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ABSTRACT

Of concern is one-dimensional Cellular ‘Neural Networks (CNNs) with a
piecewise-linear output function for-which-the slope of the output outside
linear zone is r>0. We impose-a symmetric coupling between the nearest
neighbors. Two parameters ~aand--p _are used to describe the weights
between the cell with itself and its-nearest neighbors, respectively. We
study patterns that exist as stable defect equilibrium (see Definition 1.1 and
1.2). In particular, we given an infinite-dimensional version of
Gerschgorin’s Theorem and derive a concept of & -extendability to
determine whether two local-defect patterns can be glued together. Using
such tools, we give a region in («,a, g)-space for which the corresponding
defect patterns have non-zero spatial entropy. Moreover, the patterns
generated in those regions are not subshift of finite type.
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1 Introduction

Of concern is one-dimensional Cellular Neural Networks (CNNs) of the form

d!L’i
dt

=—x;+ 2+ Oéf(l’i_l) + af(xz) + ﬁf(l‘i_,_l), 1 € 2. (11&)

Here z; denotes the state of a cell C;, and f(x) is a piecewise-linear output function
defined by

re+1—r, ifz>1,
flz)=12 =, if |z| <1, (1.1b)
re—1+r, ifex<-—1,
where 7 is a positive constant. The quantity z is called a source term or a bias term. The
numbers «, a and /3 are arranged in a vector form [« a, /3], which is called a space-invariant
A-template

A =a, a, (]. (1.2)

A is called symmetric (resp., antisymmetric). if « = 3 (resp., a« = —f). A cell C; such
that —1 < z; < 1 will be called a linear cell. If it'dees not operate in the linear zone, i.e,
|z;| > 1, then it will be called a saturated cell.

CNN s were first proposed by:Chua and Yang [1988a, 1988b]. Their main applications
are in image processing and pattetn recognition [Chua; 1998]. For additional background
information, applications, and theory, seé [Special Issue, 1995; Thiran, 1997; Chua, 1998]
among others.

A basic and important class of solutions of (1.1) is the stable stationary solutions.

Specifically, a stationary solution x = (z;);ez of (1.1) satisfies the following equation

v =z+af(xio1) +af(x;) + Bf(xip1), @ €Z. (1.3)

Let x = (2;);ez be a solution of (1.3). The associated output y = (v;)iez = (f(2:))iez
is called a pattern. The following two types of stationary solutions are of particular

interest.

Definition 1.1. A solution x = (z;)ez is called a mosaic solution if |z;| > 1 for alli € Z.
Its associated pattern'y = (yi)iez = (f(2;))iez is called a mosaic pattern. If |x;| # 1 for
all i € Z and there are i, j € Z such that |z;| < 1 and |z;| > 1, then x = (x;);ez, and
y = (f(x;))iez are called, respectively, a defect solution and a defect pattern. If there
exists an i such that |x;| = 1, then x and'y = (f(x;)) are called, respectively, a transition

solution and a transition pattern.



To define the stability of a non-transition stationary solution, we consider the fol-
lowing linearized stability. Let & = (&)iez € €2, the linearized operator £(x) of (1.1) at a

stationary solution x = (z;);ez is given by

(L(x)E)i = =& + af (xim1)&i1 + af (z:)& + Bf (zip1) &t (1.4)

Definition 1.2. Let x = (x;)iez be a solution of (1.3) with |x;| # 1 for all i € Z. The
stationary solution x is called (linearized) stable if all eigenvalues of L£(x) have negative
real parts. The solution is called unstable if there is an eigenvalue A of L(x) such that \

has a positive real part.

