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應 用 數 學 系

摘要

在記憶體管理、 通訊技術中, shuffle-exchange network 是廣泛被拿
來運用以及討論的網路。 在1991年的時候, Padmanbhan 定義並討
論了廣義的 shuffle-exchange network(簡記為GSEN), 此網路不再
限制輸入與輸出個數必為k的次方 (假設 switch element 的 size 均
為k × k)。 Padmanbhan也提出了快速標記式路線安排演算法。 到了
2003年, Chen、Liu 以及 Qiu 又將GSEN推廣成所有的連線均為雙向,
並稱之為 bidirectional GSEN。 一個 bidirectional GSEN包含了兩
個網路: 一個正向網路與一個逆向網路。 關於正向網路的路線安排, 可
以用 Padmanbhan 所提出的演算法解決; 關於逆向網路的路線安排,
Chen、Liu 以及 Qiu 等人也提出了利用 Padmanbhan 的演算法, 先
求出正向網路的標記, 然後利用此標記得出逆向網路的路線安排。 在這
篇論文中, 我們證出了逆向網路具有很好的性質: 對每個終點i而言, 有
兩個標記伴隨著它, 任意一個起點j均可利用這兩個標記中的一個, 來安
排訊息傳送路線。 我們利用此性質做出快速的一對一路線安排演算法,
此演算法在建構 routing table 時, 速度比使用 Chen、Liu 以及 Qiu
所提出的演算法來得快。

關鍵字: 連接網路, 多級式網路, shuffle-exchange 網路, Omega 網路,
標記式路線安排演算法。

中 華 民 國 九 十 四 年 六 月
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Efficient Tag-Based Routing Algorithms for
the Backward Network of

a Bidirectional General Shuffle-Exchange Network

Student: Jing-Kai Lou Advisor: Chiuyuan Chen

Department of Applied Mathematics

National Chiao Tung University

Abstract

In [7], Padmanbhan proposed the general shuffle-exchange network (GSEN)
and an efficient tag-based routing algorithm for it. In [1], Chen, Liu and Qiu
further enhanced the GSEN with bidirectional links. The bidirectional GSEN
can be divided into two dependent networks, the forward network and the
backward network. Since the forward network is a GSEN, Padmanbhan’s tag-
based routing algorithm can be applied on it. As for the backward network,
Chen et al. [1] proposed a routing algorithm which is based on the idea of
inversely using the forward control tag. In this thesis, we will show that the
backward network has a wonderful property: for each destination i, there are
two backward control tags associated with it such that every source j can get
to i by using one of the two control tags. We will use this property to derive
efficient algorithms for one-to-one routing and for constructing a routing table.

Keywords: Interconnection network, multistage network, shuffle-exchange net-
work, Omega network, tag-based routing algorithm.
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1 Introduction

The purpose of this thesis is to derive tag-based routing algorithms for the backward

network of a bidirectional general shuffle-exchange network. Throughout this thesis, N ′

denotes the number of inputs and the number of outputs of a network. We assume that

all the switch elements in a network are identical and of size k × k.

Shuffle-exchange networks have been proposed as a popular architecture for intercon-

nection networks [2, 3, 6, 5, 7, 8]. The perfect shuffle operation on N ′ terminals (k | N ′)

is the permutation π defined by

π(i) = (ki +

⌊
ki

N ′

⌋
) mod N ′, 0 ≤ i ≤ N ′ − 1.

In particular, when k = 2, the perfect shuffle operation separates the top N ′/2 terminals

from the bottom N ′/2 terminals and precisely interleaves them, with the bottom terminal

still remaining at the bottom. A shuffle-exchange network is a network with N ′ = kd

inputs and outputs and each stage consists of the perfect shuffle on N ′ terminals followed

by N ′/k switch elements.

In a multistage interconnection network, a path from an input to an output can be

described by a sequence of labels that label the successive edges on this path. Such a

sequence is called a control tag [7] (or tag [1] or path descriptor [4]). The control tag may

be used as a header for routing a message: each successive node uses the first element

of the sequence to route the message, and then discards it. For example, in Figure 1(a),

input 2 can get to output 9 by using the control tag 11 (01011), which means input 2 can

get to output 9 via sub port 0 at stage 0, sub port 1 at stage 1, sub port 0 at stage 2 and

sub port 1 at stage 3 and sub port 1 at stage 4; see Figure 1(b) for an illustration of sub

ports.

In a shuffle-exchange network, the number of stages may be equal to or be greater

than logk N ′. When the number of stages is exactly logk N ′, a shuffle-exchange network

is identical to the Omega network defined in [5] and its control tags depend only on the
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Figure 1: (a) The GSEN with N ′ = 22 and k = 2; this figure also shows GSEN(2,11,5).
(b) A k × k switch element and its sub ports.

destination.

