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Abstract

The number of stable stationary solutions corresponds to the memory
capacity for the neural networks. In this presentation, we investigate existence
and stability of multiple stationary solutions and multiple periodic solutions
for Hopfield-type neural networks with and without delays. Their associated
basins of attraction are also estimated. Such a convergent dynamical behavior
is established through formulating parameter conditions based on a suitable
geometrical setting. Finally, two examples are given to illustrate our main
results.
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1 Introduction

The well-known Hopfield-type neural networks and their various generalizations have

attracted much attention of the scientific community, due to their promising poten-

tial for tasks of classification, associative memory, and parallel computation and

their ability to solve difficult optimization problems. In those applications, the sta-

bility of the neural networks is crucial and needs to be prescribed before designing a

powerful network model. Especially in associative memories , each particular pattern

is stored in the networks as an equilibrium, the stability of associated equilibrium

shows that the networks have the ability to retrieve the related pattern. In general,

in associative memory neural networks, one expects the networks can store as many

patterns as possible. In this sense, information about the basin of attraction of each

stable equilibrium helps retrieve exactly the needed memories. It is for this reason

that leads to the study of the local stability of each equilibrium and its associated

basin of attraction.

The classical Hopfield-type neural networks [24] is described by a system of

ordinary differential equations

Ci
dxi(t)

dt
= −xi(t)

Ri

+
n∑

j=1

Tijgj(xj(t)) + Ii, i = 1, 2, · · · , n. (1.1)

Here n ≥ 2 is the number of neurons in the networks. For neuron i, Ci > 0 and

Ri > 0 are the neurons amplifier input capacitance and resistance, respectively,

and Ii is the constant input from outside the system. The n × n matrix T = (Tij)

represents the connection strengths between neurons, and the function gj are neuron

activation functions.

In hardware implementation, time delays occur due to the finite switching

speeds of the amplifiers. The Hopfield-type neural networks with delays [29] is

described by a system of functional differential equations

Ci
dxi(t)

dt
= −xi(t)

Ri

+
n∑

j=1

Tijgj(xj(t− τij)) + Ii, i = 1, 2, · · · , n (1.2)

in which 0 < τij ≤ τ . Recently, the Hopfield-type neural networks with delays

has drawn much attention. Even though the delay does not change the equilibrium

points, with the appearance of time delay, the dynamics of the corresponding neural

network models can be quite complicated. It is interesting to know under what
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conditions the delays have no effects to the dynamics. Restated, we hope to obtain

the delay-independent stability results which are more applicable in designing a

practical network.

In applications to parallel computation and signal processing involving the so-

lution optimization problems, it is required that system (1.1) and (1.2) have a unique

equilibrium point that is globally attractive. Thus, the global attractivity of systems

is of great importance for both practical and theoretical purposes and has been the

major concern of most authors dealing with (1.1) and (1.2). We refer to [9, 20, 41, 44]

and [10, 15, 19, 38, 40, 42, 43, 45] for systems with and without delays, respectively.

Herein, the constant delays have been studied in [10, 15, 19, 38, 42, 45] and there

are some results for the case of variable delays in [40, 43] . In [41], the authors

study the estimation of exponential convergence rate and the exponential stability

of (1.1). Both local and global exponential convergence are discussed therein. In

[44], without assuming the boundedness, monotonicity, and differentiability of the

activation functions, by using M-matrix theory, Lyapunov functions are constructed

and employed to establish sufficient conditions for global asymptotic stability of

(1.1). Both global exponential stability and periodic solutions of Hopfield neural

networks are analyzed via the method of constructing suitable Lyapunov function-

als, with constant delays and variable delays, in [42] and [43], respectively. In [38],

without assuming the monotonicity and differentiability of the activation functions,

Lyapunov functionals and Lyapunov-Razumikhin technique are constructed and em-

ployed to establish sufficient conditions for global asymptotic stability independent

of the delays. In the case of monotone and smooth activation functions, the theory

of monotone dynamical systems is applied to obtain criteria for global attractivity,

which depends on delays. In [45], without assuming the boundedness, monotonic-

ity and differentiability of the activation functions, the authors present conditions

ensuring existence, uniqueness and global asymptotical stability of the equilibrium

point of (1.2). In [21], some sufficient conditions for local and global exponential

stability of the discrete-time Hopfield neural networks with general activation func-

tions are derived, which generalize those existing results. By means of M-matrix

theory and some inequality analysis techniques, the exponential stability is derived

and the basin of attraction of the stable equilibrium is estimated.

The existence and stability of equilibria and periodic solutions of cellular

neural networks with and without delays have also been extensively studied in

[6, 7, 8, 14, 27, 28, 31, 46]. In [27], the authors present two types of matrix stability:
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complete stability and strong stability. By using these two properties, they obtain

some conditions ensuring uniqueness, exponential stability and global asymptotic

stability of the equilibrium point for cellular neural networks. A set of criteria is

presented for the global exponential stability and the existence of periodic solutions

of delayed cellular neural networks by constructing suitable Lyapunov function-

als, introducing many parameters and combining with the elementary inequality

technique in [6, 8, 14]. In [28], convergence characteristics of continuous-time and

discrete-time cellular neural networks are studied. By using Lyapunov function-

als, the authors obtain delay independent sufficient conditions for the networks to

converge exponentially toward the equilibria associated with the constant input

sources. Halanay-type inequalities are employed to obtain sufficient conditions for

the networks to be globally exponentially stable. It is shown that the estimates

obtained from the Halanay-type inequalities improve the estimates obtained from

the Lyapunov functionals. It is also shown that the convergence characteristics of

the continuous-time systems are preserved by the discrete-time analogues without

any restriction imposed on the uniform discretization step size. In [7], the authors

investigate the absolute exponential stability of a general class of delayed neural

networks, which require the activation functions to be partially Lipschitz continu-

ous and monotone nondecreasing only, but not necessarily differentiable or bounded.

