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嵌入式圖形處理器之繪圖程式高階耗能模型 

 

 
 研究生：鍾宇安       指導教授：曹孝櫟 教授 

 

國立交通大學 

資訊科學與工程研究所 碩士班 

 

摘要 

嵌入式圖型處理器可加速行動裝置上的繪圖程式之繪圖處理，但同時也

需消耗可觀的耗電[1]。由電池驅動的行動裝置之耗電量無疑是非常重要的。

為了能預估繪圖程式的耗電量，過去研究會去收集 GPU 硬體元件之計數器的

數值來作為耗能模型之參數並預測耗能。但這些參數無法協助繪圖工程師來

撰寫較省電之繪圖程式。為了讓繪圖工程師了解繪圖品質與耗能的關係，此

篇論文建立了一個只需要繪圖參數，不需要硬體計數器即可預測繪圖程是耗

能的耗能模型，以協助繪圖工程師在繪圖品質與耗能中取得一個平衡點。此

耗能模型的預估值與實際量測的耗能的誤差為 7.7%。 
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Abstract 

Embedded graphic processing unit (GPU) accelerates a real-time rendering process of a graphics 

application on mobile devices, however, at the cost of consuming a considerable portion of the system 

energy [1] which is one of the most critical design issues for battery-operated devices. To estimate 

the power consumption of a graphics application, conventional approaches collect run-time hardware 

activities of a GPU, and derive the power consumption of the graphics application based on hardware 

counters. Unfortunately, these hardware counters and power consumption information are difficult to 

evaluate from a programmer's point of view. In order to provide graphics programmers a firm notion 

of how performance and quality relate to energy cost, a high-level power model to assist programmers 

to balance performance, quality, and energy budget is proposed in this study. The high-level power 

model only requires high-level graphics data to estimate the power consumption of a graphics 

program. The error rate of the model is around 7.7%. 
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1. Introduction 

Due to high demands on graphics processing, graphic processing unit (GPU) in mobile 

devices has become an indispensable component. The GPU accelerates the rendering process 

of a graphics application, however, at the cost of consuming a considerable portion of the 

system energy [1]. In contrast to desktop developers, mobile device programmers have to strike 

a good balance between performance, quality, and power consumption in a battery-operated 

device. It is thus vital for graphics programmers to have a firm notion of how performance and 

quality relate to energy cost at the development stage. 

Desktop GPUs and embedded GPUs are designed differently to suit their working 

condition and performance target. Desktop GPUs aim for high performance and do not have to 

worry about power supply. On the other hand, embedded GPUs operate in a battery-operated 

device and thus have to be designed with low-power consumption. Most of the contemporary 

embedded GPUs [2, 11, 12] are based on tile-based rendering design (partition the display into 

small rectangles) to reduce memory transfer energy consumption. Previous studies on GPU 

power model mainly focuses on desktop GPUs, without considering tile-based design and the 

associated micro-architecture changes. These design differences have to be considered in 

constructing an embedded GPU power model. Specifically, we focused on a state-of-the-art 

Tiled-Based Deferred Rendering (TBDR) architecture proposed by Imagination [2]. 

Embedded graphics programmers nowadays mainly use OpenGL [3] (OpenGL ES [4] for 

Embedded Systems) to control the GPU for rendering the scenes in real-time. Therefore we aim 

to analyze the power consumption behavior of the GPU executing a real-time OpenGL program. 

An OpenGL program mainly consists of data (such as mesh data, texture data, and camera 

position) and shader programs (such as vertex shader and fragment shader). Thus our main 

concept is to develop a micro-benchmark suites specifically tailored for mobile GPUs to 

systematically stress different pipeline stages (ex. submit lots of vertices to increase vertex 

shader’s loading or even generate pipeline stalls) and analyze the corresponding energy 

consumption behavior. 