For r = 0, the complexity of stable mosaic and defect solutions of (1.1) with re-
spect to all the parameters has been completely characterized when the template A is
symmetric or antisymmetric (see [Thiran et. al., 1995; Juang and Lin, 2000]). For r > 0,
the complexity of stable mosaic solutions with respect to the parameters’ regions has also
been studied by methods of map approach and geometric approach(see e.g.,[Hsu, 2000;
Chang and Juang, 2004; Lie, Liu and Juang, 2005]). In the case that r = 0, the explicit
formula for the eigenvalues of the lin¢arized.operator'L at a feasible stable defect solutions
of (1.1a) can be obtained. This, in turn, gives a'sharp conditions on the parameters for
the stability problem. Due to thé non-flatnéss of the output function at infinity, it is a
nontrivial problem to obtain the explicit formuilas for the eigenvalues of the linearized
operator L. To overcome such difficulty, we give‘an infinite-dimensional version of Ger-
schgorin’s Theorem. We also derive a concept of d-extendability to determine whether
two local-defect patterns can be glued together. Using such tools, we give a region in (r
, a , )-space for which the corresponding defect patterns have non-zero spatial entropy,
while the associated mosaic patterns have zero spatial entropy. Moreover, the patterns
generated in those regions are not subshift of finite type. The (stable) mosaic patterns
for spatially discrete Reaction-Diffusion equations have also been extensively studied by

many authors (see e.g., [3], [7]).

The thesis is organized as follows. In Section 2, we study the stability of a defect
solution of (1.1a). Section 3 is devoted to the establishment of the d-extendable local
solutions. The main results are recorded in Section 4. In particular we give a region in

(r,a, B)-space for which the corresponding defect patterns have non-zero spatial entropy.



2 Stability

In this section, we study the stability of a defect solution of (1.1). To this end, we need
to establish an infinite-dimensional version of Gerschgorin’s Theorem. Let the operator

L: (2 — (% be defined as

m

(L£(8))i = Z Qigii-k, @€ L (2.1)

k=—m

where m is a fixed positive integer, & = (&;) € (2.

Theorem 2.1. Let L be defined as in (2.1), and let A\j ={i € Z: a;_; = aj 1,
forall k, —m < k <m}. Set

K ={jeZ:A;is nonempty}, (2.2a)
and assume IC s a minimal set which satisfies the following sense.

if j1 and j, € K, then A;; “and A, are distinct. (2.2b)

We further assume that

(i) Kis finite, (2.3a)

(i) Ja =2 (2.3b)

jex

Define p;(L) = Z \ai—ri|, forieIC, and let each of C; define the circle centered
k=—m
at a;; with radius r; := p;(L) — |a;;|. Then each eigenvalue of L lies in some C;.

Proof. Let A lies outside all of C; . Write

M—-L)y=D—-(D—-(—-L))=D-K

where D : (> — ¢? is the diagonal part of £ defined as
(D(&)i = (A — aii)&.
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Clearly, D is invertible. Thus, D — K = D(I — D7'K). To complete the proof of the
theorem it suffices to prove that |[D™'K| < 1 (see e.g., Theorem 7.3-1 of [12]). To this

end, we see that

. 1 ¢
(D IK(f))i TN Z Qimtei€i—k
" e
Clearly,
1 " r
D_IK i < 00 — o < . R ]
(D7 KM < ellooma( (= > laykal) < el (32—
k0
Therefore,

7"‘.
|D Koo < max —— < 1.
JeX [A = ajj]
Note that the assertion in that Theorem is independent of the norm. We, thus complete

the proof of the theorem. O

Corollary 2.1. Let x = (z;) be a_ defect solution'of (1.1a) Let0 <r <1 and a> 0.
Assume
I"=la +id| =15 (2.4)

Then x s stable.

Proof. We first note that the number of the'elements in K, as defined in (2.2), with
respect to the linearized operator L£(x) in (1.4) is eight. Specifically, if ¢ € K, then
its corresponding interaction three-tuple (a;—1;,a;;,a;t+1;) is one of the following eight
combinations («, —14a, 3), (ar, —1+a, pr), (ar, —1+a, B), (o, —14a, Br), (ar, —1+ar, 3),
(o, =1 4 ar,Br), (a, =1 + ar, ), and (ar,—1 + ar, fr). It is then easy to see that if the
circle C, centered at —1 + a with radius |a| + ||, lies in the open left-half plane, then
x = (x;) is stable. However, the assumption (2.4) insures the circle C' with such property.

