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Abstract,

The conception of strongly ‘regular multigraph was first proposed by Bose in
1976, followed by Neumaier and Metsch in 1982 and 1995 respectively for the
problem of embedding of quasi-residual 2-design. In particular, Neumaier
asserted that the collinearity graph of a wnique 1%-design if it meets some
constraints over its parameters.

The spectral properties of strongly regular multigraphs are studied in Sec-
tion 3, we show that they can be characterized as multigraphs with exactly
three distinct eigenvalues, we show further when they are strongly regular
graphs in terms of their eigenvalues. For reference purpose, the results to-
gether with the arguments for the proofs of the papers of Bose, Neumaier and
Metsch are summarized is Section 4. A class of strongly regular multigraphs
associated with the alternating forms graphs is studied in Section 5. Un-
der some numerical constraints, they are the collinearity graphs of uniquely
determined 1%-designs, which provide some information for the geometric
characterization of the alternating forms graphs.
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1 Introduction

The notion of strongly reqular multigraphs (SRMG) was first introduced by R. C.
Bose [2] but in a very cumbersome notation. While characterizing quasi-residual 2-
designs, A. Neumaier [9] gave an equivalent definition of strongly regular multigraphs
in an elegant and self-contained way with some improvements over some results; the

concept "type” by five parameters (m,n, i, v, R).

Recently, Metsch [7] continued the study of embeddings of residual 2-designs within
the framework of strongly regular multigraphs. However, no specific example were

given in the papers mentioned above.

Al(v—1)

For a 2-(v, k, A)-design 7 = (X B), it is known that every point is in r = 5=

blocks, and the number of blocks-in|B-isb = ’\kv((kv__ll)) and the number of points is
v==Fk+ @ where n = r —A is called the order of the design. Moreover, Fisher’s in-

equality b > v holds, with equality if and only if every pair of distinct blocks intersects

in A points. A 2-(v, k, \)-design with"b'="v, i.e., v =1+ @ is called a symmetric
design. If B is a block of a symmetric 2-(v, k, A\)-design 7 = (X, B), two associated
designs, i.e., the derived design By, and the residual design B,.; with respect to the
block B arise naturally. In both cases, respect to the block B arise naturally. In both
cases, the blocks are the members of B — {B}, and the points are the points in B for
Bger, and the points not in B for B,.,, incidences are remained the same as before. In

terms of the order n, the derived design is a 2-(n+ A, A\, A — 1)-design, and the residual

n(n+A—1) .

design is a 2-(w,n, A)-design with w = =%

The block multigraph of a 2-design m = (X, B) is the multigraph defined over the

block set B, and two distinct vertices A, B are connected by ma g = |A N B| edges.



Neumaier showed that the block multigraph of a 2-(v, k, A)-design of order n is a

strongly regular multigraph SR(m,n, p,~y, R) with

SR(m,n, p,v,R) = (k,n, K*X\ k(k — 1)(A — 1), k(n + X — 1)).

A partial converse is given in the following theorem with some constraints over its
parameters:

Theorem ([9], Theorem 1.1) Every strongly regular multigraph with parameters
SR(mannua/y: R) = (ka n, kj2/\7 k(k - 1)()‘ - 1)7 ]’C(TL + A= 1))

for positive integers n, k # 1, A, and
n > max{k(k — N> — (K=1)>X,
2(k =1JFPX+ EX=2X +21), 2 (K2 — 1)(F*A — k +2)}

is isomorphic to the block multigraph-of-ar2=(v,k, \)-design with v = k + %

Its proof involves more general designs, namely 1%—designs (called partial geometric
designs in [2]), and weak 13-designs (without assuming constant block size). Note that
2-designs, dual 2-designs, transversal designs, semiregular partially balanced incom-
plete block designs, partial geometries, and polar spaces are examples of 1%—designs,
see Neumaier [9]. The notion of partial geometric design D(r, k,t,c) was introduced
as a generalization of a partial geometry (r, k,t) (with ¢ = 0 above). A partial geomet-
ric design D(r, k,t,c) gives rise in a natural manner to a strongly regular multigraph
(SRMG) G(D) whose parameters depend on 7, k, t and ¢, as a generalization of
strongly reqular graphs (SRG). The block multigraphs of 1%—designs, and dually, the

point multigraphs of weak 1%—designs still are strongly regular, and by investigating

closely the properties of cliques and claws in a multigraph we obtain general charac-



terization theorems which specialize to Theorem 1.1([9]).

The matrix techniques were used by Neumaier in order to get the relations among
the five parameters, and then to derive the essential relations between strongly regular

multigraph and 1%-design.

For any two distinct blocks A, B # H, denote by a4 p the number of points in H
incident with A and B, and by (34 g the number of points not in H incident with A
and B. Then oy p + Bap = A, in particular 54 5 < A. Moreover, the multigraph on
B —{H}, with as p edges between A and B, is the block multigraph of Bg,.. Hence,

the residual design satisfies the conditions given in the following theorem.

Theorem ([9], Theorem 1.2).A quagisresidual 2-(w, n, \)-design 7 is embeddable if
and only if the following conditions are satisfied:
(1) Any two distinct blocks A and Brintersect in- a4 5 < A points.
(2) Let G be the multigraph defined-on the blocks with a4 g = A — B4 g edges between
A and B, then
a. (G is a strongly regular multigraph SR(m,n, u,7, R) with
SR(m,n, u,v, R) = (A, n, \2(A = 1), \(A = 1)(A = 2), A\(n + A — 2));

b. G is isomorphic to the block multigraph of a 2-(n + A\, A, A — 1)-design 7.

Theorem ([9], Theorem 1.3) A quasi-residual 2-(w, n, \)-design is embeddable if
either

(1) A= 3, and n > 76, or

(2) A#£3,and n > $(A2 — 1)(A* = A2 — A+ 2).

Theorem 1.3 improved the result obtained by Bose [2] showed in 1976 that there is



a polynomial function f(\) of degree 5 such that every quasi-residual 2-(v, k, ) design
is residual provided that k£ > f(A). It was further improved that

FA) = (A —=1)(A% — A2 — A+ 2) by Neumaier [9] in Theorem 1.3, and then

FO) = (J5A+ A+ 5)A*(A — 1) by Metsch [7].

This embedding theorem will be a consequence of more general characterization
theorems for certain strongly regular multigraphs (see Theorem 2 [9] and its corollary

in the introduction).

As to us, Neumaier’s most important contribution is the Theorem 4.4 written in
his paper. He showed that if I' is a strongly regular multigraph SR(m,n, 1,7, R) with

integral m > 2, integral © = 0 mod, myu > .0, and

pm)y
n>max{m—1+%,2(m—1)(u+1—m)+2fy,
m(m — 1
%(u—i-l)-l—m%%—m—l}

then I' is the point multigraph of ‘a unigque lé—design, with parameters

R
(r' Kt )= (m,— +1, ﬂ, l).
m m’'m

As we know, strongly regular graph has some necessary and sufficient conditions.
Two necessary and sufficient conditions on strongly regular multigraphs were given in
Section 3. These papers of R. C. Bose, Neumaier, Metsch over three decades will be
surveyed in Section 4, together with the technique and arguments used by them. We
pay more attention for the unique theorem (Theorem 4.4 [9]) for its unique presentation
of 1%—designs. A class of specific example associated with alternating bilinear form

meeting the numerical constraints will be provided in Section 5.



2 Definitions and Preliminaries

In this section, we define strongly regular multigraphs and 1%—designs. Then we give
the necessary and sufficient conditions of strongly regular multigraphs and lé—designs.

Finally, we will give a theorem which will be useful in Section 5.

Definition 2.1 A simple graph I' with the vertex set V and with the edge set
E is called a strongly regular graph (SRG) with parameters (v, k, A, 1), denoted by
SRG(v, k, A\, ), if

(1) |V| =wv, and
kE ifx=y
(2) forz,y e V |INx)NN(y)|=4q¢ X ife~y.
poifxoeey

A multigraph I' contains a nonempty set V 'of vertices and a set F of edges. For

all z,y € V. =V(I'), m,, :=numberof edges joining = and y, and define m, , := 0.