In [7], Padmanbhan proposed the general shuffle-exchange network (GSEN), which

allows N ′ 6= kd and contains exactly dlogk N ′e stages. Padmanbhan showed that the

control tags of a GSEN depend on both the source and the destination when N ′ is not

a power of k. Padmanbhan also proposed an elegant tag-based routing algorithm for the

GSEN.

In [1], Chen, Liu and Qiu enhanced the GSEN with bidirectional links. Their reason for

the enhancement is that although unidirectional links are widely used, bidirectional links

also have many applications as suggested in [2]. A bidirectional GSEN can be divided into

two dependent networks: the forward network and the backward network. The forward

network is from the left-hand side of the network to the right-hand side of the network;

2



thus a request in it is sent from left to right. On the other hand, the backward network

is from the right-hand side of the network to the left-hand side of the network; thus a

request in it is sent from right to left. The control tags used in the forward (backward)

network are called the forward (backward) control tags.

Since a forward network is a GSEN, Padmanbhan’s tag-based routing algorithm can

be used in it. As for the backward network, Chen et al. [1] implemented a tag-based

routing algorithm by using the forward tag inversely. More precisely, their algorithm first

runs Padmanbhan’s tag-based routing algorithm to derive the forward control tag; then,

their algorithm runs another procedure to convert the forward control tag to the backward

control tag. If the number of stages is n + 1, then the algorithm in [1] takes O(n) time to

derive the tag for a source j to get to a destination i and it takes O(N ′2n) to construct

the routing table (a table that contains the backward control tags for routing the N ′×N ′

pairs of nodes in the backward network).

In this thesis, we show that the backward network has a wonderful property: for each

destination i, there are two backward control tags associated with it such that every

source j can get to i by using one of the two tags. We show that the two tags can be

derived in O(n) time. Therefore, it is possible to derive in O(n) time not only a tag for

a j to get to i but also the tags for every j to get to i. So, constructing the routing table

can be done in O(N ′n) time. We now summarize results of the backward network of a

bidirectional GSEN below.

time required to use the algorithm in [1] use our algorithm

find a tag for a j to get to i O(n) O(n)

find the tags for every j to get to i O(N ′n) O(n)

construct the routing table O(N ′2n) O(N ′n)

This thesis is organized as follows. In Section 2, we formally define the bidirectional

GSEN and give conventions used in this thesis. In Section 3, we describe the tag-based

3



routing algorithms in [7] and [1]. In Section 4, we describe our algorithm.

2 The bidirectional GSEN and conventions used in

this thesis

The following definition was given in [1].

Definition. A bidirectional general shuffle-exchange network GSEN(k, r, n + 1) is a

GSEN with bidirectional links. The switch elements are aligned in n + 1 stages, la-

belled 0, 1, 2, . . . , n. Each stage consists of r switch elements, labelled 0, 1, 2, . . . , r − 1.

And each switch element is a k × k bidirectional crossbar.

For example, if each link is a bidirectional link, then the network in Figure 1(a) is

GSEN(2,11,5). Note that in GSEN(k, r, n + 1), there are a total of

N ′ = k × r

ports on each side of a stage, labelled 0, 1, 2, . . . , N ′−1. The parameters k, r and n satisfy

the following equation:

dlogk(k · r)e = dlogk N ′e = n + 1.

Throughout this thesis, let

N ′ = N + M, with N = kn and k ≤ M ≤ (k − 1)N. (2.1)

The switch elements in the same stage are considered cyclic; that is, switch element

labelled 0 is the next switch element of the switch element labelled r−1. Also, throughout

this thesis, node i is assumed on the left-hand side of the network and node j, the right-

hand side. Thus when we say a request is from i to j (j to i), we mean the request is sent

through the forward (backward) network.

3 Previous tag-based routing algorithms

A tag-based control routing algorithm is one that sets up a path from an input to an

output by using a control tag T . Each digit t` of the k-ary representation (t0t1 . . . tn) of

4



T controls the switch element at stage ` in the path. We now briefly describe previous

tag-based routing algorithms of GSEN(k, r, n + 1). Recall that GSEN(k, r, n + 1) can be

divided into the forward network and the backward network. Also recall that the forward

network is a GSEN and Padmanbhan’s tag-based routing algorithm can be applied on it.

The following two theorems were given in [1].

Theorem 1. [1] In the forward network of GSEN(k, r, n + 1), a path from i to j can be

set up by using the forward control tag T given by

T1 = (j + kMi) (mod N ′). (3.2)

In addition, other forward control tags (and paths) may be available, specified by

Tp = T1 + (p− 1)N ′ if Tp < kN, 1 < p ≤ k. (3.3)

The backward network is not a GSEN. Thus Padmanbhan’s algorithm can not be

applied on it. In [1], Chen et al. proposed a tag-based routing algorithm for it by using

the forward control tag inversely.