Three sufficient conditions are derived to ascertain whether or not the equilibrium

points of the delayed neural networks with additively diagonally stable interconnec-

tion matrices are absolutely exponentially stable by using Halanay-type inequality

and Lyapunov functional. The problem of global exponential stability for cellular

neural networks with time-varing delays are studied in [46]. The theory for existence

of many patterns has been developed for cellular neural networks [13, 26, 36, 37],

and there are other interesting studies on delayed neural networks in [2, 16, 17, 39].

What has to be noticed is that the stability in most of these papers is referred

to as “monostability”. This means that the networks have a unique equilibrium or

a unique periodic orbit which is globally attractive. The notion of “multistability”

of a neural network is used to describe coexistence of multiple stable patterns such

as equilibria or periodic orbits. The purpose of this presentation is to investigate

existence and stability of multiple equilibria and multiple periodic solutions, and

their associated basins of attraction for the Hopfield-type neural networks with and

without delays. In order to illustrate our results, we use Matlab to compute the

numerical simulations. The numerical methods and programs adopted can be found
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in [4, 33, 34].

From a mathematical viewpoint, there are three important methods to treat

the stability problem of delayed neural networks: Lyapunov functional, characteris-

tic equation and Halanay-type inequalities. The Lyapunov functional approach can

be found in [18, 23], and the characteristic equation approach is used in [3, 5, 35].

Finally, the Halanay-type inequalities approach, we refer to [1, 7, 22]. In this presen-

tation, we use Lyapunov functional method and Halanay-type inequalities to study

the stability of Hopfield neural networks with and without delays.

The rest of the paper is organized as follows. In Section 2, we establish con-

ditions for existence of 3n equilibria for the Hopfield’s network. 2n among them

will be shown to be asymptotically stable for the system without delays, through

a linearization analysis. In Section 3, we shall verify that under same conditions,

2n regions, each containing an equilibrium, are positively invariant under the flow

generated by the system with or without delays. Subsequently, it is argued that

these 2n equilibria are also exponentially stable, even with presence of delays. In

Section 4, under same conditions, we shall confirm that 2n periodic solutions exist in

these 2n regions, each containing a periodic solution, when the system has a periodic

input. Two numerical simulations on the dynamics of two-neuron networks which

illustrate the present theory, are given in Section 5.

2 Existence of Multiple Equilibria and their Sta-

bility

In this section, we shall formulate sufficient conditions for the existence of multiple

stationary solutions for Hopfield neural networks with and without delays. Our

approach is based on a geometrical observation. The derived parameter conditions

are concrete and can be examined easily. We also establish stability criteria of these

equilibria for the system without delays, through estimations on the eigenvalues of

the linearized system. Stability for the system with delays will be discussed in the

next section. After rearranging the parameters, we consider system (1.1) in the

following forms: for the network without delay

dxi(t)

dt
= −bixi(t) +

n∑
j=1

ωijgj(xj(t)) + Ji, i = 1, 2, · · · , n; (2.1)
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for the network with delays

dxi(t)

dt
= −bixi(t) +

n∑
j=1

ωijgj(xj(t− τij)) + Ji, i = 1, 2, · · · , n. (2.2)

Herein, bi > 0, 0 < τij ≤ τ := max1≤i,j≤n τij. While (2.1) is a system of ordinary

differential equations, (2.2) is a system of functional differential equations. The

initial condition for (2.2) is

xi(θ) = φi(θ), − τ ≤ θ ≤ 0, i = 1, 2, · · · , n,

and it is usually assumed that φi ∈ C([−τ, 0],R). Let ` > 0. For x ∈ C([−τ, `],Rn),

and t ∈ [0, `], we define

xt(θ) = x(t + θ), θ ∈ [−τ, 0]. (2.3)

Let us denote F̃ = (F̃1, · · · , F̃n), where F̃i is the right hand side of (2.2),

F̃i(xt) := −bixi(t) +
n∑

j=1

ωijgj(xj(t− τij)) + Ji,

where x = (x1, · · · , xn). A function x is called a solution of (2.2) on [−τ, `) if

x ∈ C([−τ, `),Rn), xt defined as (2.3) lies in the domain of F̃ and satisfies (2.2) for

t ∈ [0, `). For a given φ ∈ C([−τ, 0],Rn), let us denote by x(t; φ) the solution of

(2.2) with x0(θ; φ) := x(0 + θ; φ) = φ(θ), for θ ∈ [−τ, 0].

The activation functions gj usually have sigmoidal configuration or are non-

decreasing with saturations. Herein, we consider the typical logistic or Fermi func-

tion: for all j = 1, 2, · · · , n,

gj(ξ) = g(ξ) :=
1

1 + e−ξ/ε
, ε > 0. (2.4)

One may also adopt gj(ξ) = 1/(1+ e−ξ/εj), εj > 0. Notably, the stationary equation

for systems (2.1) and (2.2) are identical; namely,

Fi(x) := −bixi +
n∑

j=1

ωijgj(xj) + Ji = 0, i = 1, 2, · · · , n, (2.5)

where x = (x1, · · · , xn). For our formulation in the following discussions, we intro-

duce a single neuron analogue (no interaction among neurons)

fi(ξ) := −biξ + ωiig(ξ) + Ji, ξ ∈ R.

5



Let us propose the first parameter condition.

(H1) : 0 <
biε

ωii

<
1

4
, i = 1, 2, · · · , n.

Lemma 2.1: Under condition (H1), there exist two points pi and qi with pi < 0 < qi,

such that f ′i(pi) = 0, f ′i(qi) = 0, for i = 1, 2, · · · , n.