Definition 2.2 A multigraph I is called a strongly reqular multigraph with parame-

ters (m,n, u,7y, R), if:

(1) > ev May = R for each z € V;

(2) Yosey MapMpz = (N — 2m)may + m(n — m)dqy + p, where dop, = 1 if a = b,
otherwise, 045 = 0.

(3) 2_yev May(myy — 1) = for each x € V.

Here m, n, u, v and R are real numbers with n > 0.

Note that Y7 1 (1m44)* = D7, ey May + 2 ey May(May — 1) and from (1)~(3), we
have

m(n—m)+p=R+7.



If v = ZyEV My (Mg, — 1) = 0 in definition 2.2, then either m,, =0 or m,, =1
for z, y € V, and hence I' is a simple graph, and moreover I' is a strongly regular
graph with parameters

R(R—n+2m—pu—1)

(U7k7/\7:u):< I

+R—1,R,n—2m+ p, p1).

Note that R = 3", myy, and v = 3=y, my,(my, —1) for z, y € V were defined
explicitly in the definition, but there is no explicit definition on m, n and u. Such
a definition is very unnatural. Combinatorial interpretations of m, n, u are interest-
ing for us. The parameter p in SRMG(m,n, 1,7, R) is identical with that of p in
SRG(v,k, A\, ) in case v = 0.

The notion of strongly regular graphswan bestated in terms of the matrix.

Lemma 2.3 Let A be the adjacency matrix of a simple graph I', then the follow-
ing are equivalent:

(1) ' is a strongly regular graph.

(2) AT =kJ, A2=(\— A+ (k—pu) + pd.

Similar to strongly regular graphs, we want to know the matriz expression of

strongly regular multigraph.

Lemma 2.4 Let A be the adjacency matrix of a multigraph I' of order v, then the
following are equivalent:

(1) I' is a strongly regular graph.



(2) AJ = RJ, A2 = (n—2m)A+m(n—m)I + uJ, with real numbers R, m, n, u, and

(R+m)(R+m—n) .

n >0, and v = m

Some subsets of vertices including claws, mazimal cliques play essential roles in the
study of their structures. We will explain in Section 4 that m is the constant number

of maximal cliques containing a fix vertex in the study of maximal claws.

Definition 2.5

(1) A clique is a set of mutually adjacent vertices. A mazimal clique is a clique not
properly contained in any other clique.

(2) A claw (x, A) consists of a vertex z and an anticlique A such that x is adjacent to

every vertex of A. The order of the claw (x, A) is defined by Zye 4 Mgy

It is well knows that the block graph -of a quasi-symmetric 2-design is strongly
regular. This leads to the question thatrwhether some strongly regular multigraphs
associated with some designs of ‘'various types? A class of incidence structure lies be-
tween 1-designs (regular) and 2-designs is defined. We will show in Section 4 that
the collinearity graphs of this class of incidence structures are indeed strongly regular

multigraphs.

For an incidence structures, let m,, = number of blocks containing points = and

y, and define m, , = 0.

Definition 2.6 A 1%—design with parameter (r,k,t,c) is an incidence structure I =
(P, B) such that
(1) each point z lies on 7 blocks;

(2) each block [ contains k points;



(3) for a point z and a block [
a. t=3% My, >11sa constant if z ¢ [;

b. =23 i (sy(May —1) is a constant if z € L.

Let A be the incidence matrix of the incidence structure under consideration, and

(x, B) is a pair of point and block, note that
AATA(x,B) =) A(z, B')A(y, B')A(y, B)

is the number of the pair (y, B') such that x € B’ and y € BN B’. The following

matrix expression for 1%—designs is immediate:

Lemma 2.7 For a binary matrix Aythe fellowing are equivalent:
(1) A is the incidence matrix df a, 13 desigii.
(2) AT =rJ, JA=kJ and AATA = (r +k —1+c—t)A+tJ for some integers r, k,

t, cwith ¢ > 1.

Lemma 2.8 Each 2-(v, k, \) design is a 13-design with parameters

Av—1)
ﬁ,k,k‘)\, (k—1)(A—1)).

(r,k,t,c) = (

Conversely, each 1%—design with parameters (r, k, t, ¢) satisfying (t+1—c—k)k =t is

2-(v, k, \) design where
(v,A) = (1+T,t+1—c—k).

Proof:
(1) Since the incidence matrix A of a 2-(v, k, \) design satisfies
AJ=rJ, JA=kJ, and AAT = (r — \)I + \J,

multiplying the third equation by A on its both sides, we then have



AATA = (r — A\)A+ A\kJ; and c is computed by AATA = (r+k—1+c—t)A+tJ.
(2) Let A be the incidence matrix of a 13-design with (¢ + 1 — ¢ — k)k =, and let
X=AAT —(r+k+c—t—1DI+(k+c—t—1)J.
Then we have X2 = 0, and hence X = 0 because X is a symmetric matrix. Hence
AAT=(r+k+c—t—DI—(k+c—t—1J=(r—NI+\J,
with A=t+1—-c—Ek. Q.E.D.

Lemma 2.9 ([9], Theorem 3.2) The collinearity graph of a 13-design with param-

eters (1, k,t,c) is a strongly regular multigraph with parameters (m,n, u, vy, R) with

(m,n,pu,v,R) = (r,k+r+c—1—t,rt,re,r(k —1)).

The above lemma, shows-that the collinearity graph of a 1%—design is a strongly
regular multigraph. Following this trendy-we are interested in those strongly regu-
lar multigraphs which are the collinearity.graph of lé—designs or of even unique 1%—
designs? The following Theorem of Neumaier provides sufficient numerical constrains

to guarantee the uniqueness of such 1%-designs. Its proof will be given in Section 4.

Theorem 2.10 ([9], Theorem 4.4) If I" is a strongly regular multigraph with pa-

rameters (m,n, u,y, R) with m > 2, integral 4 = 0 mod m, p > 0, and

(1 +m)y
n>max{m—1+T,2(m—1)(u+1—m)+2%
m(m — 1)

5 (/L—l—l)—l—m%—i—m—l}

then I' is the collinearity multigraph of a unique 1%—design, with parameters

).

(rktye) = (m, 2 1, 2
m m

3 =



There is no example of strongly regular multigraphs meeting those numerical con-

straints found in the papers of Bose, Neumaier and Metsch.

In the final section, we use the symmetric association scheme to define a distance
regular graph, and defined a class of strongly regular multigraphs by giving the mul-

tiedge on the induce subgraph of this distance regular graph.

Definition 2.11 An association scheme with d classes is a finite set X together

with d + 1 relations R; on X such that

(1) {Ro, Ry, ..., Rq} is a partition of Xixu2X;

(2) Ro = {(z, 2z € X}:

(3) for each ¢ € {0, 1, ..., d} there exists a-j € {0, I; ..., d} such that (x,y) € R; implies
(y,x) € Ryj;

(4) for any (x,y) € Ry the number pf of Z'c X with (z,2) € R; and (z,y) € R;
depends only on 7, 7 and k;

(5) pfj = pfi for all 4,5,k € {0,1,...,d}.

Moreover, if (3) and (5) replaces by

(3") if (z,y) € R;, then also (y,x) € R;, for all z,y € X and i € {0,1,...,d}.

Then it is called the symmetric association scheme.

Definition 2.12 A distance regqular graph is a simple graph with the intersection
numbers {bg, by, ..., bg_1; 1, C2, ..., Cq} satisfying the follows:

For all (z,y) € V, if O(z,y) = i then

(1) i == Ii(x) N Tica(y)],

(2) b; := Ti(2) NTiga(y)l,

10



(3) a; := |I'1(x) N T;(y)|, and
If O(z,y) = 0 then k; := |I';(z) N T;(y)|.

3 Spectral of Strongly Regular Multigraphs

The matrix expressions in terms of their adjacency matrix of strong regular graph and
strongly regular multigraph are quite similar. We are interested to know the spectrum

of strongly regular multigraphs?