Theorem 2. [1] In the backward network of GSEN(k, r, n + 1), a path from j to i can be

set up by using the backward control tag (s0s1 . . . sn) computed by the following procedure:

Procedure GetBackwardControlTag.

1. Use (3.2) and (3.3) to get the forward control tag T . Derive the k-ary representation

(t0t1 . . . tn) of T .

2. Get the port sequence R0, R1, . . . , Rn based on (t0t1 . . . tn) as follows:

R` =





k · i (mod N ′) + t0 if ` = 0,

k ·R`−1 (mod N ′) + t` if 1 ≤ ` ≤ n.

3. Use R0, R1, . . . , Rn to get the backward control tag (s0s1 . . . sn) as follows:

s` =





⌊
k·i
N ′

⌋
if ` = 0,⌊

k·R`−1

N ′

⌋
if 1 ≤ ` ≤ n.
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Consider Figure 1(a) as an example. Suppose j = 9 wants to get to i = 2. In Step 1,

we derive T = 11 = (01011). In Step 2, we derive R0 = 4, R1 = 9, R2 = 18, R3 = 15 and

R4 = 9. In Step 3, we have (s0s1s2s3s4) = (00011), which means j = 9 can get to i = 2

via sub port 1 at stage 4, sub port 1 at stage 3, sub port 0 at stage 2, sub port 0 at stage

1 and sub port 0 at stage 0.

Procedure GetBackwardControlTag takes O(n) time to derive the backward control

tag for j to get to i. It takes O(n) time to route a one-to-one request and O(N ′2 ·n) time

to construct the routing table.

4 The one-to-one routing

Recall that i is on the left-hand side of a bidirectional GSEN. Also recall that the switch

elements in each stage are labelled 0, 1, 2, . . ., r − 1 and the next switch element of the

switch element labelled r − 1 is the switch element labelled 0.

The following observations are crucial to our algorithm: At stage 0, only one switch

element can get to i. At stage 1, exactly k switch elements can get to i and these switch

elements are consecutive. At stage 2, exactly k2 switch elements can get to i and these

switch elements are consecutive. In general, at stage `, 0 ≤ ` ≤ n − 1, exactly k` switch

elements can get to i and these switch elements are consecutive. Clearly, at stage n, all

the r switch elements can get to i.
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Since the switch elements at stage ` that can get to i are consecutive, we only need to

remember the label of the first one of them. Let C` denote this label. Clearly, we have

C` = i× k` (mod r).

A critical value v(i) associated with i is defined to be

v(i) = Cn × k.

For example, in Figure 2(a), the switch elements that can get to i = 6 are highlighted;

moreover, C0 = 6, C1 = 1, C2 = 2, C3 = 4, C4 = 8 and v(i) = 16. In Figure 2(b), the

switch elements that can get to i = 5 are highlighted; moreover, C0 = 5, C1 = 10, C2 = 9,

C3 = 7, C4 = 3 and v(i) = 6. We now propose an algorithm to compute the backward

control tags.

7



BACKWARD-CONTROL-TAGS.

Input: i on the left-hand side of a bidirectional GSEN(k, r, n + 1).

Output: The critical value v(i) and two control tags (s0s1 . . . sn) and (s′0s
′
1 . . . s′n).

1. /* Compute C0, C1, . . . , Cn. */

for ` = 0 to n do

C` ← i× k` (mod r);

2. /* Compute the critical value v(i). */

v(i) ← Cn × k;

3. /* Compute s′0, s
′
1, . . . , s

′
n. */

s′0 ←
⌊

i

r

⌋
;

for ` = 1 to n do

s′` ←
⌊

k × C`−1

r

⌋
;

4. /* Compute F0, F1, . . . , Fn. */

if (r − Cn−1)× k ≥ r

then

begin

for ` = 0 to n− 1 do F` ← 0;

Fn ← 1;

end

else

for ` = 0 to n do

if C` + k` > r then F` ← 1 else F` ← 0;

5. /* Compute s0, s1, . . . , sn. */

for ` = 0 to n do

s` ← s′` + F` (mod k);

8
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Figure 2: GSEN(2,11,5) with the switch elements that can get to (a) i = 6 and (b) i = 5
being highlighted.

