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Node-pancyclicity and Edge-pancyclicity
of Hypercube Variants

Student: Ken S. Hu Advisor: Chiuyuan Chen
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National Chiao Tung University

Abstract

Twisted cubes, crossed cubes, Möbius cubes, and locally twisted cubes are
some of the widely studied hypercube variants. The 4-pancyclicity of twisted
cubes, crossed cubes, Möbius cubes, locally twisted cubes and the 4-edge-
pancyclicity of crossed cubes are proven in [2, 1, 5, 10, 6] respectively. It
should be noted that 4-edge-pancyclicity implies 4-node-pancyclicity which
further implies 4-pancyclicity. In this paper, we outline an approach to prove
the 4-edge-pancyclicity of some hypercube variants and we prove in particular
that Möbius cubes and locally twisted cubes are 4-edge-pancyclic.

Keywords: Interconnection network; Hypercube; Crossed cube; Möbius cube; Lo-
cally twisted cube; Pancyclicity.
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1 Introduction

Interconnection networks are essential for parallel and distributed computing. The hy-

percube is one of the most popular interconnection networks since it has simple structure

and is easy to implement. An interconnection network can be represented by a graph

G = (V, E), where V is the set of nodes and E is the set of edges of the network. In this

paper, we will use graphs and interconnection networks interchangeably.

It has been shown that hypercubes do not achieve the smallest possible diameter for

its resources. Therefore, many variants were proposed. The most well-known variants

are twisted cubes [7], crossed cubes [4], and Möbius cubes [3]; they have diameters about

half of that of a hypercube. Generally, the drawback of these variants is that the labels

of some neighboring nodes may differ in as many as n/2 bits, where n is the dimension of

these hypercube variants (see [8] for details). For example, in the 10-dimensional crossed

cube, nodes 0001010101 and 1011111111 are adjacent and they differ in 5 bits. Based on

this observation Yang et al. [8] proposed the locally twisted cubes with diameters about

half of that of a hypercube, of which the labels of any two neighboring nodes differ in at

most two successive bits.

The following terminologies will be used throughout this paper. An `-cycle is a cycle

of length `. Let G = (V,E) be a graph and L ≤ |V | be a positive integer. G is L-pancyclic

if for every integer ` ∈ {L,L + 1, . . . , |V |}, G contains an `-cycle. G is L-node-pancyclic

if for every node x ∈ V and every integer ` ∈ {L,L+1, . . . , |V |}, G contains an `-cycle C

such that x is in C. G is L-edge-pancyclic if for every edge (x, y) ∈ E and every integer

` ∈ {L,L + 1, . . . , |V |}, G contains an `-cycle C such that (x, y) is in C.

One way to evaluate an interconnection network (a host graph) is to see how well other

existing networks (the guest graphs) can be embedded into it. The graph embedding

problem asks if a guest graph is a subgraph of a host graph. An important benefit of

graph embedding is that we can apply existing algorithms for the guest graphs to the host

graph. Cycles (i.e., rings) and trees are commonly used guest graphs. This paper will
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discuss the cycle-embedding properties of Möbius cubes and locally twisted cubes (these

cubes will be defined later).

Twisted cubes, crossed cubes, Möbius cubes, and locally twisted cubes are superior

to hypercubes when the cycle-embedding capability is considered [1, 2, 5, 6, 9, 10]. The

4-pancyclicity of twisted cubes, crossed cubes, Möbius cubes, and locally twisted cubes

are proven in [2, 1, 5, 10], respectively. Recently, Fan et al. [6] proved that crossed cubes

are not only 4-node-pancyclic but also 4-edge-pancyclic. It should be noted that 4-edge-

pancyclicity implies 4-node-pancyclicity (thus the proof in [6] for the 4-node-pancyclicity

of crossed cubes is actually redundant) which further implies 4-pancyclic.