According to the analysis results, important parameters are chosen to build our high-level 

power model. Different from previous studies aiming at low-level hardware dependent desktop 

GPU power model [5], this research proposes a high-level power model of embedded GPUs 

from a programmers' perspective. With the proposed power model, graphics programmers will 

be better equipped with the knowledge about how their programs are being processed by the 
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embedded GPU and the associated energy cost during development time. With such a high-

level power model, it is also possible to conduct a high-level resource management to balance 

between power, performance, and quality for real-time graphic rendering. In summary, the main 

contributions of this study are: 

1. Developed a micro-benchmark suites specifically tailored to the mobile GPU design. 

2. Constructed a high-level power model to assist graphics programmer to balance 

between performance, quality, and energy budget. 

The rest of the paper is organized as follows: In Section II, we give a brief summary on 

previous studies about GPU power models. In Section III, an introduction on the OpenGL 

pipeline and the architecture of an embedded GPU is given. In Section IV, we discuss the idea 

of our power model and experiment design. In Section V, the measurement environmental and 

preliminary experimental results will be shown. Finally, in Section VI, the conclusion and 

future work will be brought out. 
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2. Related Work 

Previous research on the power consumption of GPU mostly focuses on desktop GPUs 

with comparatively less focus on embedded GPUs. Collange et al. [6] used an oscilloscope to 

measure the GPU energy consumption in a CUDA environment, to find out the bottleneck of a 

GPGPU program. Shaikh et al. [7] profiled the power consumption of two GPU architectures: 

GF100 and GT200. Their results show that the power dissipation of a data transfer instruction 

consumes less than half of that of a kernel instruction. Thus it is possible to identify which part 

of the program is running at a certain time. Ma et al. [5] chose five main GPU workload signals 

to build a power model, where the workload signals represent the runtime utilizations of the 

major pipeline stages on the GPU. They also compared the error rate between two different 

regression methods, namely Support Vector Regression (SVR) and Simple Linear Regression 

(SLR). The chosen SVR model outperformed the traditional SLR on their validation datasets. 

Hong and Kim [8] designed a set of micro-benchmarks to stress different architectural 

components of the GPU, and built not only the power model of the GPU but also the 

temperature model as well. They came out with the result: power consumption can be reduced 

by opening the appropriate number of streaming multiprocessors (SMs) in the GPU instead of 

using all the SMs. Leng et al. [9] built a power model for GPGPU using the power measurement 

data and performance counters from GPGPU-Sim, and also can estimate the GPU component's 

power consumption. They proposed a micro-benchmarking design methodology which 

includes the following: component stress, access patterns and test coverage. The above studies 

are all based on GPUs on desktop computers. Also, most of the above studies require hardware 

performance counters to estimate the power, which might not be easy to be interpreted by 

graphics programmers. 

Following we list some studies related to mobile GPUs. Mochocki et al. [10] used three 

embedded processors to simulate different stages in the 3D pipeline. They analyzed how the 

factors (resolution, frame rate, level of detail, lighting model, and texture model) affect the 3D 

pipelines to result workload variations and imbalances. Moreover, DVFS was applied to 

processors to reduce the workload imbalance and can achieve up to 50% energy saving. Vatjus-

Anttila et al. [1] built a power model based on three render complexity characteristics: number 

of triangles, render batches and addressed texels. Instead of measuring only the GPU's power 

consumption, the whole device's power consumption was used. To compensate the 

overestimated power, they empirically deducted 45% of the consumption based on the ad-hoc 

hypothesis that 50% of the 3D content could be left unacknowledged due to the back-face 
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triangle culling, and 10% due to depth testing. Mochocki et al. [10] studied about how some 

graphics factors affect the 3D pipelines, but they did not use a real embedded GPU for their 

experiments and neglected the architectural differences between desktop and embedded GPUs. 