Proof: We compute that

g′(ξ) =
1

ε
(1 + e−ξ/ε)−2e−ξ/ε. (2.6)

Notably, the graph of function g′(ξ) is concave down and has its maximal value at

ξ = 0. Notably, g is strictly increasing. We let y = g(ξ), ξ ∈ R. Then y ∈ (0, 1)

and g(0) = 1/2. It follows from (2.6) that

g′(ξ) =
1

ε
y2(

1

y
− 1) =

1

ε
(y − y2).

On the other hand, for each i, since f ′i(ξ) = −bi + ωiig
′(ξ), we have f ′i(ξ) = 0 if and

only if bi = ωiig
′(ξ); equivalently,

biε

ωii

= y − y2.

From the configuration in Figure 1, it follows that, for each i, there exist two points

pi, qi, pi < 0 < qi, such that f ′i(pi) = f ′i(qi) = 0, if the parameter condition

0 < biε/ωii < 1/4 holds. This completes the proof.

Notably, condition (H1) implies ωii > 0 for all i = 1, 2, · · · , n, since each bi is

already assumed a positive constant. We define, for i = 1, 2, · · · , n,

f̂i(ξ) = −biξ + ωiig(ξ) + k+
i

f̌i(ξ) = −biξ + ωiig(ξ) + k−i ,

where

k+
i :=

n∑

j=1,j 6=i

|ωij|+ Ji, k−i := −
n∑

j=1,j 6=i

|ωij|+ Ji.

It follows that

f̌i(xi) ≤ Fi(x) ≤ f̂i(xi), (2.7)

for all x = (x1, · · · , xn) and i = 1, 2, · · · , n, since 0 ≤ gj ≤ 1 for all j.
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Figure 1: The graph for function u(y) = y − y2 and y1 = g(pi), y2 = g(qi).

We consider the second parameter condition which is concerned with the ex-

istence of multiple equilibria for (2.1) and (2.2).

(H2) : f̂i(pi) < 0, f̌i(qi) > 0, i = 1, 2, · · · , n.

The configuration that motivates (H2) is depicted in Figure 2. Such a configuration

is due to the characteristics of the output function g. Under assumptions (H1) and

(H2), there exist points âi, b̂i, ĉi with âi < b̂i < ĉi such that f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) =

0 as well as points ǎi, b̌i, či with ǎi < b̌i < či such that f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0.

Theorem 2.1 : Under (H1) and (H2), there exist 3n equilibria for systems (2.1) and

(2.2).

Proof: The equilibria of systems (2.1) and (2.2) are zeros of (2.5). Under condition

(H1) and (H2), the graphs of f̂i and f̌i defined above are as depicted as Figure 2.

According to the configurations, there are 3n disjoint closed regions in Rn. Set

Ωl
i := {x ∈ R| ǎi ≤ x ≤ âi}

Ωm
i := {x ∈ R| b̂i ≤ x ≤ b̌i} (2.8)

Ωr
i := {x ∈ R| či ≤ x ≤ ĉi},

and let Ωα = {(x1, x2, · · · , xn) ∈ Rn | xi ∈ Ωαi
i } with α = (α1, α2, · · · , αn), αi =“l”

or “m” or “r”. Herein,“l”, “m”, “r” mean respectively “left”, “middle”, “right”.
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Figure 2: (a) The graph of g with ε = 0.5, (b)Configurations for f̂i and f̌i.
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Consider any one of these regions Ωα. For a given x̃ = (x̃1, x̃2, · · · , x̃n) ∈ Ωα, we

solve

hi(xi) := −bixi + ωiig(xi) +
n∑

j=1,j 6=i

ωijg(x̃j) + Ji = 0,

for xi, i = 1, 2, · · · , n. According to (2.7), the graph of hi lies between the graphs of

f̂i and f̌i. In fact, the graph of hi is a vertical shift of the graph for f̂i or f̌i. Thus, one

can always find three solutions and each of them lies in one of the regions in (2.8), for

each i. Let us pick the one lying in Ωαi
i as xi and define a mapping Hα : Ωα → Ωα

by Hα(x̃) = x = (x1, x2, · · · , xn). Since g is continuous and the graph of hi is a

vertical shift of function ξ 7→ −biξ + ωiig(ξ) by the quantity
∑n

j=1,j 6=i ωijg(x̃j) + Ji,

the map Hα is continuous. It follows from the Brouwer’s fixed point theorem that

there exists one fixed point x̄ = (x̄1, x̄2, · · · , x̄n) of Hα in Ωα, which is also a zero

of the function F , where F = (F1, F2, · · · , Fn). Consequently, there exist 3n zeros

of F , hence 3n equilibria for system (2.1) and (2.2), and each of them lies in one of

the 3n regions Ωα. This completes the proof.

Let

g′(η) := max{g′(ξ) | ξ = či, âi, i = 1, 2, · · · , n}.
We consider the following criterion concerning stability of the equilibria.

(H3) : bi > g′(η)
n∑

j=1

|ωij|, i = 1, 2, · · · , n. (2.9)

Condition (H3) implies

−bi + ωiig
′(xi) +

n∑

j=1,j 6=i

|ωij|g′(xj) < 0, (2.10)

for xi = či, âi, xj = čj, âj, i, j = 1, 2, · · · , n, if ωii > 0 for all i.

Theorem 2.2 : Under conditions (H1), (H2) and (H3), there exist 2n asymptotically

stable equilibria for the Hopfield neural networks without delay (2.1).