The eigenvalues of strongly regular graphs can be easily calculated in terms of
the matrix equation of its adjacency matrix. We also know that the strongly regular
graph are those connected regular-graph with exactly three distinct eigenvalues, and

the spectral of I" is as follows:
spec(T) = (K, (5 (s ) + VAWS, (5 (A~ ) — VA)™),

where A = (A — )% + 4(k — ), and

2k — (v —1)(A — p)
VA

2% + (v — 1)(\ — p)
\/Z

my=(v—1)+

me=(v—1)+

The following Lemma will prove that the converse is also true.

Lemma 3.1 A connected k-regular graph I' is a strongly regular graph with pa-

rameters (v, k, A, 1) if and only if it has exactly three distinct eigenvalues k > 6; > 0s.

11



Moreover, (61, 0:) = (3(A—p)+VA), L (A—p)—VA)) where A = (A—p)? +4(k—p).

Lemma 3.1 can be extended to strongly regular multigraphs with a mimic proof.
Before shown the Lemma 3.3, we need some technique. First, we need to make sure
if I' is a connected R-regular multigraph, then R is also an eigenvalue. And next we

need make sure the multiplicity of the corresponding eigenvalue R is 1.

Proposition 3.2 Let I" be a multigraph,
(1) T is R-regular multigraph if and only if the largest absolute eigenvalue of I" is R.
(2) The multiplicity of R as an eigenvalue is 1 if I is connected.
Proof: Let A be the adjacency matrix of I'. Take x = (zy,9,...,7,)7 be an eigen-
vector for eigenvalue A, and let z; bea coordinate of largest absolute value among
coordinates of x. For the i-th ¢oordinate of Az, we have

v v

Mlzi| = [(Az)i| = [ A I Aigsl <1 Ayjllai| = Rlal.

j=1 j=1 invj
Hence A < R. Equality requires @ =i for all z; € N(x;). We can iterate this
argument to reach all coordinates for vertices in I". Thus, the multiplicity of R is

1. Q.E.D.

Lemma 3.3 A connected R-regular multigraph I' is a strongly regular multigraph
with parameters (m,n, u, 7y, R) if and only if it has exactly three distinct eigenvalues

R > 6, > 05. Moreover, spec(l') = (R, (n —m)", (—m)") where

(ty,to) = (m(“ —1)- R’ (n—m)(v—1)— R)‘

n n

Proof:
First, we assume that I' is a strongly regular multigraph with an adjacency matrix

A, then A% = (n—2m)A+m(n —m)I + pJ. Multiplying by A on both sides, we have

12



A3 =(n—2m+ R)A? — (R(n —2m) — m(n —m))A — mR(n —m)I, that is,
A® — (n—2m+ R)A? + (R(n — 2m) — m(n — m))A+mR(n —m)I = 0.
Hence the minimal polynomial of A is given by
f(x) = (z = R)(z — (n —m))(x +m).

So the strongly regular graph has three distinct eigenvalues R, n —m, and —m, let 1,
t1, and to be their multiplicities respectively. Since the trace of A equal to the sum of
all eigenvalues, and the number of eigenvalues are equal to the number of vertices. So
we have

(1) = (MU=D =R (n—m)v—-1) - Ry

n n

On the other hand, let R > 6;.> 65 be the three distinct eigenvalues, since the mul-

tiplicity of R is 1 because A isdhe adjacency matrix of a connected regular multigraph.

Define
1

Since A and A? so symmetric. Take r is ‘an eigenvector of A with the corresponding
eigenvalues ¢, (or 6, respectively), then Mz = 0, i.e., z is an eigenvector of M with
eigenvalues 0. Thus all eigenvectors of corresponding eigenvalue is 0 are in the kernel

of M. Thus, the rank of M is 1, equal to the multiplicity of R. Then we have

al a2 “ e a’l} al al ) al
al a2 PR a/’l] CI/Q a2 PR al
M = A . or
al a2 “ .. a'l) aU a/v “ . aU
Furthermore, M is symmetric, hence a; = as = --- = a, = a is a constant. Let 1

be the all one vector, then we have M1 = 1. Hence M = %J , that is A2 is a linear
combination of A, J and I. Thus A is the adjacency matrix of some strongly regular

multigraphs. Q.E.D.

13



Remark: From above proof, we have n — m < R because the multiplicity of R

is 1.

Form Lemma 3.1 and Lemma 3.3, we know that a connected k-regular graph
(respectively, multigraph) with exactly three distinct eigenvalues k, 6; and 6, is a
strongly regular graph (respectively, a strongly regular multigraph). Moreover,

1
(k — 61)(k — 62)

1

that is,
1
A% = (01 + 02)A — 01050 + = (k — 01)(k — 6)J.

v
Consider that (6, +02)A— 601051 = d(ke=th) (k—0) ] = (n—2m)A+m(n—m)I+pJ

for some m, n, u, v with n > @ are real numbers.then we can compute it directly and

then have

(m,n,/%%R) = (_02791 - 927 (k; = 91)(k ¥ 92)7 (k - 91)(k - 92) —k— 91827]{:)'

(% (%

If the graph is the simple graph, then we have

(k — 0,)(k — 02)
k + 0,05

(U,k’,)\,/i) = ( ,k,91¢92+91+02+k,k}+9102).

Since v =3, May(Mmyy — 1) = M —k — 6,02 > 0, we have (k—6;)(k —
0s) = v(k+0105). The case equality or otherwise correspond to strongly regular graphs

or strongly regular multigraphs respectively.

Note: As v =0, I' is a strongly regular graph with parameters

R(R—n+2m—p—1)
1

(kaa)\au):< +R_17R7n_2m+,u>,u)

14



Then we have
1
(manuua’y: R) = (5(\/Z - ()‘ - M))? \/Z“U/,O, k)u where A = (/\ - lu)2 + 4(k - M)

Then
spec(D) = (R, (n —m)", (=m)™),

where

(b ty) = (m(v —-1) - R, (n—m)(v—1)— R>’

n n

can be reduce to the strongly regular graph with
1 1
spec(l) = (K, (5((A = p) + V)™, (SN =p) = VA)™)

where A = (A — p)* +4(k — p) and

2k = (v —1)(\ — )
VA

2k + (v —1)(A— p)
VA

(my,ms) = ((v—1)+ sv—1)+ ).

Then we have the following:

Theorem 3.4 If A is an adjacency matrix of order v of a k-regular (either simple

or multiple) graph with three distinct eigenvalues k > 61 > 0, then (k—6;)(k —05) >

v(k + 6,6;). Moreover,

(1) if (k — 601)(k — 02) = v(k + 6102), then the graph is a strongly regular graph
SRG(v, k, A\, iv) with

(k= 01)(k = 05)
k+ 0105

(U7ka)‘7l’b) = ( 7k79102+91+02+k7k+0102);

(2) if (kK — 01)(k — 63) > v(k + 6163), then the graph is nontrivial strongly regular
multigraph SRMG(m, n, u,~, R) with

(s 1,7, B) — (0, 0y — 0, B O = 02) (K= 0k =02) gy
v v
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Proof: From the definition v = > __mg,,(m,, — 1), we have

Y~T
(/’C - 91)(l€ — 92) 2 ’U(l{? + (916‘2>.
(1) If ¥ = 0, then A must be the adjacency matrix of a strongly regular graph.

(2) If v > 0, then A must be the adjacency matrix of a strongly regular multigraph.
Q.E.D.

A comparison between strongly regular graphs and strongly regular multigraphs

are included in the following table:

SRG(v, k, A\, 1) SRMG(m,n, u,, R)

a symmetric matrix

adjacency matrix | a symmetri¢+(0;1)-matrix with nonnegative entries

adjacency AJ = kJ, AJ =RJ,

matrix expression | A2 = (V= p)A £l =p)L + puJ=| A? = (n—2m)A+m(n —m)I + uJ

relative design quasi-symmetric 2-design lé—design
three distinct k, 2(A—p) £ VA), where R, n—m, —m
eigenvalues A=AN—p)?+4(k—p)
v = (o, m =0z, n =0 -0,
given k =k, p = E=0)(k=62)
k>0, > 0, A =010+ 0, + 05 +k, y=Gm0)G6) g g9,
o= k + 0192 R=k

(k — 91)(l€ — 92) = ’U(k + 9192) (k — 91)(/{: — 92) > ’U(/{ + 9192)

Table 1
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4 A Survey of Papers of Bose, Neumaier and Metsch

The subjects of strongly regular multigraph were thoroughly studied in the papers of
R. C. Bose ([2], 1976), Neumaier ([9], 1982) and Metsch ([7], 1995). A study of these

three papers will be given in this section in an unified way.

