [Kim-
ball and Shortley, 1934; Pauling and Wilson, 1935]. Real-space calculations are
performed on meshes; these meshes can be as simple as Cartesian grids or can
be constructed to conform to the more demanding geometries arising in many
applications. Finite-difference representations are most commonly constructed
on regular Cartesian grids. They result from a Taylor series expansion of the
desired function about the grid points. The advantages of FD methods lie in the
simplicity of the representation and resulting ease of implementation in efficient
solvers. Disadvantages are that the theory is not variational, and it is difficult to
construct meshes flexible enough to conform to the physical geometry of many
problems. Finite-element methods, on the other hand, have the advantages of

14



significantly greater flexibility in the construction of the mesh and an underlying
variational-type formulation. Other advantages include easier parallel implemen-
tation using domain decomposition and possible mesh refinement in regions where
solution changes rapidly, as mentioned earlier. However, the cost of the flexibility
is an increase in complexity and more difficulty in the implementation of multi-
scale or related solution methods [Thomas, 2000].Nevertheless, we mainly discuss
the fundamentals of FEM solutions of the self-consistent nonlinear coupled Pois-
son and Schrddinger (PS) equations in density-functional theory (DFT) in this
thesis.

15



5 Density Functional Theory
The Hamiltonian in its original form is very complex:

_ hrX_, X g XX  Z.e? h? X _, X g2

- o N - o - P 5 + T
2m ; " Lin-nl  dn—Rd o 2M R ki JRk = RyJ

2
which involves sums over all electrons/nuclei and their pairs involving kinetic
energy and columbic potentials.

5.1 Hartree Approximation

Hartree approximation consists of postulating that the many-electron wave func-
tion can be written as a simple product of one-electron wave functions. It seems
plausible that it might be useful to start with a wavefunction of the general form

D(ry;ro; ra; i rn) = "o(ry) = ",(rp) = ik " (rn)

which is known as a Hartree RProduct. While this functional form is fairly
convenient, it has at least one major shortecoming: it fails to satisfy the antisym-
metry principle, which states that a wavefunction describing fermions should be
antisymmetric with respeet ito the interchange of any set of space-spin coordi-
nates.

5.2 Hartree-Fock Approximation

Hartree-Fock theory is fundamental to much of electronic structure theory. It is
the basis of molecular orbital theory, which positulates that each electron’s motion
can be described by a single-particle function (orbital) which does not depend ex-
plicitly on the instantaneous motions of the other electrons. Hartree-Fock theory
was developed to solve the electronic Schrddinger equation that results from the
time-independent Schrddinger equation after invoking the Born-Oppenheimer ap-
proximation (Neglects motion of nuclei [heavier than electrons]). In atomic units,
and with r denoting electronic and R denoting nuclear degrees of freedom, the
electronic Schrddinger equation is

2 3

1X xZ X Z.Z <1
4_-" 52T Ay AT + 7 Z59(rR)=EY(;R)  (5.1)
2 i Al FAi A>B RAB i>j rij

The Hartree approximation treats the electrons as distinguishable particles.
A step forward is to introduce Pauli exclusion principle (Fermi statistics for elec-
trons) by proposing an antisymmetrized many-electron wave function in the form
of a Slater determinant:
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"i(ri o) "y(ro;o0) i Ti(rn o)
"o(ry o) To(rzio2) it To(rnon)

o(r;R) = SDT*(r;;09)g =

=i~

"N o1) (e o2) i T (s o)

Hartree-Fock approximation has been for a long time the way of choice of
chemists for calculating the electronic structure. In fact, it provides a very rea-
sonable picture for atomic systems and, although many-body correlations are
completely absent, it also provides a reasonably good description of inter-atomic
bonding.