Proof: Among the 3n equilibria in Theorem 2.1, we consider those x̄ = (x̄1, · · · , x̄n)

with x̄i ∈ Ωl
i or Ωr

i, for each i. The linearized system of (2.1) at equilibrium x̄ is

dyi

dt
= −biyi +

n∑
j=1

ωijg
′
j(xj)yj, i = 1, 2, · · · , n.
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Restated, ẏ = Ay where DF (x) =: A = [aij]n×n with

[aij] =




−b1 + ω11g
′(x̄1) ω12g

′(x̄2) · · · ω1ng′(x̄n)
ω21g

′(x̄1) −b2 + ω22g
′(x̄2) · · · ω2ng′(x̄n)

...
...

. . .
...

ωn1g
′(x̄1) ωn2g

′(x̄2) · · · −bn + ωnng
′(x̄n)


 .

Let

ri =
n∑

j=1,j 6=i

|aij| =
n∑

j=1,j 6=i

|ωijg
′(x̄j)| =

n∑

j=1,j 6=i

|ωij|g′(x̄j), i = 1, 2, · · · , n.

According to the Gerschgorin’s Theorem,

λk ∈
n⋃

i=1

B(aii, ri),

for all k = 1, 2, · · · , n, where λk are eigenvalues of A and B(aii, ri) := {ζ ∈ C |
|ζ − aii| < ri} . Hence, for each k, there exists some i = i(k) such that

Re(λk) < −bi + ωiig
′(x̄i) +

n∑

j=1,j 6=i

|ωij|g′(x̄j).

Notice that for each j, g′(ξ) ≤ g′(čj) (resp. g′(ξ) ≤ g′(âj)), if ξ ≥ čj (resp. ξ ≤ âj).

Since x̄ is such that x̄j ∈ Ωl
j or Ωr

j, we have x̄j ≥ čj or x̄j ≤ âj, for all j = 1, 2, · · · , n.

It follows that Re(λk) < 0, by (2.10). Thus, under (H3), all the eigenvalues of A

have negative real parts. Therefore, there are 2n asymptotically stable equilibria for

system (2.1). The proof is completed.

We certainly can replace condition (H3) by weaker ones, such as an individual

condition for each equilibrium. Let x̄ be an equilibrium lying in Ωα with α =

(α1, · · · , αn) and αi = r or αi = l, that is, x̄i ∈ Ωl
i or Ωr

i, for each i. For such an

equilibrium, we consider, for i = 1, 2, · · · , n,

bi > ωiig
′(ξi) +

n∑

j=1,j 6=i

|ωij|g′(ξj), ξk = čk if αk = r, ξk = âk, if αk = l, k = 1, 2, · · · , n.

Such conditions are obviously much more tedious than (H3).
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3 Stability of Equilibria and the Basins of Attrac-

tion

We plan to investigate the stability of equilibrium for system (2.2), that is, with

delays. We shall also explore the basins of attraction for the asymptotically stable

equilibria, for both systems (2.1) and (2.2), in this section.

Notably, the function ξ 7→ [ωii +
∑n

j=1,j 6=i |ωij|]g′(ξ) is continuous, for all i =

1, 2, · · · , n. From (2.10) and ωii > 0, it follows that there exists a positive constant

ε0 such that

bi > max{[ωii +
n∑

j=1,j 6=i

|ωij|]g′(ξ) : ξ = âi + ε0, či − ε0}, i = 1, 2, · · · , n. (3.1)

Herein, we choose ε0 such that ε0 < min{|âi − pi|, |či − qi|}, for all i = 1, 2, · · · , n.

For system (2.1), we consider the following 2n subsets of Rn. Let α = (α1, · · · , αn)

with αi = l or r, and set

Ω̃α = {(x1, x2, · · · , xn) | xi ∈ Ω̃l
i if αi = l, xi ∈ Ω̃r

i if αi = r}, (3.2)

where

Ω̃l
i := {ξ ∈ R | ξ ≤ âi + ε0}, Ω̃r

i := {ξ ∈ R | ξ ≥ či − ε0}.
For system (2.2), we consider the following 2n subsets of C([−τ, 0],Rn). Let α =

(α1, · · · , αn) with αi = l or r, and set

Λα = {ϕ = (ϕ1, ϕ2, · · · , ϕn) | ϕi ∈ Λl
i if αi = l, ϕi ∈ Λr

i if αi = r}, (3.3)

where

Λl
i := {ϕi ∈ C([−τ, 0],R) | ϕi(θ) ≤ âi + ε0, for all θ ∈ [−τ, 0]}

Λr
i := {ϕi ∈ C([−τ, 0],R) | ϕi(θ) ≥ či − ε0, for all θ ∈ [−τ, 0]}.

Theorem 3.1 : Assume that (H1) and (H2) hold. Then each Ω̃α and each Λα is

positively invariant with respect to the solution flow generated by system (2.1) and

system (2.2) respectively.

Proof : We only prove the delay case, i.e., system (2.2). Consider any one of the

2n sets Λα. For any initial condition φ = (φ1, φ2, · · · , φn) ∈ Λα, we claim that
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the solution x(t; φ) remains in Λα for all t ≥ 0. If this is not true, there exists a

component xi(t) of x(t; φ) which is the first one (or one of the first ones) escaping

from Λl
i or Λr

i. Restated, there exist some i and t1 > 0 such that either xi(t1) = či−ε0,
dxi

dt
(t1) ≤ 0, and xi(t) ≥ či − ε0 for −τ ≤ t ≤ t1 or xi(t1) = âi + ε0,

dxi

dt
(t1) ≥ 0 and

xi(t) ≤ âi + ε0 for −τ ≤ t ≤ t1. For the first case xi(t1) = či − ε0 and dxi

dt
(t1) ≤ 0,

we derive from (2.2) that

dxi

dt
(t1) = −bi(či − ε0) + ωiig(xi(t1 − τii)) +

n∑

j=1,j 6=i

ωijg(xj(t1 − τij)) + Ji ≤ 0. (3.4)

On the other hand, recalling (H2) and previous descriptions of či and ε0, we have

f̌i(či − ε0) > 0 which gives

−bi(či − ε0) + ωiig(či − ε0) + k−i (3.5)

= −bi(či − ε0) + ωiig(či − ε0)−
n∑

j=1,j 6=i

|ωij|+ Ji > 0.

