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Triangle-free distance-regular graph

Student : Ming-hsing Lu Advisor : Dr. Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

Let T'=(X,R) denote a distance-regular graph with distance function ¢
and diameter d >3. For 2<i<d, by a parallelogram of length i, we mean
a 4-tuple xyzu of vertices in X such that o(x,y)=0(z,u)=1, o(x,u) =i,
and 0(x,z) = o(y,z) =0d(y,uw)=i=11:Suppose the intersection number
a,=0,a, =0 in I'. We prove the-following.(i)-(ii) are equivalent. (i) I" is
Q-polynomial and contains no-parallelograms of length 3; (ii) I" has classical
parameters. By applying ithe above result we show that if T" has classical
parameters and the intersection-numbers-=a, =0,a, = 0, then for each pair of
vertices v,we X at distance (v, w) =2, there exists a strongly regular sub-
graph Q of I' containing v,w. Furthermore, for each vertex x e Q, the
subgraph induced on Q,(x) isan a,-regular connected graph with diameter
at most 3.
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1 Introduction

It is shown that a distance-regular graph with classical parameters has the
@-polynomial property [2, Theorem 8.4.1]. To describe the converse, let T" de-
note a (Q-polynomial distance-regular graph with diameter d > 3. Brouwer,
Cohen, Neumaier proved that if ' is a near polygon and has intersection
number a; # 0 then I' has classical parameters [2, Theorem 8.5.1]. Weng
proves the same result by loosing the near polygon assumption, but instead
assuming that the graph I' contains no kites of length 2 and no kites of length
3 [7, Lemma 2.4]. For the complement, Weng shows I has classical param-
eters in the assumptions that I' has, diameter d > 4, intersection numbers
a; = 0, as # 0, and T" contains no parallelograms of length 3 and no par-
allelograms of length 4 [9, Theorem 2:11]. We-generalize Weng’s result as

following.

Theorem 1.1. Let I = (X, R) denote a'distance-reqular graph with diameter
d > 3 and intersection numbers a; = 0, ag # 0. Then the following (i)-(ii)

are equivalent.
(i) T is Q-polynomial and T' contains no parallelograms of length 3.

(ii) T has classical parameters.

By the results in [4] and [10], Theorem 1.1 has the following corollary.

Corollary 1.2. Let I' denote a distance-regular graph with classical parame-

ters and intersection numbers a; = 0, ag # 0. Then for each pair of vertices



v,w € X at distance (v, w) = 2, there exists a strongly reqular subgraph €

of I' containing v, w with intersection numbers of €2

for 0 <1< 2.

Applying Corollary 1.2, we have the following corollary.

Corollary 1.3. Let 2 be a strongly regular graph with a; = 0, ay # 0. Then

Qo(x) is an ay-reqular connected|graph with-diammeter at most 3 for all x € €.

2 Preliminaries

Let I' = (X, R) be a graph consisting of a finite non-empty set X of vertices,
and a finite set R of unordered pairs of distinct vertices called edges. For
each vertex x in a graph I', the number of edges incident to z is the valency
of . Two vertices associate with each edge are called the endpoints of the

edge.

If e = xy is an edge of I , then e is said to join the vertices x and y, and
these vertices x and y are said to be adjacent. A path is a simple graph whose
vertices can be ordered so that two vertices are adjacent if and only if they
are consecutive in the list. A graph is connected if each pair of vertices belong

to a path. The length of a path is the number of the edges in the path. The
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distance of two vertices x and y in I' is the length of the shortest path from

x to y, denoted by d(z,y). The diameter of " is max{d(x,y) | x,y € X}

For the rest of this section, we review some definitions and basic concepts
of distance-regular graphs. See Bannai and Ito[1] or Terwilliger[6] for more

background information.

Throughout this thesis, I' = (X, R) will denote a connected, graph with
vertex set X, edge set R, path-length distance function 9, and diameter

d > 3.

I' is said to be regular, if all vertices in I' have the same valency. A k-
reqular graph is a graph with valency £ of each vertex of the graph. I' is said
to be a strongly regular graph srg(oik; A, ), 11" is k-regular with diameter

2 and has the following two  properties:

(i) For any two adjacent Vvertices z and gy, there are exactly A vertices

adjacent to x and to y.
(ii) For any two nonadjacent vertices x and y, there are exactly u vertices
adjacent to x and to y.
Note that srg(v, k, A, ) is a distance-regular graph of diameter 2 with

alz/\,CQZM,b():k‘.