5.3 The Kohn-Sham Equations

The Kohn-Sham self-consistent eigenvalue equations for electronic structure can
be written as follows:
1

(=3 5% +Verr) Wilr) = " Wi(r); (3

where the density-dependent effective potential is
Vert (1) = Ve nuc(F) Ve e ([o(M)]) + Vic([p(N)]; 1), (4)
Ve_nue = external potential; Vo2, = i .‘Lro?rdro, Ve = & | E . =exchange-

. jr=ry ép
correlation enery.
Local Spin Density Approximation (LSDA) : exchange-correlation energy Exc

is a simple known funtion
z

Elp(0] = ;O (20 + (o ©

The classical electrostatic potential Ve_pnyc(r) + Ve_e(r) is due to both the
electrons and nuclei, and the (in principle) exact exchange-correlation poten-
tial V.. ([p(r)]; r) incorporates all nonclassical effects. The exchange-correlation
potential includes a kinetic contribution, since the expectation value of the Kohn-
Sham kinetic energy is that for a set of noninteracting electrons moving in the
one electron effective potential. The electron density p(r) is obtained from the

occupied orbitals :
o]

p(r) = ji(nj*: (6)
i
Standard electrostatics tells us that doing V,_. integral is equivalent to solving
Poisson’s equation. Hartree Potential V,_, is solution of the Poisson equation:

52Ve—e = —4mp(r): (")
We slove it by Conjugate Gradient Method once a distribution p is known.
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5.3.1 Self Consistency

1.
(5574 Ve muelT)HVe ([N Vsl oD ML) = “l(r); = 1555 5
2.
o= | T
3.

52V,_ = —4mp(r):

The Self Consistent System can be viewed as a nonlinear eigenvalue problem,
because V4. and V,_. both depend on p.
Self-Consistent Iteration :

1.
Initial Guess forV;set V._. =0
2.
1 2 n
Slove (_5 5% HVerr) Ui(r) = " W5(r)
3.
Owi
Calculate new p(r) = jwi(n)j?
i
4,
Show 52V,_. = —4xp(r) for a new Ve_,
5.
Compute Vye = F[p()] , Vhew = Ve—nue + Ve—e + Vxc
6.

If jVpew — Vj < TOL, STOP

18



For example, we want to solve Li atom of configuration 1s?2s with 2 spin up
and 1 spin down orbitals. First, we group all the orbitals into two types, spin
up and down and then sum all the spin up orbitals to get p. and p, from spin
down orbitals. Then put them into the exchange potential for different spin type.
Finally, we solve the KS equations seperately with respect to different types of
spin.We have p. =j¥(ls;")j? + j¥(2s;")j? and p, = jU(1s; #)j>.

Therefore, the equation we solve is

1
(_5 52 +Veff;")\I]i;" = "i;"\Ifi;-- (8)

for spin up orbitals and replace " by # for spin down orbitals.We can have the
form of Vyc.» = w The correlation functional is the same as exchange
functional if we can find or have its functional form. If we can not have the
correlation functional form for different spin types, just use the functional form
without considering the spin type.

5.4 A New Density Functional Theory (J.Y.Hsu, PRL
2003)

The paper (J.Y.Hsu, PRL: 2003) gives a.new derivation of Density Functional
Theory from a cluster expansion by truncating the higher-order correlations in
one and only one term in the kinetic.energy. The new formulation admits excited
states and allows self-consistent: calculation.of the exchange correlation effect
without any ad hoc assumptions.

The wave function W is chosen‘as the product of a single-electron wave function
®, and an N-body correlation function,

T() = L, 2(r)U(T) (9)

" is the N-particle phase space point equivalent to the expression (ry; ry;:::;ry).
The exchange symmetry is imposed on U and on the indistinguishable particles
so that each electron is described by the same ®. This gives the density function

as follows:
Z

n(r) =  OLd7ij®(r)i%ju (re; ra; 2 ra) @(0j2 = M(Dje(n)j* = jTo(r)j?; (10)

where the index starting from i = 2 is chosen for convenience by imposing the
exchange symmetry, and dr; is the volume element of ith particle. For the im-
mobile ion | with charge Z, and N representing the number of electrons, the last
derived equation is

* +

Zwnm+ P

" (r)——}52\11(r)—x
T2 ° | Jr—Ryj
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where

> 1 + R dTOJ‘I’o(r )i
; i R¢ (12)
jr—rj d7'jTo(r)j2

The derivation of the density functional theory (DFT) from the cluster expansion
corrects the spurious self-interaction energy in the classical DFT, admits the
excited states, and has a self-consistent exchange correlation effect.

