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摘 要       
 
 
 

在這篇論文中，探討的是一維細胞類神經網路在其輸出函數是片段線性輸出

函數，且此函數在線性區域以外的斜率 ，我們在最鄰近的細胞之間採用一組

對稱的耦合，用兩個參數來描述細胞本身與最鄰近細胞間各自的權數。在這些條

件下我們研究存在穩定缺陷平衡的花樣(參閱定義 1.1和定義 1.2)。特別地，我們
給予一個無窮維觀點的Gerschgorin 定理並且導出一個 

0r >

δ -extendability的概念來
決定兩個局部花樣是否可以接合在一起。使用這些工具方法，我們給定一個在

( ,  ,  )r a β 空間的區域，其相對應的缺陷花樣擁有非零的空間熵而其相關聯的馬賽
克花樣的空間熵卻為零。更有甚者，在那些區域所產生的花樣並不是有限型式的

子替換。 
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ABSTRACT 

 
Of concern is one-dimensional Cellular Neural Networks (CNNs) with a 
piecewise-linear output function for which the slope of the output outside 
linear zone is . We impose a symmetric coupling between the nearest 
neighbors.  Two parameters  and 

0r >
a β  are used to describe the weights 

between the cell with itself and its nearest neighbors, respectively.  We 
study patterns that exist as stable defect equilibrium (see Definition 1.1 and 
1.2).  In particular, we given an infinite-dimensional version of 
Gerschgorin’s Theorem and derive a concept of δ -extendability to 
determine whether two local-defect patterns can be glued together.  Using 
such tools, we give a region in ( , ,  )aα β -space for which the corresponding 
defect patterns have non-zero spatial entropy.  Moreover, the patterns 
generated in those regions are not subshift of finite type. 
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1 Introduction

Of concern is one-dimensional Cellular Neural Networks (CNNs) of the form

dxi

dt
= −xi + z + αf(xi−1) + af(xi) + βf(xi+1), i ∈ Z. (1.1a)

Here xi denotes the state of a cell Ci, and f(x) is a piecewise-linear output function

defined by

f(x) =





rx + 1− r, if x ≥ 1 ,
x , if |x| ≤ 1,
rx− 1 + r, if x ≤ −1 ,

(1.1b)

where r is a positive constant. The quantity z is called a source term or a bias term. The

numbers α, a and β are arranged in a vector form [α, a, β], which is called a space-invariant

A-template

A = [α, a, β]. (1.2)

A is called symmetric (resp., antisymmetric) if α = β (resp., α = −β). A cell Ci such

that −1 < xi < 1 will be called a linear cell. If it does not operate in the linear zone, i.e,

|xi| > 1, then it will be called a saturated cell.

CNNs were first proposed by Chua and Yang [1988a, 1988b]. Their main applications

are in image processing and pattern recognition [Chua, 1998]. For additional background

information, applications, and theory, see [Special Issue, 1995; Thiran, 1997; Chua, 1998]

among others.

A basic and important class of solutions of (1.1) is the stable stationary solutions.

Specifically, a stationary solution x = (xi)i∈Z of (1.1) satisfies the following equation

xi = z + αf(xi−1) + af(xi) + βf(xi+1), i ∈ Z. (1.3)

Let x = (xi)i∈Z be a solution of (1.3). The associated output y = (yi)i∈Z = (f(xi))i∈Z
is called a pattern. The following two types of stationary solutions are of particular

interest.

Definition 1.1. A solution x = (xi)i∈Z is called a mosaic solution if |xi| > 1 for all i ∈ Z.

Its associated pattern y = (yi)i∈Z = (f(xi))i∈Z is called a mosaic pattern. If |xi| 6= 1 for

all i ∈ Z and there are i, j ∈ Z such that |xi| < 1 and |xj| > 1, then x = (xi)i∈Z and

y = (f(xi))i∈Z are called, respectively, a defect solution and a defect pattern. If there

exists an i such that |xi| = 1, then x and y = (f(xi)) are called, respectively, a transition

solution and a transition pattern.
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To define the stability of a non-transition stationary solution, we consider the fol-

lowing linearized stability. Let ξ = (ξi)i∈Z ∈ `2, the linearized operator L(x) of (1.1) at a

stationary solution x = (xi)i∈Z is given by

(L(x)ξ)i = −ξi + αf ′(xi−1)ξi−1 + af ′(xi)ξi + βf ′(xi+1)ξi+1. (1.4)

Definition 1.2. Let x = (xi)i∈Z be a solution of (1.3) with |xi| 6= 1 for all i ∈ Z. The

stationary solution x is called (linearized) stable if all eigenvalues of L(x) have negative

real parts. The solution is called unstable if there is an eigenvalue λ of L(x) such that λ

has a positive real part.