Again, consider Figure 2 (a) as an example. Then k = 2, r = 11 and n = 4. Suppose

i = 6. Then after Step 1, C0 = 6, C1 = 1, C2 = 2, C3 = 4 and C4 = 8. After Step 2,

v(i) = 16. After Step 3, (s′0s
′
1s
′
2s
′
3s
′
4) = (01000). After Step 4, F0 = 0, F1 = 0, F2 = 0,

F3 = 0 and F4 = 1. After Step 5, (s0s1s2s3s4) = (01001). It is easy to verify that: if

j < 16, then j can get to 6 by using the tag (01001); if j ≥ 16, then j can get to 6 by

using the tag (01000). We summarize the above results in the following table.

9



destination i (s0s1s2s3s4) (s′0s
′
1s
′
2s
′
3s
′
4) v(i)

i = 6 01001 01000 16

Recall that there are a total of N ′ ports on each side of a stage, labelled 0, 1, 2, . . . , N ′−
1. A port R consists of two parts: the number y of the switch element where R is located,

and the sub port number z in the switch element where R is located; see [1]. R and y

and z satisfy R = ky + z. The following result was proved in [1].

Lemma 3. [1] Suppose port u of stage `−1 and port v of stage ` are connected by a link,

where u = ky1 + z1 and v = ky2 + z2. Then z2 =
⌊

k·u
N ′

⌋
.

Thus we have

Lemma 4. Let u, v, y1, z1, y2, z2 be defined as in Lemma 3 and consider the switch

elements labelled y1 and y2. Then the backward control tag for y2 to get to y1 (or to get

to u) is z2; moreover, z2 =
⌊

u
r

⌋
.

Proof. Clearly, the tag is z2. Since N ′ = k × r, by Lemma 3, z2 =
⌊

u
r

⌋
.

We now prove that

Lemma 5. If j = v(i), then j can get to i by using the tag (s′0s
′
1 . . . s′n).

Proof. Suppose j = v(i). Then j can get to i via switch elements labelled Cn, Cn−1, . . . , C0.

For each `, 1 ≤ ` ≤ n, C` is linked to C`−1 via sub port 0 of C`−1. Sub port 0 of C`−1 is

port u of C`−1, where u = k × C`−1. Thus by Lemma 4, the tag for C` to get to C`−1 is
⌊

k×C`−1

r

⌋
. Also by Lemma 4, the tag for C0 to get to i is

⌊
i
r

⌋
. In Step 3 of BACKWARD-

CONTROL-TAGS, we set s′0 =
⌊

i
r

⌋
and s′` =

⌊
k×C`−1

r

⌋
, for ` = 1, 2, . . . , n. Thus we have

this lemma.

Lemma 6. If j > v(i), then j can get to i by using the tag (s′0s
′
1 . . . s′n).
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Proof. By (2.1), kn < N ′ ≤ kn+1. Set d = j−v(i) for easy writing. Then 0 < d ≤ N ′−1.

Thus 0 < d
kn−`+1 ≤ N ′−1

kn+1

k`

≤ N ′−1
N ′ k` < k` and therefore 0 ≤ ⌊

d
kn−`+1

⌋
< k`. Recall that

at stage n, all of the r switch elements can get to i; at stage `, 0 ≤ ` ≤ n − 1, there

are exactly k` consecutive switch elements that can get to i and the first one is labelled

C`. Thus j can get to i via switch elements labelled Cn +
⌊

d
k

⌋
, Cn−1 +

⌊
d
k2

⌋
, Cn−2 +

⌊
d
k3

⌋
,

· · · , C` +
⌊

d
kn−`+1

⌋
, · · · , C1 +

⌊
d

kn

⌋
, C0 +

⌊
d

kn+1

⌋
. The connection of a GSEN ensures that

if C`, 1 ≤ ` ≤ n, is connected to C`−1 via sub port z2, then C` +
⌊

d
kn−`+1

⌋
is connected

to C`−1 +
⌊

d
kn−`+2

⌋
via sub port z2. By Lemma 4, the tag for C` +

⌊
d

kn−`+1

⌋
to get to

C`−1 +
⌊

d
kn−`+2

⌋
is z2; by Lemma 5, z2 = s′`. Note that 0 < d

kn+1 ≤ N ′−1
N ′ < 1. Thus

C0 +
⌊

d
kn+1

⌋
= C0. By Lemma 5, the tag for C0 to get to i is s′0. From the above, if

j > v(i), then j can get to i by using the tag (s′0s
′
1 . . . s′n).

Lemma 7. If j < v(i) and (r − Cn−1) × k ≥ r, then j can get to i by using the tag

(s0s1 . . . sn).