These three papers share some common ground with various terminologies, there
facts are listed in Table 2 for reference. The results, and the ways of their proofs for

each papers were given in subsections 4-2~4-4 respectively.

The content of subsections 4-2~4-4 are in the following order: First, the main
theorems concerning the quasi-residual designs are gives; following by their proofs in

sketch the strategies for the proofs of these mdin theorem and provided in figures 1~3.

The relation of Bose, Neumaier, and Metsch’s"theorem:

Bose Neumaier Metsch
[2], Lemma 2.1 (lower bound) | [9], Lemma 2.3 (upper bound)
[2], Theorem 2.8 (unique)
[2], Theorem 2.5 9], Lemma 4.1(b)
[2], Theorem 2.6 9], Lemma 4.1(c)
[2], Theorem 2.7 9], Lemma 4.1(c)
[2], Theorem 3.3(1) [7], Lemma 3.22
[2], Theorem 3.3(2) 9], Lemma 4.2 [7], Lemma 2.10
[2], Theorem 3.3(3) [7], Lemma 3.10
[2], Lemma 3.3 [7], Lemma 3.11
[2], Theorem 4.2 9], Theorem 3.5
[2], Theorem 4.1 9], Theorem 1.2(2)
[2], Theorem 4.3 9], Theorem 1.3

Table 2
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4.1 The 1976 paper of Bose

A multigraph G is said to be reqular of degree n and loop degree d if n(xz) =
Dy My = n and d(z) == 3, w = d are constant for each vertex

in G.

A regular multigraph G is called edge regular if for any set of adjacent vertices
z and y, the quantity p(z,y) = EZNM Mg .My, . depends only on the multiplicity
mg, of z and y. The concept of "type” was defined by Bose over edge regularity of

multigraphs.

An edge regular multigraph will be said to be of the type Gi{r, d; ag, 1, ..., } if
it satisfies the following properties:
1) my, < r for any edge zy.
2) The degree n(x) of any vertex is given by n(z) = r(k — 1).

(1)

(2)

(3) The loop degree d(x) = d ;for any vertex a.

(4) For any edge zy for which m, , =m =1, p(z,y) = m(k — 2) is a divisor of a,,.
(5)

5) If the vertices, z and y are nondajacent, i.e., my, =0, p(z,y) < ap.

Furthermore, he proposed the definition of strongly regular multigraphs over the
edge regular graphs. Obviously, the difference between edge regular and strongly reg-
ular multigraph is that the edge regular posed condition over pairs of adjacent vertices
depends on the multiplicity m,,, but strongly regular multigraphs posed conditions

over pair of distinct vertices depends on the multiplicity m, .

Then Bose gave a definition of a claw. A claw (z,S) of the multigraphs Gy is

defined as a set of vertices S = {y1,¥s,...,ys} nonadjacent to each other and each
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adjacent to a vertex =, i.e., myy, = m; = Land my,, =0ifi# 75 =1,2,...,s. A
claw (z,S) is said to be of type (ai,as, ..., a,) if a; be the number of edges zy, y € S
for which m,, =i. With the claw we can associate four parameters (s, i1, 6, 7) define
as follows:

s =Y., a;, the order of the claw.

p=">_ ia; =Y ;_,m;, the multiplicity of the claw.

s

(1)
(2)
(3)0=3>"_1i(i — )a; = 237 mi(m; — 1), the loop multiplicity of the claw.
(4) m=>""_ aj; =Y | uy,, the coefficient of edge reqularity of the claw.

He defined grand cliques and then studied the structures strongly regular multi-

graph in term of their claws and grand cliques.

4.2 The 1982 paper:-of Neumaier

For any two distinct blocks A, Bi#4.H , where H'is a block, denote by a4 p the number
of points in A incident with A and B, and (34 5 the number of points not in H incident
with A and B.

Theorem 4.2.1 ([9], Theorem 1.2) A quasi-residual 2-(v, k, A)-design = = (P, B) is
embeddable if and only if the following three conditions are satisfied:

(1) Any two distinct blocks A and B intersect in 84 5 < A points.

(2) The multigraph G defined over the blocks, with as p = A — 34 5 edges between A

and B, is a strongly regular multigraph with parameters
(m,n, 1,7, B) = (A ke, A2 — 1), AMA = 1) (A = 2), Mk + X — 2)).

(3) G is isomorphic to the block multigraph of a 2-(n+ X, A\, \—1)-design ' = (P’, B').
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Theorem 4.2.2 ([9], Theorem 1.3) A quasi-residual 2-(v, k, \)-design = = (P, B)

is embeddable if either A = 3, and k > 76, or A # 3, and k > $(A\?—1)(A3 = A2 —\+2).

The main theorem shows that under what numerical constraints, a strongly regular
multigraph will be the point graph of a unique 1%-design (Theorem 4.2.17). To prove
it, Neumaier first showed that this strongly regular multigraph is the point graph of a
weak 1%-desz’gn, and then showed further that it is a 1%—desz’gn. The uniqueness of this
1%—design is guaranteed by showing that each block is a grand clique of the strongly

regular multigraph under consideration.

Step 1: Show first that there is no s-claw (z,S) whenever s > m in terms of the
quantity N = >° _ (o —my ) (ag=amyae= 1) where oy := - _gmy ,, and the con-

tradictory argument related te'uppet@anddower bounds (Lemma 4.2.14).

Step 2: Show further that each pointisinrexactly-m grand cliques, and each edge ab of

multiplicity m is in exactly m, p €liques by a‘constructive argument (Lemma 4.2.15).

Step 3: Show that a SRMG is a point graph of a weak 1%-design if and only if

the two condition satisfied.

(1) there is a collection > of cliques such that every point is in exactly m cliques of
>, and

(2) every edge ab of multiplicity m,, is in exactly m, cliques of 3 (Theorem 4.2.12)
in terms of incidence matrices of designs and the adjacency matrices of strongly

regular multigraphs.

Step 4: Show the constant size of blocks (Theorem 4.2.13) under either of the fol-

lowing conditions
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(1) two distinct points are in at most one blocks,
(2)t= M is an integer with A(n+1—7) < (1 —X)(¢+ 1) in terms of the quantity
s(z, B) = [{(a, A)|(a, A) € P x B,z,a € A,a € B}|.

Lemma 2.8 — Theorem 4.2.9 Corollary 4.2.10
Lemma 4.2.4
Lemma 4.2.3—— Theorem 4.2.11

Lemma 4.2. Lemma 4.2.15
Lemma 4.2.14 ) Lemma 4.2.16
Theorem 4.2.12 \‘

Theorem 4.2.13

Theorem 4.2.17

Figure 1:[9],/Neumaier

Lemma 4.2.3 ([9], Lemma 2.1) LettAbe an integral symmetric matrix with zero
diagonal satisfying AJ = RJ, A%=(n=2m)A +m(n —m)I + uJ. If n > max{2m —
4,2m — 14 p+ v} where v = m(n —m) + p — R, then A is the adjacency matrix of a

strongly regular multigraph with parameters (m,n, u, vy, R).

Lemma 4.2.4 ([9], Lemma 2.2) Let I" be a strongly regular multigraph graph with
parameters (m,n, u, 7, R).

I)m—-—n<mep <m.

2) m > 1, with equality if and only if I" is the disjoint union of complete graphs.

(1)
(2)
(3) If there are nonadjacent points then n > m.
(4)
(5)
(6)

4) = (R+m)(m — n), with equality if and only if m,, = m — n for all a # b.
5) py < (n—2m+ p)(m(n —m) + p), with equality if I' contains no triangles.
6) L =2m —n.

21



(7) If n <2m+4, then v < 2m(n—m) +n —2m — 1+ pu.

Definition 4.2.5 A maximal clique C' with |C| > §+4p+1—m is called a grand clique.

Lemma 4.2.6 (][9], Lemma 2.3) An edge of multiplicity one is in at most one grand

clique.