Notice that t1 is the first time for xi to escape from Λr
i. We have g(xi(t1 − τii)) ≥

g(či − ε0), by the monotonicity of function g. In addition, by ωii > 0 and |g(·)| ≤ 1,

we obtain from (3.5) that

−bi(či − ε0) + ωiig(xi(t1 − τii)) +
n∑

j=1,j 6=i

ωijg(xj(t1 − τij)) + Ji

≥ −bi(či − ε0) + ωiig(či − ε0)−
n∑

j=1,j 6=i

|ωij|+ Ji > 0,

which contradicts (3.4). Hence, xi(t) ≥ či − ε0 for all t > 0. Similar arguments

can be employed to show that xi(t) ≤ âi + ε0, for all t > 0 for the situation that

xi(t1) = âi + ε0 and dxi

dt
(t1) ≥ 0. Therefore, Λα is positively invariant under the flow

generated by system (2.2). The assertion for system (2.1) can be justified similarly.

Theorem 3.2 : Under conditions (H1), (H2) and (H3), there exist 2n exponentially

stable equilibria for system (2.2).

Proof : Consider an equilibrium x̄ = (x̄1, x̄2, · · · , x̄n) ∈ Ωα, for some α = (α1, α2, · · · , αn),

with αi = l or r, obtained in Theorem 2.2. We consider single-variable functions

Gi(·), defined by

Gi(ζ) = bi − ζ −
n∑

j=1

|ωij|g′(ξj)e
ζτij ,
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where ξj = âj + ε0 (resp. čj − ε0), if αj = l (resp. r). Then, Gi(0) > 0, from

(3.1) or (H3). Moreover, there exists a constant µ > 0 such that Gi(µ) > 0, for

i = 1, 2, · · · , n, due to continuity of Gi. Let x(t) be a solution to (2.2) with initial

condition φ ∈ Λα defined in (3.3). Under the translation y(t) = x(t) − x̄, system

(2.2) becomes

dyi(t)

dt
= −biyi(t) +

n∑
j=1

ωij[g(xj(t− τij))− g(xj)], (3.6)

where y = (y1, · · · , yn). Now, consider functions zi(·) defined by

zi(t) = eµt|yi(t)|, i = 1, 2, · · · , n. (3.7)

The domain of definition for zi(·) is identical to the interval of existence for yi(·). We

shall see in the following computations that the domain can be extended to [−τ,∞).

Let δ > 1 be an arbitrary real number and let

K := max
1≤i≤n

{
sup

θ∈[−τ,0]

|xi(θ)− x̄i|
}

> 0. (3.8)

It follows from (3.7) and (3.8) that zi(t) < Kδ, for t ∈ [−τ, 0] and all i = 1, 2, · · · , n.

Next, we claim that

zi(t) < Kδ, for all t > 0, i = 1, 2, · · · , n. (3.9)

Suppose this is not the case. Then there are an i ∈ {1, 2, · · · , n} (say i = k) and a

t1 > 0 for the first time such that

zi(t) ≤ Kδ, t ∈ [−τ, t1], i = 1, 2, · · · , n, i 6= k,

zk(t) < Kδ, t ∈ [−τ, t1),

zk(t1) = Kδ, with
d

dt
zk(t1) ≥ 0.

Note that zk(t1) = Kδ > 0 implies yk(t1) 6= 0. Hence |yk(t)| and zk(t) are differen-

tiable at t = t1. From (3.6), we derive that

d

dt
|yk(t1)| ≤ −bk|yk(t1)|+

n∑
j=1

|ωkj|g′(ςj)|yj(t1 − τkj)|, (3.10)

13



for some ςj between xj(t1 − τkj) and x̄j. Hence, from (3.7) and (3.10),

dzk(t1)

dt
≤ µeµt1|yk(t1)|+ eµt1 [−bk|yk(t1)|+

n∑
j=1

|ωkj|g′(ςj)|yj(t1 − τkj)|]

≤ µzk(t1)− bkzk(t1) +
n∑

j=1

|ωkj|g′(ςj)eµτkjzj(t1 − τkj)

≤ −(bk − µ)zk(t1) +
n∑

j=1

|ωkj|g′(ξj)e
µτkj [ sup

θ∈[t1−τ,t1]

zj(θ)], (3.11)

where ξj = âj + ε0 (resp. čj− ε0), if αj = l (resp. r). Herein, the invariance property

of Λα in Theorem 3.1 has been applied. Due to Gi(µ) > 0, we obtain

0 ≤ dzk(t1)

dt
≤ −(bk − µ)zk(t1) +

n∑
j=1

|ωkj|g′(ξj)e
µτkj [ sup

θ∈[t1−τ,t1]

zj(θ)]

< −{bi − µ−
n∑

j=1

|ωij|g′(ξj)e
µτkj}Kδ

< 0, (3.12)

which is a contradiction. Hence the claim (3.9) holds. Since δ > 1 is arbitrary, by

allowing δ → 1+, we have zi(t) ≤ K for all t > 0, i = 1, 2, · · · , n. We then use (3.7)

and (3.8) to obtain

|xi(t)− x̄i| ≤ e−µt max
1≤j≤n

( sup
θ∈[−τ,0]

|xj(θ)− x̄j|),

for t > 0 and all i = 1, 2, · · · , n. Therefore, x(t) is exponentially convergent to x̄.

This completes the proof.