We just complete the proof of the corollary. O

Unlike the case that » = 0, it is a nontrivial problem to obtain the necessary and
sufficient condition for a stationary solution being stable with » > 0. Moreover, the diffi-
culty in computing the existence of defect solutions is also increasing in the case of r > 0.
We thus restrict ourselves with the patterns satisfying (i) and (ii) or (i)’ and (ii) of the

following;:



(i) Any linear cell is only adjacent to saturated cell. (2.5a)

(i) Any linear cell is adjacent to exactly one linear cell. (2.5b)

(ii) Any saturated cell is adjacent to at least one saturated cell of the same sign.
In other words, whenever y; > 1, then y;_1 > 1 or y;11 > 1.

(2.5¢)
Corollary 2.2. Let 0 <r <1 and a > 0. Assume
1>a+ (laf+[8])r, (2.6a)
1 3%ar + |a| ||, (2.6b)
and
1 >tar +iair + 10| (2.6¢)

Then any non-transitional solution-of (1ala)-satisfying (2.5a) and (2.5¢) is stable.

Proof. If i € K, then the corresponding” interaction three-tuple (a;—1;,a;;, a;+1,) is one
of the following four combinations : (ar, —1+ a, 1), (o, =1 + ar, fr), (ar,—1 + ar, 3),
and (ar,—1 4 ar,fBr). It then follows from(2.6) and Theorem 2.1 that the assertion of
corollary holds. O]

Corollary 2.3. Let 0 <r <1 and a > 0. Assume

1> a+ falr + 4], (2.7a)

1>a+ |al+|0|r (2.7b)
and

1> ar+ o + |G|, (2.7¢)

Then any non-transitional solution of (1.1a) satisfying (2.5b) and(2.5¢) is stable.



For a defect pattern containing a string of three consecutive linear cells, it is clear,
via Theorem 2.1, that (2.4) is needed to get stability of such defect pattern. As one will
see, via Proposition3.1, that if (2.4) holds, then no local mosaic patterns of the form
+ + 4+ and — — — (see Notations 3.1 and 3.2) will exist. However, the existence of such
local mosaic patterns is vital to exhibit the complexity of the patterns. Thus, we will not

consider a stable pattern containing a string of more than 2 linear cells in the thesis.



3 Extendable Local Patterns

To study the stationary solutions of (1.1a), we start out with the so called local solutions.

To begin, we define the following definitions and notations.

Definition 3.1. Given any proper subset T C 7Z, xp is called a local solution if xp is
a restriction of some solution x = (x;) of (1.3) on T'. The corresponding output yr =
(f(z;))r is called a local pattern. If in addition, |x;| < 1 for some i € T (resp., |z;| > 1
for all i € T), then X7 is called a local defect (resp., mosaic) solution, We define local

mosaic and defect patterns accordingly.

Notation 3.1. For any solution pattern {y; = f(x;)}icz, a cell y; is represented by +;,
Xi, and —; if yi = f(x;) > 1, lyi| = | f(z:)] < 1, and y; = f(z;) < —1, respectively.

Notation 3.2. Let T'={i,i + 1,--- ,i+m}, a local pattern yr is denoted by
O, Oirl T Oim (3.1)

where o € {+, —, x}.

Since the template A of (1.1) is Spaceymvariant, the stationary solutions of (1.1a)
are also spatial invariant. Hence, should no ambiguity arise, the subscripts in (3.1) is to
be omitted.