Definition 4.2.7 An incidence structure with an incidence matrix A is a weak 2-design

if AJ =rJ, AAT = nI+\J and a weak 1%-design if AJ = rJ and AATA = nA+AJA.
Theorem 4.2.8 ([9], Theorem 3.2) The point multigraph of a weak 13-design with
parameters (v,n,r, A) is a strongly xegular, multigraph with parameters

(m,n, p,vy, R) = (r,n, \(Av £ n)y XA=—=1w~rlr — 1)+ (r+A—1n,\v—n+r).

In particular, the point multigraph-ot-=a 1%—design with parameters (r, k,t,c) is a

strongly regular multigraph with/parameters
(m,n,u,v,R)=(r,r+k+c—1—t,rt,re,r(k—1))

and (r, k,t,c) = (m,

Theorem 4.2.9 ([9], Theorem 3.3) The block multigraph of a 2-(v, k, A)-design of

order n is a strongly regular multigraph with parameters

(m,n, p, v, R) = (k,n, K*\ k(k — 1)(A — 1), k(n + X —1)).

Corollary 4.2.10 ([9], Corollary 3.4) Two distinct blocks A and B of a 2-(v, k, \)-

design intersect in at least k — r + \ points.
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Theorem 4.2.11 ([9], Theorem 3.5) Let m = (P, B) be a quasi-residual 2-(v, k, A)-
design with k > 2\3 —4)\? +4)\ — 1. Then

(1) two distinct blocks intersect in at most A points, and

(2) the multigraph I' on the blocks, with oy g = A — B4 5 edges between A and B, is

a strongly regular multigraph with parameters

(m,n, 1,7y, R) = (A k2N — 1), A\ = DA =2, Mk + X —2)).

Theorem 4.2.12 ([9], Theorem 3.6) A strongly regular multigraph I with parameters
(m,n, u,vy, R) is the point multigraph of a weak lé—design if and only if there is a
collection ) of cliques such that everyspeint is in exactly m cliques of ), and every
edge ab of multiplicity m,, isdn exactly Mgy, cliques of > . Moreover, the blocks are

the cliques of ), and the weak 1%—design has parameters

CAREm)RAE m = n)
(U,n,’f‘,)\)—( L ’n’m’R+m

Theorem 4.2.13 ([9], Theorem 3.7) Let 7 = (P, B) be a weak 1%—design with param-
eters (v,n,r, A), and A < 1. If either

(1) two distinct points are in at most one blocks, or

(2)t= M is an integer with A(n+ 1 —7r) < (1 = A)(t+ 1),

then 7 = (P, B) is a 11-design, with parameters

(rik,t,c) = (r, )\U+n,)\(>\v+n),n+1+t—r—k).
r r

Lemma 4.2.14 ([9], Lemma 4.1) Let I' be a strongly regular multigraph with param-

eters (m,n, i, v, R) with u > 1, and integral m > 2. The following hold:
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(D) If 2n > m(m — 1)(n+ 1) + my 4+ 2m — 2, then s < m for every s-claw.

(2) If 2n > (m — 3)(;t — m) 4+ 2y + 2m — 2 then every s-claw (1 < s < m — 2) can be
extended to a (s + 1)-claw.

(3) If there are no s-claw with s > m, then every (m — 1)-claw is in at least n — 1 —
(m—2)(n+1—m) —~ many of m-claws.

(4) If (a,S) is a maximal m-claw, then there are at least m(n — 2) — (m — 2)u — 2y

many of m-claws (a,S") such that |[SN S| =m — 1.

Lemma 4.2.15 ([9], Lemma 4.2) Let I' be a strongly regular multigraph with pa-
rameters (m,n, u,y, R) with g > 1, and integral m > 2. If there are no s-claws with

s > m and if
1
n>max{§(m—3)(,u—m)+7+m—-1,2(m—1)(u+1—m)+27}

then each edge ab of multiplicity Mqp 15 exactly. m,; cliques, and each point is in

exactly m grand cliques.

Lemma 4.2.16 ([9], Lemma 4.3) If I is a strongly regular multigraph with parameters

(m,n, u,v, R) with u > 1, and integral m > 2, and

1 1
n>max{2(m —1)(u+1—m) + 27, §m(m —D(p+1)+ 5™y +m — 1}

then I" is the point multigraph of weak 1%—design with parameters (v, n,r, ) given by

(o) = (LR =D 0

).

Theorem 4.2.17 ([9], Theorem 4.4) If I is a strongly regular multigraph with pa-

rameters (m,n, i, 7y, R) with integral m > 2, integral 4 = 0 mod m, pu > 0, and

%—Th,Q(m—l)(u+l—m)+27, W(;ﬁtl)%—mszm—l}

n > max{m—1+ 5
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then I' is the point multigraph of unique 1%—design, with parameters

(r,k,t,c) = (m,

Corollary 4.2.18 ([9], Corollary 4.5) Every strongly regular multigraph with param-

eters

(m7n>ﬂ7’77 R) = (k7n> kQ}‘? k(k - 1)(>\ - 1)7 k(n +A - 1))
such that n, k, A are positive integers, k # 1 and
1
n > max{k(k — 1)A* — (k — 1)2X,2(k — 1)(E*A + kA — 2X + 1), §(k;2 —D(E°A—k+2)}

is isomorphic to the block multigraph of a 2-(v, k, X)-design with v = k +X"tn(k —1).

Theorem 4.2.19 ([9], Theorem 4.6) If T is, a Strongly regular multigraph with pa-

rameters (m,n, u,7y, R) withzu =1, integral m, 2:< m < n, and

mfm — 1)

n > max{2(m — 1){+4 1 — m); 5

(p+1)+m-—1}
then I' is the point graph of a unique partial geometry with parameters

R Iz
kt) = (m,— +1, ).
(r,k,t) = (m, —+1, )

4.3 The section 2 of 1995 paper of Metsch

Theorem 4.3.1 ([7], Theorem 2.1) A strongly regular multigraph with parameters
(m,n, u,y, R) with g, m > 2. Suppose

(D)n>2(m+a—2)(u—1)+ 37,
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(2) 2(a+1=m)n>ala—)pu+ay+4m(a+1) —2m* — (a+1)(a + 2)

for some a > m, then the family M = {C|C is a maximal clique with |C| > n—2m —

(a—2)p— 2y + a+ 1} satisfies

(a) For each vertex = and if a, is maximum order of a claw (z, A), then m < a, < a
and there exists exactly a, cliques in M which contains x.

(b) If x, y are adjacent, then x and y lies in at least m,, and at most 2m,, — 1 cliques
of M.

(c) If z, y are adjacent and z lies in exactly m cliques of M, then there exists exactly

My, cliques in M contains x and y.

Definition 4.3.2 A maximal clique C with |C| > n—2m — (a —2)u — 3y +a+11is

called a normal clique.

To derive each pair of adjacént vertices @ and ¥y are contained in exactly m, , nor-
mal cliques (Lemma 4.3.9) whenever themraximal of order a, of a claw (z, A) is m. It

will then be used to ensure condition (c) for Theorem 4.4.1.

Toward this goal, we first study lower bounds and upper bounds for the number
of normal cliques containing a vertex (indeed exactly bound, Lemma 4.3.1 (1)), or
containing a pair of adjacent vertices respectively (Lemma 4.3.4) in terms of some

functions for counting purpose.

a. each vertex is adjacent to at least R — %”y vertices;
b. each vertex z is adjacent to at most %7 vertices y with mg,, > 2;
c. any two distinct vertices z, y have at least w,, — %’y common neighborhoods,

where Wy, = > oy Ma My,
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For a maximal claw (z, A) with order a,, and a point y € A adjacent to z:

We first show that there are at most 2m, , — 1 cliques containing adjacent vertices
z and y (Lemma 4.3.8 (2)) by applying the principle of inclusion and exclusion to

derive upper bound and lower bound of Z?ff’y |C; — {z,y}| respectively in terms of

2mg,y

the quantity » ;""" |C;| for 2m,, maximal cliques containing = and y, together with

a hypothesis condition in Theorem 4.3.1.

