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ABSTRACT

The ‘accurate calculation about properties of many-electron atomic system may be
performed by numericalmethod in recent few decades due to the development of density
functional theory and computer. The aim of the present research was to perform Kohn-Sham
(KS) calculations in ground state of atomic system and investigate the accuracy of the KS
calculations with optimized effective potential (OEP) approximated by Krieger-Li-lafrate
(KLI) procedure to correct the self-interaction. Based on the calculation of ground state,
simulating dynamics of atomic system in intense field is the other aim. Generalized
pseudo-spectral (GPS) was the useful method to numerically solve KS equation to find KS
orbitals and Poisson’s equation to find Hartree potential. For time-dependent calculations,
spilt operator method was used to deal with the time operators. In the results section, we first
obtained the total energies and their components from the KS calculations for atoms Z=1-4
with various exchange-correlation functionals and compared them with other works to make
sure our calculation is reliable. Next, we performed the KS calculations with exchange-only
functional and OEP approximated by KLI procedure, and we displayed the accuracy of total
energies and ionization energies without self-interaction. Finally, we simulated the dynamics
of a hydrogen atom in the laser field and obtained the high-order harmonic generation (HHG)

spectra.
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Chapter 1

Intorduction

The fundamental works of DFT are proposed by Hohenberg and Kohn (1964) and Kohn
and - Sham (1965). For decades in development, DFT has become an efficient-way to
deal with the many-electron problem. The atomic system in stationary state has finite
number of electrons and fixed configuration in stationary state. DFT is very suitable
for exploring the properties of atom. We first aim to calculate the total energies and
the exchange-correlation energies of neutral-atoms by Kohn-Sham (KS) calculation with
different exchange-correlation functionals. Comparing with other works (Davidson et-al:;
1991; Kurth et al., 1999), it helps to establish the reliable KS calculation.

The exactly exchange-correlation functional is not yet known, so the approximation
of ‘exchange-correlation energy functionals is always one of the notable issues in.DFT.
The local spin-density approximation (LSDA) is widely employed. However; it has self-
interaction such that the long-range behavior is not correct. The one of subjects in the
present research is the correction to the self-interaction by the optimized effective potential
(OEP) method and Krieger-Li-Tafrate (KLI) approximation(Krieger et al., 1992a). Based
on the reliable KS ‘calculation, we can establish the advanced techniques, OEP method
and KLI approximation, and carry out the correctly total energies and highest occupied
orbital energies for atomic system.

When an atomic or molecule system in intense field, the electronic response is highly
non-linear. The non-linear process displays many interesting phenomena and applications.
One consequence of them is the high-order harmonic generation (HHG) which converts
the frequency of intense field into many integer multiples of the frequency. HHG spectra

generally consist of a sharp decline, a plateau in which the harmonic intensity varies



weakly, and a sharp cut-off (see Figure 4.2.3). The maximum energy of harmonic photon

is given by the cut-off law (Krause et al., 1992).
Eeou = Er+3.170, (1.0.1)

where E; is ionization energy, and U, is the pondermotive energy. The high-order har-

monic generation (HHG) is established 0 est way to produce ultrashort

coherent light (Midorikawa s-wmu.,“..\m' ith a theoretical aspect. In
the present. re 7 is the simula [ ] a hydrogen atom in

the inte ] d nation to find the
ts. The



Chapter 2
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(2.1.1)

on, x; are specific grids called Gauss nodes or Gaus-

where w(z) is the weighti
sian grids, and W; are the weights on the Gaussian grids. When the interval [a, b] and
weighting function w(z) are given, the W; and z; are determined.

There are many typical forms for the interval [a, b] and weighting function w(x) derived
from different orthogonal polynomials in (2.1.1). For a example, the interval [—1,1] and
weighting function 1/4/1 — 22 in common use are derived from Chebyshev polynomials of
the first kind.



2.1.2 Gaussian Grids and Weights

We only chose the [a,b] and w(x) based on the Legendre polynomials throughout the
present research. For Legendre polynomials, the valid interval is [—1,1]. The weighting

function w(zx) is a constant as follow

(2.1.2)

In practice, the u ion for the integral
function. Wi 0 v(z), there are three

culation.

unique
degree N.
\.0.4),

2.1.5)