Definition 3.2. Let T = {i,--- ,i + m}. Suppose yr is called a (4;,4+irm) (resp.,
(—is —ixm); (Fis —iem); (—is +iem)) locally §-extendable pattern of degree 2 provided that
for any real numbers y;, Yirm satisfying 1 < i, Yivm < 1+ 10( resp., =1 > y;, Yixm >
178 1 <Y, —Yizm <14705 =1 > Y, —Yiqm = —1-70 ), Y7 = Yi @41 "®itm_1 Yigm
is a local pattern. If, in addition, we require y; = Yirm (7€SP., Yi = —Yiym ), then the
corresponding yr is called a (4+;, +itm) or (—i, —ixm) (resp.,(+i, —izm)or (=i, +izm))

locally 6-extendable pattern of degree 1.

Remark 3.1.

(1) When we say that + + + is a locally §-extendable pattern, it is clear from the context
that we meant it is a (4; , +i12) locally d-extendable pattern. Thus, from here on, when
using (3.1) to denote yr being (eo;, ;1) locally d-extendable, we will drop (e;, e\ m)
altogether. Here @ € {+, —, x}



(2) The definition 3.2 is related to a string of finite cells with Dirichlet boundary condi-
tions. Indeed, let i1, Tito, -, Tivm—1 Satisfy (1.3) with boundary conditions f(x;) and

f(zirm) being arbitrarily prescribed as real numbers in (1, 1 +1rd) or (=1 —rd, —1).

We next give conditions so that + + + and — — — are locally J-extendable pat-

terns of degree 2.

Proposition 3.1. Let

0>0,0<r<l1,2=0,0<a<l anda=03>0. (3.2)

Then + + + and — — — are locally 6-extendable patterns of degree 2 for any 6 > 0
provided that

a+20 > 1. (3.3)

Proof. We will only illustrate the case for < 4. Let y;_1 = f(x;—1) and y;11 = f(xi11)
be any number between 1 and 1 + 7d. It follows'from, (1.3) that

vi= af(@)="1p,
where 2 < p < 2(1 4 rd). If z; is expected to be greater than 1, then z; must satisfy

_a~ar=pGp

> 1.
1—ar

a—ar—l—ﬁp>a—ar—|—26

l—ar — 1—ar
a string of cells of length 3, is constructed in a way so that for any 1 < z; 1, x;41 < 146,

However, using (3.3), we have that x; = > 1. Since x;_1 x; ;11
we can find an z; > 1 and that x; satisfies (1.3). We may then construct ;1 ;12 ;13
similarly. It is then easy to glue two local solutions x; 1 x; x;11 and ;11 X410 x; 13 into
a local solution x; 1 x; ;11 i1 x5 of length 5. We can then extend the patterns in
both directions one step at a time. We will eventually construct a global solution (;);ez
satisfying (1.3). Thus if (3.3) holds, + + + is a locally d-extendable pattern of degree 2,
for any ¢ > 0. O



Remark 3.2.
(1) It is clear that if (3.2) holds, then (3.3) is also a sufficient condition for which + + +

and — — — are locally d-extendable patterns of degree 1.

(ii) From the computation in the proof of Proposition 3.1, we see that + + + and + X +

can not coexist as locally §-extendable patterns.

We next give conditions on the parameters so that + + x — —and — — x + +

are locally d-extendable patterns of degree 1.

Proposition 3.2. Let (3.2) holds. Then + + x — — and — — x + + are locally 6-
extendable patterns of degree 1, provided that

(1—a)(1—ar)—28% >0, (3.4a)
a+/3>1. (3.4b)
Moreover, if (3.2) holds, then(3.4b) is.also a'mecessary condition for + + X — —

and — — X + + being locally -extendable-patterns of degree one.
Proof. The computation for + +:x — —.dand — — X-+ + is exactly the same. We will
only illustrate the case for + + x < —"letT={0.,1, 2, 3,4} andyr =+ + x — —.