If m;, = 1, Metsch showed that
Cy={z,ytU{zlz¢AcAr~yy~zYwecA-{y},wwz}

lies in exactly one normal clique (Lemmas4.3.7 (1)) by showing the size of C, meeting
the require condition for normal cliquesiin termis of the maximality of (x, A) and the
bounds (Lemma 4.3.4) for neighbors. We then show that C, meets A nontrivially
(Lemma 4.3.6). Indeed, it is“true for-amymormal clique containing x by considering

upper bounds of |C.

On the other hand, for y € A with m,, > 1, then A can be replaced by another
maximal claw (x, A’) with A" = A—{y}U{z1, 22, ... 2, , } with order a, and m, ., =1
for each 7 (Lemma 4.3.7 (2)) by showing the existence of exactly pairwise nonadjacent
m, common neighbors of = and y outside A and not adjacent to any vertices in A
except y in terms of the bound for neighbors (Lemma 4.3.4). Continuing this pro-
cess, any maximal claw (z, A) can be replaced by another maximal claw (x, A") with

m , = 1 for each z € A’

There is a normal clique C, meeting A’ nontrivially for each y € A’, it follows

that there are a, normal cliques containing z. We conclude that there exist exactly
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a, cliques contains x for all z € V' (Lemma 4.3.8 (1)) and then there are at least m,,

normal cliques containing adjacent pair x, y of points (Lemma 4.3.8 (1)).

Finally, we claim that a, > m (Lemma 4.3.5 (2)) by considering |[{z|z ~ x,z ~ y €
A} + |A|. We conclude that each pair of adjacent vertices x and y are contained in
exactly m, , normal cliques (Lemma 4.3.9) by combining Lemma 4.3.8 (1) and Lemma
4.3.5 (2). The hypotheses of Theorem 4.3.1 is guaranteed under the condition given

in Lemma 4.3.3.

Lemma 4.3.3 ([7], Lemma 2.11) If m > 2, p > m,y+ 1 and n > 2(1 + %)mu =

2(3+2‘/§)m,u ~ 4.3mpu, then the hypotheses of Theorem 4.3.1 are satisfied for the unique

integer a satisfying \%m —1<a< %m.

Theorem 4.3.5 is proved by Lemmas 4.3.4 ~ 4.3.9, and the relationship between

Lemma 4.3.4 ~ Lemma 4.3.9%are givenbelow:

» Lemma 4.3.5 (2)
Lemma 4.3.4 é Lemma 4.3.7 (1) > Lemma 4.3.9
Lemma 4.3.5 (1) Lemma 4.3.6 Lemma 4.3.8 (1)

Lemma 4.3.8 (2)
Lemma 4.3.7 (2)

Figure 2: Section 2 in [7], Metsch

Lemma 4.3.4 ([7], Lemma 2.2)
(1) Each vertex z is adjacent to at most %7 vertices y with my, > 2;

(2) Each vertex is adjacent to at least R — 1 vertices;
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(3) Any two distinct vertices z, y have at least w,, — %’y common neighborhoods.

Lemma 4.3.5
(1) Every claw has order at most a. ([7], Lemma 2.4)

(2) Every maximal claw has order at least m. ([7], Lemma 2.9)

Lemma 4.3.6 ([7], Lemma 2.6) If (z, A) is a maximal claw, and C'is a normal clique

containing x, then AN C' # ¢.

Lemma 4.3.7 For a claw (z, A) of order a, and a vertex y € A:

(1) if m,, = 1, then the set,
C:={z,y} U{z ¢ A adjacent ybutrnet to any vertex of A — {y}}
is contained in a normal clique. ([7]; Lémméa 2.5)

(2) if s := my, > 2, then there'are mutually non:adjacent vertices yi,yo, ... ys satis-
tying m,,, = 1 and such that each=y;istadjacent to y but not to any other vertex

of A. ([7], Lemma 2.7)

Lemma 4.3.8 ([7], Lemma 2.8)
(1) Each vertex z lies on exactly a, normal cliques.
(2) Any two adjacent vertex z and y lies in at most 2m,, — 1 cliques ([7], Lemma

2.3), and lies in at least m,, normal cliques.

Lemma 4.3.9 ([7], Lemma 2.10) For a claw (z, A) with maximum order m, then

x and any y(# z) are in exactly m,, normal cliques.
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4.4 The section 3 of 1995 paper of Metsch

Theorem 4.4.1 ([7], Theorem 2) Suppose that I' is a strongly regular multigraph with
parameters (m,n, u,7y, R) with geometric parameter (7, k,t,c), i.e., (m,n,pu,v, R) =
(rym,rt,re,r(k—1)) with integers r > 3 and t > 1, and real numbers k& > 0 and ¢ > 0.
If k£ > (\%r +7r+5)rt, k> (c+ 1)t, and r(c+r — 1) < (r — 1)t, then I is the point

graph of a 1%—design with parameters (r, k, ¢, c).

We will show p, = (= m), where u, := number of cliques contains z, for each ver-
tex  (Lemma 4.4.11) by showing that the set Vs = {z € V|u, > r} is empty. Toward

this goal, we will find an upper bound for 37\, s, where s, := > > 0o [CNC|2

We then derive Lemmas 4.4.2:~ 447 in‘terms of elementary counting techniques

and taking advantage of some-inequalifies.

Find an upper bound for Y& (|€5]=1);"and.in particular its exact value whenever
pr = (Lemma 4.4.2), and upper bound for the size of maximal cliques (Lemma 4.4.4)
and their lower bound when they contain a vertex x with p, = r (Lemma 4.4.3). We
then find an upper bound for 37 ey, [C'NC'|? in terms of 37y (4, — 1) (Lemma

4.4.5). Moreover, an upper bound for Y _ (s, — 3rtk(u, —r)) (Lemma 4.4.6), lower

zeV
bounds for j,s, in terms of > 1, (|C;| —1)? and max{|Ci||i < p,} (Lemma 4.4.7 (1,2))
respectively; also lower bound for s, (Lemma 4.4.7 (3)) and for u,s, (Lemma 4.4.7

(4)) for vertex x with p, = r, and p, > r respectively.
We show that there exist at most 2rk vertices x satisfying p, > r (i.e., |Vi| =

vs < 2rk, Lemma 4.4.8) by studying upper and lower bounds of ¢, — s where

ty = 8; — 3rtk(u, —r) and sg := (r — 1)tk — (r — 1)t>. We then show that each
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point x with p, > r lies in at least five normal cliques consisting of all points y with

py, > 1 (Lemma 4.4.9) by a contradictory argument together with some inequalities.

Moreover, we show |C; NCy| < p for any distinct maximal cliques C, Cy; and then
show that C' — ([Ugen C') is nonempty for any subfamily N of maximal cliques with
IN| <4r and C' ¢ N (Lemma 4.4.10).

We first claim that u, = 7 is equivalent to the emptiness of the set M, := {C|Vx €
C, pz > r} by Theorem 4.3.1 and Lemma 4.4.9, we then claim that M is empty in
terms of the principle of inclusion and exclusion and some inequalities by contradic-
tory argument over he conditions |N| < 4r and the fact that each point x with p, > r

lies in at least five cliques.

Suppose that there exists-an integer @ such that Theorem 4.3.1 (a,b,c) and |C] >

k — ap for each C' € M, and m < @ <2m-=1 are fulfilled.

Letm=r,n=k+r+c—1—t, p=rt,y=rc, R=r(k—1). Assume that

k>rt(da+r+5), k> (c+1t,r=>3and r(c+r—1) < (r—1)t.
The relation of Lemma 4.4.2 ~ Lemma 4.4.11:
Lemma 4.4. Lemma 4.4.6
Lemma 4.4.4 Lemma 4.4.7 (2 Lemma 4.4.7 (3)9 Lemma 4.4.8 —
Lemma 4.4.7 (1)>»Lemma 4.4.2 Lemma 4.4.7 (4)

Lemma 4.4.3 —» Lemma 4.4.9 —
Lemma 4.4.10 —

Lemma4.4.11 <

Figure 3: Section 3 in [7], Metsch
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Lemma 4.4.2 ([7], Lemma 3.10) [ := p,, v € Cy, Cy, ..., C;. Then
(1) Y (G = 1) < vk = 1) + s
(2) Zé:l“cil —1)=rk=1)ifl=r.

