5 17 A% 38 N EE

EAREETIEM3EM

H W X

g R AT E o2 R B AR R R A

A Study on High-Level Energy Model of Embedded GPU

FERB 103 & 11 B

BAXBEEER < AEEX GREEERE

A Study on High-Level Energy Model of Embedded GPU

Boyo4 i HEFx Student : Yu-An Chung
iR FR Advisor : Shiao-Li Tsao
Bz o2« F
A S S =R A SR
MLm=
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

October 2014

Hsinchu, Taiwan, Republic of China

% 103 & 11 0

0 WAL F 25 WA B AL T
R S R R Ko

CEREEY

FTARE s 87T o AL

BEARET2LHMAEN - 21 RE WA 25 BS 02400 b %o
hwm2Es - BEZRERSE 2 FRAMTEKETT IERY BARLL
L A Rt L AR AR B AL ¢ B - BT e

il B g g Rl gL 2 1.1% -

A Study on High-Level Energy Model of Embedded
GPU

Student : Yu-An Chung Advisor : Shiao-Li Tsao

Institue of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

Embedded graphic processing unit (GPU) accelerates a real-time rendering process of a graphics
application on mobile devices, however, at the cost of consuming a considerable portion of the system
energy [1] which is one of the most critical design issues for battery-operated devices. To estimate
the power consumption of a graphics application, conventional approaches collect run-time hardware
activities of a GPU, and derive the power consumption of the graphics application based on hardware
counters. Unfortunately, these hardware counters and power consumption information are difficult to
evaluate from a programmer's point of view. In order to provide graphics programmers a firm notion
of how performance and quality relate to energy cost, a high-level power model to assist programmers
to balance performance, quality, and energy budget is proposed in this study. The high-level power
model only requires high-level graphics data to estimate the power consumption of a graphics

program. The error rate of the model is around 7.7%.

e
BN RS g gk f R NPT ET T RI LT 0@
RO RE S o HEF TG 0 % B U A ISP R
?u%ﬂﬁﬁﬁpfoﬁ¥ﬁ£@&%mfﬁiﬁ’%ﬁﬂ%ﬁ~ﬁ%§%ﬁ~
BEBBZRF > BPLIAFIFFIERACHRBIPFL T 2L o
AL BT R TAEL CEH RKS TR E S AP ORI G B PT
FRIHwE ORFE R ol PEY LR F I8 A e
Jedten [H3Te gt by BB AR % E e HEE S ol - At R oA
FALAFE - ARFR ot Re AU 2R
BREARBANFA IR E AT RBAFAEAT NI G 2 AN

FENREARLGE S F AP R OR R -

Table of Contents

12O i
A 0L - Uod ST RR ii
T OSSPSR iii
QI 1o] Lo 0] o1 (=T OSSPSR iv
LIST OF FIQUIES. ...ttt b b e bbb R b bt e e et e bt bbb bt e b n et e b ens %
LIST OF TADIES ...t bbbttt b bbb et R bbbttt e e Vi
IO 111 0o [4T o SRS 1
FZ (=1 P =To VY o] o OSSR 3
K N = - Tod (o {1 oo TSSOSO 5
3.1. OPENGL PIPEIINE.... .ot e et et e st e et e s be s re e s b e s beetesbeereesbesaeenee e 5
3.2. g oL (o [=To] O S PR 6
N Y 1=1 1 ToTo (o] [T | OSSR 8
4.1. Construction of a High-Level Power Model ... 8
4.2. HIgh-LeVel INPUE DALAcviiiiiiiiitiieiieie sttt n e enea 9
43. HAIAWAIE COUNTETS. ... e viiieeieesteeeie st eteeesie et e e sseesaesbe et e steete e tesbeeseebesseeeesbeeneesaeaseeeesseesaensesneeneenes 10

ST (0=] 11T | OSSPSR 12
5.1. EXPEIIMENT SEIUD .. vivieie ittt sttt ettt et e b et e et e s beeseesbeabeesbesbeeseesbesseestestaeseesteateerens 12
5.2. High-level to Hardware COUNTET ...ttt 12
oI I VT q (=3t QY g o [T OO SSR 12
I A B 1 L N oTor=] [- o OSSR 13
5.2.3. IMaQge SYNLNESIS PIrOCESSON........etitiieiieiieiieii sttt 14
5.2.4. Fragment SNAUETc..oiiiiiiiiei ettt 15

5.3. Hardware Counter to POWer CONSUMPLIONcvoiviiiiiicieciece ettt s 18
54. RV LT LA T o SRR 19
LR O I T4 (=) G - Vo T RSOSSN 19