Excited States (Singlet and Triplet States)

—_—e
I S S—

Triplet States Singlet States
For a particle j in an arbitrary orbital, the generalized equation is

Ly < d°m w;(r):

} 1_, >
vi(r) = —5 57 ¥;(r) -
2 i jr—

5 = R G (r) +
(13)
Varying a nonnegation- trial function v (ry;r,) = exp(gjr1 — r2j) and holding
U, constant to minimize the total energy, subject to particale conservation
z z

N = dTldejI/(rl; rz)jzp(rl)p(rz) = dTldej\If(rl; rz)jZZ (14)

We reduce to the simplified 3 = 0 version

1 X Z,
"I(T)= s r2T () - - T (T) (15)
2 Jn —Rij
LLXE (B 12 (1) Ve(T)
5 —_'—_'—

dr d
2 Jri — s( 1) g&s T2 Jri —-r@

w,(1):

&S
Example for excited Be(2 1S,1 2S,1 2P)

1 > Z
"Wos(ry) = 3 r’Wys(ry) — ﬁ‘l’zs(rl) (16)

jP1s(r2)j? Tys (1) + 1% dr, 1W2p ("2)]_
. jri—roj jri—raj
1 U3 (r2) Was(ro) Uy (11):

:FE dTZ J rh — r2j

+ dr,

25 (rl)
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6 NUMERICAL METHODS

6.1 Finite Element Method
6.1.1 Introduction

The Finite Element Method is a numerical method which can be used for the
accurate solution of complex engineering problems. The method was first devel-
oped in 1956 for the analysis of aircraft structural problems. Thereafter, within
a decade, the potentialities of the method for the solution of different types of
applied science and engineering problems were recognized. Over the years, the
finite element technique has been so well established that today it is considered
to be one of the best methods for solving a wide variety of practical problems
efficiently. In fact the method has become one of the active research areas for ap-
plied mathematicians. One of the main reasons for the popularity of the method
in different fields of engineering is that once a general computer program is writ-
ten, it can be used for the solution of any problem simply by changing the input
data.

Many problems that find outits appreximate numerical solution to predict the
response of physical system.subjected. to.the external influences arise in many ar-
eas of engineering, science,;and applied mathematics. The Finite Element Method
which is a computer-aid mathematical technigue is just a powerful method for
obtaining approximate numerical solution. Up to now,applications to date have
occurred principally in theareas of solid‘mechanics, heat transfer, fluid mechanics,
and electromagnetism. New ‘areas of application are continually being discovered,
recent ones include solid-state physics'and quantum mechanics.

6.1.2 Procedure of Finite Element Method

Discretization The discretization of the domain into subregions is the first
step in FEM. We choose the tetrahedral element as our basic element shape to
partition the domain.
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tetrahedral element o )
By the software (HyperMesh), we can partition the domain.

Frame 001 | 23 Mar 2005 |

3

The meshes of 3D computation domain( r=20 Bohr)
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Shape Functions The typical 3-D linear tetrahedral element trial solution can
be written

X
B(ria) = oNj(xy;2)
i=1

The special coordinates are introduced defined by

X = LiX; + LoXo + LaXs + LaXy (8.2)
y = Liy1 + Loys + Lgys + Lays (8.b)
z=L12; + Lz, + L3zz + Lszy (8.0)

l=Li+L,+Lz+ L, (8.d)

The coordinates of point P [Zienkiewicz and Taylor,2000]
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Sloving Eq(8) gives L; = 4t bix(-;/ciy * diz etc.
C

1x1y12
1X2Y22;
1X3Y323
1X4Yya24

Ve =

Ci = — | Xk 1lzk

and

The linear shape functions for the‘linear element are simply
Ni = Li; Nj = L5 Ne = Lis Ny =L

where V. represents the volume of the tetrahedron.
6.1.3 Wkeighted residual approach

Variational approach requires a knowledge of a variational problem( functional to
be extremized or made stationary ) for the given problem. Usually we encounter
problems for which the variational principles are not known. Weighted residual
approach in the finite element method can be applied even in these cases.We can
derive directly from the governing differential equations of the problem without
any need of knowing the ’functional’ by weighted residual approach.