Vatjus-Anttila et al. [1] built a power model for the whole embedded system based on render 

complexity. Our goal is to first understand the relation between high-level graphics parameters 

and the graphics pipelines. Then, we build a high-level power model for embedded GPU that 

only requires high-level parameters to estimate the power for real-time graphic rendering. 
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3. Background 

3.1. OpenGL Pipeline 

OpenGL is an API for advanced 3D graphics and it provides functionality to control the 

GPU, while OpenGL ES is specially targeted at handheld and embedded devices. The OpenGL 

graphics pipelines are shown in Figure 1. Mesh data are first sent to the GPU, then vertex 

shading is applied on each vertex with the given vertex shader program. Next, the shaded 

vertices are assembled into individual geometric primitives, and then be clipped and culled in 

the primitive assembly stage. In the rasterization phase, primitives are converted into fragments 

which are potential visible pixels and will be processed by the fragment shader later on. The 

fragment shader receives fragments from the rasterizer and either discard a non-visible fragment 

or generate a color for a visible fragment according to the given shader program. After the 

fragment shader, the per-fragment stage goes through a series of tests (scissor test, stencil and 

depth test and blending) and writes the resulting color into the frame buffer. In an OpenGL 

program, we provide some input, including mesh data, vertex and fragment shader program and 

texture data, etc. for the GPU. The GPU then takes all the information about the 3D objects and 

renders it on screen. In this paper, we alter those high-level input and see how the GPU hardware 

reacts. 

 

Figure 1. OpenGL pipeline 
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3.2. Embedded GPU 

Desktop GPUs and embedded GPUs are designed differently to suit their working 

condition and performance target. Desktop GPUs aim for high-performance whereas embedded 

GPUs target for low power. 

 

Figure 2. Immediate Mode Rendering (IMR) 

 

The desktop GPU goes through the Immediate Mode Rendering (IMR) pipeline as shown 

in Figure 2 Under IMR, each submitted object goes through the entire pipeline independently 

until the very last stages. Hence IMR enables processing with the maximum parallelism and 

speed. However, there are two weakness in this design, namely overdraw (fragments not shown 

in the final display are still processed) and large unnecessary memory transfers for fetching data 

associated to these unused fragments. This will bring heavy burdens for the battery-operated 

mobile devices. 

 

Figure 3. Tile-based Deferred Rendering 

 

In order to solve these two critical issues, most of the contemporary embedded GPUs [2, 

11, 12] adopt the tiling-based architecture. Since the data transfer between system memory and 

the GPU is one of the biggest cause for the power consumption of the GPU, tiling design claims 

to be able to reduce memory bandwidth requirement by partitioning the frame into small 

rectangles of pixels before rasterization. After coordinate transformation and triangle setup, the 

GPU determines tile-coverage of each triangle and records this information in a per-tile list. 

With this per-tile information, only relevant geometry data is needed when processing each tile 

in subsequent stages, therefore lowers the system memory bandwidth significantly. Imagination 



 

7 

 

PowerVR further adopts the Tile Based Deferred Rendering (TBDR) [2] pipeline as shown in 

Figure 3 to further reduce both overdraw and unnecessary memory transfers. We aim to verify 

the effectiveness of reducing overdraw and memory transfer of both TBDR and tiling-based 

designs in our study. 
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4. Methodology 

4.1. Construction of a High-Level Power Model 

Previous studies on GPU power models [1] mostly focus on relating the power 

consumption to the hardware events by observing hardware performance counters of the GPU. 

A set of important hardware events such as memory transfer, cache misses, shader utilization, 

texture access, etc. were chosen and they are trained by a benchmark suite to build up the power 

model (*1 in Figure 4). This kind of power models are not very intuitive to graphics 

programmers since the programmers usually do not have a direct feeling about how their 

programs translate into hardware events. Our goal is to build a power model that can estimate 

power consumption with graphics related high-level parameters that programmers are familiar 

with (*2 in Figure 4). Using principal component analysis (PCA) [13] to select high-level 

parameters that are vital to the energy consumption, we can statistically relate the high-level 

parameters to GPU power consumption (*3 in Figure 4).  

With this power model, programmers can have a better notion on how the GPU responds 

to their graphics program and can achieve a balance between performance, quality and energy. 