LR O 1 (- ool 1= - o] OSSPSR 19
5.4.3. IMage SYNTNESIS PrOCESSOL.ccu iiieiieiieii ettt sttt sttt sttt ere e besne e e e saeaneesaeeneennens 20
5.4.4. Fragment SNAUETcoiiiiiiiie et bbbttt bbbt 21
5.4.5. Hardware Counter to POWEr CONSUMPLIONcouiiiiiiiiieisiisie st 21
5.4.6. High-1evel POWEr MOTEL..........coiee ettt st 22

G TR 3 Tod 1115 o o ST 24
R & (-1 =T =] 1= OSSR 25

List of Figures

Figure 1. OpenGL PIPEHINEoovviieieceee e 5
Figure 2. Immediate Mode Rendering (IMR)cccoiieiiiiiiieie e 6
Figure 3. Tile-based Deferred RENEriNGcccvveieiieiiiiieieese e 6
Figure 4. Construction of High-Level Power Modelcccooov i, 8
Figure 5. Stages of Power Model CONSLIUCLIONccovveieiicii e 9
Figure 6. Input Data FIOW OF GPU............ccoiiiieiiee e 10
Figure 7. VerteX Shading TIME........ccviieiieii et ns 12
Figure 8. Baseline of TA under different Resolutions.............cccecvviieiievi e 13
Figure 9. TA time and # of Vertices under different vertex shadersc.ccoceevveirrnnnen. 14
Figure 10. Relation of ISP time and # of Vertices after Clipping and Culling.................. 15
Figure 11. Baseline of ISP under different ReSolUtIONS...........c.ccccveveiieviiic s 15
Figure 12. Baseline of Fragment Shader under different Resolutions.............ccccccevevneenee. 17
Figure 13. Fragment Shading time with Different Fragment Shaderccccceevevnennee. 17
Figure 14. Fragment time and # of Vertices under different fragment shaders................. 18
FIQUIE 15, VEIEX TIME ...eeiiiciecieiiieeite ettt sttt te et e e sra e ste e neenbeeneenneennas 19
FIGUIE 16. TA TIIME oottt ettt a ettt e et e s be e te s s e sreesaeenaesteenbeaneesneenrs 20
o O I A I o T 1= USROS 20
Figure 18. Fragment TIME ...c..ooviiie e cie ittt sre et e ste e sneenas 21
Figure 19. Low-level Model ENErgy.......coociiiieiiiie e 22
Figure 20. High-level Model ENErgYccooiiiiieiiiieieeceeec st 23

List of Tables

Table 1. High-level Inputscccoov e,
Table 2. Number of Tiles for different Resolutions
Table 3. Hardware Performance Counters..............

Vi

1. Introduction

Due to high demands on graphics processing, graphic processing unit (GPU) in mobile
devices has become an indispensable component. The GPU accelerates the rendering process
of a graphics application, however, at the cost of consuming a considerable portion of the
system energy [1]. In contrast to desktop developers, mobile device programmers have to strike
a good balance between performance, quality, and power consumption in a battery-operated
device. It is thus vital for graphics programmers to have a firm notion of how performance and
quality relate to energy cost at the development stage.

Desktop GPUs and embedded GPUs are designed differently to suit their working
condition and performance target. Desktop GPUs aim for high performance and do not have to
worry about power supply. On the other hand, embedded GPUs operate in a battery-operated
device and thus have to be designed with low-power consumption. Most of the contemporary
embedded GPUs [2, 11, 12] are based on tile-based rendering design (partition the display into
small rectangles) to reduce memory transfer energy consumption. Previous studies on GPU
power model mainly focuses on desktop GPUSs, without considering tile-based design and the
associated micro-architecture changes. These design differences have to be considered in
constructing an embedded GPU power model. Specifically, we focused on a state-of-the-art
Tiled-Based Deferred Rendering (TBDR) architecture proposed by Imagination [2].

Embedded graphics programmers nowadays mainly use OpenGL [3] (OpenGL ES [4] for
Embedded Systems) to control the GPU for rendering the scenes in real-time. Therefore we aim
to analyze the power consumption behavior of the GPU executing a real-time OpenGL program.
An OpenGL program mainly consists of data (such as mesh data, texture data, and camera
position) and shader programs (such as vertex shader and fragment shader). Thus our main
concept is to develop a micro-benchmark suites specifically tailored for mobile GPUs to
systematically stress different pipeline stages (ex. submit lots of vertices to increase vertex
shader’s loading or even generate pipeline stalls) and analyze the corresponding energy
consumption behavior.

According to the analysis results, important parameters are chosen to build our high-level
power model. Different from previous studies aiming at low-level hardware dependent desktop
GPU power model [5], this research proposes a high-level power model of embedded GPUs
from a programmers' perspective. With the proposed power model, graphics programmers will

be better equipped with the knowledge about how their programs are being processed by the

embedded GPU and the associated energy cost during development time. With such a high-
level power model, it is also possible to conduct a high-level resource management to balance
between power, performance, and quality for real-time graphic rendering. In summary, the main
contributions of this study are:

1. Developed a micro-benchmark suites specifically tailored to the mobile GPU design.

2. Constructed a high-level power model to assist graphics programmer to balance

between performance, quality, and energy budget.