For a particle J of one nucleus system in an orbital, the governing equation
IS written as

1 Z
~3 5% W,(r) — ?‘I’J(F) + 1 W;(r) ="U,(r) (17)
X 2 ()i
m=2 o0l (18)
2 g 3 jr—rj

where U, is the density function of a a particle J in an orbital that is limited to
two electrons with spin polarization to satisfy the Pauli exclusion principle, r and

24



R is the coordinate from the zero point of the computing space, Z is the number
of positive charge of the nucleus, the subscript 1 means the kind of nucleus .
STEP 1.
Using a trial solution 8(r;«) to approximate the density function ¥(r), we
first write down the residual equation for each orbital J :
1 Z
Ry(ria) = -5 528(r;a) = Z0(r;0) +1,08(r;0) = "8(r;a)  (19)
The typlciL 3-D element trial solution is always written in the general form
B8(ria) =" |- 1aJN (r) and one residual equation is
Ry(r;a)Ni(r)dv =0; 1i=1;2;::;5n (20)

where it integrates over one element and n is the number of nodes in an element.

ZZ?

2
21
STEP 2.
Divergence Theorem =)
1977 N es(nd) (NS , N ESria) )
2 Ly @x @x @y oy 0z 0z
7 Ni(r)@(ria)dv
277
+ I3 N;(r)8 (r; a)dVv
277
=" Ni(NG8 (r; a)dVv
| . #
=2 @@ér Ny (rnudydz + @@é;’ DNy (rynydxdz + @@g )N, (r)n dxdy

where ny, ny, and n, are the direction vectors of the outward unit normal to
the element boundary. The R.H.S. of above Equation is the boundary term
contains the flux must vanish from the system equations for the eigenproblems ,
so Equation (22) is rewritten as follows:

1222 NN @8(r;0) , BNi() 89(r;a) , ON; (r)@@(r a)
2 . @x @x dy oy 0z
> Ni(r)@(r;a)dv
222 r
+ II3Ni(r)8(r; a)av
27727
=" Ni(r)8(r; a)dVv

dv  (23)
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STEP 3.
Equation (23) is rearranged to satisfy the matrix solver as follows :

f'[M]+[N]gfag =0 (24)
where 2727
M];; = Ni(r)N;(r)dv (25)
_ 1222 aN(D ONG(r) |, ON(r) BNj(r) | BNi(r) BN;()
M= e ex gy &y e e o O
+Z wdv IT;Ni (r)N; (r)dv

STEP 4.
To transfer the integrals of Equation(24) into a form appropriate for numerical
evaluation.

Z 77
M= N (Nav @)
(it i=i= o
(It i161)= \2/—8
NT= AT [B] + [C] 28)

1222 @Ni(r) ON;(r) _ ONi() @N(r)  BNi(r) ON;(r)

Al=—= dv (29
Al 2 ex  @x ey @y 0z @z (29)
bibj + CiCj + didj
B 72V,
2212
[B]=Z de (Gauss Cubic integration) (30)

_ Ve X(au+bxk+CYk+de)(aJ+ka+CJYk+d Zk)

364 Xk'*'Yl%'*'Zk

where N is the total numbers of the Gauss points, wy is the weighting factor and
the subscript k means that the related values on the Gauss point .
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Tetrahedral

Mo.  Order Figure Error Points coordinates Weig
e L T 111 1
Linear R =0 a 313133 I
i v, 1,3, 3
h 1,00, /3,3 |
2 Quadratic R =0 e a3, o, 3 4
e 1.3, 3, 0
v = 0.58541020
4 =0.138 196 60

La|—

il
b
R = O(h") ¢
il

3 Cubic

Sl T b= T = gu]—
T B T [ O - | —

Sl Sl St —
Pl o e 5 e

Numerical integration formula of,Gayss for tetrahedral element [Zienkiewicz and Taylor, 2(