For r = 0, the complexity of stable mosaic and defect solutions of (1.1) with re-

spect to all the parameters has been completely characterized when the template A is

symmetric or antisymmetric (see [Thiran et. al., 1995; Juang and Lin, 2000]). For r > 0,

the complexity of stable mosaic solutions with respect to the parameters’ regions has also

been studied by methods of map approach and geometric approach(see e.g.,[Hsu, 2000;

Chang and Juang, 2004; Lie, Liu and Juang, 2005]). In the case that r = 0, the explicit

formula for the eigenvalues of the linearized operator L at a feasible stable defect solutions

of (1.1a) can be obtained. This, in turn, gives a sharp conditions on the parameters for

the stability problem. Due to the non-flatness of the output function at infinity, it is a

nontrivial problem to obtain the explicit formulas for the eigenvalues of the linearized

operator L. To overcome such difficulty, we give an infinite-dimensional version of Ger-

schgorin’s Theorem. We also derive a concept of δ-extendability to determine whether

two local-defect patterns can be glued together. Using such tools, we give a region in (r

, a , β)-space for which the corresponding defect patterns have non-zero spatial entropy,

while the associated mosaic patterns have zero spatial entropy. Moreover, the patterns

generated in those regions are not subshift of finite type. The (stable) mosaic patterns

for spatially discrete Reaction-Diffusion equations have also been extensively studied by

many authors (see e.g., [3], [7]).

The thesis is organized as follows. In Section 2, we study the stability of a defect

solution of (1.1a). Section 3 is devoted to the establishment of the δ-extendable local

solutions. The main results are recorded in Section 4. In particular we give a region in

(r, a, β)-space for which the corresponding defect patterns have non-zero spatial entropy.
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2 Stability

In this section, we study the stability of a defect solution of (1.1). To this end, we need

to establish an infinite-dimensional version of Gerschgorin’s Theorem. Let the operator

L : `2 → `2 be defined as

(L(ξ))i =
m∑

k=−m

ai−k,iξi−k , i ∈ Z. (2.1)

where m is a fixed positive integer, ξ = (ξi) ∈ `2.

Theorem 2.1. Let L be defined as in (2.1), and let Λj = {i ∈ Z : ai−k,i = aj−k,j ,

for all k , −m ≤ k ≤ m}. Set

K = {j ∈ Z : Λj is nonempty}, (2.2a)

and assume K is a minimal set which satisfies the following sense.

if j1 and j2 ∈ K, then Λj1 and Λj2 are distinct. (2.2b)

We further assume that

(i) K is finite, (2.3a)

(ii)
⋃
j∈K

Λj = Z. (2.3b)

Define ρi(L) =
m∑

k=−m

|ai−k,i|, for i ∈ K, and let each of Ci define the circle centered

at ai,i with radius ri := ρi(L)− |ai,i|. Then each eigenvalue of L lies in some Ci.

Proof. Let λ lies outside all of Ci . Write

(λI − L) = D − (D − (λI − L)) := D −K

where D : `2 → `2 is the diagonal part of L defined as

(D(ξ))i = (λ− ai,i)ξi.
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Clearly, D is invertible. Thus, D − K = D(I − D−1K). To complete the proof of the

theorem it suffices to prove that ‖D−1K‖ < 1 (see e.g., Theorem 7.3-1 of [12]). To this

end, we see that

(D−1K(ξ))i =
1

λ− ai,i

m∑
k=−m

k 6=0

ai−k,iξi−k

Clearly,

|(D−1K(ξ))i| ≤ ‖ξ‖∞ max
j∈K

(
1

|λ− aj,j|
m∑

k=m
k 6=0

|aj−k,j|) ≤ ‖ξ‖∞ max
j∈K

(
rj

|λ− aj,j|).