From Y0, (|Ci| — 1) = r(k — 1), we have:

Lemma 4.4.3 ([7], Lemma 3.12) If g, =r and x € C, then |C| > k — (r —1)(c+1).

Lemma 4.4.4 ([7], Lemma 3.11) VC € M, |C| < k+c+ 1.

Lemma 4.4.5 ([7], Lemma 3.13) >~ ey, [CNC? < o(r—1)t43r(c+1) 30 oy (pa—

r).
Lemma 4.4.6 ([7], Lemma 3.14) > (85 = 3rtk(1, — 7)) < vt(r —1)(k+c+1).

Lemma 4.4.7 Let | := p,, x '€ €4,Coet.C). Let z; := |Cy| — 1,4 = 1,2,... 1,

and z := max{z|i =1,2,...,1}. Then

(1) 1-8.=>(n—m)(R+7)+ Ru—2(1+1—m)zy —>._, 22 ([7], Lemma 3.15);

(2) -5, = 7(k=1)247(r—Vth—r(r—t—rtc—r(c+1)2 =2y(k+c)( —r) = >, 22
([7], Lemma 3.16);

(3) sy = (r — 1)tk — (r — 1)t* for every vertex x satisfying p, = r ([7], Lemma 3.17);
and

(4) pese = r(r — Dtk + k(k — 4p — ap)(u, — r) for every vertex x satisfying p, > r
([7], Lemma 3.18).

Lemma 4.4.8 ([7], Lemma 3.19) There exist at most 2rk vertices x satisfying p, > r,

ie., vy < 2rk.
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Lemma 4.4.9 ([7], Lemma 3.20) Every vertex z satisfying p, > r lies in at least

five cliques, which contain only vertices y satisfying p, > r.

Lemma 4.4.10 ([7], Lemma 3.21)

(1) |C1 N Cy] < pfor Cy # Cs.

(2) C € M, N C M with [N| < 4r and C' € N, then there exist x € C' and = ¢
C" € N for all C".

Lemma 4.4.11 ([7], Lemma 3.22) u, = r for each vertex x.

5 A Class of Strongly Regular Multigraphs

In this section, we will use the special properties of the definition of alternating form
graph to define a symmetriciassociation-scheme. From the symmetric association
scheme, we have that the alternating form graph is a distance regular graph. At last,
we will define a graph I" which is the induced subgraph of the alternating form graph,
and give the multiplicity on the edges, and we will get a class of strongly regular

multigraphs.

Definition 5.1 The alternating form graph Alt(n,q) is the simple graph with ver-
tex set V = {A|A € M, (GF(q)),A = —AT} and the edge set £ = {(A,B)|A,B €
V,rank(A — B) = 2}.

Since the alternating form graph Alt(n, q) is defined on the set of all skew-symmetric
n x n matrices over GF(q), the rank of A — B is 2i for any two matrices A and B in

Alt(n,q). Let R; = {(A, B)|A, B € Alt(n,q),rank(A — B) = 2i}, the relation classes
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{Ro, Ry, ..., Rq}, defined on Alt(n, q) x Alt(n,q), where d = [§]; then
(1) (Alt(n,q), (R;)L,) is a symmetric association scheme.
(2) (Alt(n,q), Ry) is a distance regular graph with the intersection numbers {bg, by, . . .,

ba—1;co,cC1, - . ,Cd}-

Theorem 5.2 Each maximal cliques of the alternating form graph Alt(n, q) is either

0O « yw 0 --- 0
0 o T3 ... Ty
-z 0 2 0 0
-z 0 0 ... O
) _ -y —z 0 0 0
isomorphic to —z3 0 0 ... O or to 0 0 00 0 respec-
0
-z, 0 0 ... 0
0 0 00 0

tively, called typed I and type II respectively.

For studying possible combinatorial geometric structures over Alt(n,q) , we shall
study the matrixz representations of those maximal cliques of both types containing
the zero form. The others may be.obtained simply by translation. Without loss of
generality, we may assume that V' is an inner product space with a fixed orthonormal
basis {vi,vs,...,0,}. If v € V is a nonzero vector, then < v >=< av > for all
a € GF*(q), we may assume that v = 3, ;v + vy for some k and o; € GF(q).
Consider the nest

VoCcVicVaC...C Vg CVu(=V)

of subspaces of V, where V; =< vy, v9,...,v; >, 1 < i < n, and in particular Vj is
the trivial subspace of V. Since dimV; is ¢, V; has (¢* — 1)/(q¢ — 1) one-dimensional

subspaces, they are

< E oV + v >
1<j<h-1

where a; € GF(q), 1 < j < k — 1. Their corresponding perpendicular subspaces (i.e.
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hyperplanes) are

L .
< E QjUj + U >T=< Vg1, Vg2, - - -5 U, U — U]l < <k —1 >
1<j<k—1

Proposition 5.3 Show that each of these hyperplanes uniquely determines a maximal
clique of type I of the zero form.

Proof: When k=1, v =v; and < v >*=< vy, v3,...,v, >, it follows that its matrix
representation is

0 x2 w3 ... Tp1 Tp
lo(=ls) = x; € GF
( ) {< -z 0 0 ... 0 0 ) | (@)}

consisting of those matrices whose first two rows as shown above, their first two
columns obtained by skew-symmetey, and zero all other entries. Similar convention is

used in the following.

When £ > 2, the clique determinedbyio= )", ., ,(a;v; + vx) or its perpendic-

ular space is denoted by 1, = la, ‘sl if there is no confusion. Let {eq,es,...,¢e,}

SOk —1

be the standard basis of GF(q)", i.e., ¢; = (0,0,...,0,1,0,0,...,0) with 1 in the i-th

entry, 1 <7 < n.

Let

Li ={el -2 — 27 - e;]lx € GF(q)" with 0 in its i-th entry},

and,

a:(al,ozz,...,ai_l,l,0,0,...,O) GGF((])TL

and P;(«) denote the matrix obtained from the identity matrix by replacing its i-th
row by the vector a. Then the matrix representation of I, = ly, as....a; ,, With respect

to the fixed base {v1, v, ...,v,}, is given by
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lv = lal,a2,...,a¢,1
~ P(a)" - Li- P(0)
= {Pi(a)T-(e;x—2T-¢;)-Pi(a)|x € GF(q)™ with 0 in its i-th entry}

={al -z — 2" alr € GF(q)" with 0 in its i-th entry}.

Remark For attenuated space, i.e., Myx,(GF(q)), those blocks of the zero matrix
can be expressed as {a! - z|z € GF(q)"} where a = (a1, s, ...,0;-1,1,0,0,...,0) €

GF(q)" for all nonzero o € GF(q)™ with 1 in its last nonzero entry.

For each 4, there are ¢"~! vectors of the form
o = (@1,0&2,...,0@;1,1,0,0,...,0) € GF(q)n,

and each such vector o uniquely determinesra maximal clique 1, = lo, 09,0, , =
P(a)" - L; - P/(«) of zero form. Henece all maximal cliques of type I of the zero form

are obtained in this way. The above ebservation ¢an be summarized as follows:

Proposition 5.4

=1 yertices.

(1) Each maximal clique of type I consists of ¢
(2) Each vertex is in exactly q;%ll maximal cliques of type I.

Proof: The maximal clique of type I consists of ¢" ! vertices. since all maximal cliques

0 x9 23 ... T,
-z 0 0 ... O
of type I is isomorphic to —x3 0 0 ... 0 |. And the maximal clique is
—x, 0 0 ... O
uniquely determined by hyperplane H with dim(H) = n — 1. Then the number of
hyperplanes is [ " ] = q"__ll. Q.E.D.
n—1 !

q

Proposition 5.5 Those (¢" — 1)/(¢ — 1) maximal cliques of type I containing the
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zero form can be expressed as
T T _ 0 GF(q)"
{o" -~z —a" -alr = (21,22, .., 21,0, Ti41, Tia, ..., Ty), x5 € GF(q)"},

for @ = (1,0,0,...,0) or @ = (e, 2,...,;-1,1,0,0,...,0) where ¢ > 2 and a; €

GF(q)".