[C]=- I1; N; ()N; (r)dv (31)
STEP 5.
We obtain the term II; from solving Poisson’s equation
S21,(r) = —4mj¥,(n)j? (32)
Boundary Condition :
1
I1,(09) = (33)

" the sphere radius of the domain

Do all process of finite element method again as the same above. Poisson’s
equation is rearranged to satisfy the matrix solver as follows :

h i h i

A[X]= B
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=)
T F P T AN ON() | BNN(r) ON;(r) , Ni(r) BN, (1)
@x  0x @y @y 0z 0z
_ bibj + CiCj +didj
T 36V,
h i 2727

B = —4r j¥5(Nj*Ni(r)dV (Gauss Cubic integration)  (35)

v (34)

Deriving the elemgntgequatiopns gomplete by above steps. The Conjugate Gradient
Method can slove A [X] = B, and it means the IT; term is known now. We get
Cl; = - II;N;(r)N; (r)dV to utilize Gauss Cubic integration. All elemental
matrix equations are assembled to be algebra system that are then solved by
Jacobi-Davidson matrix solver.

6.2 Numerical Linear Algebra
6.2.1 Jacobi-Davidson Method

The Jacobi-Davidson solver gan efficientlydeal with the large-scale sparse eigen-
value matrix equation, which is still a very challenging task even nowadays. One
of the advantages in using Jacobi-Davidson algorithm to solve the DFT eigen-
value problem is the feasibility of parallelization in the future, considering the
computational demanding:-of the preblem itself.

The Jacobi-Davidson method [Voss and Betcke, 2002; Hwang, 2003] is based
on a combination of two basic principles: The first one is to apply a Galerkin
approach for the eigenproblem Ax = Ax, with respect to some given subspace
spanned by an orthonormal basis fvy; ::;; ving. The Galerkin condition is

AVySs —O0Vis ? TV ving

where Vn, denotes the matrix with columns v; to vy,. This equation has m
solutions (efm);s}m)). This m pairs are called the Ritz values and Ritz vectors
of A with respect to the subspace spanned by the columns of V,,. These Ritz
pairs are approximations for eigenpairs of A, and our goal is to obtain better
approximations by a well-chosen expansion of the subspace. Suppose that we
have an eigenvector approximation u; for an eigenvector x corresponding to a
given eigenvalue \. We suggest computing the orthogonal correction t for u}m).
AU™ +1) = Au{™ + 1)

with t 2 (u{™), t 2 U7 = fvjv*u; = 0g.
The correction equation of Jacobi-Davidson is

(A? — 9j |)t = —Tj (36)
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where rj = (A —6;1)uj, A7 = (I — uyjup)A(l — ujui).

The next is to solve the t from Eq:(34) and add t into subspace to expand the
search subspace, then iterate again with expansive subspace until convergence.
The Jacobi-Davidson method has similar convergence properties as inverse iter-
ation if the correction equation is solved exactly.

The details of solving linear eigenvalue problem using Jacobi-Davidson method
algorithm are summarized as follows [Wang et al., 2003]:

1. Given A(\) = MNAL + Ao.
To choose a random vector Vi as the initial subspace.

To compute the Galerkin condition as M; =V *A;V .

A wn

To compute the Ritz pairs (¢;s) of (M, + My)s = 0 and select the desired
Ritz pair to be eigenpair with ksk, = 1.

o

To compute u = Vs, and the residual r = A(6)u.

o

If krk, <", A =60, x =1, Quit.
7. To compute correction_term t and orthogonalize t against V, v = t=ktk,.
8. Expand V = [V;v].