The rest of the paper is organized as follows: In Section Il, we give a brief summary on
previous studies about GPU power models. In Section Ill, an introduction on the OpenGL
pipeline and the architecture of an embedded GPU is given. In Section 1V, we discuss the idea
of our power model and experiment design. In Section V, the measurement environmental and
preliminary experimental results will be shown. Finally, in Section VI, the conclusion and

future work will be brought out.

2. Related Work

Previous research on the power consumption of GPU mostly focuses on desktop GPUs
with comparatively less focus on embedded GPUs. Collange et al. [6] used an oscilloscope to
measure the GPU energy consumption in a CUDA environment, to find out the bottleneck of a
GPGPU program. Shaikh et al. [7] profiled the power consumption of two GPU architectures:
GF100 and GT200. Their results show that the power dissipation of a data transfer instruction
consumes less than half of that of a kernel instruction. Thus it is possible to identify which part
of the program is running at a certain time. Ma et al. [5] chose five main GPU workload signals
to build a power model, where the workload signals represent the runtime utilizations of the
major pipeline stages on the GPU. They also compared the error rate between two different
regression methods, namely Support Vector Regression (SVR) and Simple Linear Regression
(SLR). The chosen SVR model outperformed the traditional SLR on their validation datasets.
Hong and Kim [8] designed a set of micro-benchmarks to stress different architectural
components of the GPU, and built not only the power model of the GPU but also the
temperature model as well. They came out with the result: power consumption can be reduced
by opening the appropriate number of streaming multiprocessors (SMs) in the GPU instead of
using all the SMs. Leng et al. [9] built a power model for GPGPU using the power measurement
data and performance counters from GPGPU-Sim, and also can estimate the GPU component's
power consumption. They proposed a micro-benchmarking design methodology which
includes the following: component stress, access patterns and test coverage. The above studies
are all based on GPUs on desktop computers. Also, most of the above studies require hardware
performance counters to estimate the power, which might not be easy to be interpreted by
graphics programmers.

Following we list some studies related to mobile GPUs. Mochocki et al. [10] used three
embedded processors to simulate different stages in the 3D pipeline. They analyzed how the
factors (resolution, frame rate, level of detail, lighting model, and texture model) affect the 3D
pipelines to result workload variations and imbalances. Moreover, DVFS was applied to
processors to reduce the workload imbalance and can achieve up to 50% energy saving. Vatjus-
Anttila et al. [1] built a power model based on three render complexity characteristics: number
of triangles, render batches and addressed texels. Instead of measuring only the GPU's power
consumption, the whole device's power consumption was used. To compensate the
overestimated power, they empirically deducted 45% of the consumption based on the ad-hoc
hypothesis that 50% of the 3D content could be left unacknowledged due to the back-face

3

triangle culling, and 10% due to depth testing. Mochocki et al. [10] studied about how some
graphics factors affect the 3D pipelines, but they did not use a real embedded GPU for their
experiments and neglected the architectural differences between desktop and embedded GPUs.
Vatjus-Anttila et al. [1] built a power model for the whole embedded system based on render
complexity. Our goal is to first understand the relation between high-level graphics parameters
and the graphics pipelines. Then, we build a high-level power model for embedded GPU that

only requires high-level parameters to estimate the power for real-time graphic rendering.

3. Background

3.1. OpenGL Pipeline

OpenGL is an API for advanced 3D graphics and it provides functionality to control the
GPU, while OpenGL ES is specially targeted at handheld and embedded devices. The OpenGL
graphics pipelines are shown in Figure 1. Mesh data are first sent to the GPU, then vertex
shading is applied on each vertex with the given vertex shader program. Next, the shaded
vertices are assembled into individual geometric primitives, and then be clipped and culled in
the primitive assembly stage. In the rasterization phase, primitives are converted into fragments
which are potential visible pixels and will be processed by the fragment shader later on. The
fragment shader receives fragments from the rasterizer and either discard a non-visible fragment
or generate a color for a visible fragment according to the given shader program. After the
fragment shader, the per-fragment stage goes through a series of tests (scissor test, stencil and
depth test and blending) and writes the resulting color into the frame buffer. In an OpenGL
program, we provide some input, including mesh data, vertex and fragment shader program and
texture data, etc. for the GPU. The GPU then takes all the information about the 3D objects and
renders it on screen. In this paper, we alter those high-level input and see how the GPU hardware

reacts.