The doma oTid > pola ole'in spherical
coordinate

The other set e T00 e fi endre polynomial Py (x), z =
cos @, with degree N. The ally caleulated by recurrence relations,
(A.0.4) and (A.0.5) and Newton’s method. In addition, it includes the end points of

interval [—1, 1]. The roots and end points form the collocation points,
x; €{xog=—1,21,29,..., x5y 1,25 = 1} (2.1.6)

where xy and xy are end points, and z1,--- ,xx_1 are the roots of P} (z). In this thesis,

the set (2.1.6) is called Gauss-Legendre-Lobatto grids, abbreviated to GLL grids.
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Their distribution is the same as GL grid. The relation between the polynomial degree

N and the number of GLL grids N{y,, is
Ni, = N+ 1. (2.1.7)

The weights W; for GLL grids are (Abramowitz and Stegun, 1972, p.888)

(2.1.8)

t of GLL grids was
ding the end

Because of the “' 0 )
used more ofte , LL grids in actual calculat

ion.

d algebraic
mapping i accurate than

exponential

(2.1.11)
where o and 3 are constants to determine the boundaries, 7,,;, and r,,4,. With x = —1,
r(—1) is the boundary 7,
B
min = L : 2.1.12
r Tt a ( )
With x = 1, 7(1) is the boundary 7,4,
2
Tmaz = L i ﬂ (2113)
Q@



When a = 8 = 0, the interval [—1,1] can be map to the interval [0, co].
The values of two constants o and § in (2.1.11) should be noted. The constant 8 may
not be used and let itself be zero.
f=0 (2.1.14)
The other constant « should be added and let itself be non-zero to avoid divergence of

r(z) at the last GLL point;#(1). (2

e given 3 are redefined as

(2.1.15)

(2.1.16)

(2.1.17)

/, ant L in m i L ength
ffects t tribut 3 3 - '

. Figure

with var

Figure 2.1.1: Influence of various length scale L by mapping function on grid-point dis-

tribution



L =1 does not change the distribution. The distribution shows that the most grids
are close to the origin, » = 0, and very dense near the origin, » = 0. It can not correctly
describe the shape of a function on the middle or far grids, and it may lead to inaccuracy
calculation when L = 1. On increase of L, the influence of L on the distribution decreases

gradually, and the distribution is changed a little. When L is over a value, the grids start

to approach to the 7,,4..

In practice, thedength scale 4 der the variatio nction. With the adapted

d : ' : \ tions well. In the
st functions are the wave functions in s y state. The wave

present resea /- 0
ons oscillate near the nucleus T'maz/ 10

length scale

the



2.2 Generalized Pseudo-Spectral Method (GPS)

Generalized pseudo-spectral method (GPS) is to solve the ordinary differential equations
(ODE) or partial differential equations (PDE). GPS uses a pseudo-spectral basis which is
constructed by orthogonal polynomials to represent the functions in a differential equation
on Gaussian grids. By GPS, ODE becomes anintegration or eigenvalue problem. On the
Gaussian grids and pseudo-spectral basis, it is easy to deal with the integration and
eigenvalue problem. GPS plays-a key role in the present research. This section and the

next two sections provide the principles and its applications.

2.2.1 Polynomial Interpolation and Cardinal Functions

Polynomial interpolation-is-one of interpolations methods. It is the generalization of linear
interpolation which ‘issthe'simplest interpolation. The Lagrange interpolation is one of
algorithms to realize-polynomial interpolation and better than other algorithms in time
complexity.

The Lagrange interpolation is known that‘a unknown function f(r) with some given
points x; is approximated by a polynomial p(«). In general, if there are N + 1 given
points, the unknown function f() is fitted by a degree-N polynomial py(z) as follow

N

f@)~pn(@) =D flai)g(x) (2:2.1)

i=0
where g;(x) are cardinal functions. With these given points @, the cardinal functions are

defined by

N
r — [L’j
i = . 2.2.2
gi(x) H P (2.2.2)
7=0
J#i

In definition, it must satisfy following property,

The Lagrange interpolation with the given cardinal functions is also called cardinal
expansion or expansion in cardinal functions. The cardinal functions defined by

orthogonal polynomials form the pseudo-spectral basis.



2.2.2 Cardinal Functions for Orthogonal Polynomials

By GLL grids and Legendre polynomials, define the cardinal functions g;(z) as follow
(Canuto et al., 1988, p.64)

1 (1 — 2?)Py(x)

.’L'—.'I)'j

(2.2.4)

Following paragraphs she (2.2.4) have the property (2.2.3).
When z =

(2.2.5)

O

are not z

(2.2.10)

Combine two satisfy the property

(2.2.3).

2.2.3 Derivatives of Cardinal Functions

The cardinal expansion lets the operators in differential equation work on the cardinal
functions to represent the operators in discrete variables. For the cardinal functions
(2.2.4), its first and second derivatives which we applied in practice are analysed (Wang

and Yan, 2012) and summarized (Telnov and Chu, 1999, appendix) in this subsection.