Therefore,

‖D−1K‖∞ ≤ max
j∈K

rj

|λ− aj,j| < 1.

Note that the assertion in that Theorem is independent of the norm. We, thus complete

the proof of the theorem.

Corollary 2.1. Let x = (xi) be a defect solution of (1.1a) Let 0 < r < 1 and a > 0.

Assume

1 > a + |α|+ |β|. (2.4)

Then x is stable.

Proof. We first note that the number of the elements in K, as defined in (2.2), with

respect to the linearized operator L(x) in (1.4) is eight. Specifically, if i ∈ K, then

its corresponding interaction three-tuple (ai−1,i , ai,i , ai+1,i) is one of the following eight

combinations (α,−1+a, β), (αr,−1+a, βr), (αr,−1+a, β), (α,−1+a, βr), (αr,−1+ar, β),

(α,−1 + ar, βr), (α,−1 + ar, β), and (αr,−1 + ar, βr). It is then easy to see that if the

circle C, centered at −1 + a with radius |α| + |β|, lies in the open left-half plane, then

x = (xi) is stable. However, the assumption (2.4) insures the circle C with such property.

We just complete the proof of the corollary.

Unlike the case that r = 0, it is a nontrivial problem to obtain the necessary and

sufficient condition for a stationary solution being stable with r > 0. Moreover, the diffi-

culty in computing the existence of defect solutions is also increasing in the case of r > 0.

We thus restrict ourselves with the patterns satisfying (i) and (ii) or (i)′ and (ii) of the

following:
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(i) Any linear cell is only adjacent to saturated cell. (2.5a)

(i)′ Any linear cell is adjacent to exactly one linear cell. (2.5b)

(ii) Any saturated cell is adjacent to at least one saturated cell of the same sign.
In other words, whenever yi > 1, then yi−1 > 1 or yi+1 > 1.

(2.5c)

Corollary 2.2. Let 0 < r < 1 and a > 0. Assume

1 > a + (|α|+ |β|)r, (2.6a)

1 > ar + |α|+ |β|r, (2.6b)

and

1 > ar + |α|r + |β|. (2.6c)

Then any non-transitional solution of (1.1a) satisfying (2.5a) and (2.5c) is stable.

Proof. If i ∈ K, then the corresponding interaction three-tuple (ai−1,i, ai,i, ai+1,i) is one

of the following four combinations : (αr,−1 + a, βr), (α,−1 + ar, βr), (αr,−1 + ar, β),

and (αr,−1 + ar, βr). It then follows from(2.6) and Theorem 2.1 that the assertion of

corollary holds.

Corollary 2.3. Let 0 < r < 1 and a > 0. Assume

1 > a + |α|r + |β|, (2.7a)

1 > a + |α|+ |β|r, (2.7b)

and

1 > ar + |α|+ |β|r, (2.7c)

Then any non-transitional solution of (1.1a) satisfying (2.5b) and(2.5c) is stable.

5



For a defect pattern containing a string of three consecutive linear cells, it is clear,

via Theorem 2.1, that (2.4) is needed to get stability of such defect pattern. As one will

see, via Proposition3.1, that if (2.4) holds, then no local mosaic patterns of the form

+ + + and − − − (see Notations 3.1 and 3.2) will exist. However, the existence of such

local mosaic patterns is vital to exhibit the complexity of the patterns. Thus, we will not

consider a stable pattern containing a string of more than 2 linear cells in the thesis.
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3 Extendable Local Patterns

To study the stationary solutions of (1.1a), we start out with the so called local solutions.

To begin, we define the following definitions and notations.

Definition 3.1. Given any proper subset T ⊂ Z, xT is called a local solution if xT is

a restriction of some solution x = (xi) of (1.3) on T . The corresponding output yT ≡
(f(xi))T is called a local pattern. If in addition, |xi| < 1 for some i ∈ T (resp., |xi| > 1

for all i ∈ T ), then xT is called a local defect (resp., mosaic) solution, We define local

mosaic and defect patterns accordingly.

Notation 3.1. For any solution pattern {yi = f(xi)}i∈Z, a cell yi is represented by +i,

×i, and −i if yi = f(xi) > 1, |yi| = |f(xi)| < 1, and yi = f(xi) < −1, respectively.