Now, we turn to the intersection properties among those maximal cliques in the

distance regular graph Alt(n, q).

Lemma 5.6 Let C; and Cy be two maximal cliques of type I, then |C; N Cy| = 0
or q. Moreover, if C; N Cy # ¢, then C; N Cy is isomorphic to
0

—X

0 0
0 e, 0
% 0
0 0

SORNEESRED |8
Coh US> | I

0700070 ... 0

and there exists another ¢ — 1 maximal cliques C3, Cy, ..., Cyyq of type I such that
S G = 0N Oy

Proof: Clearly, |C; N Cy] =0 or q. C; and Cy are determine by hyperplanes H; and
H,, respectively, with dim(H;) = n — 1, and dim(H; N Hy) =n—2fori = 1,2. In
addition to Hy, Hs, there are another ¢ — 1 hyperplanes containing H; N Hy. They

determine the rest ¢ — 1 maximal cliques of type I are required. Q.E.D.

Let B be the set of all maximal cliques of type I in Alt(n,q). Then 7 = (A, B, €)
turns out to be an incidence structure with some intersecting properties. Elements in
B are called blocks of this incidence structure. The following proposition is simply a

restatement of proposition 5.4 and lemma 5.6.

37



Proposition 5.7

(1) Each block B consists of ¢"~! points,

(2) Each point is incident with exactly (¢" — 1)/(¢ — 1) blocks,

(3) Any two distinct blocks are incident with either 0 or ¢ common points,

(4) If By, By € B are distinct and By N By # ¢ then there are another ¢ — 1 blocks,
say B3, By, ..., Bgi1, such that (.1:11 B; = B1 N By consists of ¢ points.

7

Definition 5.8 A singular line is the intersection of two distinct maximal cliques.

When we only consider the maximal cliques of type I, we have the constant size of
cliques. And if we define the graph withmmultiedge by m 4 p = the number of singular

lines containing vertices A and*B, then wehave.mp =0, 1 or ¢ + 1.

Consider the definition of:strongly=regular multigraph, v = > i, mg,(ma, —1).
For each A and B lie in the same maximal cliques, there are exactly 2 entries of B

different from those of A. So we have v =) (¢ + 1)q is the constant.

Definition 5.9 For a fixed matrix M, 5, »(GF(q)) with odd ¢, let I' be a multi-

graph with defined on (V, E) with {M| M is a skew-symmetric matrix over GF(q)

X Y
satisfying M = VT g } as the vertex set, and for any two vertices A, B,

A ~ B if and only if rank(A — B) = 2. Moreover, let my4 g be the number of singular

line containing vertices A and B.

Theorem 5.10 I' is a strongly regular multigraph with parameters

(m/a nla ,ula 7/7 R/) = (q + 17 qnila q2(q + 1)7 q(q2 - 1)7 (q + 1)(qn71 - 1))7
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and I" is the collinearity graph of a 1%—design with parameters

(rok,t,e) = (¢+1,¢" ", ¢* qlg — 1)).

Proof:

For a fixed vertex A € V,

(1) m" = ¢+ 1 is the number of maximal cliques contains A;

(2) there exists exactly ¢ + 1 cliques containing A and B for adjacent vertices A and
B, and each maximal clique has size ¢"'; thus R' = (¢ + 1)(¢" ' — 1).

(3) 7' =YX peaman(map —1) =3 p ala+1)g=(¢—1)glg+1) = q(¢° — 1), since
ma,p = 1 or 0 whenever B does not lie in the ¢+ 1 maximal cliques which contains
A.

(4) since m/(m/ —n') + ' = R’ + ysithens(q + 1)(n' — (¢ + 1)) + p/ =(¢ + 1)(¢" " —
1) + q(q* — 1), it follows that x/' =(g=+1)(¢g% ' — n’' + ¢°).

(5) since p'v = (R + m/')(REAHm' — nf)othen pg® 3 = ((¢+ 1)(¢" = 1)) + (¢ +
D((g+1) (g™t —=1)+ (¢+ 1) — n')dtrfollows that 1/¢" % = (¢+1)((¢+1)¢" ' —n');

combine (4) and (5), we have p'q"7%.= g% (g + 1)(¢" ' — n’ + ¢*). Hence n’ = ¢"!

and p' = (¢ +1)(¢"' —n' +¢*) = ¢*(¢ + 1).

We then have (r, k,t,c) = (¢+1,¢" %, ¢% q(q — 1)) as required. Q.E.D.

The combinatorial interpretations of the parameters (r, k, t, ¢) of the 1%—design un-
der consideration are given below:
(1) r = number of cliques contains a fixed vertex = ¢ + 1.
(2) k = the clique size = ¢"~ 1.
(3) Fixed y ¢ B where y is a point and B is a block, then t =3 _pmg, = ¢
(4) Fixed y € B, my,, — 1 =g or 0 by z € B and

a. My, = 1 if x does not lie in the ¢ 4 1 blocks containing y,

b. m,, = ¢+ 1if x lies in the ¢ + 1 blocks containing v,
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thus ¢ = ZZGB,{y}(mx,y - 1) = Q(q - 1)-

We constructed the strongly regular multigraph above. Now, we are interesting

that in what conditions, we can make sure the 1%—design with parameters

(rok,t,c) =(¢+1,¢""",¢* qlg— 1))

is the wnique incidence structure such that the collinearity graph is this strongly

regular multigraph with parameters

(m',n', 1,7, R) = (¢+1,4" ", ¢*(qg+ 1),q(¢* — 1), (g + 1)(¢" " = 1)).

We now check the numericaliconstraints.required in Theorem 4.2.17 (9], Theorem
4.4) for the uniqueness of the cerrespondihg incidence structure with respect to the
strongly regular multigraph under consideration;=i.e., to find conditions to guarantee
that m’ > 2, integral ¢/ = 0 mod m/, 1/ > O0yand n’ > max{m’ — 1+ M ,2(m/

D+ 1= m') + 29/, =0 (! + 1)+ m' Y +m’ — 1},

Theorem 5.11 The strongly regular multigraph I' is the point graph of a unique
1——de51gn whenever n =6, ¢ >4orn>"7,q > 3.

Proof: Clearly, i/ = ¢*(¢+1) =0 mod m'(=q+ 1) and g/ > 0, m’' > 2.

(1) Since ¢"' > ¢+ (¢* + 1)q(qg — 1) = ¢* — ¢* + ¢*, then

(*(q+ 1)+ (¢+ 1)(q(¢®> — 1))

n—1
>(qg+1)—1+ ,

i.e., the condition n/ > m/ — 1 + W=m)’ +m  hold.

(2) Since ¢" " > 2¢((¢> — 1)(¢ + 1) + 1) +2¢(¢* — 1) = 2¢* + 4¢* — 2¢* — 2g, then

"' >2(g+1) - D(Pg+1)+1—(g+1) +2q(¢* = 1),

40



i.e., the condition n' > 2(m' — 1)(¢' + 1 —m') + 29/ hold.

(3) Since ¢" > LD (63 4 g2 1 1) 4 (g +1)DC=1 4 g — 1(¢P 4 3¢* + 2¢° + 2¢), then

q(¢® — 1)
2

S (q+1)((g+1)—1)

5 (lg+1)+ 1)+ (¢+1)

+(¢+1)—1,

m/(m/—1)

i.e., the condition n' > =—=5—(u' +1) + m’% +m’ — 1 hold.

Combine (1) ~ (3), we have

B 1
"' > max{q* — ¢ + ¢*,2¢" + 4¢°> — 2¢* — 2¢, 5((15 +3¢" +2¢° + 2¢)} (*)

(*) holds if n =6,¢g >4 andif n > 7, ¢ > 3. Q.E.D.

From Theorem 5.10 and 5.11, we have:
Theorem 5.12 If ' is a strongly regular multigraph with parameters (m’,n’, @/, 7', R') =
(q+1,¢" 1, (q+1),q(¢> — B, g+ 1)(¢%—1)) with odd prime ¢ and integer n such

that n = 6, ¢ > 4 or n > 7, q =3;7them I'/is the collinearity graph of a unique

1%—design with parameters (r, k,%,6)=(¢+1,¢"1, ¢* q(q¢ — 1)).
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