Primitive

Vertex Shader el

Texture
Memory

Rasterization

Fragment Per-Fragment
Shader Operations

Framebuffer

Figure 1. OpenGL pipeline

3.2. Embedded GPU
Desktop GPUs and embedded GPUs are designed differently to suit their working
condition and performance target. Desktop GPUs aim for high-performance whereas embedded

GPUs target for low power.

Vertex Primitive S @l Triangle Fragment

Processing Assembly Setup Generation

Fragment

Int lati
nterpolation Shading

Figure 2. Immediate Mode Rendering (IMR)

The desktop GPU goes through the Immediate Mode Rendering (IMR) pipeline as shown
in Figure 2 Under IMR, each submitted object goes through the entire pipeline independently
until the very last stages. Hence IMR enables processing with the maximum parallelism and
speed. However, there are two weakness in this design, namely overdraw (fragments not shown
in the final display are still processed) and large unnecessary memory transfers for fetching data
associated to these unused fragments. This will bring heavy burdens for the battery-operated

mobile devices.

Vertex Primitive Triangle

Processing e Project / Clip Setup Tile Engine

Fragment
Shading

Fragment
Generation

Interpolation

Figure 3. Tile-based Deferred Rendering

In order to solve these two critical issues, most of the contemporary embedded GPUs [2,
11, 12] adopt the tiling-based architecture. Since the data transfer between system memory and
the GPU is one of the biggest cause for the power consumption of the GPU, tiling design claims
to be able to reduce memory bandwidth requirement by partitioning the frame into small
rectangles of pixels before rasterization. After coordinate transformation and triangle setup, the
GPU determines tile-coverage of each triangle and records this information in a per-tile list.
With this per-tile information, only relevant geometry data is needed when processing each tile

in subsequent stages, therefore lowers the system memory bandwidth significantly. Imagination

PowerVR further adopts the Tile Based Deferred Rendering (TBDR) [2] pipeline as shown in
Figure 3 to further reduce both overdraw and unnecessary memory transfers. We aim to verify
the effectiveness of reducing overdraw and memory transfer of both TBDR and tiling-based

designs in our study.

4. Methodology

4.1. Construction of a High-Level Power Model

Previous studies on GPU power models [1] mostly focus on relating the power
consumption to the hardware events by observing hardware performance counters of the GPU.
A set of important hardware events such as memory transfer, cache misses, shader utilization,
texture access, etc. were chosen and they are trained by a benchmark suite to build up the power
model (*1 in Figure 4). This kind of power models are not very intuitive to graphics
programmers since the programmers usually do not have a direct feeling about how their
programs translate into hardware events. Our goal is to build a power model that can estimate
power consumption with graphics related high-level parameters that programmers are familiar
with (*2 in Figure 4). Using principal component analysis (PCA) [13] to select high-level
parameters that are vital to the energy consumption, we can statistically relate the high-level
parameters to GPU power consumption (*3 in Figure 4).

With this power model, programmers can have a better notion on how the GPU responds

to their graphics program and can achieve a balance between performance, quality and energy.

Application OpenGL
Parameters Benchmarks

OpenGL/GLSL

GPU Hardware Power/Energy
Platform Measurements

Hardware
Performance
Counters

PCA + regression

Application-Level

Power/Energy
Model

Figure 4. Construction of High-Level Power Model

The final goal is to construct a power model that only requires high-level parameters to

8

estimate the power consumption of an embedded GPU. And since power consumption is
strongly related to the hardware components of the GPU. The first stage of the power model
construction (Figure 5) is to find the mapping between high-level parameters and hardware
counters. We will first build a high-level model to estimate the GPU’s hardware loading with
the high-level parameters. The second stage of the power model construction is to use
previously studied method to build a model to estimate power consumption by hardware
counter values. After these two stages, it is possible to estimate power consumption without

hardware counters but with only high-level parameters of a graphics program.

High-level to Hardware counter to
Hardware counter Power Consumption

Vertex shader

Mesh Vertex shader load

Texture TA load
Fragment shader ISP load. ..

Figure 5. Stages of Power Model Construction

4.2. High-Level Input Data

As mentioned in Section I1l, an OpenGL program receives a set of input data, including
mesh data, texture data, vertex and fragment shader programs and some other control data. The
data flow of the GPU is shown in Figure 6. A set of micro-benchmark is designed to change
one different high-level input data at a time in order to figure out how each high-level input will
affect the GPU’s hardware components. The list of high-level input data is listed in Table 1.
Since the embedded GPU cuts the whole frame into small tiles (16x16 pixels) before processing
it, we take the resolution into consideration as well. Table 2 shows the resolution and tiles

relation.

Vertex Fragment

Fragment

shader

Vertices
vertices vertices
after c&c

Figure 6. Input Data Flow of GPU

fragment

High-level Input | Affects Counts

of vertices, # of triangles, percentage of

Mesh data object hiding, # of visible fragments. ..

