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Abstract

The conception of strongly regular multigraph was first proposed by Bose in
1976, followed by Neumaier and Metsch in 1982 and 1995 respectively for the
problem of embedding of quasi-residual 2-design. In particular, Neumaier
asserted that the collinearity graph of a unique 11

2
-design if it meets some

constraints over its parameters.
The spectral properties of strongly regular multigraphs are studied in Sec-

tion 3, we show that they can be characterized as multigraphs with exactly
three distinct eigenvalues, we show further when they are strongly regular
graphs in terms of their eigenvalues. For reference purpose, the results to-
gether with the arguments for the proofs of the papers of Bose, Neumaier and
Metsch are summarized is Section 4. A class of strongly regular multigraphs
associated with the alternating forms graphs is studied in Section 5. Un-
der some numerical constraints, they are the collinearity graphs of uniquely
determined 11

2
-designs, which provide some information for the geometric

characterization of the alternating forms graphs.
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1 Introduction

The notion of strongly regular multigraphs (SRMG) was first introduced by R. C.

Bose [2] but in a very cumbersome notation. While characterizing quasi-residual 2-

designs, A. Neumaier [9] gave an equivalent definition of strongly regular multigraphs

in an elegant and self-contained way with some improvements over some results; the

concept ”type” by five parameters (m,n, µ, γ, R).

Recently, Metsch [7] continued the study of embeddings of residual 2-designs within

the framework of strongly regular multigraphs. However, no specific example were

given in the papers mentioned above.

For a 2-(v, k, λ)-design π = (X,B), it is known that every point is in r = λ(v−1)
k−1

blocks, and the number of blocks in B is b = λv(v−1)
k(k−1)

and the number of points is

v = k + n(k−1)
λ

where n = r−λ is called the order of the design. Moreover, Fisher’s in-

equality b > v holds, with equality if and only if every pair of distinct blocks intersects

in λ points. A 2-(v, k, λ)-design with b = v, i.e., v = 1 + k(k−1)
λ

is called a symmetric

design. If B is a block of a symmetric 2-(v, k, λ)-design π = (X,B), two associated

designs, i.e., the derived design Bder and the residual design Bres with respect to the

block B arise naturally. In both cases, respect to the block B arise naturally. In both

cases, the blocks are the members of B − {B}, and the points are the points in B for

Bder, and the points not in B for Bres, incidences are remained the same as before. In

terms of the order n, the derived design is a 2-(n+λ, λ, λ−1)-design, and the residual

design is a 2-(w, n, λ)-design with w = n(n+λ−1)
λ

.

The block multigraph of a 2-design π = (X,B) is the multigraph defined over the

block set B, and two distinct vertices A, B are connected by mA,B = |A ∩ B| edges.
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Neumaier showed that the block multigraph of a 2-(v, k, λ)-design of order n is a

strongly regular multigraph SR(m,n, µ, γ, R) with

SR(m,n, µ, γ, R) = (k, n, k2λ, k(k − 1)(λ− 1), k(n + λ− 1)).

A partial converse is given in the following theorem with some constraints over its

parameters:

Theorem ([9], Theorem 1.1) Every strongly regular multigraph with parameters

SR(m,n, µ, γ, R) = (k, n, k2λ, k(k − 1)(λ− 1), k(n + λ− 1))

for positive integers n, k 6= 1, λ, and

n > max{k(k − 1)λ2 − (k − 1)2λ,

2(k − 1)(k2λ + kλ− 2λ + 1), 1
2
(k2 − 1)(k2λ− k + 2)}

is isomorphic to the block multigraph of a 2-(v, k, λ)-design with v = k + (r−λ)(k−1)
λ

.

Its proof involves more general designs, namely 11
2
-designs (called partial geometric

designs in [2]), and weak 11
2
-designs (without assuming constant block size). Note that

2-designs, dual 2-designs, transversal designs, semiregular partially balanced incom-

plete block designs, partial geometries, and polar spaces are examples of 11
2
-designs,

see Neumaier [9]. The notion of partial geometric design D(r, k, t, c) was introduced

as a generalization of a partial geometry (r, k, t) (with c = 0 above). A partial geomet-

ric design D(r, k, t, c) gives rise in a natural manner to a strongly regular multigraph

(SRMG) G(D) whose parameters depend on r, k, t and c, as a generalization of

strongly regular graphs (SRG). The block multigraphs of 11
2
-designs, and dually, the

point multigraphs of weak 11
2
-designs still are strongly regular, and by investigating

closely the properties of cliques and claws in a multigraph we obtain general charac-
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terization theorems which specialize to Theorem 1.1([9]).

The matrix techniques were used by Neumaier in order to get the relations among

the five parameters, and then to derive the essential relations between strongly regular

multigraph and 11
2
-design.

For any two distinct blocks A, B 6= H, denote by αA,B the number of points in H

incident with A and B, and by βA,B the number of points not in H incident with A

and B. Then αA,B + βA,B = λ, in particular βA,B 6 λ. Moreover, the multigraph on

B − {H}, with αA,B edges between A and B, is the block multigraph of Bder. Hence,

the residual design satisfies the conditions given in the following theorem.

Theorem ([9], Theorem 1.2) A quasi-residual 2-(w, n, λ)-design π is embeddable if

and only if the following conditions are satisfied:

(1) Any two distinct blocks A and B intersect in αA,B 6 λ points.

(2) Let G be the multigraph defined on the blocks with αA,B = λ−βA,B edges between

A and B, then

a. G is a strongly regular multigraph SR(m,n, µ, γ, R) with

SR(m,n, µ, γ, R) = (λ, n, λ2(λ− 1), λ(λ− 1)(λ− 2), λ(n + λ− 2));

b. G is isomorphic to the block multigraph of a 2-(n + λ, λ, λ− 1)-design π′.

Theorem ([9], Theorem 1.3) A quasi-residual 2-(w, n, λ)-design is embeddable if

either

(1) λ = 3, and n > 76, or

(2) λ 6= 3, and n > 1
2
(λ2 − 1)(λ3 − λ2 − λ + 2).

Theorem 1.3 improved the result obtained by Bose [2] showed in 1976 that there is
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a polynomial function f(λ) of degree 5 such that every quasi-residual 2-(v, k, λ) design

is residual provided that k > f(λ). It was further improved that

f(λ) = (λ2 − 1)(λ3 − λ2 − λ + 2) by Neumaier [9] in Theorem 1.3, and then

f(λ) = ( 8√
3
λ + λ + 5)λ2(λ− 1) by Metsch [7].

This embedding theorem will be a consequence of more general characterization

theorems for certain strongly regular multigraphs (see Theorem 2 [9] and its corollary

in the introduction).

As to us, Neumaier’s most important contribution is the Theorem 4.4 written in

his paper. He showed that if Γ is a strongly regular multigraph SR(m,n, µ, γ, R) with

integral m > 2, integral µ ≡ 0 mod m, µ > 0, and

n > max{m− 1 +
(µ + m)γ

m2
, 2(m− 1)(µ + 1−m) + 2γ,

m(m− 1)

2
(µ + 1) + m

γ

2
+ m− 1}

then Γ is the point multigraph of a unique 11
2
-design, with parameters

(r′, k′, t′, c′) = (m,
R

m
+ 1,

µ

m
,

γ

m
).

As we know, strongly regular graph has some necessary and sufficient conditions.

Two necessary and sufficient conditions on strongly regular multigraphs were given in

Section 3. These papers of R. C. Bose, Neumaier, Metsch over three decades will be

surveyed in Section 4, together with the technique and arguments used by them. We

pay more attention for the unique theorem (Theorem 4.4 [9]) for its unique presentation

of 11
2
-designs. A class of specific example associated with alternating bilinear form

meeting the numerical constraints will be provided in Section 5.
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2 Definitions and Preliminaries

In this section, we define strongly regular multigraphs and 11
2
-designs. Then we give

the necessary and sufficient conditions of strongly regular multigraphs and 11
2
-designs.

Finally, we will give a theorem which will be useful in Section 5.

Definition 2.1 A simple graph Γ with the vertex set V and with the edge set

E is called a strongly regular graph (SRG) with parameters (v, k, λ, µ), denoted by

SRG(v, k, λ, µ), if

(1) |V | = v, and

(2) for x, y ∈ V |N(x) ∩N(y)| =




k if x = y
λ if x ∼ y
µ if x � y

.

A multigraph Γ contains a nonempty set V of vertices and a set E of edges. For

all x, y ∈ V = V (Γ), mx,y := number of edges joining x and y, and define mx,x := 0.

Definition 2.2 A multigraph Γ is called a strongly regular multigraph with parame-

ters (m,n, µ, γ, R), if:

(1)
∑

y∈V mx,y = R for each x ∈ V ;

(2)
∑

x∈V ma,xmb,x = (n − 2m)ma,b + m(n − m)δa,b + µ, where δa,b = 1 if a = b,

otherwise, δa,b = 0.