Proof. Set d = j − v(i) + N ′ for easy writing. Then j can get to i via switch elements

labelled Cn +
⌊

d
k

⌋ − r, Cn−1 +
⌊

d
k2

⌋
, Cn−2 +

⌊
d
k3

⌋
, · · · , C` +

⌊
d

kn−`+1

⌋
, · · · , C1 +

⌊
d

kn

⌋
,

C0 +
⌊

d
kn+1

⌋
. The connection of a GSEN ensures that if Cn is connected to Cn−1 via sub

port z2, then Cn +
⌊

d
k

⌋− r is connected to Cn−1 +
⌊

d
k2

⌋
via sub port z2 + 1 (mod k). By

Lemma 4, the tag for Cn +
⌊

d
k

⌋− r to get to Cn−1 +
⌊

d
k2

⌋
is z2 +1 (mod k). By Lemma 5,

z2 = s′n. In our algorithm, we set Fn = 1 and set sn = s′n +Fn (mod k). Thus sn = z2 +1

(mod k). Again, the connection of a GSEN ensures that if C`, 1 ≤ ` ≤ n−1, is connected

to C`−1 via sub port z2, then C` +
⌊

d
kn−`+1

⌋
is connected to C`−1 +

⌊
d

kn−`+2

⌋
via sub port

z2. By Lemma 4, the tag for C` +
⌊

d
kn−`+1

⌋
to get to C`−1 +

⌊
d

kn−`+2

⌋
is z2. By Lemma 5,

z2 = s′`. In our algorithm, we set F` = 0 and set s` = s′` + F` (mod k). Thus s` = z2.

Note that 0 < d
kn+1 ≤ N ′−1

N ′ < 1. Thus C0 +
⌊

d
kn+1

⌋
= C0. By Lemma 5, the tag for C0

to get to i is s′0. In our algorithm, we set F` = 0 and set s0 = s′0 + F0 (mod k). Thus

s0 = s′0. We now have this lemma.
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Lemma 8. If j < v(i) and (r − Cn−1) × k < r, then j can get to i by using the tag

(s0s1 . . . sn).

Proof. Set d = j − v(i) + N ′ for easy writing. Then j can get to i via switch elements

labelled Ln, Ln−1, · · · , L`, · · · , L1, L0, where

Ln = Cn +

⌊
d

k

⌋
− r

and for ` = n− 1, n− 2, . . . , 0,

L` =





C` +
⌊

d
kn−`+1

⌋
if C` + k` ≤ r,

C` +
⌊

d
kn−`+1

⌋− r if C` + k` > r.

The connection of a GSEN ensures that if Cn is connected to Cn−1 via sub port z2, then

Ln is connected to Ln−1 via sub port z2+1 (mod k). By Lemma 4, the tag for Ln to get to

Ln−1 is z2+1 (mod k). By Lemma 5, z2 = s′n. Note that Cn+kn > r. Thus our algorithm

sets Fn = 1. Since our algorithm sets sn = s′n +Fn (mod k), clearly sn = z2 +1 (mod k).

Again, the connection of a GSEN ensures that if C`, 1 ≤ ` ≤ n− 1, is connected to C`−1

via sub port z2, then L` is connected to L`−1 via sub port z2 if L` = C` +
⌊

d
kn−`+1

⌋
and via

sub port z2+1 (mod k) if L` = C`+
⌊

d
kn−`+1

⌋−r. Thus by Lemma 4, the tag for L` to get to

L`−1 is z2 if L` = C` +
⌊

d
kn−`+1

⌋
and is z2 +1 (mod k) if L` = C` +

⌊
d

kn−`+1

⌋−r. By Lemma

5, z2 = s′n. In our algorithm, we set F` = 0 if C` + k` ≤ r (i.e., if L` = C` +
⌊

d
kn−`+1

⌋
), set

F` = 1 if C` + k` > r (i.e., if L` = C` +
⌊

d
kn−`+1

⌋− r) and set s` = s′` + F` (mod k). Thus

s` = z2 if L` = C` +
⌊

d
kn−`+1

⌋
and s` = z2 + 1 (mod k) if L` = C` +

⌊
d

kn−`+1

⌋ − r. Note

that 0 < d
kn+1 ≤ N ′−1

N ′ < 1. Thus L0 = C0. By Lemma 5, the tag for L0 to get to i is s′0.

Note that C0 + k0 ≤ r. Thus our algorithm sets F0 = 0 and set s0 = s′0 + F0 (mod k).

Thus s0 = s′0. We now have this lemma.

Theorem 9. If j < v(i), then j can get to i by using the backward control tag (s0s1 . . . sn);

if j ≥ v(i), then j can get to i by using the backward control tag (s′0s
′
1 . . . s′n). Moreover,

it takes O(n) time to compute v(i), (s0s1 . . . sn) and (s′0s
′
1 . . . s′n).
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Proof. It is obvious that it takes O(n) time to compute v(i), (s0s1 . . . sn) and (s′0s
′
1 . . . s′n).

This theorem now follows from Lemma 5, Lemma 6, Lemma 7 and Lemma 8.