 

Figure 4. Construction of High-Level Power Model 

 

The final goal is to construct a power model that only requires high-level parameters to 
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estimate the power consumption of an embedded GPU. And since power consumption is 

strongly related to the hardware components of the GPU. The first stage of the power model 

construction (Figure 5) is to find the mapping between high-level parameters and hardware 

counters. We will first build a high-level model to estimate the GPU’s hardware loading with 

the high-level parameters. The second stage of the power model construction is to use 

previously studied method to build a model to estimate power consumption by hardware 

counter values. After these two stages, it is possible to estimate power consumption without 

hardware counters but with only high-level parameters of a graphics program. 

 

Figure 5. Stages of Power Model Construction 

 

4.2. High-Level Input Data 

As mentioned in Section III, an OpenGL program receives a set of input data, including 

mesh data, texture data, vertex and fragment shader programs and some other control data. The 

data flow of the GPU is shown in Figure 6. A set of micro-benchmark is designed to change 

one different high-level input data at a time in order to figure out how each high-level input will 

affect the GPU’s hardware components. The list of high-level input data is listed in Table 1. 

Since the embedded GPU cuts the whole frame into small tiles (16x16 pixels) before processing 

it, we take the resolution into consideration as well. Table 2 shows the resolution and tiles 

relation. 
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Figure 6. Input Data Flow of GPU 

 

High-level Input Affects Counts 

Mesh data 
# of vertices, # of triangles, percentage of 

object hiding, # of visible fragments… 
9 

Vertex shader Lighting effect, vertex shader complexity… 13 

Fragment shader Texturing, fragment shader complexity… 13 

Resolution # of tiles 4 

Table 1. High-level Inputs 

 

resolution # of tiles 

512x400 800 

720x560 1575 

896x688 2408 

1024x800 3200 

Table 2. Number of Tiles for different Resolutions 

 

4.3. Hardware Counters 
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The description of the hardware performance counters we chose are listed in Table 2. 

These hardware counters are chosen because they represent the runtime utilizations of the major 

pipeline stages of the GPU. And therefore can be used to build the stage 2 model of the 

construction of the power model. 

 

Hardware Counter Description 

USSE load: vertex Percentage of time that the Universal Scalable Shader Engine 

(USSE) has spent processing vertices. 

TA load Percentage of time that the Tile Accelerator (TA) unit is busy. 

The TA unit is responsible for clipping, projecting, culling and tiling 

transformed polygons. 

ISP load The load of the Image Synthesis Processor (ISP) unit. 

The ISP is responsible for executing the per-tile Hidden Surface 

Removal. It also performs the depth and stencil operations for the 

tile using the GPU’s on-chip memory. 

USSE load: pixel Percentage of time that the Universal Scalable Shader Engine has 

spent processing pixels. 

Table 3. Hardware Performance Counters 
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5. Experiment 

5.1. Experiment Setup 

The experiment environment is PandaBoard using the OMAP4430 processor with 

Imagination PowerVR SGX540 GPU [14]. Test programs are executed under Ubuntu 11.10 

with a 3.1.0 Linux kernel using the OpenGL ES 2.0 library. Measurement of power 

consumption is done by using the TDS5032B oscilloscope to collect current data acquired by a 

current clamp through TCP A300[, with a sampling rate at 5K Hz. 

 

5.2. High-level to Hardware Counter 

5.2.1. Vertex Shader 

 

Figure 7. Vertex Shading Time 

Figure 7 shows the relation between number of vertices and the time spent on vertex 

shading with different vertex shader programs. In the vertex shading stage, the vertex shader 

applies the vertex shader program onto each vertices, the result is easy to see. The time spent 

on vertex shading 𝑇𝑣𝑒𝑟𝑡𝑒𝑥 is shown in equation (1), where 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 is the number of vertices 

of the mesh data and 𝑊𝑣𝑒𝑟𝑡𝑖𝑥[𝑉] is the complexity of the given vertex shader program. And the 

loading of the vertex shader component 𝐿𝑣𝑒𝑟𝑡𝑒𝑥 is shown in equation (2), where 𝑇𝑓𝑟𝑎𝑚𝑒 is the 

time for drawing one frame. 