(3)
∑

y∈V mx,y(mx,y − 1) = γ for each x ∈ V .

Here m, n, µ, γ and R are real numbers with n > 0.

Note that
∑

y∈V (mx,y)
2 =

∑
y∈V mx,y +

∑
y∈V mx,y(mx,y−1) and from (1)∼(3), we

have

m(n−m) + µ = R + γ.
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If γ =
∑

y∈V mx,y(mx,y − 1) = 0 in definition 2.2, then either mx,y = 0 or mx,y = 1

for x, y ∈ V , and hence Γ is a simple graph, and moreover Γ is a strongly regular

graph with parameters

(v, k, λ, µ) = (
R(R− n + 2m− µ− 1)

µ
+ R− 1, R, n− 2m + µ, µ).

Note that R =
∑

y∈V mx,y, and γ =
∑

y∈V mx,y(mx,y−1) for x, y ∈ V were defined

explicitly in the definition, but there is no explicit definition on m, n and µ. Such

a definition is very unnatural. Combinatorial interpretations of m, n, µ are interest-

ing for us. The parameter µ in SRMG(m,n, µ, γ, R) is identical with that of µ in

SRG(v, k, λ, µ) in case γ = 0.

The notion of strongly regular graphs can be stated in terms of the matrix.

Lemma 2.3 Let A be the adjacency matrix of a simple graph Γ, then the follow-

ing are equivalent:

(1) Γ is a strongly regular graph.

(2) AJ = kJ , A2 = (λ− µ)A + (k − µ)I + µJ .

Similar to strongly regular graphs, we want to know the matrix expression of

strongly regular multigraph.

Lemma 2.4 Let A be the adjacency matrix of a multigraph Γ of order v, then the

following are equivalent:

(1) Γ is a strongly regular graph.

6



(2) AJ = RJ , A2 = (n− 2m)A+m(n−m)I +µJ , with real numbers R, m, n, µ, and

n > 0, and v = (R+m)(R+m−n)
µ

.

Some subsets of vertices including claws, maximal cliques play essential roles in the

study of their structures. We will explain in Section 4 that m is the constant number

of maximal cliques containing a fix vertex in the study of maximal claws.

Definition 2.5

(1) A clique is a set of mutually adjacent vertices. A maximal clique is a clique not

properly contained in any other clique.

(2) A claw (x,A) consists of a vertex x and an anticlique A such that x is adjacent to

every vertex of A. The order of the claw (x,A) is defined by
∑

y∈A mx,y.

It is well knows that the block graph of a quasi -symmetric 2-design is strongly

regular. This leads to the question that whether some strongly regular multigraphs

associated with some designs of various types? A class of incidence structure lies be-

tween 1-designs (regular) and 2-designs is defined. We will show in Section 4 that

the collinearity graphs of this class of incidence structures are indeed strongly regular

multigraphs.

For an incidence structures, let mx,y = number of blocks containing points x and

y, and define mx,x = 0.

Definition 2.6 A 11
2
-design with parameter (r, k, t, c) is an incidence structure I =

(P ,B) such that

(1) each point x lies on r blocks;

(2) each block l contains k points;

7



(3) for a point x and a block l

a. t =
∑

y∈l mx,y > 1 is a constant if x ∈/ l;

b. c =
∑

y∈l−{x}(mx,y − 1) is a constant if x ∈ l.

Let A be the incidence matrix of the incidence structure under consideration, and

(x,B) is a pair of point and block, note that

AAT A(x,B) =
∑

A(x,B′)A(y,B′)A(y,B)

is the number of the pair (y,B′) such that x ∈ B′ and y ∈ B ∩ B′. The following

matrix expression for 11
2
-designs is immediate:

Lemma 2.7 For a binary matrix A, the following are equivalent:

(1) A is the incidence matrix of a 11
2
-design.

(2) AJ = rJ , JA = kJ and AAT A = (r + k − 1 + c− t)A + tJ for some integers r, k,

t, c with t > 1.

Lemma 2.8 Each 2-(v, k, λ) design is a 11
2
-design with parameters

(r, k, t, c) = (
λ(v − 1)

k − 1
, k, kλ, (k − 1)(λ− 1)).

Conversely, each 11
2
-design with parameters (r, k, t, c) satisfying (t + 1− c− k)k = t is

a 2-(v, k, λ) design where

(v, λ) = (1 +
r(k − 1)

λ
, t + 1− c− k).

Proof:

(1) Since the incidence matrix A of a 2-(v, k, λ) design satisfies

AJ = rJ , JA = kJ , and AAT = (r − λ)I + λJ ,

multiplying the third equation by A on its both sides, we then have

8



AAT A = (r−λ)A+λkJ ; and c is computed by AAT A = (r + k− 1+ c− t)A+ tJ .

(2) Let A be the incidence matrix of a 11
2
-design with (t + 1− c− k)k = t, and let

X = AAT − (r + k + c− t− 1)I + (k + c− t− 1)J .

Then we have X2 = 0, and hence X = 0 because X is a symmetric matrix. Hence

AAT = (r + k + c− t− 1)I − (k + c− t− 1)J = (r − λ)I + λJ ,

with λ = t + 1− c− k. Q.E.D.

Lemma 2.9 ([9], Theorem 3.2) The collinearity graph of a 11
2
-design with param-

eters (r, k, t, c) is a strongly regular multigraph with parameters (m,n, µ, γ, R) with

(m,n, µ, γ, R) = (r, k + r + c− 1− t, rt, rc, r(k − 1)).

The above lemma, shows that the collinearity graph of a 11
2
-design is a strongly

regular multigraph. Following this trend, we are interested in those strongly regu-

lar multigraphs which are the collinearity graph of 11
2
-designs or of even unique 11

2
-

designs? The following Theorem of Neumaier provides sufficient numerical constrains

to guarantee the uniqueness of such 11
2
-designs. Its proof will be given in Section 4.

Theorem 2.10 ([9], Theorem 4.4) If Γ is a strongly regular multigraph with pa-

rameters (m,n, µ, γ, R) with m > 2, integral µ ≡ 0 mod m, µ > 0, and

n > max{m− 1 +
(µ + m)γ

m2
, 2(m− 1)(µ + 1−m) + 2γ,

m(m− 1)

2
(µ + 1) + m

γ

2
+ m− 1}

then Γ is the collinearity multigraph of a unique 11
2
-design, with parameters

(r, k, t, c) = (m,
R

m
+ 1,

µ

m
,

γ

m
).

9



There is no example of strongly regular multigraphs meeting those numerical con-

straints found in the papers of Bose, Neumaier and Metsch.

In the final section, we use the symmetric association scheme to define a distance

regular graph, and defined a class of strongly regular multigraphs by giving the mul-

tiedge on the induce subgraph of this distance regular graph.

Definition 2.11 An association scheme with d classes is a finite set X together

with d + 1 relations Ri on X such that

(1) {R0, R1, ..., Rd} is a partition of X ×X;

(2) R0 = {(x, x)|x ∈ X};
(3) for each i ∈ {0, 1, ..., d} there exists a j ∈ {0, 1, ..., d} such that (x, y) ∈ Ri implies

(y, x) ∈ Rj;

(4) for any (x, y) ∈ Rk the number pk
ij of z ∈ X with (x, z) ∈ Ri and (z, y) ∈ Rj

depends only on i, j and k;

(5) pk
ij = pk

ji for all i, j, k ∈ {0, 1, ..., d}.
Moreover, if (3) and (5) replaces by

(3’) if (x, y) ∈ Ri, then also (y, x) ∈ Ri, for all x, y ∈ X and i ∈ {0, 1, ..., d}.
Then it is called the symmetric association scheme.

Definition 2.12 A distance regular graph is a simple graph with the intersection

numbers {b0, b1, ..., bd−1; c1, c2, ..., cd} satisfying the follows:

For all (x, y) ∈ V , if ∂(x, y) = i then

(1) ci := |Γ1(x) ∩ Γi−1(y)|,
(2) bi := |Γ1(x) ∩ Γi+1(y)|,

10



(3) ai := |Γ1(x) ∩ Γi(y)|, and

If ∂(x, y) = 0 then ki := |Γi(x) ∩ Γi(y)|.

3 Spectral of Strongly Regular Multigraphs

The matrix expressions in terms of their adjacency matrix of strong regular graph and

strongly regular multigraph are quite similar. We are interested to know the spectrum

of strongly regular multigraphs?

The eigenvalues of strongly regular graphs can be easily calculated in terms of

the matrix equation of its adjacency matrix. We also know that the strongly regular

graph are those connected regular graph with exactly three distinct eigenvalues, and

the spectral of Γ is as follows:

spec(Γ) = (k1, (
1

2
((λ− µ) +

√
∆))m1 , (

1

2
((λ− µ)−

√
∆))m2),

where ∆ = (λ− µ)2 + 4(k − µ), and

m1 = (v − 1) +
2k − (v − 1)(λ− µ)√

∆

m2 = (v − 1) +
2k + (v − 1)(λ− µ)√

∆

The following Lemma will prove that the converse is also true.