In the following, we employ the theory of local Lyapunov functional [23] and

the Halanay-type inequality to establish other sufficient conditions for asymptotic

stability and exponential stability for equilibrium of system (2.2).

Lemma 3.3 [7, 22]: Let v(t) be a nonnegative continuous function on [t0 − τ, t0],

where τ is a positive constant. Suppose

dv(t)

dt
≤ −αv(t) + β[ sup

s∈[t−τ,t]

v(s)],

for t ≥ to. If α > β > 0, then as t ≥ t0, there exist constants γ > 0 and k > 0 such

that

v(t) ≤ ke−γ(t−t0),
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where

k = sup
s∈[t0−τ,t0]

v(s)

and γ is the unique positive solution of equation

γ = α− βeγτ .

Theorem 3.4 : There exist 2n asymptotically stable equilibria for system (2.2)

under conditions (H1), (H2) and one of the following conditions :

(H4) 2bi >

n∑
j=1

|ωij|+
n∑

j=1

|ωij|[g′(ξj)]
2, for all i = 1, 2, · · · , n,

(H5) 2bi >

n∑
j=1

|ωij|+ [g′(ξi)]
2

n∑
j=1

|ωji|, for all i = 1, 2, · · · , n,

(H6) min
1≤i≤n

[2bi −
n∑

j=1

|ωij|g′(ξj)] > max
1≤i≤n

[
n∑

j=1

|ωji|g′(ξi)],

where ξk = âk, čk, k = 1, 2, · · · , n.

Proof : The following computations are reserved for solutions in each of the 2n

invariant regions Λα. (i) As in the proof of Theorem 3.2, there exists a positive

constant µ such that

2bi − µ−
n∑

j=1

|ωij| −
n∑

j=1

|ωij|[g′(ξj)]
2eµτij > 0, (3.13)

for all i = 1, 2, · · · , n. Define zi(t) = eµty2
i (t), where yi(t) is as in the proof of

Theorem 3.2. Recalling (3.6), we derive that

dzk(t1)

dt
= µeµt1 [yk(t1)]

2 + 2eµt1yk(t1))ẏk(t1)

= µeµt1 [yk(t1)]
2 − 2bke

µt1 [yk(t1)]
2 + 2

n∑
j=1

ωkje
µt1yk(t1)[g(xj(t1 − τkj))− g(xj)]

≤ −(2bk − µ)zk(t1) +
n∑

j=1

|ωkj|eµt1{[yk(t1)]
2 + [g(xj(t1 − τkj))− g(xj)]

2}

≤ −(2bk − µ)zk(t1)

+
n∑

j=1

|ωkj|eµt1 [yk(t1)]
2 +

n∑
j=1

|ωkj|eµt1 [g′(ςj)]2[yj(t1 − τkj)]
2

≤ −[2bk − µ−
n∑

j=1

|ωkj|]zk(t1) +
n∑

j=1

|ωkj|[g′(ξj)]
2eµτkj [ sup

s∈[t1−τ,t1]

zj(s)].
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The assertion under condition (H4) can be justified by similar arguments as the

proof of Theorem 3.2.

(ii) Recall (3.6), and let

V (y)(t) =
n∑

i=1

y2
i (t) +

n∑
i=1

n∑
j=1

|ωij|
∫ t

t−τij

[g(xj(s))− g(xj)]
2ds.

By (H5), we derive

dV (y)(t)

dt
= 2

n∑
i=1

yi(t){−biyi(t) +
n∑

j=1

ωij[g(xj(t− τij))− g(xj)]}

+
n∑

i=1

n∑
j=1

|ωij|[g(xj(t))− g(xj)]
2 −

n∑
i=1

n∑
j=1

|ωij|[g(xj(t− τij))− g(xj)]
2

≤ −2
n∑

i=1

biy
2
i (t) +

n∑
i=1

n∑
j=1

|ωij|{y2
i (t) + [g(xj(t− τij))− g(xj)]

2}

+
n∑

i=1

n∑
j=1

|ωij|[g(xj(t))− g(xj)]
2 −

n∑
i=1

n∑
j=1

|ωij|[g(xj(t− τij))− g(xj)]
2

= −2
n∑

i=1

biy
2
i (t) +

n∑
i=1

n∑
j=1

|ωij|y2
i (t) +

n∑
i=1

n∑
j=1

|ωij|[g(xj(t))− g(xj)]
2

≤ −2
n∑

i=1

biy
2
i (t) +

n∑
i=1

n∑
j=1

|ωij|y2
i (t) +

n∑
i=1

n∑
j=1

|ωij|[g′(ξj)]
2y2

j (t)

=
n∑

i=1

{−2bi +
n∑

j=1

|ωij|+ [g′(ξi)]
2

n∑
j=1

|ωji|}y2
i (t)

< 0.

We conclude the asymptotical stability for equilibrium x̄, via applying the theory

of local Lyapunov functional, cf. [23].