𝑇𝑣𝑒𝑟𝑡𝑒𝑥 =  𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∗  𝑊𝑣𝑒𝑟𝑡𝑖𝑥[𝑉] + 𝐶𝑣𝑒𝑟𝑡𝑒𝑥 ( 1 ) 

𝐿𝑣𝑒𝑟𝑡𝑒𝑥 =  𝑇𝑣𝑒𝑟𝑡𝑒𝑥  ÷  𝑇𝑓𝑟𝑎𝑚𝑒  ( 2 ) 

 



 

13 

 

5.2.2. Tile Accelerator 

Figure 8 shows the relation between number of vertices and the time spent on TA. We can 

see that no matter under which resolution, the slope of the TA time remains the same. And also, 

there is a baseline for TA time even when there are no triangles submitted. It is easy to see that 

the baseline is related to the number of tiles. In Figure 9, we can see that when the number of 

vertices exceeds some value, there is a jump on the curve of TA time. Moreover, the number of 

vertices that will cause the jump and how high the jump is are different when different vertex 

shader program are applied in the previous vertex shading stage. The number of vertices that 

will trigger the jumps are 252840, 296184, 252840, and the height of the jumps are 35.6, 44.72, 

40.68 (ms) accordingly when reflections, simple, and phong_lighing were applied for vertex 

shading. 

The time spent on TA 𝑇𝑇𝐴 is shown in equation (3), where 𝑛𝑡𝑖𝑙𝑒𝑠 is the number of tiles, 

𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠  is the number of vertices and both 𝐵𝑇𝐴 , 𝑊𝑇𝐴  is the weight calculated by linear 

regression. 𝑊𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒_𝑇𝐴  is the parameter buffer size and 𝑊𝑗𝑢𝑚𝑝_𝑇𝐴[𝑉]  is the height of 

jump for vertex shader V. The loading of the TA component 𝐿𝑇𝐴 is shown in equation (4). 

 

 

Figure 8. Baseline of TA under different Resolutions 
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Figure 9. TA time and # of Vertices under different vertex shaders 

 

 

 

𝑇𝑇𝐴 =  𝑛𝑡𝑖𝑙𝑒𝑠 ∗ 𝐵𝑇𝐴 +  𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∗  𝑊𝑇𝐴 +  ⌊
𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∗ 𝑊𝑣𝑒𝑟𝑡𝑒𝑥_𝑑𝑎𝑡𝑎[𝑉]

𝑊𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒_𝑇𝐴
⌋  ∗  𝑊𝑗𝑢𝑚𝑝_𝑇𝐴[𝑉] +

𝐶𝑇𝐴 ( 3 ) 

𝐿𝑇𝐴 =  𝑇𝑇𝐴  ÷  𝑇𝑓𝑟𝑎𝑚𝑒  ( 4 ) 

 

5.2.3. Image Synthesis Processor 

Figure 10 shows the relation between number of vertices after clipping and culling and the 

time spent on ISP. In the ISP stage, the ISP processes all the triangles and generates the 

fragments. And also calculates depth information to determine if the fragments are visible. As 

shown in Figure 11, there is a baseline for ISP even when there are no triangles submitted. And 

it is easy to see that the baseline is related to the number of tiles. The time spent on ISP 𝑇𝐼𝑆𝑃 

is shown in equation (5), where 𝑛𝑡𝑖𝑙𝑒𝑠  is the number of tiles, 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑐𝑐  is the number of 

vertices after clipping and culling and both 𝐵𝐼𝑆𝑃 , 𝑊𝐼𝑆𝑃  is the weight calculated by linear 

regression. The loading of the ISP component 𝐿𝐼𝑆𝑃 is shown in equation (6). 
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Figure 10. Relation of ISP time and # of Vertices after Clipping and Culling 

 

 

Figure 11. Baseline of ISP under different Resolutions 

 