If yr is a locally d-extendable pattern of degree 1, then 1, x5, and x3 satisfy the linear

system Ax = b, where

1l—ar —p 0 1
A= —06r 1—a —pr X=| o
0 -6 1—ar x3
and 7 7 (3.5)
Bp+a(l—r)
b = 0
—fBp —a(l—r)

Here p = f(xg) = —f(x4), and p is any real numbers for which 1 < p <14 rd. Since the
determinant of A, denoted by A, is equal to

A= (1—ar)[(1—a)(l—ar)—26%]>0.

9



Thus, the linear system Ax = b has a unique solution. Now, let z; satisfies the following

equation

(1 —ar)zy =0p+a(l—r) (3.6)

Letting x5 = 0 and x3 = —z7, we see that the vector [z1, 0, —xl]T satisfies the linear
system (3.5). By the uniqueness of the system (3.5), it then suffices to solve (3.6).

Now,

_Pptal-r) [L+all-r)
B 1—ar 1—ar
B+ a(l—r)

—ar
(3.2) and (3.4b). It is also clear that if (3.2) is assumed, then the last assertion of

the Proposition holds true. For otherwise, 7 < 1. To complete the proof, we need

T

we then see that x; > 1 provided that > 1, which indeed follows from

to show that such + 4+ x — — is a local pattern. To see this, we glue two local pat-
terns +g +1 X2 —3 —4 and —; —5 X +7 +s together to produce another local pattern

40 +1 Xo —3 —4 —5 Xg +7 +s. Such’procedure ean be extended on both sides to con-

struct a global patterns. Thus, + # X —p—|isindeed a locally d-extendable pattern.
O
Proposition 3.3. Let (3.2) holdss Then =T+ 1X Xi=— and — — X X ++ are locally
0-extendable patterns of degree 1 provided that
(1—ar)(1—a—B)— B°r #0, (3.7a)
(1 —ar)(1—a-+pr) > prla(l —r)+ (2 + rd)], (3.7b)
and
a+vV26 > 1. (3.7¢)
Moreover, if (3.2) holds, then (3.7c) is necessary condition for + + X X ——and — — X X ++
being locally d-extendable patterns of degree 1.
Proof. We illustrate only the case for + + x x ——. Let T" = {0, 1, 2, 3, 4, 5} and
yr =+ + x x ——. If yr is a locally d-extendable pattern of degree 1, then x, x5, 3

and x4 must satisfy the linear system Ax = b, where

10



l—ar —p 0 0 1

—06r l—a —pf 0 T
A= 0 -6 1l—a —pr *= T3
0 0 -6 1—ar Ty
and ’ ’ (3.8)
Op+a(l—r)
N T
—B(1—r)
—fp —a(l—7)

Here p is any real number satisfying 1 < p <1+ rd. Now, A4, the determinant of A, is
(1 —ar)(1 —a)— %> — (1 —ar)?3?

=[(1—ar)(1—a+8)—=B%][(1—ar)(1—a—03)— %] =t[(1 —ar)(l —a—B) — 5°r].
Using (3.7b) and (3.2), we see that

(1—ar)(1 —a+B) > ds==ar)(1 —a+ Br) > 26°r. (3.9)

It then follows from (3.9) that ¢; >0 andmseAjy #0. Thus, the linear system Ax = b
has a unique solution.

Consider the following reduced system A’y-='b’, where

1—ar — 1

A:{—m L@iﬁ] y:(i)

and (3.10)

b — [a—ar—l—ﬁp}

B = pr
If (y1, y2) is a solution to the reduced system (3.10), then (y1, y2, —y2, —y1) is a solution
to the original linear system (3.8). By uniqueness of (3.8), it then suffices to study only
(3.10). Using Cramer’s rule, we obtain that
(1—a+B)al —r)+0p] + A7) _ Aip)

:Cl —_= _=

(1—a7’)(1—a+ﬂ)—527" ) AA/

and

_B—an( =)+ Arial =)+ ol _ Aelp)
’ Ay Ay

Using (3.9), we see that x; > 1 provided that A;(1) > Ay, which is equivalent to (a +
V28—1)(—a++/23+1) > 0. However, —a++v/23+1 > 0. Thus z; > 1 provided that (3.7c)