In this paper, we outline an approach to prove the 4-edge-pancyclicity of some hyper-

cube variants and we prove in particular that Möbius cubes and locally twisted cubes are

4-edge-pancyclic. We also show how to use our approach to prove that crossed cubes are

4-edge-pancyclic.

This paper is organized as follows. In Section 2, we give some definitions and notations.

In Section 3, we outline an approach to prove 4-edge-pancyclicity. In Sections 4, 5, and 6,

we prove that locally twisted cubes, crossed cubes, and Möbius cubes are 4-edge-pancyclic.

The final section concludes this paper.

2 Preliminaries

Let G = (V, E) be a graph and let L ≤ |V |−1 be a positive integer. G is L-path-connected

if G contains a path of length L between any two distinct nodes. G is Hamiltonian-

connected if G is (|V | − 1)-path-connected.

The n-dimensional hypercube Qn is a graph with 2n nodes and n · (2n−1) edges such

that its nodes are n-tuples with entries in {0, 1} and its edges are the pairs of n-tuples

that differ in exactly one position. Thus Q1 is the complete graph with two nodes 0 and

1, and Qn (n ≥ 2) is built from two copies of Qn−1 as follows: Let k ∈ {0, 1} and let

kQn−1 denote the graph obtained by prefixing the label of each node of one copy of Qn−1
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with k; connect each node 0xn−1 . . . x2x1 of 0Qn−1 with the node 1xn−1 . . . x2x1 of 1Qn−1

by an edge.

We now define a generalization of Qn. The n-dimensional general cube GQn is defined

recursively as follows (see Figure 1). GQ1 is Q1, and GQn (n ≥ 2) is built from two

GQn−1’s (not necessarily identical) as follows: Let k ∈ {0, 1} and let kGQn−1 denote the

graph obtained by prefixing the label of each node of one of the two GQn−1’s with k; add

a perfect matching between 0GQn−1 and 1GQn−1, i.e., each node in 0GQn−1 is adjacent

to exactly one node in 1GQn−1.

…
...

1
0

n
GQ

1
1

n
GQ

a perfect

matching

n
GQ

Figure 1: The n-dimensional general cube GQn.

We assume conventionality of the node prefixing method kGQn−1 which will be used

repeatedly in the definitions of specific hypercube variants late in this paper unless oth-

erwise specified. We will see in the following sections that crossed cubes, Möbius cubes,

and locally twisted cubes are the examples of GQn. Note that the two GQn−1’s in GQn

are not necessarily identical. For instance, for crossed cubes and locally twisted cubes,

the two GQn−1’s are identical; but for Möbius cubes, they are not.

For clarity, let V (G) and E(G) denote the set of nodes and the set of edges of G,

respectively. We say that (x, y) is a matching edge in GQn if x ∈ V (0GQn−1), y ∈
V (1GQn−1), and x is matched with y. If (x, y) is a matching edge, then we write m(x)

for y and m(y) for x. We say that GQn has the 4-cycle property if for every matching

edge (x, y), there exists a matching edge (u, v) such that (x, u, v, y, x) form a 4-cycle in

3



GQn. We say that GQn has the 5-cycle property if for every matching edge (x, y), there

exist a matching edge (s, t) and a node r ∈ V (0GQn−1) such that (x, r, s, t, y, x) form a

5-cycle in GQn.

3 4-edge-pancyclicity of general cubes

In this section, we outline an approach to prove 4-edge-pancyclicity. We first give two

lemmas.

Lemma 1. For n ≥ 4, if both 0GQn−1 and 1GQn−1 are Hamiltonian-connected, then

GQn is Hamiltonian-connected.

Proof. Let x and y be two arbitrary distinct nodes of GQn. Then there are four cases.

Case 1. x ∈ V (0GQn−1) and y ∈ V (0GQn−1). Since 0GQn−1 is Hamiltonian-

connected, it has a Hamiltonian path (p1, p2, . . . , p2n−1) such that p1 = x and p2n−1 = y.