Lemma 3.1 A connected k -regular graph Γ is a strongly regular graph with pa-

rameters (v, k, λ, µ) if and only if it has exactly three distinct eigenvalues k > θ1 > θ2.

11



Moreover, (θ1, θ2) = (1
2
((λ−µ)+

√
∆), 1

2
((λ−µ)−√∆)) where ∆ = (λ−µ)2+4(k−µ).

Lemma 3.1 can be extended to strongly regular multigraphs with a mimic proof.

Before shown the Lemma 3.3, we need some technique. First, we need to make sure

if Γ is a connected R-regular multigraph, then R is also an eigenvalue. And next we

need make sure the multiplicity of the corresponding eigenvalue R is 1.

Proposition 3.2 Let Γ be a multigraph,

(1) Γ is R-regular multigraph if and only if the largest absolute eigenvalue of Γ is R.

(2) The multiplicity of R as an eigenvalue is 1 if Γ is connected.

Proof: Let A be the adjacency matrix of Γ. Take x = (x1, x2, ..., xv)
T be an eigen-

vector for eigenvalue λ, and let xi be a coordinate of largest absolute value among

coordinates of x. For the i -th coordinate of Ax, we have

|λ||xi| = |(Ax)i| = |
v∑

j=1

Aijxj| 6 |
v∑

j=1

Aijxi| 6 |
∑
i∼j

Aij||xi| = R|xi|.

Hence λ 6 R. Equality requires xj = xi for all xj ∈ N(xi). We can iterate this

argument to reach all coordinates for vertices in Γ. Thus, the multiplicity of R is

1. Q.E.D.

Lemma 3.3 A connected R-regular multigraph Γ is a strongly regular multigraph

with parameters (m,n, µ, γ, R) if and only if it has exactly three distinct eigenvalues

R > θ1 > θ2. Moreover, spec(Γ) = (R1, (n−m)t1 , (−m)t2) where

(t1, t2) = (
m(v − 1)−R

n
,
(n−m)(v − 1)−R

n
).

Proof:

First, we assume that Γ is a strongly regular multigraph with an adjacency matrix

A, then A2 = (n− 2m)A+m(n−m)I +µJ . Multiplying by A on both sides, we have

12



A3 = (n− 2m + R)A2 − (R(n− 2m)−m(n−m))A−mR(n−m)I, that is,

A3 − (n− 2m + R)A2 + (R(n− 2m)−m(n−m))A + mR(n−m)I = 0.

Hence the minimal polynomial of A is given by

f(x) = (x−R)(x− (n−m))(x + m).

So the strongly regular graph has three distinct eigenvalues R, n−m, and −m, let 1,

t1, and t2 be their multiplicities respectively. Since the trace of A equal to the sum of

all eigenvalues, and the number of eigenvalues are equal to the number of vertices. So

we have

(t1, t2) = (
m(v − 1)−R

n
,
(n−m)(v − 1)−R

n
).

On the other hand, let R > θ1 > θ2 be the three distinct eigenvalues, since the mul-

tiplicity of R is 1 because A is the adjacency matrix of a connected regular multigraph.

Define

M :=
1

(R− θ1)(R− θ1)
(A− θ1I)(A− θ2I).

Since A and A2 so symmetric. Take x is an eigenvector of A with the corresponding

eigenvalues θ1 (or θ2 respectively), then Mx = 0, i.e., x is an eigenvector of M with

eigenvalues 0. Thus all eigenvectors of corresponding eigenvalue is 0 are in the kernel

of M. Thus, the rank of M is 1, equal to the multiplicity of R. Then we have

M =




a1 a2 · · · av

a1 a2 · · · av
...

...
. . .

...
a1 a2 · · · av


 or




a1 a1 · · · a1

a2 a2 · · · a1
...

...
. . .

...
av av · · · av




Furthermore, M is symmetric, hence a1 = a2 = · · · = av = a is a constant. Let ~1

be the all one vector, then we have M~1 = ~1. Hence M = 1
v
J , that is A2 is a linear

combination of A, J and I. Thus A is the adjacency matrix of some strongly regular

multigraphs. Q.E.D.
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Remark: From above proof, we have n − m < R because the multiplicity of R

is 1.

Form Lemma 3.1 and Lemma 3.3, we know that a connected k -regular graph

(respectively, multigraph) with exactly three distinct eigenvalues k, θ1 and θ2 is a

strongly regular graph (respectively, a strongly regular multigraph). Moreover,

1

v
J =

1

(k − θ1)(k − θ2)
(A− θ1I)(A− θ2I),

that is,

A2 = (θ1 + θ2)A− θ1θ2I +
1

v
(k − θ1)(k − θ2)J.

Consider that (θ1+θ2)A−θ1θ2I+ 1
v
(k−θ1)(k−θ2)J = (n−2m)A+m(n−m)I+µJ

for some m, n, µ, γ with n > 0 are real numbers then we can compute it directly and

then have

(m,n, µ, γ, R) = (−θ2, θ1 − θ2,
(k − θ1)(k − θ2)

v
,
(k − θ1)(k − θ2)

v
− k − θ1θ2, k).

If the graph is the simple graph, then we have

(v, k, λ, µ) = (
(k − θ1)(k − θ2)

k + θ1θ2

, k, θ1θ2 + θ1 + θ2 + k, k + θ1θ2).

Since γ =
∑

y∼x mx,y(mx,y − 1) = (k−θ1)(k−θ2)
v

− k − θ1θ2 > 0, we have (k − θ1)(k −
θ2) > v(k+θ1θ2). The case equality or otherwise correspond to strongly regular graphs

or strongly regular multigraphs respectively.

Note: As γ = 0, Γ is a strongly regular graph with parameters

(v, k, λ, µ) = (
R(R− n + 2m− µ− 1)

µ
+ R− 1, R, n− 2m + µ, µ).

14



Then we have

(m,n, µ, γ, R) = (
1

2
(
√

∆− (λ− µ)),
√

∆, µ, 0, k), where ∆ = (λ− µ)2 + 4(k − µ).

Then

spec(Γ) = (R1, (n−m)t1 , (−m)t2),

where

(t1, t2) = (
m(v − 1)−R

n
,
(n−m)(v − 1)−R

n
),

can be reduce to the strongly regular graph with

spec(Γ) = (k1, (
1

2
((λ− µ) +

√
∆))m1 , (

1

2
((λ− µ)−

√
∆))m2)

where ∆ = (λ− µ)2 + 4(k − µ) and

(m1,m2) = ((v − 1) +
2k − (v − 1)(λ− µ)√

∆
, (v − 1) +

2k + (v − 1)(λ− µ)√
∆

).

Then we have the following:

Theorem 3.4 If A is an adjacency matrix of order v of a k -regular (either simple

or multiple) graph with three distinct eigenvalues k > θ1 > θ2, then (k− θ1)(k− θ2) >

v(k + θ1θ2). Moreover,

(1) if (k − θ1)(k − θ2) = v(k + θ1θ2), then the graph is a strongly regular graph

SRG(v, k, λ, µ) with

(v, k, λ, µ) = (
(k − θ1)(k − θ2)

k + θ1θ2

, k, θ1θ2 + θ1 + θ2 + k, k + θ1θ2);

(2) if (k − θ1)(k − θ2) > v(k + θ1θ2), then the graph is nontrivial strongly regular

multigraph SRMG(m,n, µ, γ, R) with

(m,n, µ, γ, R) = (−θ2, θ1 − θ2,
(k − θ1)(k − θ2)

v
,
(k − θ1)(k − θ2)

v
− k − θ1θ2, k).
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Proof: From the definition γ =
∑

y∼x mx,y(mx,y − 1), we have

(k − θ1)(k − θ2) > v(k + θ1θ2).

(1) If γ = 0, then A must be the adjacency matrix of a strongly regular graph.

(2) If γ > 0, then A must be the adjacency matrix of a strongly regular multigraph.

Q.E.D.