Vertex shader Lighting effect, vertex shader complexity... | 13

Fragment shader | Texturing, fragment shader complexity... 13

Resolution # of tiles 4

Table 1. High-level Inputs

resolution # of tiles
512x400 800
720x560 1575
896x688 2408
1024x800 | 3200

Table 2. Number of Tiles for different Resolutions

4.3. Hardware Counters

10

The description of the hardware performance counters we chose are listed in Table 2.
These hardware counters are chosen because they represent the runtime utilizations of the major
pipeline stages of the GPU. And therefore can be used to build the stage 2 model of the

construction of the power model.

Hardware Counter Description
USSE load: vertex Percentage of time that the Universal Scalable Shader Engine
(USSE) has spent processing vertices.
TA load Percentage of time that the Tile Accelerator (TA) unit is busy.

The TA unit is responsible for clipping, projecting, culling and tiling
transformed polygons.

ISP load The load of the Image Synthesis Processor (ISP) unit.

The ISP is responsible for executing the per-tile Hidden Surface
Removal. It also performs the depth and stencil operations for the
tile using the GPU’s on-chip memory.

USSE load: pixel Percentage of time that the Universal Scalable Shader Engine has
spent processing pixels.

Table 3. Hardware Performance Counters

11

5. Experiment
5.1. Experiment Setup

The experiment environment is PandaBoard using the OMAP4430 processor with
Imagination PowerVR SGX540 GPU [14]. Test programs are executed under Ubuntu 11.10
with a 3.1.0 Linux kernel using the OpenGL ES 2.0 library. Measurement of power
consumption is done by using the TDS5032B oscilloscope to collect current data acquired by a

current clamp through TCP A300[, with a sampling rate at 5K Hz.

5.2. High-level to Hardware Counter
5.2.1. Vertex Shader

0.8
w07
£
v 0.6
£
fos
@
L 04
@
£ 03
=]
5 02
£
g 0.1
0
Cl:'(.Dﬁ‘ND-JO\DEND-:O'-.D?NDCOD?NDI"-.Dﬁ‘ND30
- M~ T O L0 =M M~00OoO N O~ =M un W
e A A A AN NN NN NN MmN N s s s
of vertices
— SimIpl e envmap point_lighting phong_lighting s fasttnl

Figure 7. Vertex Shading Time
Figure 7 shows the relation between number of vertices and the time spent on vertex

shading with different vertex shader programs. In the vertex shading stage, the vertex shader
applies the vertex shader program onto each vertices, the result is easy to see. The time spent
on vertex shading Tyerter 1S ShOWN in equation (1), where n,e.tices 1S the number of vertices
of the mesh data and Wi,ersixpvy Is the complexity of the given vertex shader program. And the
loading of the vertex shader component Ly,¢e, IS shown in equation (2), where Ty.qp, IS the
time for drawing one frame.

Tyertex = Nertices * Woertix[v] T Cvertex (1)

= Tvertex ~ Tframe (2)

Lvertex

12

5.2.2. Tile Accelerator

Figure 8 shows the relation between number of vertices and the time spent on TA. We can
see that no matter under which resolution, the slope of the TA time remains the same. And also,
there is a baseline for TA time even when there are no triangles submitted. It is easy to see that
the baseline is related to the number of tiles. In Figure 9, we can see that when the number of
vertices exceeds some value, there is a jump on the curve of TA time. Moreover, the number of
vertices that will cause the jJump and how high the jump is are different when different vertex
shader program are applied in the previous vertex shading stage. The number of vertices that
will trigger the jumps are 252840, 296184, 252840, and the height of the jumps are 35.6, 44.72,
40.68 (ms) accordingly when reflections, simple, and phong_lighing were applied for vertex
shading.

The time spent on TA Ty, is shown in equation (3), where ng;.s is the number of tiles,
Nyertices 1S the number of vertices and both Bp,, Wy, is the weight calculated by linear

regression. Winemory size 74 1 the parameter buffer size and Wiymp rapy) is the height of

jump for vertex shader V. The loading of the TA component Ly, is shown in equation (4).

1.4
=12
E
o 1
£
S o8
g 06
@
£ 04
<
= 02
0
Mo Mme NN N Mme0 M e o oo Mmen NN oM on oMo
Lo a = I T T o T = T ' TR T S o T T O T s T T T T O o = T T O T e o =
MM~ e = 0 OO MMM~ e 0O OO oOm
L B T O o A oI o I O T o T o o T Y T e TRV T W T o N Y O+« =" R T 3
of vertices
512x400 720x560 B896x688 1024x800

Figure 8. Baseline of TA under different Resolutions

13

reflections simple phong_lighting

Figure 9. TA time and # of Vertices under different vertex shaders

Nyertices * Woertex_data[V]

Tra = Ngites * Bra + Nyertices ¥ Wra + l J * Wivmp_rav) +

Wmemory_size_TA
Cra (3)
Lrp= Tra + Tframe (4)