The following is a one-to-one routing algorithm for the backward network of a bidi-

rectional GSEN.

ONE-TO-ONE.

Input: i on the left-hand side and j on the right-hand side of a bidirectional GSEN

(k, r, n + 1).

Output: The backward control tag for j to get to i.

1. Use BACKWARD-CONTROL-TAGS to derive v(i), (s0s1 . . . sn) and (s′0s
′
1 . . . s′n);

2. if j < v(i) then return (s0s1 . . . sn) else return (s′0s
′
1 . . . s′n);

It is obvious that algorithm ONE-TO-ONE takes O(n) time.

5 The routing table and the all-to-all routing

In this section, we will propose an algorithm to construct the routing table of the back-

ward network of a bidirectional GSEN. This algorithm is based on the one-to-one routing

algorithm proposed in the previous section and can be used for the all-to-all routing.

ROUTING-TABLE.

Input: A bidirectional GSEN(k, r, n + 1).

Output: Its routing table.

1. /* Recall the function all to one */

for i = 0 to N ′ − 1 do

run algorithm BACKWARD-CONTROL-TAGS for i and GSEN(k, r, n + 1);

endfor;

13



It is obvious that algorithm ROUTING-TABLE takes O(N ′n) time. In the appendix,

we list the computer output of the routing tables derived by algorithm ROUTING-TABLE

for N ′ = 18, 20, 22, . . . , 32. Note that in the table of N ′ = 32, each v(i) is zero, which

means we can get to every i by using only one tag. This result reflects the known result

that when the number of stages is exactly logk N ′, a shuffle-exchange network is identical

to the Omega network defined in [5] and its control tags depend only on the destination.

A Backward control tags for N ′ = 18, 20, . . . , 32

GSEN(2, 9, 5)
i s0s1s2s3s4s5 s′0s

′
1s
′
2s
′
3s
′
4s
′
5 v(i)

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 14
2 0 0 1 0 0 0 0 0 1 1 10
3 0 0 1 1 0 0 0 1 0 1 6
4 0 1 0 0 0 0 0 1 1 1 2
5 0 1 0 0 1 0 1 0 0 0 16
6 0 1 0 1 1 0 1 0 1 0 12
7 0 1 1 0 1 0 1 1 0 0 8
8 0 1 1 1 1 0 1 1 1 0 4
9 1 0 0 0 1 1 0 0 0 0 0

10 1 0 0 1 0 1 0 0 0 1 14
11 1 0 1 0 0 1 0 0 1 1 10
12 1 0 1 1 0 1 0 1 0 1 6
13 1 1 0 0 0 1 0 1 1 1 2
14 1 1 0 0 1 1 1 0 0 0 16
15 1 1 0 1 1 1 1 0 1 0 12
16 1 1 1 0 1 1 1 1 0 0 8
17 1 1 1 1 1 1 1 1 1 0 4

GSEN(2, 10, 5)
i s0s1s2s3s4s5 s′0s

′
1s
′
2s
′
3s
′
4s
′
5 v(i)

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 12
2 0 0 1 0 0 0 0 0 1 1 4
3 0 0 1 0 1 0 0 1 0 0 16
4 0 0 1 1 1 0 0 1 1 0 8
5 0 1 0 0 1 0 1 0 0 0 0
6 0 1 0 1 0 0 1 0 0 1 12
7 0 1 1 0 0 0 1 0 1 1 4
8 0 1 1 0 1 0 1 1 0 0 16
9 0 1 1 1 1 0 1 1 1 0 8

10 1 0 0 0 1 1 0 0 0 0 0
11 1 0 0 1 0 1 0 0 0 1 12
12 1 0 1 0 0 1 0 0 1 1 4
13 1 0 1 0 1 1 0 1 0 0 16
14 1 0 1 1 1 1 0 1 1 0 8
15 1 1 0 0 1 1 1 0 0 0 0
16 1 1 0 1 0 1 1 0 0 1 12
17 1 1 1 0 0 1 1 0 1 1 4
18 1 1 1 0 1 1 1 1 0 0 16
19 1 1 1 1 1 1 1 1 1 0 8
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GSEN(2, 11, 5)
i s0s1s2s3s4s5 s′0s

′
1s
′
2s
′
3s
′
4s
′
5 v(i)

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 10
2 0 0 0 1 1 0 0 0 1 0 20
3 0 0 1 0 1 0 0 1 0 0 8
4 0 0 1 1 0 0 0 1 0 1 18
5 0 1 0 0 0 0 0 1 1 1 6
6 0 1 0 0 1 0 1 0 0 0 16
7 0 1 0 1 1 0 1 0 1 0 4
8 0 1 1 0 0 0 1 0 1 1 14
9 0 1 1 1 0 0 1 1 0 1 2