A comparison between strongly regular graphs and strongly regular multigraphs

are included in the following table:

SRG(v, k, λ, µ) SRMG(m,n, µ, γ, R)

adjacency matrix a symmetric (0,1)-matrix
a symmetric matrix
with nonnegative entries

adjacency AJ = kJ , AJ = RJ ,

matrix expression A2 = (λ− µ)A + (k − µ)I + µJ A2 = (n− 2m)A + m(n−m)I + µJ

relative design quasi-symmetric 2-design 11
2 -design

three distinct k, 1
2 ((λ− µ)±√∆), where R, n−m, −m

eigenvalues ∆ = (λ− µ)2 + 4(k − µ)

v = (k−θ1)(k−θ2)
k+θ1θ2

, m = −θ2, n = θ1 − θ2

given k = k, µ = (k−θ1)(k−θ2)
v

k > θ1 > θ2 λ = θ1θ2 + θ1 + θ2 + k, γ = (k−θ1)(k−θ2)
v − k − θ1θ2,

µ = k + θ1θ2 R = k

(k − θ1)(k − θ2) = v(k + θ1θ2) (k − θ1)(k − θ2) > v(k + θ1θ2)

Table 1
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4 A Survey of Papers of Bose, Neumaier and Metsch

The subjects of strongly regular multigraph were thoroughly studied in the papers of

R. C. Bose ([2], 1976), Neumaier ([9], 1982) and Metsch ([7], 1995). A study of these

three papers will be given in this section in an unified way.

These three papers share some common ground with various terminologies, there

facts are listed in Table 2 for reference. The results, and the ways of their proofs for

each papers were given in subsections 4-2∼4-4 respectively.

The content of subsections 4-2∼4-4 are in the following order: First, the main

theorems concerning the quasi-residual designs are gives; following by their proofs in

sketch the strategies for the proofs of these main theorem and provided in figures 1∼3.

The relation of Bose, Neumaier, and Metsch’s theorem:

Bose Neumaier Metsch

[2], Lemma 2.1 (lower bound) [9], Lemma 2.3 (upper bound)

[2], Theorem 2.8 (unique)

[2], Theorem 2.5 [9], Lemma 4.1(b)

[2], Theorem 2.6 [9], Lemma 4.1(c)

[2], Theorem 2.7 [9], Lemma 4.1(c)

[2], Theorem 3.3(1) [7], Lemma 3.22

[2], Theorem 3.3(2) [9], Lemma 4.2 [7], Lemma 2.10

[2], Theorem 3.3(3) [7], Lemma 3.10

[2], Lemma 3.3 [7], Lemma 3.11

[2], Theorem 4.2 [9], Theorem 3.5

[2], Theorem 4.1 [9], Theorem 1.2(2)

[2], Theorem 4.3 [9], Theorem 1.3

Table 2
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4.1 The 1976 paper of Bose

A multigraph G is said to be regular of degree n and loop degree d if n(x) :=
∑

y∼x mx,y = n and d(x) :=
∑

y 6=x
(mx,y)(mx,y−1)

2
= d are constant for each vertex x

in G.

A regular multigraph G is called edge regular if for any set of adjacent vertices

x and y, the quantity p(x, y) :=
∑

z∼x,y mx,zmy,z depends only on the multiplicity

mx,y of x and y. The concept of ”type” was defined by Bose over edge regularity of

multigraphs.

An edge regular multigraph will be said to be of the type Gk{r, d; α0, α1, . . . αr} if

it satisfies the following properties:

(1) mx,y 6 r for any edge xy.

(2) The degree n(x) of any vertex is given by n(x) = r(k − 1).

(3) The loop degree d(x) = d , for any vertex x.

(4) For any edge xy for which mx,y = m > 1, p(x, y) = m(k − 2) is a divisor of αm.

(5) If the vertices, x and y are nondajacent, i.e., mx,y = 0, p(x, y) 6 α0.

Furthermore, he proposed the definition of strongly regular multigraphs over the

edge regular graphs. Obviously, the difference between edge regular and strongly reg-

ular multigraph is that the edge regular posed condition over pairs of adjacent vertices

depends on the multiplicity mx,y, but strongly regular multigraphs posed conditions

over pair of distinct vertices depends on the multiplicity mx,y.

Then Bose gave a definition of a claw. A claw (x, S) of the multigraphs Gk is

defined as a set of vertices S = {y1, y2, . . . , ys} nonadjacent to each other and each
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adjacent to a vertex x, i.e., mx,yi
= mi > 1 and myi,yj

= 0 if i 6= j = 1, 2, . . . , s. A

claw (x, S) is said to be of type (a1, a2, . . . , ar) if ai be the number of edges xy, y ∈ S

for which mx,y = i. With the claw we can associate four parameters (s, µ, δ, π) define

as follows:

(1) s =
∑r

i=1 ai, the order of the claw.

(2) µ =
∑r

i=1 iai =
∑s

i=1 mi, the multiplicity of the claw.

(3) δ = 1
2

∑r
i=1 i(i− 1)ai = 1

2

∑s
i=1 mi(mi − 1), the loop multiplicity of the claw.

(4) π =
∑r

i=1 aiαi =
∑s

i=1 αmi
, the coefficient of edge regularity of the claw.

He defined grand cliques and then studied the structures strongly regular multi-

graph in term of their claws and grand cliques.

4.2 The 1982 paper of Neumaier

For any two distinct blocks A,B 6= H, where H is a block, denote by αA,B the number

of points in H incident with A and B, and βA,B the number of points not in H incident

with A and B.

Theorem 4.2.1 ([9], Theorem 1.2) A quasi-residual 2-(v, k, λ)-design π = (P ,B) is

embeddable if and only if the following three conditions are satisfied:

(1) Any two distinct blocks A and B intersect in βA,B 6 λ points.

(2) The multigraph G defined over the blocks, with αA,B = λ− βA,B edges between A

and B, is a strongly regular multigraph with parameters

(m,n, µ, γ, R) = (λ, k, λ2(λ− 1), λ(λ− 1)(λ− 2), λ(k + λ− 2)).

(3) G is isomorphic to the block multigraph of a 2-(n+λ, λ, λ−1)-design π′ = (P ′,B′).
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Theorem 4.2.2 ([9], Theorem 1.3) A quasi-residual 2-(v, k, λ)-design π = (P ,B)

is embeddable if either λ = 3, and k > 76, or λ 6= 3, and k > 1
2
(λ2−1)(λ3−λ2−λ+2).

The main theorem shows that under what numerical constraints, a strongly regular

multigraph will be the point graph of a unique 11
2
-design (Theorem 4.2.17). To prove

it, Neumaier first showed that this strongly regular multigraph is the point graph of a

weak 11
2
-design, and then showed further that it is a 11

2
-design. The uniqueness of this

11
2
-design is guaranteed by showing that each block is a grand clique of the strongly

regular multigraph under consideration.

Step 1: Show first that there is no s-claw (x, S) whenever s > m in terms of the

quantity N =
∑

x 6=y(αx −my,x)(αx −my,x − 1) where αx :=
∑

y∈S mx,y, and the con-

tradictory argument related to upper and lower bounds (Lemma 4.2.14).

Step 2: Show further that each point is in exactly m grand cliques, and each edge ab of

multiplicity ma,b is in exactly ma,b cliques by a constructive argument (Lemma 4.2.15).

Step 3: Show that a SRMG is a point graph of a weak 11
2
-design if and only if

the two condition satisfied.

(1) there is a collection
∑

of cliques such that every point is in exactly m cliques of
∑

, and

(2) every edge ab of multiplicity ma,b is in exactly ma,b cliques of
∑

(Theorem 4.2.12)

in terms of incidence matrices of designs and the adjacency matrices of strongly

regular multigraphs.

Step 4: Show the constant size of blocks (Theorem 4.2.13) under either of the fol-

lowing conditions
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(1) two distinct points are in at most one blocks,

(2) t = λ(λv+n)
r

is an integer with λ(n+1− r) < (1−λ)(t+1) in terms of the quantity

s(x,B) = |{(a,A)|(a,A) ∈ P × B, x, a ∈ A, a ∈ B}|.

Lemma 2.8         Theorem 4.2.9   Corollary 4.2.10 

Lemma 4.2.4 

Lemma 4.2.3       Theorem 4.2.11 

Lemma 4.2.6     Lemma 4.2.15 

Lemma 4.2.14           Lemma 4.2.16 

Theorem 4.2.12 

Theorem 4.2.13              Theorem 4.2.17 

Figure 1: [9], Neumaier

Lemma 4.2.3 ([9], Lemma 2.1) Let A be an integral symmetric matrix with zero

diagonal satisfying AJ = RJ , A2 = (n− 2m)A + m(n−m)I + µJ . If n > max{2m−
4, 2m− 1 + µ + γ} where γ = m(n−m) + µ−R, then A is the adjacency matrix of a

strongly regular multigraph with parameters (m,n, µ, γ, R).

Lemma 4.2.4 ([9], Lemma 2.2) Let Γ be a strongly regular multigraph graph with

parameters (m,n, µ, γ, R).

(1) m− n 6 ma,b 6 m.

(2) m > 1, with equality if and only if Γ is the disjoint union of complete graphs.

(3) If there are nonadjacent points then n > m.

(4) µ > (R + m)(m− n), with equality if and only if ma,b = m− n for all a 6= b.

(5) µγ 6 (n− 2m + µ)(m(n−m) + µ), with equality if Γ contains no triangles.

(6) µ > 2m− n.
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(7) If n 6 2m + 4, then γ < 2m(n−m) + n− 2m− 1 + µ.