Notation 3.2. Let T = {i, i + 1, · · · , i + m}, a local pattern yT is denoted by

•i •i+1 · · · •i+m (3.1)

where • ∈ {+,−,×}.

Since the template A of (1.1) is space invariant, the stationary solutions of (1.1a)

are also spatial invariant. Hence, should no ambiguity arise, the subscripts in (3.1) is to

be omitted.

Definition 3.2. Let T = {i, · · · , i + m}. Suppose yT is called a (+i, +i+m) (resp.,

(−i,−i+m); (+i,−i+m); (−i, +i+m)) locally δ-extendable pattern of degree 2 provided that

for any real numbers yi, yi+m satisfying 1 < yi , yi+m ≤ 1 + rδ( resp., −1 > yi , yi+m ≥
−1−rδ ; 1 < yi , −yi+m ≤ 1+rδ ; −1 > yi , −yi+m ≥ −1−rδ ), yT = yi •i+1· · ·•i+m−1 yi+m

is a local pattern. If, in addition, we require yi = yi+m (resp., yi = −yi+m ), then the

corresponding yT is called a (+i , +i+m) or (−i , −i+m) (resp.,(+i , −i+m) or (−i , +i+m))

locally δ-extendable pattern of degree 1.

Remark 3.1.

(1) When we say that + + + is a locally δ-extendable pattern, it is clear from the context

that we meant it is a (+i , +i+2) locally δ-extendable pattern. Thus, from here on, when

using (3.1) to denote yT being (•i , •i+m) locally δ-extendable, we will drop (•i , •i+m)

altogether. Here • ∈ {+ , − , ×}
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(2)The definition 3.2 is related to a string of finite cells with Dirichlet boundary condi-

tions. Indeed, let xi+1 , xi+2 , · · · , xi+m−1 satisfy (1.3) with boundary conditions f(xi) and

f(xi+m) being arbitrarily prescribed as real numbers in (1 , 1 + rδ) or (−1− rδ , −1).

We next give conditions so that + + + and − − − are locally δ-extendable pat-

terns of degree 2.

Proposition 3.1. Let

δ > 0, 0 < r < 1, z = 0, 0 < a < 1, and α = β > 0. (3.2)

Then + + + and − − − are locally δ-extendable patterns of degree 2 for any δ > 0

provided that

a + 2β > 1. (3.3)

Proof. We will only illustrate the case for + + +. Let yi−1 = f(xi−1) and yi+1 = f(xi+1)

be any number between 1 and 1 + rδ. It follows from (1.3) that

xi − af(xi) = βp,

where 2 < p ≤ 2(1 + rδ). If xi is expected to be greater than 1, then xi must satisfy

xi =
a− ar + βp

1− ar
> 1.

However, using (3.3), we have that xi =
a− ar + βp

1− ar
≥ a− ar + 2β

1− ar
> 1. Since xi−1 xi xi+1

a string of cells of length 3, is constructed in a way so that for any 1 < xi−1 , xi+1 ≤ 1+ δ,

we can find an xi > 1 and that xi satisfies (1.3). We may then construct xi+1 xi+2 xi+3

similarly. It is then easy to glue two local solutions xi−1 xi xi+1 and xi+1 xi+2 xi+3 into

a local solution xi−1 xi xi+1 xi+2 xi+3 of length 5. We can then extend the patterns in

both directions one step at a time. We will eventually construct a global solution (xi)i∈Z
satisfying (1.3). Thus if (3.3) holds, + + + is a locally δ-extendable pattern of degree 2,

for any δ > 0.
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Remark 3.2.

(i) It is clear that if (3.2) holds, then (3.3) is also a sufficient condition for which + + +

and − − − are locally δ-extendable patterns of degree 1.

(ii) From the computation in the proof of Proposition 3.1, we see that + + + and + × +

can not coexist as locally δ-extendable patterns.

We next give conditions on the parameters so that + + × − − and − − × + +

are locally δ-extendable patterns of degree 1.

Proposition 3.2. Let (3.2) holds. Then + + × − − and − − × + + are locally δ-

extendable patterns of degree 1, provided that

(1− a)(1− ar)− 2β2r > 0, (3.4a)

a + β > 1. (3.4b)

Moreover, if (3.2) holds, then (3.4b) is also a necessary condition for + + × − −
and − − × + + being locally δ-extendable patterns of degree one.