For a vertex € X and 0 < i < d, set I';(z) = {y | O(z,y) = i}. T'is
said to be distance-reqular whenever for all integers 0 < h,4,j < d, and all

vertices z,y € X with d(x,y) = h, the number
iy =l {z € X |z € Ti(x) NT;(y)} |

3



is independent of z,y. The constants pzhj are known as the intersection num-
bers of . For convenience, set ¢; := p', ; for 1 < i < d, a; := p}, for
0<i<d, b:=p}, for0<i<d-1,andputb;:=0,cy:=0,k := by.
It is immediate from the definition that b; # 0 for 0 <i < d—1, ¢; # 0 for

1 <1< d, and

Note that a; # 0 implies ay # 0. See Figure 1.

z

Figure 1: 0(z,y) =3, Either 0(&,2) = 2 or 0(z,y) = 2.

A distance-regular graph I' is called bipartite whenever a1 = a5 = -+ =
ag = 0. See Figure 2. T'is called a generalized odd graph whenever a; = as =

- =uag_1 =0, ag # 0. See Figure 3.

From now on, we fix a distance-regular graph I" with diameter d > 3. For

0<h,i,j5 <dlet p?j denote the intersection numbers of I'.

Let Matx(R) denote the algebra of all the matrices over the real number
field with the rows and columns indexed by the elements of X. The distance

matrices of T are the matrices Ag, Ay, -+, Ay € Matx(R), defined by the



Figure 2: A bipartite distance-regular graph

O

Figure 3:+ A generalized odd graph

rule

1, if O(z,y) = 4;
(Aj)zy = for z,y € X.
0, if I(z,y) #1i

Then
AOII,
Ay + A+ -+ A;=J where J = all 1's matrix,
AﬁzAi for 0 <1 <d,

d
AiA; =) pliA, for 0<i,j<d,
h=0

AiAj = AjAl for 0 S Z,j S d.



Let M denote the subspace of Mat x(R) spanned by Ay, Ay, ..., Ay. Then
M is a commutative subalgebra of Maty(R), and is known as the Bose-
Mesner algebra of T'. By [1, p59, p64], M has a second basis Fy, F1,- -, Fy
such that

Eo=| X |7"J, (2.7)
EZ‘E]‘ = 51]Ez for 0 S Z,j S d, (28)
Eo+Ey+---+E;=1, (29>
E! = FE; for 0 <i<d. (2.10)
The Ey, E1,- -, By are known as the;primitive idempotents of I', and Ej is

known as the trivial idempotent. Let E denote any primitive idempotent of

I'. Then we have

a
E=|X |71 084, (2.11)
i=0
for some 65,07, ,0; € R, called the dual eigenvalues associated with E.

Let o denote entry-wise multiplication in Matx(R). Then
141014326”14Z for ng,jgd,

so M is closed under o. Thus there exists qu e R 0<14,7,k <dsuch that

d
EioE;=[X |7 ¢iBy for 0<i,j<d.
k=0

' is said to be Q-polynomial with respect to the given ordering Ey, E1, - - -,
E; of the primitive idempotents, if for all integers h,i,5 (0 < h,i,7 < d),
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qlhj = 0 (resp. qzhj # 0) whenever one of h,i,j is greater than (resp. equal
to) the sum of the other two. Let E denote any primitive idempotent of I
Then I' is said to be Q-polynomial with respect to E whenever there exists an
ordering Fy, 1 = E,--- , B4 of the primitive idempotents of I', with respect
to which I' is @-polynomial. If I' is @)-polynomial with respect to E, then
the associated dual eigenvalues are distinct [5, p384]. It is shown that if T’
is Q-polynomial with as = 0, that I' is a bipartite graph or a generalized odd
graph.

Set V = RIXI (column vectors), and view the coordinates of V as being
indexed by X. Then the Bose-Mesner algebra M acts on V by left mul-
tiplication. We call V' the standard module of I'. For each vertex x € X,
set

& =40,0,:+-450,1,0,--:50)", (2.12)
where the 1 is in coordinate #. ‘Also, let (, ) denote the dot product
(u,v)y =u'v  for u,v e V. (2.13)

Then referring to the primitive idempotent E in (2.11), we compute from

(2.10)-(2.13) that
(Ex,9)=| X |71 0F for z,y € X, (2.14)
where i = 0(x,y).
The following theorem about Q-polynomial is used in this thesis.
Theorem 2.1. [6, Theorem 3.3] Let T be Q-polynomial with respect to E with

the distinct associated dual eigenvalues 05,05, ... ,0%. Then the following (i)-

(ii) are equivalent.