(iii) Recall (3.6), and let

W (y)(t) =
1

2

n∑
i=1

y2
i (t). (3.14)
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Then,

dW (y)(t)

dt
=

n∑
i=1

yi(t){−biyi(t) +
n∑

j=1

ωij[g(xj(t− τij))− g(xj)]}

≤
n∑

i=1

{−biy
2
i (t) +

n∑
j=1

|ωij||yi(t)||yj(t− τij)|g′(ςj)}

≤
n∑

i=1

{−biy
2
i (t) +

1

2

n∑
j=1

|ωij|g′(ςj)[y2
i (t) + y2

j (t− τij)]}

= −
n∑

i=1

[bi − 1

2

n∑
j=1

|ωij|g′(ςj)]y2
i (t) +

1

2

n∑
i=1

[
n∑

j=1

|ωij|g′(ςj)y2
j (t− τij)]

= −
n∑

i=1

[bi − 1

2

n∑
j=1

|ωij|g′(ςj)]y2
i (t) +

1

2

n∑
i=1

[
n∑

j=1

|ωji|g′(ςi)y2
i (t− τji)]

≤ −
n∑

i=1

[bi − 1

2

n∑
j=1

|ωij|g′(ςj)]y2
i (t) +

1

2

n∑
i=1

[
n∑

j=1

|ωji|g′(ςi) sup
t−τ≤s≤t

y2
i (s)]

≤ −
n∑

i=1

[bi − 1

2

n∑
j=1

|ωij|g′(ξj)]y
2
i (t) +

1

2
[max
1≤i≤n

n∑
j=1

|ωji|g′(ξi)]
n∑

i=1

sup
t−τ≤s≤t

y2
i (s)

≤ −αW (y)(t) + β sup
t−τ≤s≤t

W (y)(s),

where

α = min
1≤i≤n

(
2bi −

n∑
j=1

|ωij|g′(ξj)

)
, β = max

1≤i≤n

n∑
j=1

|ωji|g′(ξi).

By (H6), we have α > β > 0 and by using Lemma 3.3, we obtain that

W (y)(t) ≤
(

sup
−τ≤s≤0

W (y)(s)

)
e−γt, (3.15)

for all t ≥ 0, where γ is the unique solution of γ = α− βeγτ . It follows that

1

2

n∑
i=1

y2
i (t) ≤

[
sup

−τ≤s≤0

(
1

2

n∑
i=1

y2
i (s)

)]
e−γt. (3.16)

Hence, the equilibrium x̄ is asymptotically stable.

Corollary 3.5 : Under conditions (H1), (H2), and (H4) or (H6), there exist 2n

exponentially stable equilibria for system (2.2).

We observe from equations (2.1) and (2.2) that for every i,

Fi(x), F̃i(xt) < 0 whenever xi > 0 is sufficiently large,

Fi(x), F̃i(xt) > 0 whenever xi < 0 with |xi| sufficiently large,
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since bi > 0 and
∑n

j=1 ωijgj(xj(t))+Ji, and
∑n

j=1 ωijgj(xj(t−τij))+Ji are bounded,

for any x and xt. Therefore, it can be concluded that every solution of (2.1) and

(2.2) is bounded in forward time.

4 Periodic Orbits for System with Periodic Inputs

In this section, we study the periodic solutions of the Hopfield-type neural networks

with delays and periodic inputs

dxi(t)

dt
= −bixi(t) +

n∑
j=1

ωijgj(xj(t− τij)) + Ji(t), i = 1, 2, · · · , n, (4.1)

where Ji : R+ −→ R, i = 1, 2, · · · , n, are continuously periodic functions with period

Tω, i.e, Ji(t + Tω) = Ji(t).

Theorem 4.1: Under conditions (H1), (H2) and (H3), there exist 2n exponentially

stable Tω-period solutions for system (4.1).

Proof: We define the norm

‖ φ ‖= max
1≤ i≤ n

(
sup

s∈[−τ, 0]

|φi(s)|
)

.

Consider ϕ, ψ ∈ Λα, for some α = (α1, α2, · · · , αn), with αi = l or r, obtained in

(3.3). We denote as

x(t, ϕ) = (x1(t, ϕ), x2(t, ϕ), · · · , xn(t, ϕ))T ,

x(t, ψ) = (x1(t, ψ), x2(t, ψ), · · · , xn(t, ψ))T ,

the solutions of (4.1) through (0, ϕ) and (0, ψ), respectively.

Define

xt(ϕ) = x(t + θ, ϕ), θ ∈ [−τ, 0], t ≥ 0,

then xt(ϕ) ∈ Λα for all t ≥ 0. From (4.1) we have

d

dt
[xi(t, ϕ)− xi(t, ψ)] = −bi(xi(t, ϕ)− xi(t, ψ))

+
n∑

j=1

ωij [gj(xj(t− τij, ϕ))− gj(xj(t− τij, ψ))] ,
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where t ≥ 0, i = 1, 2, · · · , n. Similar to the proof of Theorem 3.2, we can get

|xi(t, ϕ)− xi(t, ψ)| ≤ e−µt max
1≤ j≤ n

(
sup

s∈[−τ, 0]

|xj(s, ϕ)− xj(s, ψ)|
)

,

where µ > 0 is a small constant. Therefore, we have

‖xt(ϕ)− xt(ψ)‖ ≤ e−µt‖ϕ− ψ‖, t ≥ 0.

One can easily obtain from the formula above that

‖xt(ϕ)− xt(ψ)‖ ≤ e−µ(t−τ)‖ϕ− ψ‖, t ≥ 0. (4.2)

We can choose a positive integer m such that

e−µ(mTω−τ) = K < 1.

Define a Poincare mapping P : Λα → Λα by

Pϕ = xTω(ϕ).

Then we can derive from (4.2) that

‖Pmϕ− Pmψ‖ ≤ K‖ϕ− ψ‖.

This inequality implies that Pm is a contraction mapping, hence there exists a

unique fixed point ϕ ∈ Λα such that Pmϕ = ϕ. Note that

Pm(Pϕ) = P (Pmϕ) = Pϕ.

Then Pϕ ∈ Λα is also a fixed point of Pm, and so Pϕ = ϕ, i.e.

xTω(ϕ) = ϕ.

Let x(t, ϕ) be the solution of (4.1) through (0, ϕ), then x(t+Tω, ϕ) is also a solution

of (4.1), and note that

xt+Tω(ϕ) = xt(xTω(ϕ)) = xt(ϕ), t ≥ 0;

therefore

x(t + Tω, ϕ) = x(t, ϕ), t ≥ 0.