5.2.3. Image Synthesis Processor

Figure 10 shows the relation between number of vertices after clipping and culling and the
time spent on ISP. In the ISP stage, the ISP processes all the triangles and generates the
fragments. And also calculates depth information to determine if the fragments are visible. As
shown in Figure 11, there is a baseline for ISP even when there are no triangles submitted. And
it is easy to see that the baseline is related to the number of tiles. The time spent on ISP T;sp
is shown in equation (5), where n;.s is the number of tiles, nyerticescc 1S the number of
vertices after clipping and culling and both B,sp, Wsp is the weight calculated by linear

regression. The loading of the ISP component L;sp is shown in equation (6).

14

7 0
£
2 40
(1]
|
T 30
| .
[+4]
o
@
£ 20
=
oo
[%a]
2 10
0
[I = e T T o T VT Y 'y T o A o N I e T 5 Y o w7 Y T T [|
[=T = R Ve T TR O = 3 T e ' T I =0 T O R o T T o T ¥ T~ o oY N e o« T ¥ T~ Y o N T o
M~ WU oW @ M~ O WS oo~ oW Ww s o Q)
L= T o V="~ I = T I T B o = s T e I T s 0 = T s T U Y o Y Y ' N = TN ¥ y R
A A NN S S NN WM~ M~000 9 AN s oWn
L I B I I T T T I |

of vertices after c&c

Figure 10. Relation of ISP time and # of Vertices after Clipping and Culling

o
o

o
n

ISP time per frame (ms)
¢ © © ©
=] w =Y

|

0
MmN Mmoo Mmen N e N o e M e oD e on o Mo
Lo a T T T T o o = T ' T T S o = T 1 T O s o SO = s O o O O o o T = RO T T o ' (=)
MM~ e = 0O MM~ O M0 OmMmWw oOm
L B T T o A oI o T O T s T~ o T 7 Y o T e TRV TV T o N Y Y+« = T = Y =3
of vertices after c&c
=———=512%400 ==——=720x560 = 896x688 1024x800
Figure 11. Baseline of ISP under different Resolutions
Tisp = Ntites * Bisp + Myerticece ¥ Wisp + Cisp (5)
Lisp = Tisp = Trrame (6)

5.2.4. Fragment Shader
Figure 12 shows the relation between number of visible fragments and the time spent on

fragment shading with different fragment shader programs. In the embedded GPU graphics

15

pipeline, before the fragments enter the fragment shading stage the ISP stage processes through
all the fragments and compare their depth information to ensure that only fragments that will
be rendered to screen are be submitted to the fragment shading stage. Therefore, the fragment
shading is not related to number of vertices, but number of visible fragments instead. In the
fragment shading stage, the given fragment shader is applied to each fragment to assign the
final pixel color. As shown in Figire 12, given different fragment shaders, the slope of the
fragment shading time differs.

Figure 13 shows the relation between number visible fragments and the time spent on
fragment shading. We can see that no matter under which resolution, the slope of the fragment
shading time remains the same. And also there is a baseline for fragment shading time even
when there are no visible fragments. The baseline is related to the number of tiles.

In figure 14, we can see that when the number of vertices exceeds some value, there is a
jump on the curve of TA time, which causes the fragment time to have a jump, too. Moreover,
the height of the jump is different when different fragment shader program is applied. The
number of vertices that will trigger the jumps are 209496, 166152, and the height of the jumps
are 5.229, 2.138 (ms) accordingly when reflections, simple, and phong_lighing were applied
for vertex shading.

The time spent on fragment shading T¢rqgmene 1S Shown in equation (7), where ng;e is
the number of tiles, n,sipie fragmentes 1S the number of visible fragments and both Bfq gment.
Wrragmene 1S the weight calculated by linear regression. Wiymp fragmentr) 1S the height of
jump for fragment shader F. The loading of the fragment shader component Lgyqgmene 1S

shown in equation (8).

16

o~
—

=] =] o =t o~ =]
—l

{sw) awely a1d awiny Jusawdely

88v66¢E
8¢Iv8e
89/89¢
80beSe
8r08cE
889¢¢e
8¢E/0€E
896T16¢
8099.¢
8re19¢
8885¥¢
8¢50€¢C
8915T¢
808661
a8l
880691
8¢/eST
89¢8¢ET
800gCT
8r9/01
88¢76
87692
89519
80¢9t
8r80¢
28PsT
8¢t

fo visible fragments

1024x800

s 512X400 e 7I0X560 s 896X688

Figure 12. Baseline of Fragment Shader under different Resolutions

o

L =t 12 o~ — =]
{sw) awely 1ad awiy Juswdely

808661
8¢TdeT
a8l
89/9/1
880691
80v19T
8¢/eST
8r09r1
89¢8¢ET
8890¢T
800gCT
8¢eaTl
8r9/01
89666
88¢76
80918
87692
869
89519
888¢eS
80¢9t
8¢58¢
8r80¢
89T1¢e¢
28PsT
8081
8¢t