Definition 4.2.5 A maximal clique C with |C| > n
2
+µ+1−m is called a grand clique.

Lemma 4.2.6 ([9], Lemma 2.3) An edge of multiplicity one is in at most one grand

clique.

Definition 4.2.7 An incidence structure with an incidence matrix A is a weak 2-design

if AJ = rJ , AAT = nI+λJ and a weak 11
2
-design if AJ = rJ and AAT A = nA+λJA.

Theorem 4.2.8 ([9], Theorem 3.2) The point multigraph of a weak 11
2
-design with

parameters (v, n, r, λ) is a strongly regular multigraph with parameters

(m,n, µ, γ, R) = (r, n, λ(λv + n), λ(λ− 1)v − r(r − 1) + (r + λ− 1)n, λv − n + r).

In particular, the point multigraph of a 11
2
-design with parameters (r, k, t, c) is a

strongly regular multigraph with parameters

(m,n, µ, γ, R) = (r, r + k + c− 1− t, rt, rc, r(k − 1))

and (r, k, t, c) = (m,
R

m
+ 1,

µ

m
,

γ

m
).

Theorem 4.2.9 ([9], Theorem 3.3) The block multigraph of a 2-(v, k, λ)-design of

order n is a strongly regular multigraph with parameters

(m,n, µ, γ, R) = (k, n, k2λ, k(k − 1)(λ− 1), k(n + λ− 1)).

Corollary 4.2.10 ([9], Corollary 3.4) Two distinct blocks A and B of a 2-(v, k, λ)-

design intersect in at least k − r + λ points.
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Theorem 4.2.11 ([9], Theorem 3.5) Let π = (P ,B) be a quasi-residual 2-(v, k, λ)-

design with k > 2λ3 − 4λ2 + 4λ− 1. Then

(1) two distinct blocks intersect in at most λ points, and

(2) the multigraph Γ on the blocks, with αA,B = λ− βA,B edges between A and B, is

a strongly regular multigraph with parameters

(m,n, µ, γ, R) = (λ, k, λ2(λ− 1), λ(λ− 1)(λ− 2), λ(k + λ− 2)).

Theorem 4.2.12 ([9], Theorem 3.6) A strongly regular multigraph Γ with parameters

(m,n, µ, γ, R) is the point multigraph of a weak 11
2
-design if and only if there is a

collection
∑

of cliques such that every point is in exactly m cliques of
∑

, and every

edge ab of multiplicity ma,b is in exactly ma,b cliques of
∑

. Moreover, the blocks are

the cliques of
∑

, and the weak 11
2
-design has parameters

(v, n, r, λ) = (
(R + m)(R + m− n)

µ
, n, m,

µ

R + m
).

Theorem 4.2.13 ([9], Theorem 3.7) Let π = (P ,B) be a weak 11
2
-design with param-

eters (v, n, r, λ), and λ < 1. If either

(1) two distinct points are in at most one blocks, or

(2) t = λ(λv+n)
r

is an integer with λ(n + 1− r) < (1− λ)(t + 1),

then π = (P ,B) is a 11
2
-design, with parameters

(r, k, t, c) = (r,
λv + n

r
,
λ(λv + n)

r
, n + 1 + t− r − k).

Lemma 4.2.14 ([9], Lemma 4.1) Let Γ be a strongly regular multigraph with param-

eters (m,n, µ, γ, R) with µ > 1, and integral m > 2. The following hold:
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(1) If 2n > m(m− 1)(µ + 1) + mγ + 2m− 2, then s 6 m for every s-claw.

(2) If 2n > (m− 3)(µ−m) + 2γ + 2m− 2 then every s-claw (1 6 s 6 m− 2) can be

extended to a (s + 1)-claw.

(3) If there are no s-claw with s > m, then every (m− 1)-claw is in at least n− 1−
(m− 2)(µ + 1−m)− γ many of m-claws.

(4) If (a, S) is a maximal m-claw, then there are at least m(n − 2) − (m − 2)µ − 2γ

many of m-claws (a, S ′) such that |S ∩ S ′| = m− 1.

Lemma 4.2.15 ([9], Lemma 4.2) Let Γ be a strongly regular multigraph with pa-

rameters (m,n, µ, γ, R) with µ > 1, and integral m > 2. If there are no s-claws with

s > m and if

n > max{1

2
(m− 3)(µ−m) + γ + m− 1, 2(m− 1)(µ + 1−m) + 2γ}

then each edge ab of multiplicity ma,b is exactly ma,b cliques, and each point is in

exactly m grand cliques.

Lemma 4.2.16 ([9], Lemma 4.3) If Γ is a strongly regular multigraph with parameters

(m,n, µ, γ, R) with µ > 1, and integral m > 2, and

n > max{2(m− 1)(µ + 1−m) + 2γ,
1

2
m(m− 1)(µ + 1) +

1

2
mγ + m− 1}

then Γ is the point multigraph of weak 11
2
-design with parameters (v, n, r, λ) given by

(v, n, r, λ) = (
(R + m)(R + m− n)

µ
, n, m,

µ

R + m
).

Theorem 4.2.17 ([9], Theorem 4.4) If Γ is a strongly regular multigraph with pa-

rameters (m,n, µ, γ, R) with integral m > 2, integral µ ≡ 0 mod m, µ > 0, and

n > max{m−1+
(µ + m)γ

m2
, 2(m−1)(µ+1−m)+2γ,

m(m− 1)

2
(µ+1)+m

γ

2
+m−1}
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then Γ is the point multigraph of unique 11
2
-design, with parameters

(r, k, t, c) = (m,
R

m
+ 1,

µ

m
,

γ

m
).

Corollary 4.2.18 ([9], Corollary 4.5) Every strongly regular multigraph with param-

eters

(m,n, µ, γ, R) = (k, n, k2λ, k(k − 1)(λ− 1), k(n + λ− 1))

such that n, k, λ are positive integers, k 6= 1 and

n > max{k(k− 1)λ2− (k− 1)2λ, 2(k− 1)(k2λ + kλ− 2λ + 1),
1

2
(k2− 1)(k2λ− k + 2)}

is isomorphic to the block multigraph of a 2-(v, k, λ)-design with v = k +λ−1n(k− 1).

Theorem 4.2.19 ([9], Theorem 4.6) If Γ is a strongly regular multigraph with pa-

rameters (m,n, µ, γ, R) with µ > 1, integral m, 2 6 m 6 n, and

n > max{2(m− 1)(µ + 1−m),
m(m− 1)

2
(µ + 1) + m− 1}

then Γ is the point graph of a unique partial geometry with parameters

(r, k, t) = (m,
R

m
+ 1,

µ

m
).

4.3 The section 2 of 1995 paper of Metsch

Theorem 4.3.1 ([7], Theorem 2.1) A strongly regular multigraph with parameters

(m,n, µ, γ, R) with µ,m > 2. Suppose

(1) n > 2(m + a− 2)(µ− 1) + 3γ,
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(2) 2(a + 1−m)n > a(a− 1)µ + aγ + 4m(a + 1)− 2m2 − (a + 1)(a + 2)

for some a > m, then the family M = {C|C is a maximal clique with |C| > n−2m−
(a− 2)µ− 3

2
γ + a + 1} satisfies

(a) For each vertex x and if ax is maximum order of a claw (x, A), then m 6 ax 6 a

and there exists exactly ax cliques in M which contains x.

(b) If x, y are adjacent, then x and y lies in at least mx,y and at most 2mx,y−1 cliques

of M .

(c) If x, y are adjacent and x lies in exactly m cliques of M , then there exists exactly

mx,y cliques in M contains x and y.

Definition 4.3.2 A maximal clique C with |C| > n− 2m− (a− 2)µ− 3
2
γ + a + 1 is

called a normal clique.

To derive each pair of adjacent vertices x and y are contained in exactly mx,y nor-

mal cliques (Lemma 4.3.9) whenever the maximal of order ax of a claw (x,A) is m. It

will then be used to ensure condition (c) for Theorem 4.4.1.

Toward this goal, we first study lower bounds and upper bounds for the number

of normal cliques containing a vertex (indeed exactly bound, Lemma 4.3.1 (1)), or

containing a pair of adjacent vertices respectively (Lemma 4.3.4) in terms of some

functions for counting purpose.

a. each vertex is adjacent to at least R− 1
2
γ vertices;

b. each vertex x is adjacent to at most 1
2
γ vertices y with mx,y > 2;

c. any two distinct vertices x, y have at least wx,y − 3
2
γ common neighborhoods,

where wx,y =
∑

z∈V mx,zmz,y.
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For a maximal claw (x,A) with order ax, and a point y ∈ A adjacent to x:

We first show that there are at most 2mx,y− 1 cliques containing adjacent vertices

x and y (Lemma 4.3.8 (2)) by applying the principle of inclusion and exclusion to

derive upper bound and lower bound of
∑2mx,y

i=1 |Ci − {x, y}| respectively in terms of

the quantity
∑2mx,y

i=1 |Ci| for 2mx,y maximal cliques containing x and y, together with

a hypothesis condition in Theorem 4.3.1.