10 0 1 1 1 1 0 1 1 1 0 12
11 1 0 0 0 1 1 0 0 0 0 0
12 1 0 0 1 0 1 0 0 0 1 10
13 1 0 0 1 1 1 0 0 1 0 20
14 1 0 1 0 1 1 0 1 0 0 8
15 1 0 1 1 0 1 0 1 0 1 18
16 1 1 0 0 0 1 0 1 1 1 6
17 1 1 0 0 1 1 1 0 0 0 16
18 1 1 0 1 1 1 1 0 1 0 4
19 1 1 1 0 0 1 1 0 1 1 14
20 1 1 1 1 0 1 1 1 0 1 2
21 1 1 1 1 1 1 1 1 1 0 12

GSEN(2, 12, 5)
i s0s1s2s3s4s5 s′0s

′
1s
′
2s
′
3s
′
4s
′
5 v(i)

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 8
2 0 0 0 1 1 0 0 0 1 0 16
3 0 0 1 0 1 0 0 1 0 0 0
4 0 0 1 1 0 0 0 1 0 1 8
5 0 0 1 1 1 0 0 1 1 0 16
6 0 1 0 0 1 0 1 0 0 0 0
7 0 1 0 1 0 0 1 0 0 1 8
8 0 1 0 1 1 0 1 0 1 0 16
9 0 1 1 0 1 0 1 1 0 0 0

10 0 1 1 1 0 0 1 1 0 1 8
11 0 1 1 1 1 0 1 1 1 0 16
12 1 0 0 0 1 1 0 0 0 0 0
13 1 0 0 1 0 1 0 0 0 1 8
14 1 0 0 1 1 1 0 0 1 0 16
15 1 0 1 0 1 1 0 1 0 0 0
16 1 0 1 1 0 1 0 1 0 1 8
17 1 0 1 1 1 1 0 1 1 0 16
18 1 1 0 0 1 1 1 0 0 0 0
19 1 1 0 1 0 1 1 0 0 1 8
20 1 1 0 1 1 1 1 0 1 0 16
21 1 1 1 0 1 1 1 1 0 0 0
22 1 1 1 1 0 1 1 1 0 1 8
23 1 1 1 1 1 1 1 1 1 0 16
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GSEN(2, 13, 5)
i s0s1s2s3s4s5 s′0s

′
1s
′
2s
′
3s
′
4s
′
5 v(i)

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 6
2 0 0 0 1 1 0 0 0 1 0 12
3 0 0 1 0 0 0 0 0 1 1 18
4 0 0 1 0 1 0 0 1 0 0 24
5 0 0 1 1 1 0 0 1 1 0 4
6 0 1 0 0 0 0 0 1 1 1 10
7 0 1 0 0 1 0 1 0 0 0 16
8 0 1 0 1 0 0 1 0 0 1 22
9 0 1 1 0 0 0 1 0 1 1 2

10 0 1 1 0 1 0 1 1 0 0 8
11 0 1 1 1 0 0 1 1 0 1 14
12 0 1 1 1 1 0 1 1 1 0 20
13 1 0 0 0 1 1 0 0 0 0 0
14 1 0 0 1 0 1 0 0 0 1 6
15 1 0 0 1 1 1 0 0 1 0 12
16 1 0 1 0 0 1 0 0 1 1 18
17 1 0 1 0 1 1 0 1 0 0 24
18 1 0 1 1 1 1 0 1 1 0 4
19 1 1 0 0 0 1 0 1 1 1 10
20 1 1 0 0 1 1 1 0 0 0 16
21 1 1 0 1 0 1 1 0 0 1 22
22 1 1 1 0 0 1 1 0 1 1 2
23 1 1 1 0 1 1 1 1 0 0 8
24 1 1 1 1 0 1 1 1 0 1 14
25 1 1 1 1 1 1 1 1 1 0 20

GSEN(2, 14, 5)
i s0s1s2s3s4s5 s′0s

′
1s
′
2s
′
3s
′
4s
′
5 v(i)

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 4
2 0 0 0 1 1 0 0 0 1 0 8
3 0 0 1 0 0 0 0 0 1 1 12
4 0 0 1 0 1 0 0 1 0 0 16
5 0 0 1 1 0 0 0 1 0 1 20
6 0 0 1 1 1 0 0 1 1 0 24
7 0 1 0 0 1 0 1 0 0 0 0
8 0 1 0 1 0 0 1 0 0 1 4
9 0 1 0 1 1 0 1 0 1 0 8