Since 1GQn−1 is Hamiltonian-connected, it has a Hamiltonian path (q1, q2, . . . , q2n−1) such

that q1 = m(p1) and q2n−1 = m(p2). Hence (x, q1, q2 . . ., q2n−1 , p2, p3, . . ., p2n−1−1, y) is a

Hamiltonian path between x and y in GQn.

Case 2. x ∈ V (1GQn−1) and y ∈ V (1GQn−1). The argument is similar to that of

Case 1.

Case 3. x ∈ V (0GQn−1) and y ∈ V (1GQn−1). Let z ∈ V (0GQn−1) such that z 6= x.

Since 0GQn−1 is Hamiltonian-connected, it has a Hamiltonian path (p1, p2, . . . , p2n−1) such

that p1 = x and p2n−1 = z. Since 1GQn−1 is Hamiltonian-connected, it has a Hamiltonian

path (q1, q2, . . . , q2n−1) such that q1 = m(z) and q2n−1 = y. Hence (x, p2, . . . , p2n−1 ,

q1, q2 . . . , q2n−1−1, y) is a Hamiltonian path between x and y in GQn.

Case 4. x ∈ V (1GQn−1) and y ∈ V (0GQn−1). The argument is similar to that of

Case 3.

Lemma 2. For n ≥ 4, if both 0GQn−1 and 1GQn−1 are Hamiltonian-connected and

(2n−1 − 2)-path-connected, then GQn is (2n − 2)-path-connected.
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Proof. Let x and y be two arbitrary distinct nodes of GQn. Then there are four cases.

Case 1. x ∈ V (0GQn−1) and y ∈ V (0GQn−1). Since 0GQn−1 is Hamiltonian-

connected, it has a Hamiltonian path (p1, p2, . . ., p2n−1) such that p1 = x and p2n−1 =

y. Since 1GQn−1 is (2n−1 − 2)-path-connected, it has a path (q1, q2, . . ., q2n−1−1) of

length 2n−1 − 2 such that q1 = m(p1) and q2n−1−1 = m(p2). Hence (x, q1, q2, . . . ,

q2n−1−1, p2, p3, . . . , p2n−1−1, y) is a path of length 2n − 2 between x and y in GQn.

Case 2. x ∈ V (1GQn−1) and y ∈ V (1GQn−1). The argument is similar to that of

Case 1.

Case 3. x ∈ V (0GQn−1) and y ∈ V (1GQn−1). Let z ∈ V (0GQn−1) such that z 6= x.

Since 0GQn−1 is Hamiltonian-connected, it has a Hamiltonian path (p1, p2, . . . , p2n−1) such

that p1 = x and p2n−1 = z. Since 1GQn−1 is (2n−1 − 2)-path-connected, it has a path

(q1, q2, . . . , q2n−1−1) of length 2n−1 − 2 such that q1 = m(z) and q2n−1−1 = y. Hence

(x, p2, . . . , p2n−1 , q1, q2 . . . , q2n−1−2, y) is a path of length 2n − 2 between x and y in GQn.

Case 4. x ∈ V (1GQn−1) and y ∈ V (0GQn−1). The argument is similar to that of

Case 3.

We now outline an approach to prove the 4-edge-pancyclicity of GQn.

Theorem 3. For n ≥ 4, if all the GQ3’s in GQn are 4-edge-pancyclic, Hamiltonian-

connected, and (23 − 2)-path-connected, and if GQn has both the 4-cycle and the 5-cycle

properties, then GQn is 4-edge-pancyclic.

Proof. This theorem follows from Lemma 1, Lemma 2, and the following claim.

Claim. For n ≥ 4, if both 0GQn−1 and 1GQn−1 are 4-edge-pancyclic, Hamiltonian-

connected, and (2n−1 − 2)-path-connected, and if GQn has both the 4-cycle property and

the 5-cycle property, then GQn is 4-edge-pancyclic.