Proof. The computation for + + × − − and − − × + + is exactly the same. We will

only illustrate the case for + + × − −. Let T = {0 , 1 , 2 , 3 , 4} and yT = + + × − −.

If yT is a locally δ-extendable pattern of degree 1, then x1, x2, and x3 satisfy the linear

system Ax = b, where

A =




1− ar −β 0
−βr 1− a −βr

0 −β 1− ar




,

x =




x1

x2

x3




,

and

b =




βp + a(1− r)
0

−βp− a(1− r)




.

(3.5)

Here p = f(x0) = −f(x4), and p is any real numbers for which 1 < p ≤ 1 + rδ. Since the

determinant of A, denoted by ∆, is equal to

∆ = (1− ar)[(1− a)(1− ar)− 2β2r] > 0.
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Thus, the linear system Ax = b has a unique solution. Now, let x1 satisfies the following

equation

(1− ar)x1 = βp + a(1− r) (3.6)

Letting x2 = 0 and x3 = −x1, we see that the vector [x1 , 0 , −x1]
T satisfies the linear

system (3.5). By the uniqueness of the system (3.5), it then suffices to solve (3.6).

Now,

x1 =
βp + a(1− r)

1− ar
>

β + a(1− r)

1− ar
.

we then see that x1 > 1 provided that
β + a(1− r)

1− ar
> 1, which indeed follows from

(3.2) and (3.4b). It is also clear that if (3.2) is assumed, then the last assertion of

the Proposition holds true. For otherwise, x1 < 1. To complete the proof, we need

to show that such + + × − − is a local pattern. To see this, we glue two local pat-

terns +0 +1 ×2 −3 −4 and −4 −5 ×6 +7 +8 together to produce another local pattern

+0 +1 ×2 −3 −4 −5 ×6 +7 +8. Such procedure can be extended on both sides to con-

struct a global patterns. Thus, + + × − − is indeed a locally δ-extendable pattern.

Proposition 3.3. Let (3.2) holds. Then + + × × −− and − − × × + + are locally

δ-extendable patterns of degree 1 provided that

(1− ar)(1− a− β)− β2r 6= 0, (3.7a)

(1− ar)(1− a + βr) > βr[a(1− r) + β(2 + rδ)], (3.7b)

and

a +
√

2β > 1. (3.7c)

Moreover, if (3.2) holds, then (3.7c) is necessary condition for + + × × −− and − − × × + +

being locally δ-extendable patterns of degree 1.

Proof. We illustrate only the case for + + × × −−. Let T = {0, 1, 2, 3, 4, 5} and

yT = + + × × −−. If yT is a locally δ-extendable pattern of degree 1, then x1, x2, x3

and x4 must satisfy the linear system Ax = b, where

10



A =




1− ar −β 0 0
−βr 1− a −β 0

0 −β 1− a −βr
0 0 −β 1− ar




,

x =




x1

x2

x3

x4




,

and

b =




βp + a(1− r)
β(1− r)

−β(1− r)
−βp− a(1− r)




.

(3.8)

Here p is any real number satisfying 1 < p ≤ 1 + rδ. Now, ∆A, the determinant of A, is

[(1− ar)(1− a)− β2r]2 − (1− ar)2β2

= [(1− ar)(1− a + β)− β2r][(1− ar)(1− a− β)− β2r] =: t1[(1− ar)(1− a− β)− β2r].

Using (3.7b) and (3.2), we see that

(1− ar)(1− a + β) > (1− ar)(1− a + βr) ≥ 2β2r. (3.9)

It then follows from (3.9) that t1 > 0 and so ∆A 6= 0. Thus, the linear system Ax = b

has a unique solution.

Consider the following reduced system A′y = b′, where

A′ =
[

1− ar −β
−βr 1− a + β

]

,

y =

(
y1

y2

)

,

and

b′ =
[

a− ar + βp
β − βr

]

.