>0

11



holds. Similarly, 25 < 1 provided that As(1 + rd) < A/, which is equivalent to (3.7b).
Clearly, + + x x —— and — — X X ++ can be used to construct a global pattern.
Hence, + + X x —— and — — X X ++ are indeed locally d-extendable patterns. We

just complete the proof of the Proposition.
O

12



4 Global Stable Defect Patterns and Entropy

The main results of the thesis is contained in this section. Specifically, we will give condi-
tions on parameters so that globally stable defect patterns can be constructed. Moreover,
we will study the complexity of such generated patterns. To begin with, we consider the
parameter region in a — 3 plane for which locally -extendable patterns + + +, — — —,

+ + x — —and — — X 4 + can coexist stably.

1
Proposition 4.1. Assume (3.2) is satisfied, and that 0 < r < 3 Let T'y be the region
in a — 3 plane such that (2.6) and (3.4b) are satisfied. Then I'y is nonempty. Moreover,

locally d-extendable patterns

++4+, ———, ++ X ——, and— — X ++ (4.1)

can coexist stably.
Proof. Tt is obvious that I'y is nonempty, see Figure(4.1). It is also clear that a + 23 >
a+ 3 > 1. To complete the proof of the Proposition, it remains to show that the stability

conditions in (2.6) imply (3.4a). From (2.6)pwe-have«(1 —a) > 26r and 1 —ar > G(1+7).
Hence, (1 —a)(1 —ar) > 26%r(1 +r) > 26%r.

B

L1 a+B=1, l2: ar+pB(1+r)=1,
l3: a+208r=1.

Figure 4.1:

13



Write the equality of (3.7b) as

ra* —raB —r(2+7r8)3 —a(r+1)+pr+1=0. (4.2)
Clearly, (4.2) is a hyperbola, denoted by H. Assume

V2—1>r. (4.3)

We further denote by HT the region in a — ( plane satisfied (3.7b). Let T's be the
triangular region, see Figure (4.2), satisfied by (2.7), (3.2), (4.3) and (3.7c).

1
2

1

1
1+ 7
1
N

1 1a
F

. . la: a+B(14r)=1, Ls:ar+p(14r)=1
Figure 4.2: lo: atr/3G=1.

Proposition 4.2. Let (3.2) and (4.3) be satisfied. If 10 > /2, then TaNHT is nonempty.
Ifré < /2 and 6 > 3+, then Ty NHY is also nonempty.

Proof. Let the line /) be defined as

a+kB=1, (4.4)

where 1+ 7 < k < /2.
Substituting (4.4) into (3.7b), we obtain that

[r(L+k)a+r2+71)5]8 < B(k+r). (4.5)

14



Multiplying (4.4) by —fpr(1 + k) and adding the resulting equation into (4.5), we get

r(24+718 —k— k)3 < Bk(1—r). (4.6)

Since the parameter (3 is positive, we have (4.6) reduced to

r(24+15—k— kB < k(1 —r). (4.7)

Now, if 76 > /2, then for any 1+ r < k < /2, we have

k(1 —r)
r2 410 —k— k2)

where (3, is positive. Thus the line segment ¢, 1 +r < k < /2, defined as

li={(a,B): a+kB=1,0<p<p} (4.9)
lie in Ty N H*. Suppose 0 < rd < v/2 and 6 > 3+ r. Letting k = 1 + r, we have

2+r0—k—k)=2+rd—(1+7r) —(L+r)=r(6—-3—7r)>0.

Therefore, there exists a k*(r, )=such that'if I + 7 <k < k*(r, §), then [, given as in
(4.8) is positive. Consequently, the line segments /), in (4.9), where 1 +7 < k < k*(r, 9)
lie in Ty N HT. We just complete the proof.of-the Proposition. n

Proposition 4.3. Let (3.2) and (4.2) be' satisfied. We further assume that
76 >V2, or 16 <2 and § >3+ (4.10)
Then locally §-extendable patterns

++4, ——— + 4+ X X —— and — — X X ++ (4.11)
can coexist stably.