We now prove the claim. Let (x, y) be an arbitrary edge of E(GQn) and let ` ∈
{4, 5, . . . , 2n}. There are four cases.

Case 1. x ∈ V (0GQn−1) and y ∈ V (0GQn−1). Then there are three subcases.
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Subcase 1.1. 4 ≤ ` ≤ 2n−1. Since 0GQn−1 is 4-edge-pancyclic, there exists an `-cycle

that contains (x, y) in 0GQn−1, hence in GQn.

Subcase 1.2. ` = 2n−1 +1. Let u = m(x) and v = m(y). Since 1GQn−1 is (2n−1−2)-

path-connected, it has a path (p1, p2, . . . , p2n−1−1) of length 2n−1− 2 such that p1 = v and

p2n−1−1 = u. Thus (x, y, p1, p2, . . . , p2n−1−1, x) is a (2n−1 + 1)-cycle in GQn that contains

(x, y).

Subcase 1.3. 2n−1 + 2 ≤ ` ≤ 2n. Since 0GQn−1 is 4-edge-pancyclic and (x, y) is an

edge in 0GQn−1, there exists a 2n−1-cycle C = (p1, p2, . . . , p2n−1 , p1) in 0GQn−1 such that

p1 = x and p2 = y. Note that 1 ≤ ` − 2n−1 − 1 ≤ 2n−1 − 1. Let (p1, p2, . . . , p`−2n−1) be

the path of length `− 2n−1− 1 in C. Set w = p`−2n−1 for easy writing. Let u = m(x) and

v = m(w). Then u, v ∈ V (1GQn−1). Since 1GQn−1 is Hamiltonian-connected, there is a

path (q1, q2, . . . , q2n−1) of length 2n−1− 1 in 1GQn−1 such that q1 = v and q2n−1 = u. Thus

(p1, p2, . . . , p`−2n−1 , q1, q2, . . . , q2n−1 , p1) is a cycle of length (`−2n−1−1)+1+(2n−1−1)+1 =

` in GQn that contains (x, y).

Case 2. x ∈ V (1GQn−1) and y ∈ V (1GQn−1). The argument is similar to that of

Case 1.

Case 3. x ∈ V (0GQn−1) and y ∈ V (1GQn−1). Then there are four subcases.

Subcase 3.1. ` ∈ {4, 5}. Since GQn has the 4-cycle property and the 5-cycle property,

there exists a cycle of length ` in GQn that contains (x, y).

Subcase 3.2. 6 ≤ ` ≤ 2n−1 + 2. Since GQn has the 4-cycle property, there exist

u ∈ V (0GQn−1) and v ∈ V (1GQn−1) such that (x, u, v, y, x) form a 4-cycle in GQn. Let

m = `− 2. Then 4 ≤ m ≤ 2n−1. Since 0GQn−1 is 4-edge-pancyclic, there exists a m-cycle

(p1, p2, . . . , pm, p1) in 0GQn−1 such that p1 = x and pm = u. Thus (x, p2, . . . , pm, v, y, x)

is an (m + 2)-cycle (i.e., an `-cycle) in GQn that contains (x, y).

Subcase 3.3. ` = 2n−1 + 3. Since GQn has the 4-cycle property, there exist u ∈
V (0GQn−1) and v ∈ V (1GQn−1) such that (x, u, v, y, x) form a 4-cycle in GQn. Since

0GQn−1 is 4-edge-pancyclic, there exists a (2n−1 − 1)-cycle (p1, p2, . . . , p2n−1−1, p1) in
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0GQn−1 such that p1 = x and p2n−1−1 = u. Since 1GQn−1 is 4-edge-pancyclic, there

exists a 4-cycle (q1, q2, q3, q4, q1) in 1GQn−1 such that q1 = v and q4 = y. Thus (p1, p2, . . . ,

p2n−1−1, q1, q2, q3, q4, p1) is a (2n−1 + 3)-cycle in GQn that contains (x, y).