If mx,y = 1, Metsch showed that

Cy := {x, y} ∪ {z|z ∈/ A ∈ A, x ∼ y, y ∼ z, ∀w ∈ A− {y}, w � z},

lies in exactly one normal clique (Lemma 4.3.7 (1)) by showing the size of Cy meeting

the require condition for normal cliques in terms of the maximality of (x,A) and the

bounds (Lemma 4.3.4) for neighbors. We then show that Cy meets A nontrivially

(Lemma 4.3.6). Indeed, it is true for any normal clique containing x by considering

upper bounds of |C|.

On the other hand, for y ∈ A with mx,y > 1, then A can be replaced by another

maximal claw (x,A′) with A′ = A−{y}∪{z1, z2, . . . zmx,y} with order ax and mx,zi
= 1

for each i (Lemma 4.3.7 (2)) by showing the existence of exactly pairwise nonadjacent

mx,y common neighbors of x and y outside A and not adjacent to any vertices in A

except y in terms of the bound for neighbors (Lemma 4.3.4). Continuing this pro-

cess, any maximal claw (x,A) can be replaced by another maximal claw (x, A′) with

mx,z = 1 for each z ∈ A′.

There is a normal clique Cy meeting A′ nontrivially for each y ∈ A′, it follows

that there are ax normal cliques containing x. We conclude that there exist exactly
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ax cliques contains x for all x ∈ V (Lemma 4.3.8 (1)) and then there are at least mx,y

normal cliques containing adjacent pair x, y of points (Lemma 4.3.8 (1)).

Finally, we claim that ax > m (Lemma 4.3.5 (2)) by considering |{z|z ∼ x, z ∼ y ∈
A}| + |A|. We conclude that each pair of adjacent vertices x and y are contained in

exactly mx,y normal cliques (Lemma 4.3.9) by combining Lemma 4.3.8 (1) and Lemma

4.3.5 (2). The hypotheses of Theorem 4.3.1 is guaranteed under the condition given

in Lemma 4.3.3.

Lemma 4.3.3 ([7], Lemma 2.11) If m > 2, µ > m, γ + 1 and n > 2(1 + 2√
3
)mµ =

2(3+2
√

3)
3

mµ ≈ 4.3mµ, then the hypotheses of Theorem 4.3.1 are satisfied for the unique

integer a satisfying 2√
3
m− 1 < a 6 2√

3
m.

Theorem 4.3.5 is proved by Lemmas 4.3.4 ∼ 4.3.9, and the relationship between

Lemma 4.3.4 ∼ Lemma 4.3.9 are given below:

                           Lemma 4.3.5 (2) 

Lemma 4.3.4         Lemma 4.3.7 (1)         Lemma 4.3.9 

Lemma 4.3.5 (1)      Lemma 4.3.6       Lemma 4.3.8 (1) 

          Lemma 4.3.8 (2) 

Lemma 4.3.7 (2) 

Figure 2: Section 2 in [7], Metsch

Lemma 4.3.4 ([7], Lemma 2.2)

(1) Each vertex x is adjacent to at most 1
2
γ vertices y with mx,y > 2;

(2) Each vertex is adjacent to at least R− 1
2
γ vertices;

28



(3) Any two distinct vertices x, y have at least wx,y − 3
2
γ common neighborhoods.

Lemma 4.3.5

(1) Every claw has order at most a. ([7], Lemma 2.4)

(2) Every maximal claw has order at least m. ([7], Lemma 2.9)

Lemma 4.3.6 ([7], Lemma 2.6) If (x,A) is a maximal claw, and C is a normal clique

containing x, then A ∩ C 6= φ.

Lemma 4.3.7 For a claw (x,A) of order ax and a vertex y ∈ A:

(1) if mx,y = 1, then the set,

C := {x, y} ∪ {z ∈/ A adjacent y but not to any vertex of A− {y}}
is contained in a normal clique. ([7], Lemma 2.5)

(2) if s := mx,y > 2, then there are mutually non-adjacent vertices y1, y2, . . . ys satis-

fying mx,yi
= 1 and such that each yi is adjacent to y but not to any other vertex

of A. ([7], Lemma 2.7)

Lemma 4.3.8 ([7], Lemma 2.8)

(1) Each vertex x lies on exactly ax normal cliques.

(2) Any two adjacent vertex x and y lies in at most 2mx,y − 1 cliques ([7], Lemma

2.3), and lies in at least mx,y normal cliques.

Lemma 4.3.9 ([7], Lemma 2.10) For a claw (x,A) with maximum order m, then

x and any y(6= x) are in exactly mx,y normal cliques.
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4.4 The section 3 of 1995 paper of Metsch

Theorem 4.4.1 ([7], Theorem 2) Suppose that Γ is a strongly regular multigraph with

parameters (m,n, µ, γ, R) with geometric parameter (r, k, t, c), i.e., (m,n, µ, γ, R) =

(r, n, rt, rc, r(k−1)) with integers r > 3 and t > 1, and real numbers k > 0 and c > 0.

If k > ( 8√
3
r + r + 5)rt, k > (c + 1)t, and r(c + r − 1) 6 (r − 1)t, then Γ is the point

graph of a 11
2
-design with parameters (r, k, t, c).

We will show µx = r(= m), where µx := number of cliques contains x, for each ver-

tex x (Lemma 4.4.11) by showing that the set Vs = {x ∈ V |µx > r} is empty. Toward

this goal, we will find an upper bound for
∑

x∈V sx where sx :=
∑

x∈C

∑
C 6=C′ |C∩C ′|2.

We then derive Lemmas 4.4.2 ∼ 4.4.7 in terms of elementary counting techniques

and taking advantage of some inequalities.

Find an upper bound for
∑µx

i=1(|Ci|−1), and in particular its exact value whenever

µx = r (Lemma 4.4.2), and upper bound for the size of maximal cliques (Lemma 4.4.4)

and their lower bound when they contain a vertex x with µx = r (Lemma 4.4.3). We

then find an upper bound for
∑

C 6=C′∈M |C ∩ C ′|2 in terms of
∑

x∈V (µx − r) (Lemma

4.4.5). Moreover, an upper bound for
∑

x∈V (sx − 3rtk(µx − r)) (Lemma 4.4.6), lower

bounds for µxsx in terms of
∑µx

i=1(|Ci|−1)2 and max{|Ci||i 6 µx} (Lemma 4.4.7 (1,2))

respectively; also lower bound for sx (Lemma 4.4.7 (3)) and for µxsx (Lemma 4.4.7

(4)) for vertex x with µx = r, and µx > r respectively.

We show that there exist at most 2rk vertices x satisfying µx > r (i.e., |Vs| =

vs 6 2rk, Lemma 4.4.8) by studying upper and lower bounds of tx − s0 where

tx := sx − 3rtk(µx − r) and s0 := (r − 1)tk − (r − 1)t2. We then show that each
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point x with µx > r lies in at least five normal cliques consisting of all points y with

µy > r (Lemma 4.4.9) by a contradictory argument together with some inequalities.

Moreover, we show |C1∩C2| 6 µ for any distinct maximal cliques C1, C2; and then

show that C − (
⋃

C′∈N C ′) is nonempty for any subfamily N of maximal cliques with

|N | 6 4r and C ∈/ N (Lemma 4.4.10).

We first claim that µx = r is equivalent to the emptiness of the set Ms := {C|∀x ∈
C, µx > r} by Theorem 4.3.1 and Lemma 4.4.9, we then claim that Ms is empty in

terms of the principle of inclusion and exclusion and some inequalities by contradic-

tory argument over he conditions |N | 6 4r and the fact that each point x with µx > r

lies in at least five cliques.

Suppose that there exists an integer a such that Theorem 4.3.1 (a,b,c) and |C| >
k − aµ for each C ∈ M , and m 6 a 6 2m− 1 are fulfilled.

Let m = r, n = k + r + c − 1 − t, µ = rt, γ = rc, R = r(k − 1). Assume that

k > rt(4a + r + 5), k > (c + 1)t, r > 3 and r(c + r − 1) 6 (r − 1)t.

The relation of Lemma 4.4.2 ∼ Lemma 4.4.11:

Lemma 4.4.5      Lemma 4.4.6                      

Lemma 4.4.4      Lemma 4.4.7 (2)   Lemma 4.4.7 (3)     Lemma 4.4.8 

Lemma 4.4.7 (1)   Lemma 4.4.2      Lemma 4.4.7 (4)           

                                 Lemma 4.4.3        Lemma 4.4.9 

                                                    Lemma 4.4.10 

 Lemma 4.4.11 

Figure 3: Section 3 in [7], Metsch
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Lemma 4.4.2 ([7], Lemma 3.10) l := µx, x ∈ C1, C2, . . ., Cl. Then

(1)
∑l

i=1(|Ci| − 1) 6 r(k − 1) + 1
2
γ;

(2)
∑l

i=1(|Ci| − 1) = r(k − 1) if l = r.