(3.10)

If (y1 , y2) is a solution to the reduced system (3.10), then (y1 , y2 , −y2 , −y1) is a solution

to the original linear system (3.8). By uniqueness of (3.8), it then suffices to study only

(3.10). Using Cramer’s rule, we obtain that

x1 =
(1− a + β)[a(1− r) + βp] + β2(1− r)

(1− ar)(1− a + β)− β2r
=:

∆1(p)

∆A′

and

x2 =
β(1− ar)(1− r) + βr[a(1− r) + βp]

∆A′
=

∆2(p)

∆A′
> 0

Using (3.9), we see that x1 > 1 provided that ∆1(1) > ∆A′ , which is equivalent to (a +√
2β−1)(−a+

√
2β+1) > 0. However, −a+

√
2β+1 > 0. Thus x1 > 1 provided that (3.7c)

11



holds. Similarly, x2 < 1 provided that ∆2(1 + rδ) < ∆A′ , which is equivalent to (3.7b).

Clearly, + + × × −− and − − × × + + can be used to construct a global pattern.

Hence, + + × × −− and − − × × + + are indeed locally δ-extendable patterns. We

just complete the proof of the Proposition.
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4 Global Stable Defect Patterns and Entropy

The main results of the thesis is contained in this section. Specifically, we will give condi-

tions on parameters so that globally stable defect patterns can be constructed. Moreover,

we will study the complexity of such generated patterns. To begin with, we consider the

parameter region in a− β plane for which locally δ-extendable patterns + + +, − − −,

+ + × − − and − − × + + can coexist stably.

Proposition 4.1. Assume (3.2) is satisfied, and that 0 < r <
1

2
. Let Γ1 be the region

in a− β plane such that (2.6) and (3.4b) are satisfied. Then Γ1 is nonempty. Moreover,

locally δ-extendable patterns

+ + +, − − −, + + × − −, and− − × + + (4.1)

can coexist stably.

Proof. It is obvious that Γ1 is nonempty, see Figure(4.1). It is also clear that a + 2β >

a+β > 1. To complete the proof of the Proposition, it remains to show that the stability

conditions in (2.6) imply (3.4a). From (2.6), we have (1−a) > 2βr and 1−ar > β(1+ r).

Hence, (1− a)(1− ar) > 2β2r(1 + r) > 2β2r.

Figure 4.1: `1: a+β=1, `2: ar+β(1+r)=1,
`3: a+2βr=1.

13



Write the equality of (3.7b) as

ra2 − raβ − r(2 + rδ)β2 − a(r + 1) + βr + 1 = 0. (4.2)

Clearly, (4.2) is a hyperbola, denoted by H. Assume

√
2− 1 > r. (4.3)

We further denote by H+ the region in a − β plane satisfied (3.7b). Let Γ2 be the

triangular region, see Figure (4.2), satisfied by (2.7), (3.2), (4.3) and (3.7c).

Figure 4.2: `4: a+β(1+r)=1, `5:ar+β(1+r)=1

`6: a+
√

2β=1.

Proposition 4.2. Let (3.2) and (4.3) be satisfied. If rδ ≥ √
2, then Γ2∩H+ is nonempty.

If rδ <
√

2 and δ > 3 + r, then Γ2 ∩H+ is also nonempty.

Proof. Let the line `k be defined as

a + kβ = 1, (4.4)

where 1 + r < k <
√

2.

Substituting (4.4) into (3.7b), we obtain that

[r(1 + k)a + r(2 + rδ)β]β < β(k + r). (4.5)

14



Multiplying (4.4) by −βr(1 + k) and adding the resulting equation into (4.5), we get

r(2 + rδ − k − k2)β2 < βk(1− r). (4.6)

Since the parameter β is positive, we have (4.6) reduced to

r(2 + rδ − k − k2)β < k(1− r). (4.7)

Now, if rδ ≥ √
2, then for any 1 + r < k <

√
2, we have

β <
k(1− r)

r(2 + rδ − k − k2)
=: β1 (4.8)

where β1 is positive. Thus the line segment `k, 1 + r < k <
√

2, defined as

`k = {(a , β) : a + kβ = 1, 0 < β < β1} (4.9)

lie in Γ2 ∩H+. Suppose 0 < rδ <
√

2 and δ > 3 + r. Letting k = 1 + r, we have

(2 + rδ − k − k2) = 2 + rδ − (1 + r)− (1 + r)2 = r(δ − 3− r) > 0.