9. To back to process 3 (Restart : use-a.few of the last Ritz vectors as initial
vectors ) and iterate until’krk, <™.

6.2.2 Conjugate Gradient Method

The Conjugate Gradient method is an effective method for symmetric positive
definite systems. It is the oldest and one of the best known nonstationary meth-
ods. (Nonstationary methods differ from stationary methods in that the compu-
tations involve information that changes at each iteration. Typically , constants
are computed by taking inner products of residuals or other vectors arising from
the iterative method.) The method proceeds by generating vector sequences of
iterates i.e., successive approximations to the solution residuals corresponding to
the iterates and search directions used in updating the iterates and residuals.
Although the length of these sequences can become large only a small number
of vectors needs to be kept in memory. In every iteration of the method two
inner products are performed in order to compute update scalars that are defined
to make the sequences satisfy certain orthogonality conditions. On a symmetric
positive definite linear system these conditions imply that the distance to the
true solution is minimized in some norm.
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The iterates x" are updated in each iteration by a multiple «a; of the search
direction vector p®:
x® = xG=D 4 o p®:

Correspondingly the residuals r® =b — Ax(® are updated as
r® = r(-D _ 4q® where ¢® = Ap®

The choice o = a; = rd=D7 r(-D=p®T Ap® minimizes r®" A-1r® over all possi-
ble choices for a. The search directions are updated using the residuals

p(i) =r® 4 ﬁi—lp(i_l)

where the choice 8; = r®" r®=rG-D" (-1 engyres that p® and Api—2 or equiv-
alently, r® and r@=b are orthogonal. In fact one can show that this choice of 3,
makes p® and r® orthogonal to all previous Ap® and r® respectively.

It uses a preconditioner M; for M = 1 one obtains the unpreconditioned
version of the Conjugate Gradient Algorithm. In that case the algorithm may be
further simplified by skippingsthe *solve’ line and replacing z(— by r-b,
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7 Numerical Results and Conclusions

7.1 Hsu’s Equation

7.1.1 A.(Basic Atoms):

W) = —5 5 Tor) = Zh00(r) + 5 %ol (37)

2 jir—rj

03:50 | 1030.08
07:48 | 1486.02
07:51 | 2043.74

984.38" |11013.63 |.2.89%
1406.58 | 1458.69 | 3.57%
1929.05-}.2003:00 {3.69%

Atom | Z | Energy | Exp | error
He | 2| 7816 | 79 | 1.06%
Li* | 3| 195.79 | 198 | 1.11%
Be*? | 4| 368.80 | 371 | 0.59%
B*® | 5] 595.95 | 600 | 0.68%
C** | 6| 877.05 | 882 | 0.56%
Atom | Z | Energy | Hsu Error | Iteration | Time | EXxp
He | 2| 78.16 78.63 | 0.60% 4 00:28 79
Li | 3] 197.87 | 201:12:(:1.62% 00:40 | 203.48
Be | 4| 386.31 [:394.24 | 2.01% 02:08 | 399.14
B 5| 647.71< 661.72 | 2.11% 03:47 | 670.96
6
7
8

00| 00| N| | o1 >

a. Thestandard Density Functional-approach requires 20 or more self-consistency
iterations to reach the ground state, but Hsu’s formulation spends us only 4-8
self-consistency iterations.

b. For total energy point of view, Hsu’s formulation provides good numerical
results.

c. When Z=5~10, the type of P orbit must separate into P,,Py,P, orbits.
d. The contours of 3 orbitals for B are shown in Appendix.
7.1.2 B.(A Simple H; molecular model):

1 Z, Z,
"Wo(r) = —= 52 Wy(r) — - ~Wo(r) — - Wo(r 38
o) = =5 5% Wo(1) — ;- Wo() — = Wo(0) (38)
Z1 Z2 Distance | Nucleus energy | Total energy | Exp
(-1,0,0) | (1,0,0) A 13.6eV -16.32eV | -16.3eV
(-1-10) | 1,100 2.2 9.62eV -15.79%V X
-1-1-1) | (1,1, ] 273 7.85eV -15.21eV X

a. During the molecular H,” computation, the most important advantage is to
use XYZ coordinates on locating the nucleus.
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b. Because this case only has 1 electron, results are very close to experimental
values.

c. When the distance of two nucleus is 2, the energy of H, is in the most stable
situation.