(i) For all integers h,i,j(1 < h < d),(0 <i,j < d)and for all x,y € X
such that 0(x,y) = h,

0Fr — 0%
— 2 J
Z Ez — Z Ez = pi; 0= 0; (Ex — Ey). (2.15)
z€X zeX
O(x,2)=1 a(z,2)=j
9(y,z)=j a(y,z)=i
(ii)
0; o =0 =0(0;_35—0)) (2.16)

for appropriate o € R\ {0}

' is said to have classical parameters (d,b, a, 3) whenever the diameter

of I' is d > 3, and the intersection numbers of I" satisfy

¢ = m(uar;l]) for 0 <i <d, (2.17)
v = ([]-BUEZDE wosica e

m S R (2.19)

where

[ is said to have classical parametersif I" is has classical parameters (d, b, o, [3)
for some constants d, b, a,, 3. It is shown that a distance-regular graph with
classical parameters has the Q-polynomial property [2, Theorem 8.4.1]. Ter-

williger proves the following theorem.

Theorem 2.2. [6, Theorem 4.2] Let I denote a distance-reqular with diam-
eter d > 3. Choose b € R\ {0. — 1}, and let [ | be as in (2.19). Then the

following (i)-(ii) are equivalent.



(i) T is Q-polynomial with associated dual eigenvalues 05,05, . .., 0% satis-
fying ,
b~ 05 = (07— )| [ o

(i1) T has classical parameters (d,b,«, 3) for some real constants «, 3.
From Theorem 2.2, we have
0F — 07, = b (05 — 07). (2.20)

Pick an integer 2 < i < d. By a parallelogram of length ¢ in I", we mean

a 4-tuple zyzw of vertices of X such that
I(z,y) =0(z, wp==dy. dz,w) =1,

0(z, z)i= 0y, 2).=0(y,w) =i — 1.

See Figure 4.

Figure 4: A parallelogram of length i.



3 The Main Theorem

Lemma 3.1. Let I" denote a Q-polynomial distance-reqular graph with a; = 0

and diameter d > 3. Fix an integer i for 2 < 1 < d and three vertices x,y,z

with
y,z) =1, O(x,z)=i—1, 0J(y,z)=1.
Then
o s e) OO = 0) (6= 00— )
o B (65 — 0;-1) (07, — 07) ’
where
si(z,y,2) =| Tica(y) N Tisq(z) NT(2) | - (3.1)
Proof. Let

Uz, y, 23 = T OTi(z) AT (2) | .
Since w € T';_1(y) N Ty (2) impliesw € T';— (&)U T';(x), we have
si(x,y, 2) + li(x,y, 2) = a;_1. (3.2)

By (2.15) we also have

0: , — 0
> EBEw- ) Ew=a, 9* v 1(E:c — E2). (3.3)

weX weX
O(z,w)=i—1 O(z,w)=1
d(z,w)=1 (z,w)=1i—1

Taking the inner product of (3.3) with ¢ using(2.14), we obtain
0y, —0;
0y — 07,

Solving s;(z,y, z) by using (3.2) and (3.4) we get,
oy, = oy T O =00 + (05005~ 0
(05— 00— )

)

si(x, 1y, )00 + Lz, y, 2)0F — a; 105 = a1 ————L(07 — 67). (3.4)

10



From Lemma 3.1, s;(x,y,2) is a constant for any vertices x,y, z with
INy,z) =1, 0(x,z) =i—1, d(y,2) = i. We use s; for this value. Note that

s; = 0 if and only if I' contains no parallelogram of length 4.

Lemma 3.2. Let ' denote a distance-reqular graph with classical parameters

(d,b,a, 3) and ay =0, ag # 0. Then b < —1.

Proof. From (2.1), (2.17), (2.18), and since a; = 0, ay # 0, we have
—alb+1)2=ay — (b+ 1)a; = ay > 0. (3.6)

Hence

& <-0. (3.7)

By direct calculation from (2.17), we get
(CQ — b)(b2 + b+ 1) =.c3 > 0. (38)

Since b is an integer and b # 0, —1[2, p.195], we have

¥ +b+1>0. (3.9)
Then from (3.8), implies
cy > b (3.10)
By using (2.17), (3.10), we get
a(l4+b)=co—b—1>0. (3.11)
Hence b < —1, by (3.7) and since b # —1. O

11



Theorem 3.3. Let I' denote a Q-polynomial distance-reqular with diameter
d > 3 and a; = 0,as # 0. Then with referring to definition in (3.1) the

following (i)-(iii) are equivalent.
(Z) S3 = 0.
(ii) s; =0, for 3 <i<d.

(i1i) T has classical parameter (d,b, o, (3).

Proof. (ii)=(i) Clear.