Therefore, there exists a k∗(r , δ), such that if 1 + r < k < k∗(r , δ), then β1, given as in

(4.8) is positive. Consequently, the line segments `k in (4.9), where 1 + r < k < k∗(r , δ)

lie in Γ2 ∩H+. We just complete the proof of the Proposition.

Proposition 4.3. Let (3.2) and (4.2) be satisfied. We further assume that

rδ ≥
√

2, or rδ <
√

2 and δ > 3 + r. (4.10)

Then locally δ-extendable patterns

+ + +, − − −, + + × × − − and − − × × + + (4.11)

can coexist stably.

Proof. Let γ1 be the curve defined by equality of (3.7a). That is γ1 = {(a , β) : (1 −
ar)(1− a−β)−β2r = 0}. Clearly, γ1 is a hyperbola, Since Γ2 ∩H+ is a region for which

its area is positive. Thus (Γ2 ∩H+)− γ1 is nonempty.

We are now ready to state our first main result.
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Theorem 4.1. Assume (3.2) is satisfied. Let 0 < r < 1
2

and δ > 0. Suppose (a , β) ∈ Γ1.

Then any defect pattern satisfying the following rules is stable.

(i) Any linear cell yi is surrounded by two saturated cells of opposite signs. (4.12a)

(ii) Two consecutive linear cells are separated by a string of k saturated cells
of the same sign. Here k ≥ 3, and is odd.

(4.12b)

On the other hand, any defect pattern satisfying (4.12) can be generated by using locally

δ-extendable patterns given in (4.1).

Proof. If (a , β) is chosen as assumed, then the four local patterns in (4.1) are δ-extendable

patterns. Suppose the symbol on the most right of one of the local pattern is the same

as that of the most left of the other local pattern. Then those two local patterns can be

glued together.

For instance,

+ + +
+ + × − − ⇒ + + + + × − − (4.13a)

− − × + +
+ + × − − ⇒ − − × + + +× − − (4.13b)

Note that the local pattern in (4.13b) has 3 +’s between two linear cells. We also

observe that there are even number of +’s in the local pattern + + + + × − −,

which is in (4.13a). By adding more + + +’s to the left of + + + + × − −, we

still get even number of +’s in the newly created local patterns. Thus, to get another

linear cell in such gluing process, we need to glue − − × + + to the left of newest local

patterns. Then the resulting patterns must have odd number of +’s between two linear

cells. Arguing similarly, we see that if we use the four local patterns in (4.1) to generate

the global patterns, then such patterns must satisfy (4.12). The converse is also true.

Remark 4.1. The parameters’ condition for + × − is even more friendly than that of

+ + × − −. Considering the following grouping,

+ + +
+ × − ⇒ + + ×− (4.14a)
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− × +
+ × − ⇒ − × + × − (4.14b)

We see in the case of (4.14a), one needs to consider if + + × is δ-extendable.

While in the case of (4.14b), one needs to worry about if × + × is δ-extendable. A direct

computation would yield that for 0 < a < 1, β > 0 and 0 < r < 1, there is no feasible

parameter region to guarantee that × + × and + + × are δ-extendable. This is the

reason why we require two consecutive linear cells are separated by a string of 2 saturated

cells.

Theorem 4.2. Let (3.2), (4.3),and (4.10) be satisfied. Suppose (a , β) ∈ (Γ2 ∩H+)− γ1.

Then any defect pattern satisfying the following rules is stable.

(i) Any linear cell belongs to a string of 2 linear cells. (4.15a)

(ii) Any string of 2 linear cells is surrounded by two saturated cells of opposite sign.

(4.15b)
(iii) Two consecutive string of 2 linear cells are separated by a string of k saturated cells

of the same sign. Here k ≥ 3, and is odd.
(4.15c)

Conversely, any defect pattern satisfying (4.15) can be generated by using locally δ-extendable

patterns given in (4.11).

Remark 4.2. Due to the difficulty in obtaining the exact formula for the linearized oper-

ator L(x), as given in (1.4), we are unable to rule out the coexistence of stably local defect

patterns of size one and two, which is our conjecture.