of visible fragments

fasttnl

= point_lighting lattice

— cnvmap

—simple

Figure 13. Fragment Shading time with Different Fragment Shader

17

envmap TA time point_lighting TA time

[
QN B Q
S5 © & &

(S
o © ©

fragment time per frame (ms)
00
(=] o

T O v N O W N 0T oW N T o WA DT O YN

NN == OO0 Q g 0000 0NN WY WY WN ST S Mo

N = O @ @~ D F M gt O QO @~ O T 0 l= Q O K

V\\DH’!MNHOU’\DOV\LDLHMNHSUHOOV\LDLHEPNH

M O NN oMW O NN [= I I - B R i o

™ - =H NN NN MMM S S S S NN N 0 W W

number of vertices number of vertices
envmap fragment time point_lighting fragment time
30 12
T g‘
£
0) L
£ %3
© 20 &
= -
]]
a 15 a 6
£ g
£

= 10 £ 4
= -
= g 5
g 5 @
£ £
a0 =
£ o E o

S owW AN T O WA SO OUNOT O oA T O O S O O N T O WN T O OVUNYT O WUN 0T O W

NN ddQ O Q9 @ W00 @MYL WD NS S S Mmoo NN = -0 OO QG W 0NN Y YWY S St M

N o4 O @ 0RO T M AN A0 00RO NH T NN O D0 N d4 Qg 0~ O S O A0 00RO NS NN A9 G

MmO O NN o MO Q) N 0 O @ oW o S M Ow AN N 0o MWwOa o N W o =R I s T B~ i

L I I S A o A S I B S L I I S S S s BT o B Y5 Y - V- B A AN NN NN NN ST T T N NN O O W

number of vertices number of vertices

Figure 14. Fragment time and # of Vertices under different fragment shaders

Tfragment = Ngjles * Bfragment + nvisiblefmgments % Wfragment[F] +

Nyertices * errtexdata[v]

* Jjump_fragment|F] - S Cfragment (7)

WmemorysizeTA

Lfragment = Tfragment - Tframe (8)

5.3. Hardware Counter to Power Consumption

The power consumption of the embedded GPU for one frame Pr.qp, is shown in
equation (9) and the energy consumption is shown in equation (14). When running through the
micro-benchmarks, we record the hardware counter data and measure the power consumption.
With the hardware loading data and power data, we use linear regression to retrieve the weight

values (W—Pvertex1 W—PTAi W—PISP’ W—Pfragment) of each Component (Pvertexi PTA’ PISPi

Pfragment)-
Pframe = Pvertex + PTA + PISP + Pfragment + Cframe (9)
Pvertex = Lvertex * W_Pvertex (10)
Prgp= Lry* W_Pry (11)

18

Pisp = Lisp * W_Pigp (12)

Pfragment = Lfragment * W—Pfragment (13)
Eframe = Pframe * Tframe (14)
5.4. Validation

After the model is trained and built with our micro-benchmarks, we use the test programs
in the PowerVR SDK to validate the results.

5.4.1. Vertex Shader

014

= 012
E

v 01
£
&

= 0.08
[+8]
o

v 0.06
E
=

x 0.04
=
48]

= 0.02

0

™ Q) o S
& & N & &
o & Q & & &
« [<€ N N &
E ? o ¢ Q
Qé\ C} ‘\O
& <&
-~
<& &

Emeasured M estimated
Figure 15. Vertex Time

For the Vertex Shader part, measured and estimated T, are shown in Figure 15. The
error rate ranges from 23.28% to 33.27%, and with an average error rate of 28.28%.

5.4.2. Tile Accelerator

19

e e =2 2
oy W

TA time per frame {ms)
=
T

@ R

03
02
01
0
W] 4‘7 5 3 S
08 & & & &
@ X S © N o
Q@ > ‘.\9 o 3
Qe' ?} &L
O oy
& 6‘"0
« ¥

B measured M estimated

Figure 16. TA Time

For the Tile Accelerator part, measured and estimated T, are shown in Figure 16. The

error rate ranges from 2.95% to 9.96%, and with an average error rate of 6.80%.

0-;‘9 &

o
& R
Emeasured Mestimated

5.4.3. Image Synthesis Processor

0.4

0.35

e
W

0.2

01

0.0

ISP time per frame (ms)
= =
o ¢ R v hoen
%,

&)
o)

Figure 17. ISP Time

20

For the Image Synthesis Processor part, measured and estimated T,sp are shown in Figure
17. The error rate ranges from 5.65% to 16.74%, and with an average error rate of 11.09%.