𝑇𝐼𝑆𝑃 =  𝑛𝑡𝑖𝑙𝑒𝑠 ∗  𝐵𝐼𝑆𝑃 + 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑐𝑐 ∗  𝑊𝐼𝑆𝑃 +  𝐶𝐼𝑆𝑃 ( 5 ) 

𝐿𝐼𝑆𝑃 =  𝑇𝐼𝑆𝑃  ÷  𝑇𝑓𝑟𝑎𝑚𝑒  ( 6 ) 

 

 

5.2.4. Fragment Shader 

Figure 12 shows the relation between number of visible fragments and the time spent on 

fragment shading with different fragment shader programs. In the embedded GPU graphics 
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pipeline, before the fragments enter the fragment shading stage the ISP stage processes through 

all the fragments and compare their depth information to ensure that only fragments that will 

be rendered to screen are be submitted to the fragment shading stage. Therefore, the fragment 

shading is not related to number of vertices, but number of visible fragments instead. In the 

fragment shading stage, the given fragment shader is applied to each fragment to assign the 

final pixel color. As shown in Figire 12, given different fragment shaders, the slope of the 

fragment shading time differs. 

Figure 13 shows the relation between number visible fragments and the time spent on 

fragment shading. We can see that no matter under which resolution, the slope of the fragment 

shading time remains the same. And also there is a baseline for fragment shading time even 

when there are no visible fragments. The baseline is related to the number of tiles. 

In figure 14, we can see that when the number of vertices exceeds some value, there is a 

jump on the curve of TA time, which causes the fragment time to have a jump, too. Moreover, 

the height of the jump is different when different fragment shader program is applied. The 

number of vertices that will trigger the jumps are 209496, 166152, and the height of the jumps 

are 5.229, 2.138 (ms) accordingly when reflections, simple, and phong_lighing were applied 

for vertex shading. 

The time spent on fragment shading 𝑇𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 is shown in equation (7), where 𝑛𝑡𝑖𝑙𝑒𝑠 is 

the number of tiles, 𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒_𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 is the number of visible fragments and both 𝐵𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡, 

𝑊𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 is the weight calculated by linear regression. 𝑊𝑗𝑢𝑚𝑝_𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡[𝐹] is the height of 

jump for fragment shader F. The loading of the fragment shader component 𝐿𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡  is 

shown in equation (8). 
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Figure 12. Baseline of Fragment Shader under different Resolutions 

 

 

Figure 13. Fragment Shading time with Different Fragment Shader 
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Figure 14. Fragment time and # of Vertices under different fragment shaders 

 

𝑇𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 =  𝑛𝑡𝑖𝑙𝑒𝑠 ∗  𝐵𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 +  𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠
∗  𝑊𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡[𝐹] +

  ⌊
𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∗ 𝑊𝑣𝑒𝑟𝑡𝑒𝑥𝑑𝑎𝑡𝑎[𝑉]

𝑊𝑚𝑒𝑚𝑜𝑟𝑦𝑠𝑖𝑧𝑒𝑇𝐴

⌋ ∗  𝑊𝑗𝑢𝑚𝑝_𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡[𝐹] + 𝐶𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 ( 7 ) 

𝐿𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 =  𝑇𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡  ÷  𝑇𝑓𝑟𝑎𝑚𝑒  ( 8 ) 

 

 

5.3. Hardware Counter to Power Consumption 

The power consumption of the embedded GPU for one frame 𝑃𝑓𝑟𝑎𝑚𝑒  is shown in 

equation (9) and the energy consumption is shown in equation (14). When running through the 

micro-benchmarks, we record the hardware counter data and measure the power consumption. 

With the hardware loading data and power data, we use linear regression to retrieve the weight 

values (𝑊_𝑃𝑣𝑒𝑟𝑡𝑒𝑥, 𝑊_𝑃𝑇𝐴, 𝑊_𝑃𝐼𝑆𝑃, 𝑊_𝑃𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡) of each component (𝑃𝑣𝑒𝑟𝑡𝑒𝑥, 𝑃𝑇𝐴, 𝑃𝐼𝑆𝑃, 

𝑃𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡). 