Proof. Let y1 be the curve defined by equality of (3.7a). That is 17 = {(a, 5) : (1 —
ar)(1 —a— ) — B*r = 0}. Clearly, v, is a hyperbola, Since I'; NH™ is a region for which
its area is positive. Thus (s N HT) — 77 is nonempty. O

We are now ready to state our first main result.

15



Theorem 4.1. Assume (3.2) is satisfied. Let 0 <r < % and 6 > 0. Suppose (a, §) € Ty.
Then any defect pattern satisfying the following rules is stable.

(i) Any linear cell y; is surrounded by two saturated cells of opposite signs. (4.12a)

(ii) Two consecutive linear cells are separated by a string of k saturated cells
of the same sign. Here k > 3, and is odd.
(4.12Db)

On the other hand, any defect pattern satisfying (4.12) can be generated by using locally
d-extendable patterns given in (4.1).

Proof. 1f (a, (3) is chosen as assumed, then the four local patterns in (4.1) are J-extendable
patterns. Suppose the symbol on the most right of one of the local pattern is the same
as that of the most left of the other local pattern. Then those two local patterns can be
glued together.

For instance,

+++><—— =0 ot [+ x - - (4.13a)

——X+
F o+ ox =S X [+ 4+ x - - (4.13b)

Note that the local pattern in (4.13b) has 3 +’s between two linear cells. We also
observe that there are even number of +’s in the local pattern + + + X = —,
which is in (4.13a). By adding more + + +’s to the left of + + + X — —, we
still get even number of +’s in the newly created local patterns. Thus, to get another
linear cell in such gluing process, we need to glue — — X + + to the left of newest local
patterns. Then the resulting patterns must have odd number of +’s between two linear
cells. Arguing similarly, we see that if we use the four local patterns in (4.1) to generate

the global patterns, then such patterns must satisfy (4.12). The converse is also true. [

Remark 4.1. The parameters’ condition for + x — is even more friendly than that of

+ + x — —. Considering the following grouping,

Tt S 4+ x— (4.14a)

5 x -
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- x4 = — X+ X - (4.14b)

5 x -

We see in the case of (4.14a), one needs to consider if + + X is d-extendable.
While in the case of (4.14b), one needs to worry about if X + X is d-extendable. A direct
computation would yield that for 0 < a <1, 3> 0 and 0 < r < 1, there is no feasible
parameter region to guarantee that X + X and + + X are d-extendable. This is the
reason why we require two consecutive linear cells are separated by a string of 2 saturated

cells.

Theorem 4.2. Let (3.2), (4.3),and (4.10) be satisfied. Suppose (a, ) € (Ca NHT) — ;.
Then any defect pattern satisfying the following rules is stable.

(1) Any linear cell belongs to a string of 2 linear cells. (4.15a)

(ii) Any string of 2 linear cells is surrounded. by two saturated cells of opposite sign.
(4.15b)
(iii) Two consecutive string of 2 dinear cells-are separated by a string of k saturated cells

of the same sign. Here k > 35 and.is odd.
(4.15¢)

Conversely, any defect pattern satisfying (4:15)-ean be generated by using locally §-extendable
patterns given in (4.11).

Remark 4.2. Due to the difficulty in obtaining the exact formula for the linearized oper-
ator L(x), as given in (1.4), we are unable to rule out the coexistence of stably local defect

patterns of size one and two, which is our conjecture.