Subcase 3.4. 2n−1 + 4 ≤ ` ≤ 2n. Since GQn has the 4-cycle property, there exist

u ∈ V (0GQn−1) and v ∈ V (1GQn−1) such that (x, u, v, y, x) form a 4-cycle in GQn. Since

0GQn−1 is 4-edge-pancyclic, there exists a 2n−1-cycle (p1, p2, . . . , p2n−1 , p1) in 0GQn−1 such

that p1 = x and p2n−1 = u. Let m = ` − 2n−1. Then 4 ≤ m ≤ 2n−1. Since 1GQn−1 is

4-edge-pancyclic, there exists a m-cycle (q1, q2, . . . , qm, q1) in 1GQn−1 such that q1 = v and

qm = y. Thus (p1, p2, . . . , p2n−1 , q1, q2, . . . , qm) is a cycle of length (2n−1−1)+(m−1)+2 =

m + 2n−1 = ` in GQn that contains (x, y).

Case 4. x ∈ V (1GQn−1) and y ∈ V (0GQn−1). The argument is similar to that of

Case 3.

4 Pancyclicity of locally twisted cubes

The purpose of this section is to use Theorem 3 to prove that locally twisted cubes are

4-edge-pancyclic.

The n-dimensional locally twisted cube LTQn is defined recursively as follow. LTQ1

is Q1, and LTQ2 is the graph consisting of four nodes labelled with 00, 01, 10, and

11, respectively, and connected by the four edges (00, 01) (00, 10), (01, 11), and (10,

11). LTQn (n ≥ 3) is built from two identical LTQn−1’s as follows: connect each node

0xn−1xn−2 . . . x1 of 0LTQn−1 with the node 1(xn−1+x1)xn−2 . . . x1 of 1LTQn−1 by an edge,

where ′+′ means the modulo 2 addition operation. See Figures 2 and 3 for examples.

Before going any further, we work out the adjacency relation of LTQn. For conve-

nience, xi denotes the complement of xi.

Lemma 4. For every x = xnxn−1 . . . x1 ∈ V (LTQn), the n nodes y1, y2, . . . , yn adjacent
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Figure 2: (a) LTQ3. (b) A symmetric drawing of LTQ3.
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1010

1101

1111 1100

1110

Figure 3: LTQ4.

to x are:

y1 = xnxn−1xn−2 . . . x3x2x1,

y2 = xnxn−1xn−2 . . . x3x2x1,

y3 = xnxn−1xn−2 . . . x3(x2 + x1)x1,
...

yn−1 = xnxn−1(xn−2 + x1) . . . x3x2x1,

yn = xn(xn−1 + x1)xn−2 . . . x3x2x1.

Proof. By the definition of LTQn, (x, yn) ∈ E(LTQn). (x, y1) ∈ E(LTQn) because

(x1, x1) ∈ E(LTQ1) and LTQn is built from LTQ1. Similarly, (x, y2) ∈ E(LTQn) because

(x2x1, x2x1) ∈ E(LTQ2) and LTQn is built from LTQ2. For 3 ≤ i ≤ n − 1, (x, yi) ∈
E(LTQn) because (xixi−1xi−2 . . . x1, xi(xi−1 + x1)xi−2 . . . x1) ∈ E(LTQi) and LTQn is

8



built from LTQi.

It is not difficult to see that: for each n, there is only one type of LTQn. Thus for

n ≥ 4, all the LTQ3’s in LTQn are identical. We are now ready to prove that locally

twisted cubes satisfy Theorem 3.

Theorem 5. LTQ3 is 4-edge-pancyclic, Hamiltonian-connected, and (23−2)-path-connected.

For n ≥ 4, LTQn has both the 4-cycle property and the 5-cycle property.