5.4.4. Fragment Shader

<& & & &gf’ & P

b

w

=

fragment time per frame (ms)
_D I
=T I T R R £ R TR ¥, - ¥ T

Emeasured M estimated
Figure 18. Fragment Time

For the Fragment Shader part, measured and estimated Tqgmene are shown in Figure 18.

The error rate ranges from 4.58% to 35.52%, and with an average error rate of 12.84%.

5.4.5. Hardware Counter to Power Consumption

21

Low-level

45
4
E 35
[+5]
g 3
= 25
g 2
215
2 1
[+5)
0.5
0
<& & @'E’Q SV N ,-00%
> & Q & & &
& é\\‘?f & RN é\\e, O
< @ & X &K
] B ‘,0\.
@ RS
< &

Emeasured M estimated

Figure 19. Low-level Model Energy

In section 5.3, we built a low-level power model with the measured hardware counter and
power data from our micro-benchmarks. This model takes hardware counters as input and
generates the power consumption. Here we show the error rate of the low-level power model.
The measured and estimated Ef,.q,,. are shown in Figure 19. The error rate ranges from 0.70%

to 5.13%, and with an average error rate of 3.48%.

5.4.6. High-level Power Model

22

High-level

energy per frame (mj)
= = I 78]
S bR b bnow n
5
¢
¢ I

a\"\\\' &

X C‘...\'\o & 3 (:..00 ‘é\g\

mmeasured m estimated

Figure 20. High-level Model Energy

Lastly, here is the validation for the high-level power model. This model only needs to
take high-level graphics data as input to estimate the power consumption. The measured and
estimated Ef.,me are shown in Figure 20. The error rate ranges from 6.24% to 10.45%, and

with an average error rate of 7.71%.

23

6. Conclusion

In this study, a power model for embedded GPU that only requires high-level graphics
input to estimate power is built. The power model is specially designed to fit in the architecture
of an embedded GPU, therefore we can see how the model deals with tiling and HSR in this
study. The validation part shows that the error rate of the model is 7.71%. With this power
model, graphics programmers can have a basic concept on how the GPU reacts with different
kind of graphics programs and therefore makes it possible to apply high-level power

management in the future.

24

7. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. M. Vatjus-Anttila, T. Koskela, and S. Hickey, “Power Consumption Model of a
Mobile GPU Based on Rendering Complexity,” in Proceedings of the 2013
Seventh International Conference on Next Generation Mobile Apps, Services and
Technologies, Washington, DC, USA, 2013, pp. 210-215.
ImaginationTechnologies Ltd, “PowerVVR Series 5 Architecture Guide for
Developers.” 2014.

D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-Kane, OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Version 4.3, 8th
ed. Addison-Wesley Professional, 2013.

A. Munshi, D. Ginsburg, and D. Shreiner, OpenGL(R) ES 2.0 Programming Guide,
1st ed. Addison-Wesley Professional, 2008.

X.Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical Power Consumption Analysis
and Modeling for GPU-based Computing,” in Proc. of ACM SOSP Workshop on
Power Aware Computing and Systems (HotPower), 2009.

S. Collange, D. Defour, and A. Tisserand, “Power Consumption of GPUs from a
Software Perspective,” in Proceedings of the 9th International Conference on
Computational Science: Part I, Berlin, Heidelberg, 2009, pp. 914-923.

M. Z. Shaikh, M. Gregoire, W. Li, M. Wroblewski, and S. Simon, “In Situ Power
Analysis of General Purpose Graphical Processing Units,” in Proceedings of the
2011 19th International Euromicro Conference on Parallel, Distributed and Network-
Based Processing, Washington, DC, USA, 2011, pp. 40-44.

S. Hong and H. Kim, “An Integrated GPU Power and Performance Model,” in
Proceedings of the 37th Annual International Symposium on Computer Architecture,
New York, NY, USA, 2010, pp. 280-289.

J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V.
J. Reddi, “GPUWattch: Enabling Energy Optimizations in GPGPUs,” in
Proceedings of the 40th Annual International Symposium on Computer Architecture,
New York, NY, USA, 2013, pp. 487-498.

[10] B. Mochocki, K. Lahiri, and S. Cadambi, “Power Analysis of Mobile 3D Graphics,”

in Proceedings of the Conference on Design, Automation and Test in Europe:
Proceedings, 3001 Leuven, Belgium, Belgium, 2006, pp. 502-507.

[11] ARM, “ARM Mali GPU - OpenGL ES Application Optimization Guide.” 2013.

25

[12] Rob Clark, “Adreno tiling.” Internet:
https://github.com/freedreno/freedreno/wiki/Adreno-tiling, Apr-2014.

[13] I. T. Jolliffe, Principal Component Analysis. New York: Springer Verlag, 2002.

[14] PandaBoard: http://pandaboard.org/

26