From
∑l

i=1(|Ci| − 1) = r(k − 1), we have:

Lemma 4.4.3 ([7], Lemma 3.12) If µx = r and x ∈ C, then |C| > k − (r − 1)(c + 1).

Lemma 4.4.4 ([7], Lemma 3.11) ∀C ∈ M , |C| < k + c + 1.

Lemma 4.4.5 ([7], Lemma 3.13)
∑

C 6=C′∈M |C∩C ′|2 6 v(r−1)t+3r(c+1)
∑

x∈V (µx−
r).

Lemma 4.4.6 ([7], Lemma 3.14)
∑

x∈V (sx − 3rtk(µx − r)) 6 vt(r − 1)(k + c + 1).

Lemma 4.4.7 Let l := µx, x ∈ C1, C2, . . . Cl. Let zi := |Ci| − 1, i = 1, 2, . . . , l,

and z := max{zi|i = 1, 2, . . . , l}. Then

(1) l · sx > (n−m)(R + γ) + Rµ− 2(1 + l −m)zγ −∑l
i=1 z2

i ([7], Lemma 3.15);

(2) l ·sx > r(k−1)2 +r(r−1)tk−r(r−1)t−rtc−r(c+1)2−2γ(k+c)(l−r)−∑l
i=1 z2

i

([7], Lemma 3.16);

(3) sx > (r − 1)tk − (r − 1)t2 for every vertex x satisfying µx = r ([7], Lemma 3.17);

and

(4) µxsx > r(r − 1)tk + k(k − 4µ − aµ)(µx − r) for every vertex x satisfying µx > r

([7], Lemma 3.18).

Lemma 4.4.8 ([7], Lemma 3.19) There exist at most 2rk vertices x satisfying µx > r,

i.e., vs 6 2rk.
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Lemma 4.4.9 ([7], Lemma 3.20) Every vertex x satisfying µx > r lies in at least

five cliques, which contain only vertices y satisfying µy > r.

Lemma 4.4.10 ([7], Lemma 3.21)

(1) |C1 ∩ C2| 6 µ for C1 6= C2.

(2) C ∈ M , N ⊆ M with |N | 6 4r and C ∈/ N , then there exist x ∈ C and x ∈/
C ′ ∈ N for all C ′.

Lemma 4.4.11 ([7], Lemma 3.22) µx = r for each vertex x.

5 A Class of Strongly Regular Multigraphs

In this section, we will use the special properties of the definition of alternating form

graph to define a symmetric association scheme. From the symmetric association

scheme, we have that the alternating form graph is a distance regular graph. At last,

we will define a graph Γ which is the induced subgraph of the alternating form graph,

and give the multiplicity on the edges, and we will get a class of strongly regular

multigraphs.

Definition 5.1 The alternating form graph Alt(n, q) is the simple graph with ver-

tex set V = {A|A ∈ Mn×n(GF (q)), A = −AT} and the edge set E = {(A, B)|A, B ∈
V, rank(A−B) = 2}.

Since the alternating form graph Alt(n, q) is defined on the set of all skew-symmetric

n× n matrices over GF (q), the rank of A−B is 2i for any two matrices A and B in

Alt(n, q). Let Ri = {(A,B)|A,B ∈ Alt(n, q), rank(A− B) = 2i}, the relation classes
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{R0, R1, . . . , Rd}, defined on Alt(n, q)× Alt(n, q), where d = dn
2
e; then

(1) (Alt(n, q), (Ri)
d
i=0) is a symmetric association scheme.

(2) (Alt(n, q), R1) is a distance regular graph with the intersection numbers {b0, b1, . . . ,

bd−1; c0, c1, . . . , cd}.

Theorem 5.2 Each maximal cliques of the alternating form graph Alt(n, q) is either

isomorphic to




0 x2 x3 . . . xn

−x2 0 0 . . . 0

−x3 0 0 . . . 0
...

...
...

. . .
...

−xn 0 0 . . . 0




or to




0 x y 0 · · · 0

−x 0 z 0 · · · 0

−y −z 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . . 0

0 0 0 0 · · · 0




respec-

tively, called typed I and type II respectively.

For studying possible combinatorial geometric structures over Alt(n, q) , we shall

study the matrix representations of those maximal cliques of both types containing

the zero form. The others may be obtained simply by translation. Without loss of

generality, we may assume that V is an inner product space with a fixed orthonormal

basis {v1, v2, . . . , vn}. If v ∈ V is a nonzero vector, then < v >=< αv > for all

α ∈ GF ∗(q), we may assume that v =
∑

16j6k−1 αjvj +vk for some k and αj ∈ GF (q).

Consider the nest

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn(= V )

of subspaces of V , where Vi =< v1, v2, . . . , vi >, 1 6 i 6 n, and in particular V0 is

the trivial subspace of V . Since dimVi is i, Vi has (qi − 1)/(q − 1) one-dimensional

subspaces, they are

<
∑

16j6k−1

αjvj + vk >

where αj ∈ GF (q), 1 6 j 6 k − 1. Their corresponding perpendicular subspaces (i.e.
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hyperplanes) are

<
∑

16j6k−1

αjvj + vk >⊥=< vk+1, vk+2, . . . , vn, vj − αjvk|1 6 j 6 k − 1 > .

Proposition 5.3 Show that each of these hyperplanes uniquely determines a maximal

clique of type I of the zero form.

Proof: When k = 1, v = v1 and < v >⊥=< v2, v3, . . . , vn >, it follows that its matrix

representation is

lv(= l∞) = {
(

0 x2 x3 . . . xn−1 xn

−x2 0 0 . . . 0 0

)
|xi ∈ GF (q)}

consisting of those matrices whose first two rows as shown above, their first two

columns obtained by skew-symmetry, and zero all other entries. Similar convention is

used in the following.

When k > 2, the clique determined by v =
∑

16j6k−1(αjvj + vk) or its perpendic-

ular space is denoted by lv = lα1,α2,...,αk−1
if there is no confusion. Let {e1, e2, . . . , en}

be the standard basis of GF (q)n, i.e., ei = (0, 0, . . . , 0, 1, 0, 0, . . . , 0) with 1 in the i-th

entry, 1 6 i 6 n.

Let

Li = {eT
i · x− xT · ei|x ∈ GF (q)n with 0 in its i-th entry},

and,

α = (α1, α2, . . . , αi−1, 1, 0, 0, . . . , 0) ∈ GF (q)n

and Pi(α) denote the matrix obtained from the identity matrix by replacing its i-th

row by the vector α. Then the matrix representation of lv = lα1,α2,...,αi−1
, with respect

to the fixed base {v1, v2, . . . , vn}, is given by
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lv = lα1,α2,...,αi−1

= Pi(α)T · Li · Pi(α)

= {Pi(α)T ·(ei·x−xT ·ei)·Pi(α)|x ∈ GF (q)n with 0 in its i-th entry}
= {αT · x− xT · α|x ∈ GF (q)n with 0 in its i-th entry}.

Remark For attenuated space, i.e., Mk×n(GF (q)), those blocks of the zero matrix

can be expressed as {αT · x|x ∈ GF (q)n} where α = (α1, α2, . . . , αi−1, 1, 0, 0, . . . , 0) ∈
GF (q)n for all nonzero α ∈ GF (q)n with 1 in its last nonzero entry.

For each i, there are qi−1 vectors of the form

α = (α1, α2, . . . , αi−1, 1, 0, 0, . . . , 0) ∈ GF (q)n,

and each such vector α uniquely determines a maximal clique lv = lα1,α2,...,αi−1
=

Pi(α)T · Li · Pi(α) of zero form. Hence all maximal cliques of type I of the zero form

are obtained in this way. The above observation can be summarized as follows:

Proposition 5.4

(1) Each maximal clique of type I consists of qn−1 vertices.

(2) Each vertex is in exactly qn−1
q−1

maximal cliques of type I.

Proof: The maximal clique of type I consists of qn−1 vertices. since all maximal cliques

of type I is isomorphic to




0 x2 x3 . . . xn

−x2 0 0 . . . 0

−x3 0 0 . . . 0
...

...
...

. . .
...

−xn 0 0 . . . 0




. And the maximal clique is

uniquely determined by hyperplane H with dim(H) = n − 1. Then the number of

hyperplanes is

[
n

n− 1

]

q

= qn−1
q−1

. Q.E.D.