Proof. In [10], it was proven that LTQn is Hamiltonian-connected and (2n − 2)-path-

connected for n ≥ 3. Thus LTQ3 is Hamiltonian-connected and (23− 2)-path-connected.

We now prove that LTQ3 is 4-edge-pancyclic. Since LTQ3 is node-symmetric (see Fig-

ure 2(b)), it suffices to consider the edge (x, y) ∈ {(000, 001), (000, 010)}. The cycles of

lengths from 4 to 8 containing (000, 001) (underlined) are listed as follows:

length 4 : 000, 001, 011, 010, 000;

length 5 : 000, 001, 111, 101, 100, 000;

length 6 : 000, 001, 011, 010, 110, 100, 000;

length 7 : 000, 001, 011, 101, 111, 110, 100, 000;

length 8 : 000, 001, 111, 110, 010, 011, 101, 100, 000.

The cycles of lengths from 4 to 8 containing (000, 010) (underlined) are listed as follows:

length 4 : 000, 010, 110, 100, 000;

length 5 : 000, 010, 110, 111, 001, 000;

length 6 : 000, 010, 110, 111, 101, 100, 000;

length 7 : 000, 010, 110, 100, 101, 111, 001, 000;

length 8 : 000, 010, 110, 111, 001, 011, 101, 100, 000.

Thus LTQ3 is 4-edge-pancyclic.
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We now prove that LTQn has the 4-cycle property and the 5-cycle property. Let (x, y)

be an arbitrary matching edge of LTQn and let x = 0xn−1xn−2 . . . x2x1. By the definition

of LTQn, y = 1(xn−1 + x1)xn−2 . . . x2x1.

First consider the 4-cycle property. Let u = 0xn−1xn−2 . . . x2x1 and v = 1(xn−1 +

x1)xn−2 . . . x2x1. By Lemma 4, {(x, u), (u, v), (v, y)} ⊆ E(LTQn). Hence (x, u, v, y, x) is

a 4-cycle in LTQn that contains (x, y). Now consider the 5-cycle property. If x1 = 0,

let r = 0xn−1xn−2 . . . x20, s = 0xn−1xn−2 . . . x21, and t = 1xn−1xn−2 . . . x21; otherwise,

if x1 = 1, let r = 0xn−1xn−2 . . . x20, s = 0xn−1xn−2 . . . x20, and t = 1xn−1xn−2 . . . x20.

By Lemma 4, {(x, r), (r, s), (s, t), (t, y)} ⊆ E(LTQn). Hence (x, r, s, t, y, x) is a 5-cycle in

LTQn that contains (x, y).

It was proven in [10] that LTQn is 4-pancyclic. We now strengthen this result.

Theorem 6. For n ≥ 2, LTQn is 4-edge-pancyclic.

Proof. Clearly, this theorem holds when n = 2. By Theorem 5, this theorem holds

when n = 3. For n ≥ 4, this theorem follows from Theorem 3 and Theorem 5.

The following corollary is obvious.

Corollary 7. For n ≥ 2, LTQn is 4-node-pancyclic.

5 Pancyclicity of crossed cubes

We first give the definition of crossed cubes. Two binary strings x = x2x1 and y = y2y1

of length two are said to be pair related (denoted by x ∼ y) if and only if (x, y) ∈
{(00, 00), (10, 10), (01, 11), (11, 01)}. The n-dimensional crossed cube CQn is defined re-

cursively as follows. CQ1 is Q1, and CQ2 is the graph consisting of four nodes labelled

with 00, 01, 10 and 11, respectively, and connected by the four edges (00, 01) (00, 10), (01,

11), and (10, 11). CQn (n ≥ 3) is built from two identical CQn−1’s as follows: connect

each node 0xn−1 . . . x2x1 of 0CQn−1 with the node 1yn−1 . . . y2y1 of 1CQn−1 by an edge if

and only if
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(1) xn−1 = yn−1 if n is even, and

(2) x2ix2i−1 ∼ y2iy2i−1 for 1 ≤ i < dn/2e.