7.1.3 C.(Be with excited states):

"W,os(r )——} rW,s(ry) — Xi\lf (ry) (39)
2s\1'1) — % 2S\11 jr]_ — le ZZS 1
jU1s(r2)j? 1 jU2p (r2)j?
+ LAt ALY + = 172PA2)]
Zde T Wys(ry) > dr, TR Wos(r1)
1 Up (r2)Was(ra)
:FZ drs i1, Wop (r1)
Energy Exp Error | Time
Be 386.31 399.14eV | 3.21% | 02:06
Excited Be | 381.98 +:4:33eV 04:32

Triplet State | 384:47 | 1.84eV/ |- 2.72eVV | 32.35% | 04:32
Singlet State | 379.49 | 6.82eV. | 5.28eV | 29.17% | 04:32

a. Hsu’s new approach -Equation-admits excited states, but traditional DFT
doesn’t.

b. We only present 5 = 0 version of Hsu’s formulation, and the results are still
room for improvement.

7.2 Hartree’s Results:

* +
W) = —5 5 W) ~ o) + (N - Dal) = (40)
Atom | Z | Energy | Exp | Error | Iteration | Time | Hsu
He | 2| 78.04 79 | 1.22% 6 00:45 | 78.63
Li | 3| 203.32 | 203.48 | 0.08% 6 01:11 | 201.12
Be | 4| 396.67 | 399.14 | 0.62% 8 03:14 | 394.24
B | 5| 664.83 | 670.96 | 0.91% 17 15:00 | 661.72

a. As Zis more and more large, and it takes more iterations and time.
b. Numerical results are very good on computing single atom.

7.3 Kohn Sham Equation:

(3 5 +Ver)Wi() = "0 (0
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OExc .

Verf = Ve_nue + Ve_e + 5
P

_ 3,6 1:32 4=3 4=3
Exclp(N]= -7 (-7 () + p, " (N)dr (41)

Atom | Kin Vie Vee | Vxc E LSDA Exp | Error
He | 77.49 | -182.64 | 55.17 | -23.87 | -73.85 -74.09 0.32%

a. We review Kohn Sham Equation’s results in order to compare with Hsu’s
results.

7.4 Virial theorem Check

He Kin \V Ratio

Hsu 84.97 | -161.31 | 1.898
Hartree 77.39 | -155.43 | 2.008
Kohn Sham | 77.48 | -151.34 | 1.953

a. Obviously, Hartree’s result obeyes the virial theorem.
7.5 3D Finite Element Codes

a. During our DFT program, the Fortran. program is composed of about 2000
lines.
volume of the largest element
volume of the smallest element
c. For controlling memory efficiently, we use the method of random-pack-storage
that only records the value of the nonzero entries of matrices.

d. Now, we mesh usually 117079 nodes(1740293 nonzero terms) or 282639 nodes(4204067
nonzero terms) on the domain in one single machine(CPU:2.4G ;Ram:1G).

~10000:

e. The Gauss Cubic is a powerful numerical integration that can simplify a
complicated integral and obtain a very good approximation.

f. Mesh Generation Tool
Atom He | Ansys | HyperMesh
Node 18974 14576
Energy | 66.57 76.31
We observe that quality of grids in HyperMesh is better than in Ansys, but
Ansys tool can extend linear element to quadratic element.
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APPENDIX

Atom B eigenvectorl
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Atom B-eigenvectorl
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47



T

h

Set initial subspace

-

Compute the Ritz pairs of the
matrix with respect to subspace

w

Set the desired Ritz pair as the
eigenpair

Compute the residual

Converge 7

Yes

h 4

Expand the subspace by ¢

b

Compute the

orthonormal

correction #

No

b

Out put the eigenpair

Jacobi-Davidson algorithm

48




Compute v = b — 42" for some initial guess =!"
for i=1.2....
solve M:U=1) = pli=1)
pi_q = pli=117 =1
ifi=1
pll = -
else
.-'3":__—1 = pi—1/pi-s -
pll':' = :'.!—1 ] -+ Ij!_.lpl"_].'
endif
g'*) = Aplt)
i Ve {1]
a; = pia /P g
pl) = pl=1 4 g, pli)
pli) = pli=1) — g gli)
check convergence; continue if necessary

()

end

the Precondrit',_ic‘)neg -C.‘ori'j.uQat'e G_-]:radient Method
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