10 0 1 1 0 0 0 1 0 1 1 12
11 0 1 1 0 1 0 1 1 0 0 16
12 0 1 1 1 0 0 1 1 0 1 20
13 0 1 1 1 1 0 1 1 1 0 24
14 1 0 0 0 1 1 0 0 0 0 0
15 1 0 0 1 0 1 0 0 0 1 4
16 1 0 0 1 1 1 0 0 1 0 8
17 1 0 1 0 0 1 0 0 1 1 12
18 1 0 1 0 1 1 0 1 0 0 16
19 1 0 1 1 0 1 0 1 0 1 20
20 1 0 1 1 1 1 0 1 1 0 24
21 1 1 0 0 1 1 1 0 0 0 0
22 1 1 0 1 0 1 1 0 0 1 4
23 1 1 0 1 1 1 1 0 1 0 8
24 1 1 1 0 0 1 1 0 1 1 12
25 1 1 1 0 1 1 1 1 0 0 16
26 1 1 1 1 0 1 1 1 0 1 20
27 1 1 1 1 1 1 1 1 1 0 24
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GSEN(2, 15, 5)
i s0s1s2s3s4s5 s′0s

′
1s
′
2s
′
3s
′
4s
′
5 v(i)

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 2
2 0 0 0 1 1 0 0 0 1 0 4
3 0 0 1 0 0 0 0 0 1 1 6
4 0 0 1 0 1 0 0 1 0 0 8
5 0 0 1 1 0 0 0 1 0 1 10
6 0 0 1 1 1 0 0 1 1 0 12
7 0 1 0 0 0 0 0 1 1 1 14
8 0 1 0 0 1 0 1 0 0 0 16
9 0 1 0 1 0 0 1 0 0 1 18

10 0 1 0 1 1 0 1 0 1 0 20
11 0 1 1 0 0 0 1 0 1 1 22
12 0 1 1 0 1 0 1 1 0 0 24
13 0 1 1 1 0 0 1 1 0 1 26
14 0 1 1 1 1 0 1 1 1 0 28
15 1 0 0 0 1 1 0 0 0 0 0
16 1 0 0 1 0 1 0 0 0 1 2
17 1 0 0 1 1 1 0 0 1 0 4
18 1 0 1 0 0 1 0 0 1 1 6
19 1 0 1 0 1 1 0 1 0 0 8
20 1 0 1 1 0 1 0 1 0 1 10
21 1 0 1 1 1 1 0 1 1 0 12
22 1 1 0 0 0 1 0 1 1 1 14
23 1 1 0 0 1 1 1 0 0 0 16
24 1 1 0 1 0 1 1 0 0 1 18
25 1 1 0 1 1 1 1 0 1 0 20
26 1 1 1 0 0 1 1 0 1 1 22
27 1 1 1 0 1 1 1 1 0 0 24
28 1 1 1 1 0 1 1 1 0 1 26
29 1 1 1 1 1 1 1 1 1 0 28

GSEN(2, 16, 5)
i s0s1s2s3s4s5s6 s′0s

′
1s
′
2s
′
3s
′
4s
′
5s
′
6 v(i)

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0
2 0 0 0 1 0 0 0 0 1 0 0
3 0 0 0 1 1 0 0 0 1 1 0
4 0 0 1 0 0 0 0 1 0 0 0
5 0 0 1 0 1 0 0 1 0 1 0
6 0 0 1 1 0 0 0 1 1 0 0
7 0 0 1 1 1 0 0 1 1 1 0
8 0 1 0 0 0 0 1 0 0 0 0
9 0 1 0 0 1 0 1 0 0 1 0

10 0 1 0 1 0 0 1 0 1 0 0
11 0 1 0 1 1 0 1 0 1 1 0
12 0 1 1 0 0 0 1 1 0 0 0
13 0 1 1 0 1 0 1 1 0 1 0
14 0 1 1 1 0 0 1 1 1 0 0
15 0 1 1 1 1 0 1 1 1 1 0
16 1 0 0 0 0 1 0 0 0 0 0
17 1 0 0 0 1 1 0 0 0 1 0
18 1 0 0 1 0 1 0 0 1 0 0
19 1 0 0 1 1 1 0 0 1 1 0
20 1 0 1 0 0 1 0 1 0 0 0
21 1 0 1 0 1 1 0 1 0 1 0
22 1 0 1 1 0 1 0 1 1 0 0
23 1 0 1 1 1 1 0 1 1 1 0
24 1 1 0 0 0 1 1 0 0 0 0
25 1 1 0 0 1 1 1 0 0 1 0
26 1 1 0 1 0 1 1 0 1 0 0
27 1 1 0 1 1 1 1 0 1 1 0
28 1 1 1 0 0 1 1 1 0 0 0
29 1 1 1 0 1 1 1 1 0 1 0
30 1 1 1 1 0 1 1 1 1 0 0
31 1 1 1 1 1 1 1 1 1 1 0
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