In [6], Fan et al. have proven that crossed cubes are 4-edge-pancyclic. We now show

how to use Theorem 3 to obtain this result. It is not difficult to see that: for each n,

there is only one type of CQn. Thus for n ≥ 4, all the CQ3’s in CQn are identical. We

are now ready to prove that crossed cubes satisfy Theorem 3.

Theorem 8. CQ3 is 4-edge-pancyclic, Hamiltonian-connected, and (23−1−2)-path-connected.

For n ≥ 4, CQn has both the 4-cycle property and the 5-cycle property.

Since the proof for each condition in this theorem can be found in [6], we omit the

proof. We have the following theorem.

Theorem 9. [6] For n ≥ 2, CQn is 4-edge-pancyclic.

Proof. Clearly, this theorem holds when n = 2. By Theorem 8, this theorem holds

when n = 3. For n ≥ 4, this theorem follows from Theorem 3 and Theorem 8.

By Theorem 9, it is obvious that for n ≥ 2, CQn is 4-node-pancyclic and 4-pancyclic.

6 Pancyclicity of Möbius cubes

In this section, we show how to use Theorem 3 to prove that Möbius cubes are 4-edge-

pancyclic.

The n-dimensional Möbius cube MQn is defined recursively as follow (see Figures 4

and 5):

(1) MQ1 is Q1.

(2) There are two types of MQ2: one is named 0-MQ2 and the other, 1-MQ2. 0-MQ2

is the graph consisting of four nodes labelled with 00, 01, 10, and 11, respectively,

and connected by the four edges (00, 01), (00, 10), (01, 11), and (10, 11). 1-MQ2
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has the same nodes as 0-MQ2, but connected by the four edges (00, 01) (00, 11),

(01, 10), and (10, 11).

(3) For n ≥ 3, there are two types of MQn: 0-MQn and 1-MQn. Both 0-MQn and

1-MQn are built from 0MQn−1 and 1MQn−1 with the MQn−1 in 0MQn−1 be-

ing 0-MQn−1 and the MQn−1 in 1MQn−1 being 1-MQn−1. In 0-MQn, each node

0xn−1xn−2 . . . x1 of 0MQn−1 is connected with the node 1xn−1xn−2 . . . x1 of 1MQn−1;

while in 1-MQn, each node 0xn−1xn−2 . . . x1 of 0MQn−1 is connected with the node

1xn−1xn−2 . . . x1 of 1MQn−1.

0001

0000 0010

0011

0101

0100 0110

0111

1001

1000 1010

1011

1101

1100 1110

1111

Figure 4: 0-MQ4.

0001

0000 0010

0011

0101

0100 0110

0111

1001

1000 1010

1011

1101

1100 1110

1111

Figure 5: 1-MQ4.

Before going any further, we work out the adjacency relation of MQn.
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Lemma 10. For every x = xnxn−1 . . . x2x1 ∈ V (MQn), the n nodes y1, y2, . . . , yn adjacent

to x are as follows. For 1 ≤ i ≤ n− 1,

yi =





xnxn−1 . . . xi+1xixi−1 . . . x1 if xi+1 = 0,

xnxn−1 . . . xi+1xixi−1 . . . x1 if xi+1 = 1.

For 0-MQn, yn = xnxn−1 . . . x1; for 1-MQn, yn = xnxn−1 . . . x1.

Proof. This lemma follows from the definition of Möbius cubes given in [3].

It is not difficult to see that: for each n, there are two types of MQn: the 0-MQn and

the 1-MQn. Thus for n ≥ 4, all the MQ3’s in MQn are either 0-MQ3 or 1-MQ3. We are

now ready to prove that Möbius cubes satisfy Theorem 3.

Theorem 11. Both the 0-MQ3 and the 1-MQ3 are 4-edge-pancyclic, Hamiltonian-connected,

and (23−2)-path-connected. For n ≥ 4, MQn has both the 4-cycle property and the 5-cycle

property.