Having characterized the set of stable patterns, we now want to measure its complex-
ity. Chow and Mallet-Paret [3] have introduced the notion of spatial entropy to provide
a measure of the number of mosaic patterns. Extending it to encompass all combinations

of stable defect equilibria, this definition is, in the 1-D case, as follows:

Definition 4.1. Consider the set S of sequences x = (x;), where x satisfies (1.3) as
stable equilibria. Let S(M) be the number of different subsequence of M cells observed in

S through a window of size M in the infinite lattice. Then its entropy function is

hS) = A}@w% log S(M). (4.16)
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Note that as the template A in (1.2) is space-invariant, the set S is translation
invariant, and so the position of the window of M cells in the infinite array is not impor-
tant, only its size M matters [15]. This definition also characterizes the complexity of the
patterns, in the sense that the CNNs is said to exhibit spatial chaos if h > 0 and pattern
formation if h = 0 [15].

1
Theorem 4.3. Let 0 <r < 5 and § > 0. Suppose (a, 3) € T'y1. Then the set Dy of defect

patterns described in (4.1) exhibits spatial chaos. Moreover, the spatial entropy h(D;) of

In2
D s greater or equal than n?

Proof. Since + + 4 and — — — are d-extendable, then + + + + + and — — — — —

are d-extendable. Consider a window of size 5n as follows:

] S
By B, B,

Here B, is a sub-window of size 5. Now, using ++ + + +, — — — — — X ==
and — — X + + to fill in B, 1 <k < n, we see that each of B; has at least 2 choices to
make B1Bs -+ B, a local pattern. Henge

In2% " 1In2
h(Dy) =l e
(D) =limessr = 5

]

Remark 4.3. Since any two consecutive linear cells are separated by any odd number k,
k > 3, of saturated cells of the same sign, Dy is not a subshift of finite type. It will be

interesting to compute the exact entropy of D;.

Theorem 4.4. Let 0 < r < v/2—1 and (4.10) be satisfied. Suppose (a, 3) € (TgNHT) —

~1, then the set Dy of defect patterns given in (4.15) exhibits spatial chaos. Moreover, the

In2
spatial entropy h(Ds) of Dy is greater or equal than %

Proof. We first show that if (a, §) € (T2 NH*') — 71, then + + +4 and — — — — are
locally d-extendable patterns of degree one. We illustrate only the case for + + + +.
Use similar approaches as those in proving Propositions (3.2) and (3.3), we consider the
following equation.

—x+PBp+all +r(x—1)]+ Bz =0.
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L Bpr@rl-r) B+ atBH-r)

th
o 1—ar—pr - 1—ar—pgr

B+la+p)(1—r)

If [p—n > 1, which is equivalent to a + 23 > 1, then z > 1. However,
if a and 3 are chosen as assumed, then a + 23 > 1. Thus, + + ++ and — — — — are
locally d-extendable patterns of degree one. Gluing + + ++ and + + + together, we
have + + + + + + is d-extendable of degree one. Similarly, — — — — — — is also 6-
extendable of degree one. Let B;, i =1, 2, --- , n, be a subwindow of size 6. Considering
a window By By --- B, of size 6, as in the proof of Theorem (4.3), we consider, similarly,
that h(Ds) > ln?Q m

Remark 4.4. We note that the local mosaic patterns of the form + + —, + — +, — + +,
— — 4+, — + — and + — — are locally d-extendable only if a > 1 (see, [11]). Thus, if
(a,B) €Ty or(a,f) € (ToaNH) — ypithentany global mosaic patterns must either be

all +'s or all —'s. Consequently, thelassociated mosaic patterns have zero spatial entropy.

Figure 4.3 is a collection of ‘a computer simulation with sets of parameters chosen
from the parameters regions in Figure*4:1."and*4.2.." Specifically, we set 6 = 10 for all
cases. Each collection in Figure 4.3. contains-two"pairs of two arrays of colors. The first
array is the initial outputs. The second array represents the final outputs. If the state
z; of a cell C; is such that |z;| < 1, then we color it gray. If the state z; of a cell Cj is
less than —1 (greater than 1, respectively), then we color it white (black, respectively).
Moreover, the final outputs in each of the collection consist of the basic defect patterns

allowed in their corresponding parameters region.
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