(iii)=-(ii) From (2.20) we have,
OF— O =0T (05— 0)

for some b € R\{0, —1}. Therefore;for 3 <i <d,

(07 —07) = (03 L HI)(b‘1 $H 24+ bi‘l), (3.12)
0r , —07)=—(0; — 0;)(b’1 +b02 4.4 bi’Z), (3.13)
05 —07) = (05 — 0 (b 24+ b2 4 -+ b1, (3.14)
and
O — 05 ) =0 — 0" +b7 4+ 4172, (3.15)

Evaluate (3.5) using (3.12), (3.13), (3.14), (3.15), we find s; = 0 for 3 < i < d.

(i)=-(iii) Suppose s3 = 0. Then by setting i = 3 in (3.5),
(67 — 05)(05 — 07) + (63 — 65)(65 — 03) = 0. (3.16)

12



Set
_ 07— 65

b:= . 3.17
05 — 05 (3:17)
Then
0y —65)(b+1
9;:93+( ! Ob)( b (3.18)
Eliminating 63, 0% in (3.16) using (3.18) and (2.16),we have,
— (07 — 63)*(cb* + ob+ 0 —b)
=0. 1
e 0 (3.19)
for appropriate o € R\ {0}. Note that 67 # 65, hence
(05 — 05)*(ob* + 0b+ 0 — b) =0,
SO
b b 1
o= % (3.20)

From Theorem 2.2, to prove that I has-classical parameter, it suffices to
prove that

0r — 05 = (07 — 07) m b'0 < i < d). (3.21)
We prove (3.21) by induction on i. The case i = 0,1 are trivial and case

i =2 1is from (3.18). Now suppose ¢ > 3. Then (2.16) implies

07 =0 (0 — 0;_,) + 04 (3:22)

)

Evaluate (3.22) using (3.20) and the induction hypothesis, we find 6} — 6; is

as in (3.21). Therefore I' has classical parameter. O

Theorem 3.4. Let I' = (X, R) denote a distance-reqular graph with inter-

section numbers ay = 0, as # 0. Then the following (i)-(ii) are equivalent.

13



(i) T is Q-polynomial and I contains no parallelograms of length 3.

(ii) T has classical parameters.

Proof. (i) = (ii) Suppose I' is Q-polynomial and contains no parallelogram

of length 3. Then s3 = 0. Hence I" has classical parameters by Theorem 3.3.

(ii) = (i) Suppose I' has classical parameters. Then I" has @-polynomial
property[8, Theorem 8.4.1]. Then (i) holds by Theorem 3.3. O

By the results in [4] and [10};:we have the following corollary.

Corollary 3.5. Let I' denote a distancée<regular-graph with classical parame-
ters and intersection numbers.a-=01azZ10.. Then for each pair of vertices
v,w € X at distance 0(v, w) =2ythere egists a strongly reqular subgraph €

of I' containing v,w. The intersection numbers of €2 are

CZZ(Q) = ai(I‘),
CZ(Q) = Ci(F),
bi(Q) = as(l) + () — ai(T) — (1)

for 0 <1< 2.

Corollary 3.6. Let 2 be a strongly regular graph with a; = 0, ay # 0. Then

Qo(x) is an ay-regular connected graph with diameter at most 3 for all x € €.

14



Proof. Fix a vertex = € €2, suppose y € (), obviously, d(x,y) = 2. Hence
| Q1 (y) NQa(x) |= ay. This shows Qy(x) is ag-regular.

Suppose that Qy(z) is not connected or is connected with diameter at
least 4. Pick u,v € Qq(z) such that there is no path in Qy(x) of length at
most 3 connecting u, v. Observe 9(u,v) = 2, since 2 has diameter 2. For each
vertex z € Q;(u) N Q(v), we must have d(z, z) = 1, otherwise 0(x, z) = 2
and u, z,v is a path of length 2 in Qs(x). Hence we have z € Q;(u) N Q4 (x)
and Qp(u) N Q(v) € Q(u) N Qi(x). Now Qi(u) N Qi (v) = Qi(u) N O (x),
since both sets have the same cardinality cp. Similarly, we have Q;(u) N
Q1(v) = Q(v) N Q(z). Pick w € Qi(u) N Qa(v). Then I(z,w) = 2, since
w & Q(u) NQ(v) = Q(u) A (z). Weido not have a path of length 2
in Qy(z) connecting w, v, otherwise-we can extend this path to a path of

length 3 in Qy(x) connecting w, v., By the same argument as above, we have

Q1 (w) N (v) = Qy(w) N Q(x) =0 (o)A Q(x). Now we have
Ql(u) N Ql<U) = Ql(’l}) N Ql(l') = Ql(w) N Ql(’l})

Pick z € Q1(u) N Q1 (v) = Qi (w) N Q1 (v). Then z,u,w forms a triangle, a

contradiction with a; = 0. O
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