Proof. From Figures 2, 6, and 7, both 0-MQ3 and 1-MQ3 are isomorphic to LTQ3.

Thus by Theorem 5, both 0-MQ3 and 1-MQ3 are 4-edge-pancyclic, Hamiltonian-connected,

and (23 − 2)-path-connected.

We now prove that MQn has the 4-cycle property and the 5-cycle property. Let (x, y)

be an arbitrary matching edge of MQn and let x = 0xn−1xn−2 . . . x2x1. By the definition

of MQn, y = 1xn−1xn−2 . . . x2x1 if this MQn is 0-MQn and y = 1xn−1xn−2 . . . x2x1 if this

MQn is 1-MQn.

First consider the 4-cycle property. Let u = xnxn−1 . . . x2x1. If this MQn is 0-

MQn, then let v = xnxn−1 . . . x2x1; otherwise, if this MQn is 1-MQn, then let v =

xnxn−1 . . . x2x1. By Lemma 10, {(x, u), (u, v), (v, y)} ⊆ E(MQn). Hence (x, u, v, y, x) is a

4-cycle in MQn that contains (x, y).

Now consider the 5-cycle property. Let s = 0xn−1xn−2 . . . x2x1 and choose r and t

according to the following rules:
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1. If this MQn is 0-MQn and xn−1 = 0, then let r = 0xn−1xn−2 . . . x2x1 and t =

1xn−1xn−2 . . . x2x1.

2. If this MQn is 0-MQn and xn−1 = 1, then let r = 0xn−1xn−2 . . . x2x1 and t =

1xn−1xn−2 . . . x2x1.

3. If this MQn is 1-MQn and xn−1 = 0, then let r = 0xn−1xn−2 . . . x2x1 and t =

1xn−1xn−2 . . . x2x1.

4. If this MQn is 1-MQn and xn−1 = 1, then let r = 0xn−1xn−2 . . . x2x1 and t =

1xn−1xn−2 . . . x2x1.

By Lemma 10, {(x, r), (r, s), (s, t), (t, y)} ⊆ E(MQn). Hence (x, r, s, t, y, x) is a 5-cycle in

MQn that contains (x, y).

001

000 010

011

101

100 110

111

001

000 010

011

101

100 110

111

(a) (b)

Figure 6: (a) 0-MQ3. (b) 1-MQ3.

It was proven in [5] that MQn is 4-pancyclic. We now strengthen this result.

Theorem 12. For n ≥ 2, MQn is 4-edge-pancyclic.

Proof. Clearly, this theorem holds when n = 2. By Theorem 11, this theorem holds

when n = 3. For n ≥ 4, this theorem follows from Theorem 3 and Theorem 11.

The following corollary is obvious.

Corollary 13. For n ≥ 2, MQn is 4-node-pancyclic.
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011101
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100

Figure 7: (a) A symmetric drawing of 0-MQ3. (b) A symmetric drawing of 1-MQ3.

7 Concluding remarks

In this paper, we outline an approach to prove the 4-edge-pancyclicity (hence 4-node-

pancyclicity and 4-pancyclicity) of some hypercube variants. We prove in particular that

locally twisted cubes and Möbius cubes are 4-edge-pancyclic. We also show how to use

our approach to prove the 4-edge-pancyclicity of crossed cubes. It remains open whether

twisted cubes are 4-node-pancyclic and 4-edge-pancyclic. We now summarize known

results on the pancyclicity properties of various hypercube variants in Table 1 (in this

table, “pan” means pancyclic and “loc twisted” means locally twisted).

Table 1: Pancyclicity of hypercube variations.

cubes 4-pan 4-node-pan 4-edge-pan

twisted [2] unknown unknown

crossed [1] [6] [6]

Möbius [5] this paper this paper

loc twisted [10] this paper this paper
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