Having characterized the set of stable patterns, we now want to measure its complex-

ity. Chow and Mallet-Paret [3] have introduced the notion of spatial entropy to provide

a measure of the number of mosaic patterns. Extending it to encompass all combinations

of stable defect equilibria, this definition is, in the 1-D case, as follows:

Definition 4.1. Consider the set S of sequences x = (xi), where x satisfies (1.3) as

stable equilibria. Let S(M) be the number of different subsequence of M cells observed in

S through a window of size M in the infinite lattice. Then its entropy function is

h(S) = lim
M→∞

1

M
logS(M). (4.16)
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Note that as the template A in (1.2) is space-invariant, the set S is translation

invariant, and so the position of the window of M cells in the infinite array is not impor-

tant, only its size M matters [15]. This definition also characterizes the complexity of the

patterns, in the sense that the CNNs is said to exhibit spatial chaos if h > 0 and pattern

formation if h = 0 [15].

Theorem 4.3. Let 0 < r <
1

2
and δ > 0. Suppose (a , β) ∈ Γ1. Then the set D1 of defect

patterns described in (4.1) exhibits spatial chaos. Moreover, the spatial entropy h(D1) of

D1 is greater or equal than
ln 2

5
.

Proof. Since + + + and − − − are δ-extendable, then + + + + + and − − − − −
are δ-extendable. Consider a window of size 5n as follows:

. . .
B1 B2 Bn

Here B1 is a sub-window of size 5. Now, using + + + + +, − − − − −, + + × − −
and − − × + + to fill in Bk, 1 ≤ k ≤ n, we see that each of Bi has at least 2 choices to

make B1B2 · · ·Bn a local pattern. Hence

h(D1) ≥ lim
n→∞

ln 2n

5n
=

ln 2

5 .

Remark 4.3. Since any two consecutive linear cells are separated by any odd number k,

k ≥ 3, of saturated cells of the same sign, D1 is not a subshift of finite type. It will be

interesting to compute the exact entropy of D1.

Theorem 4.4. Let 0 < r <
√

2−1 and (4.10) be satisfied. Suppose (a , β) ∈ (Γ2∩H+)−
γ1, then the set D2 of defect patterns given in (4.15) exhibits spatial chaos. Moreover, the

spatial entropy h(D2) of D2 is greater or equal than
ln 2

6
.

Proof. We first show that if (a , β) ∈ (Γ2 ∩H+)− γ1, then + + + + and − − −− are

locally δ-extendable patterns of degree one. We illustrate only the case for + + + +.

Use similar approaches as those in proving Propositions (3.2) and (3.3), we consider the

following equation.

−x + βp + a[1 + r(x− 1)] + βx = 0.
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then x =
βp + (a + β)(1− r)

1− ar − βr
≥ β + (a + β)(1− r)

1− ar − βr .

If
β + (a + β)(1− r)

1− ar − βr
> 1, which is equivalent to a + 2β > 1, then x > 1. However,

if a and β are chosen as assumed, then a + 2β > 1. Thus, + + + + and − − −− are

locally δ-extendable patterns of degree one. Gluing + + + + and + + + together, we

have + + + + + + is δ-extendable of degree one. Similarly, − − − − −− is also δ-

extendable of degree one. Let Bi, i = 1 , 2 , · · · , n, be a subwindow of size 6. Considering

a window B1 B2 · · · Bn of size 6, as in the proof of Theorem (4.3), we consider, similarly,

that h(D2) ≥ ln 2

6 .

Remark 4.4. We note that the local mosaic patterns of the form + + −, + − +, − + +,

− − +, − + − and + − − are locally δ-extendable only if a > 1 (see, [11]). Thus, if

(a , β) ∈ Γ1 or (a , β) ∈ (Γ2 ∩H+) − γ1, then any global mosaic patterns must either be

all +′s or all −′s. Consequently, the associated mosaic patterns have zero spatial entropy.

Figure 4.3 is a collection of a computer simulation with sets of parameters chosen

from the parameters regions in Figure 4.1. and 4.2.. Specifically, we set δ = 10 for all

cases. Each collection in Figure 4.3. contains two pairs of two arrays of colors. The first

array is the initial outputs. The second array represents the final outputs. If the state

xj of a cell Cj is such that |xj| < 1, then we color it gray. If the state xj of a cell Cj is

less than −1 (greater than 1, respectively), then we color it white (black, respectively).

Moreover, the final outputs in each of the collection consist of the basic defect patterns

allowed in their corresponding parameters region.
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