 

𝑃𝑓𝑟𝑎𝑚𝑒 =  𝑃𝑣𝑒𝑟𝑡𝑒𝑥 + 𝑃𝑇𝐴 +  𝑃𝐼𝑆𝑃 +  𝑃𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 +  𝐶𝑓𝑟𝑎𝑚𝑒 ( 9 ) 

𝑃𝑣𝑒𝑟𝑡𝑒𝑥 =  𝐿𝑣𝑒𝑟𝑡𝑒𝑥 ∗  𝑊_𝑃𝑣𝑒𝑟𝑡𝑒𝑥 ( 10 ) 

𝑃𝑇𝐴 =  𝐿𝑇𝐴 ∗  𝑊_𝑃𝑇𝐴 ( 11 ) 
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𝑃𝐼𝑆𝑃 =  𝐿𝐼𝑆𝑃 ∗  𝑊_𝑃𝐼𝑆𝑃 ( 12 ) 

𝑃𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 =  𝐿𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 ∗  𝑊_𝑃𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 ( 13 ) 

𝐸𝑓𝑟𝑎𝑚𝑒 =  𝑃𝑓𝑟𝑎𝑚𝑒 ∗  𝑇𝑓𝑟𝑎𝑚𝑒 ( 14 ) 

 

5.4. Validation 

After the model is trained and built with our micro-benchmarks, we use the test programs 

in the PowerVR SDK to validate the results. 

 

5.4.1. Vertex Shader 

 

Figure 15. Vertex Time 

 

For the Vertex Shader part, measured and estimated 𝑇𝑣𝑒𝑟𝑡𝑒𝑥 are shown in Figure 15. The 

error rate ranges from 23.28% to 33.27%, and with an average error rate of 28.28%. 

 

5.4.2. Tile Accelerator 
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Figure 16. TA Time 

 

For the Tile Accelerator part, measured and estimated 𝑇𝑇𝐴 are shown in Figure 16. The 

error rate ranges from 2.95% to 9.96%, and with an average error rate of 6.80%. 

 

5.4.3. Image Synthesis Processor 

 

Figure 17. ISP Time 
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For the Image Synthesis Processor part, measured and estimated 𝑇𝐼𝑆𝑃 are shown in Figure 

17. The error rate ranges from 5.65% to 16.74%, and with an average error rate of 11.09%. 

 

5.4.4. Fragment Shader 

 

Figure 18. Fragment Time 

 

For the Fragment Shader part, measured and estimated 𝑇𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 are shown in Figure 18. 

The error rate ranges from 4.58% to 35.52%, and with an average error rate of 12.84%. 

 

5.4.5. Hardware Counter to Power Consumption 
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Figure 19. Low-level Model Energy 

 

In section 5.3, we built a low-level power model with the measured hardware counter and 

power data from our micro-benchmarks. This model takes hardware counters as input and 

generates the power consumption. Here we show the error rate of the low-level power model. 

The measured and estimated 𝐸𝑓𝑟𝑎𝑚𝑒 are shown in Figure 19. The error rate ranges from 0.70% 

to 5.13%, and with an average error rate of 3.48%. 

 

5.4.6. High-level Power Model 
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Figure 20. High-level Model Energy 

 

Lastly, here is the validation for the high-level power model. This model only needs to 

take high-level graphics data as input to estimate the power consumption. The measured and 

estimated 𝐸𝑓𝑟𝑎𝑚𝑒 are shown in Figure 20. The error rate ranges from 6.24% to 10.45%, and 

with an average error rate of 7.71%. 
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6. Conclusion 

In this study, a power model for embedded GPU that only requires high-level graphics 

input to estimate power is built. The power model is specially designed to fit in the architecture 

of an embedded GPU, therefore we can see how the model deals with tiling and HSR in this 

study. The validation part shows that the error rate of the model is 7.71%. With this power 

model, graphics programmers can have a basic concept on how the GPU reacts with different 

kind of graphics programs and therefore makes it possible to apply high-level power 

management in the future. 
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