Proposition 5.5 Those (qn − 1)/(q − 1) maximal cliques of type I containing the
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zero form can be expressed as

{αT · x− xT · α|x = (x1, x2, . . . , xi−1, 0, xi+1, xi+2, . . . , xn), xj ∈ GF (q)n},

for α = (1, 0, 0, . . . , 0) or α = (α1, α2, . . . , αi−1, 1, 0, 0, . . . , 0) where i > 2 and αj ∈
GF (q)n.

Now, we turn to the intersection properties among those maximal cliques in the

distance regular graph Alt(n, q).

Lemma 5.6 Let C1 and C2 be two maximal cliques of type I, then |C1 ∩ C2| = 0

or q. Moreover, if C1 ∩ C2 6= φ, then C1 ∩ C2 is isomorphic to




0 x 0 0 . . . 0

−x 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 0




and there exists another q − 1 maximal cliques C3, C4, . . ., Cq+1 of type I such that
∑q+1

i=1 Ci = C1 ∩ C2.

Proof: Clearly, |C1 ∩ C2| = 0 or q. C1 and C2 are determine by hyperplanes H1 and

H2, respectively, with dim(Hi) = n − 1, and dim(H1 ∩ H2) = n − 2 for i = 1, 2. In

addition to H1, H2, there are another q − 1 hyperplanes containing H1 ∩ H2. They

determine the rest q − 1 maximal cliques of type I are required. Q.E.D.

Let B be the set of all maximal cliques of type I in Alt(n, q). Then π = (An,B,∈)

turns out to be an incidence structure with some intersecting properties. Elements in

B are called blocks of this incidence structure. The following proposition is simply a

restatement of proposition 5.4 and lemma 5.6.
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Proposition 5.7

(1) Each block B consists of qn−1 points,

(2) Each point is incident with exactly (qn − 1)/(q − 1) blocks,

(3) Any two distinct blocks are incident with either 0 or q common points,

(4) If B1, B2 ∈ B are distinct and B1 ∩ B2 6= φ then there are another q − 1 blocks,

say B3, B4, . . ., Bq+1, such that
⋂q+1

i=1 Bi = B1 ∩B2 consists of q points.

Definition 5.8 A singular line is the intersection of two distinct maximal cliques.

When we only consider the maximal cliques of type I, we have the constant size of

cliques. And if we define the graph with multiedge by mA,B = the number of singular

lines containing vertices A and B, then we have mA,B = 0, 1 or q + 1.

Consider the definition of strongly regular multigraph, γ =
∑

y∈V mx,y(mx,y − 1).

For each A and B lie in the same maximal cliques, there are exactly 2 entries of B

different from those of A. So we have γ =
∑

B(q + 1)q is the constant.

Definition 5.9 For a fixed matrix M ′
(n−2)×(n−2)(GF (q)) with odd q, let Γ be a multi-

graph with defined on (V, E) with {M | M is a skew-symmetric matrix over GF (q)

satisfying M =

(
X Y

−Y T M ′

)
} as the vertex set, and for any two vertices A, B,

A ∼ B if and only if rank(A−B) = 2. Moreover, let mA,B be the number of singular

line containing vertices A and B.

Theorem 5.10 Γ is a strongly regular multigraph with parameters

(m′, n′, µ′, γ′, R′) = (q + 1, qn−1, q2(q + 1), q(q2 − 1), (q + 1)(qn−1 − 1)),
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and Γ is the collinearity graph of a 11
2
-design with parameters

(r, k, t, c) = (q + 1, qn−1, q2, q(q − 1)).

Proof:

For a fixed vertex A ∈ V ,

(1) m′ = q + 1 is the number of maximal cliques contains A;

(2) there exists exactly q + 1 cliques containing A and B for adjacent vertices A and

B, and each maximal clique has size qn−1; thus R′ = (q + 1)(qn−1 − 1).

(3) γ′ =
∑

B∼A mA,B(mA,B − 1) =
∑

B∼A(q + 1)q = (q − 1)q(q + 1) = q(q2 − 1), since

mA,B = 1 or 0 whenever B does not lie in the q+1 maximal cliques which contains

A.

(4) since m′(m′ − n′) + µ′ = R′ + γ′, then (q + 1)(n′ − (q + 1)) + µ′ =(q + 1)(qn−1 −
1) + q(q2 − 1), it follows that µ′ = (q + 1)(qn−1 − n′ + q2).

(5) since µ′v = (R′ + m′)(R′ + m′ − n′), then µ′q2n−3 = ((q + 1)(qn−1 − 1)) + (q +

1)((q+1)(qn−1−1)+(q+1)−n′). It follows that µ′qn−2 = (q+1)((q+1)qn−1−n′);

combine (4) and (5), we have µ′qn−2 = qn−2(q + 1)(qn−1 − n′ + q2). Hence n′ = qn−1

and µ′ = (q + 1)(qn−1 − n′ + q2) = q2(q + 1).

We then have (r, k, t, c) = (q + 1, qn−1, q2, q(q − 1)) as required. Q.E.D.

The combinatorial interpretations of the parameters (r, k, t, c) of the 11
2
-design un-

der consideration are given below:

(1) r = number of cliques contains a fixed vertex = q + 1.

(2) k = the clique size = qn−1.

(3) Fixed y ∈/ B where y is a point and B is a block, then t =
∑

x∈B mx,y = q2.

(4) Fixed y ∈ B, mx,y − 1 = q or 0 by x ∈ B and

a. mx,y = 1 if x does not lie in the q + 1 blocks containing y,

b. mx,y = q + 1 if x lies in the q + 1 blocks containing y,
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thus c =
∑

x∈B−{y}(mx,y − 1) = q(q − 1).

We constructed the strongly regular multigraph above. Now, we are interesting

that in what conditions, we can make sure the 11
2
-design with parameters

(r, k, t, c) = (q + 1, qn−1, q2, q(q − 1))

is the unique incidence structure such that the collinearity graph is this strongly

regular multigraph with parameters

(m′, n′, µ′, γ′, R′) = (q + 1, qn−1, q2(q + 1), q(q2 − 1), (q + 1)(qn−1 − 1)).

We now check the numerical constraints required in Theorem 4.2.17 ([9], Theorem

4.4) for the uniqueness of the corresponding incidence structure with respect to the

strongly regular multigraph under consideration; i.e., to find conditions to guarantee

that m′ > 2, integral µ′ ≡ 0 mod m′, µ′ > 0, and n′ > max{m′ − 1 + (µ′+m′)γ′
m′2 , 2(m′ −

1)(µ′ + 1−m′) + 2γ′, m′(m′−1)
2

(µ′ + 1) + m′ γ′
2

+ m′ − 1}.

Theorem 5.11 The strongly regular multigraph Γ is the point graph of a unique

11
2
-design whenever n = 6, q > 4 or n > 7, q > 3.

Proof: Clearly, µ′ = q2(q + 1) ≡ 0 mod m′(= q + 1) and µ′ > 0, m′ > 2.

(1) Since qn−1 > q + (q2 + 1)q(q − 1) = q4 − q3 + q2, then

qn−1 > (q + 1)− 1 +
(q2(q + 1) + (q + 1))(q(q2 − 1))

(q + 1)2
,

i.e., the condition n′ > m′ − 1 + (µ′+m′)γ′
m′2 hold.

(2) Since qn−1 > 2q((q2 − 1)(q + 1) + 1) + 2q(q2 − 1) = 2q4 + 4q3 − 2q2 − 2q, then

qn−1 > 2((q + 1)− 1)(q2(q + 1) + 1− (q + 1)) + 2q(q2 − 1),
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i.e., the condition n′ > 2(m′ − 1)(µ′ + 1−m′) + 2γ′ hold.

(3) Since qn−1 > q(q+1)
2

(q3 + q2 + 1) + (q + 1) q(q2−1)
2

+ q = 1
2
(q5 + 3q4 + 2q3 + 2q), then

qn−1 >
(q + 1)((q + 1)− 1)

2
(q2(q + 1) + 1) + (q + 1)

q(q2 − 1)

2
+ (q + 1)− 1,

i.e., the condition n′ > m′(m′−1)
2

(µ′ + 1) + m′ γ′
2

+ m′ − 1 hold.

Combine (1) ∼ (3), we have

qn−1 > max{q4 − q3 + q2, 2q4 + 4q3 − 2q2 − 2q,
1

2
(q5 + 3q4 + 2q3 + 2q)} (*)

(*) holds if n = 6, q > 4 and if n > 7, q > 3. Q.E.D.

From Theorem 5.10 and 5.11, we have:

Theorem 5.12 If Γ is a strongly regular multigraph with parameters (m′, n′, µ′, γ′, R′) =

(q +1, qn−1, q2(q +1), q(q2− 1), (q +1)(qn−1− 1)) with odd prime q and integer n such

that n = 6, q > 4 or n > 7, q > 3, then Γ is the collinearity graph of a unique

11
2
-design with parameters (r, k, t, c) = (q + 1, qn−1, q2, q(q − 1)).
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