This shows that x(t, ϕ) is exactly one Tω-period solution of (4.1) in Λα, and it easy

to see that all other solutions of (4.1) in Λα converge exponentially to it as t → +∞.

Thus, there are 2n exponentially stable Tω-period solutions for system (4.1).
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5 Numerical Illustrations

In this section, we present two examples to illustrate our results.

Example 5.1 : Consider the two-dimensional delayed Hopfield neural networks

dx1(t)

dt
= −x1(t) + 18g1(x1(t− 10)) + 5g2(x2(t− 10))− 9

dx2(t)

dt
= −3x2(t) + 5g1(x1(t− 10)) + 30g2(x2(t− 10))− 15,

where g1(x) = g2(x) = g(x) in (2.4) with ε = 0.5. A computation gives

f̂1(x1) = −x1 + 18g(x1)− 4,

f̌1(x1) = −x1 + 18g(x1)− 14,

f̂2(x2) = −3x2 + 30g(x2)− 10,

f̌2(x2) = −3x2 + 30g(x2)− 20.

Herein, the parameters satisfy our conditions in Theorem 3.2:

Condition (H1) :

0 < b1ε
ω11

= 1
36

< 1
4
, 0 < b2ε

ω22
= 1

20
< 1

4
.

Condition (H2) :

f̂1(p1) = −1.722534 < 0, f̌1(q1) = 1.722534 > 0,

f̂2(p2) = −4.085501 < 0, f̌2(q2) = 4.085501 > 0.

Condition (H3) :

b1 = 1 > 0.059932 = ω11g
′(η) + |ω12|g′(η),

b2 = 3 > 0.091201 = |ω21|g′(η) + ω22g
′(η),

where η = ±3.320288 is defined in (2.9). Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2

are listed in Table 1.

â1 = −3.993889 p1 = −1.762747 b̂1 = −0.757751 q1=1.762747 ĉ1=14

ǎ1 = −14 b̌1=0.757751 č1=3.993889

â2 = −3.320288 p2 = −1.443635 b̂2 = −0.452309 q2=1.443635 ĉ2=6.666650

ǎ2 = −6.666650 b̌2=0.452309 č2=3.320288

Table 1: Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2.
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Figure 3: Illustrations for the dynamics in Example 5.1.

The dynamics of this system is illustrated in Figure 3, where evolutions of 56 initial

conditions have been tracked. The constant initial conditions are plotted in red col-

ors, and the time-dependent initial conditions are plotted in purple. The evolutions

of components x1(t), x2(t) are depicted in Figures 4, 5, respectively. There are four

exponentially stable equilibria in the system, as confirmed by our theory. The sim-

ulations demonstrate the convergence to these four equilibria from initial functions

φ lying in respective basin of the equilibrium.

Example 5.2 : In this example, we simulate the delayed Hopfield neural networks

with continuously periodic inputs.

dx1(t)

dt
= −x1(t) + 20g1(x1(t− 10)) + 4g2(x2(t− 10))− 10 + 3sin(t)

dx2(t)

dt
= −3x2(t) + 4g1(x1(t− 10)) + 30g2(x2(t− 10))− 15 + 3cos(t)

where g1(x) = g2(x) = g(x) in (2.4) with ε = 0.5. A computations gives

f̂1(x1) = −x1 + 20g(x1)− 6 + 3sin(t),

f̌1(x1) = −x1 + 20g(x1)− 14 + 3sin(t),

f̂2(x2) = −3x2 + 30g(x2)− 11 + 3cos(t),

f̌2(x2) = −3x2 + 30g(x2)− 19 + 3cos(t).
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Figure 4: Evolution of state variable x1(t) in Example 5.1.
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Figure 5: Evolution of state variable x2(t) in Example 5.1.
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Herein,the parameters satisfying our conditions in Theorem 4.1 :

Condition (H1) :

0 < b1ε
ω11

= 1
40

< 1
4
, 0 < b2ε

ω22
= 1

20
< 1

4
.

Condition (H2) :

f̂1(p1) = −3.668387 + 3sin(t) < 0, f̌1(q1) = 3.668387 + 3sin(t) > 0,

f̂2(p2) = −5.085501 + 3cos(t) < 0, f̌2(q2) = 5.085501 + 3cos(t) > 0.

Condition (H3) :

b1 = 1 > 0.255133 = ω11g
′(η) + |ω12|g′(η),

b2 = 3 > 0.361438 = |ω21|g′(η) + ω22g
′(η),

where η = ±2.613229 is defined in (2.9).

Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2 are listed in Table 2.

p1=-1.818446 q1=1.818446

â1=-9.000000∼ -2.944290 b̂1=-1.138254∼ -0.111624 ĉ1=11.00000∼ 17.00000

ǎ1=-17.00000∼ -11.00000 b̌1=0.111624∼ 1.138254 č1=2.944290∼ 9.000000
p2=-1.443635 q2=1.443635

â2=-4.665781∼ -2.613229 b̂2=-0.705313∼ -0.083576 ĉ2=5.333100∼ 7.333329

ǎ2=-7.333329∼ -5.333100 b̌2=0.083576∼ 0.705313 č2=2.613229∼ 4.665781

Table 2: Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2.

The dynamics of this system is illustrated in Figure 6. The evolutions of

component x1(t), x2(t) are depicted in Figures 7, 8, respectively. There are four

periodic solutions in the system , as confirmed by our theory. The simulations

demonstrate the convergence to these four periodic solutions from initial functions

φ lying in respective basin of the periodic solutions.
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Figure 6: Illustrations for the dynamics in Example 5.2.
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Figure 7: Evolution of state variable x1(t) in Example 5.2.
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Figure 8: Evolution of state variable x2(t) in Example 5.2.
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