9



I From definition (2.2.4),
N(N +1)Py(2;)(z — 2;)g;(x) = —(1 — 2%) Py (). (2.2.11)

Differentiate both sides with respect to x.

d

N(N +1)Pn(xj)gj(x) + N(N + 1) Py(z; —@[(

1—2H) Py (2)] (2.2.12)

Replace [(1 — 22) Pie(z)] by (A.C

N(N + (1) V(N +1)Py(z;)(x — ;)

nt N(N +1)

I N\Lg)Yg\

um_'!_'l.-
L N\Lg]Yq\

d*g;(x;)

: —dgjfj) + Py (z;)(2; — ;) (22.18)

(z; o, and Py (x;) is not zero
(2.2.19)
IIT When z = z; = x; = v = —1 on GLL grids, from (2.2.17),
dg;(—1) d*g;(-1)
2Py (—1)—2—L + Py(—1)(—1+1)—2L——= = Py(—1 2.2.2
(DD L p e TEE S pen) o)

The second term is zero, and the Py(41) and P} (£1) are given by (A.0.1) and (A.0.2)

in Appendix A.
N(N +1)

o(~1)V T 4o (pyva >

2.2.21
I (2.2.21)

10



Rearrange the equation.

=— 2.2.22
dz 4 ( )
When o = z; = x; = xy = 1 on GLL grids, by the same way,
dg, N(N +1
gilew) _ NIV +1) (2.2.23)

1

(

Following equation sum 19), (2.2.22), and (2.2.23),

of the first deriva of the

Rearrange the eq

gi (4 P
i I m A 'ﬁ (2.2.28)
Ui J Nty

IT Differentiate both sides of (2.2.17) with respect to x.

d*g; d®g;
3Py (z) = (f) +(z— xj)PN(xj)L(f) = Ply(x) (2.2.29)

dx dz

When = = z; = ; on GLL grids, z; = z; # %o, and z; = z; # zn,
&g (z; dg:(z;

3Py (o) L0 (P TG ) (2.2.30)

dz? dx3

11



The second term is zero because of its coefficient, (x; —z;) = 0. With the relation (A.0.10)

in Appendix A,

Pyey) | o NN+ 1)Pue;)

3Pn(z; 0= 2.2.31
N(mJ) dz2 + (LL'?— 1) ( )
Rearrange the equation.
d*g;(x; N (1 Py(z; N(N +1
g](x]) + J o ( +2) (2‘2.32)
g Wl AT pely
Following equation ) the formulae, (2.2 . and remaining formu-

lae that wedid

N, N)

sctral methods. T

(200 d Canuto et al. (2007), about spectral method

ions, Peyn

(2.2.24) poi ‘ ial. Assume that f(r(z))
is a functic 1aps from the r domain to the x dema alk e derivative with
respect to r. \-/u

YT af (r(z,
p o (2.2.35)

Expand f(z) in the cardinal functions (2.2.4).

SOED_ 1) -
Discretize x on GLL grids, = = x;.
df (r(z:)) 1 dg;(w:)
i T T 2w @) (2.2.37)



Equation (2.2.37) is a matrix-vector product. With all GLL grids, x; and x;, the g}(x;)
with the coefficient [r/(z;)]~! form a (N 4+ 1) x (N + 1) matrix D. The element D;; of the

matrix D is

1 odg(wm) 1, Py(w)
Dij r'(z;) dx r’(wi)d”PN(xj) (22.38)

where d; is given by (2.2.25). If f(r

;)) is given, the matrix-vector product of D;; and

f(r(z;)) can directly give de : ;)) with respect to r without other tech-

niques. The work of D D is called differential

matrix.

IS occur in

1. (1995)

The off-diagonal elements follo original de on. The diagonal elements (2.2.42)

eliminate the round-off errors ¢ & g elements. The differential matrix with

the correction is denoted D"

For an example of which derivative is analysis and easy to calculate,

f(r(x)) = exp(—r(x)). (2.2.43)

We numerically calculated its first and second derivative with respect to r by the differ-

ential matrix D.

13



By the mapping function (2.1.15) with L = 20, the valid interval of r is [0,200].
21 GLL grids are used in the numerical calculation, and 21 derivatives are numerically
calculated by method 1 and method 2. For the numerical differential, the method 1 is
the matrix-vector product of the differential matrix D and f, and the method 2 is the
matrix-vector product of the differential matrix D" and f. The second derivatives are
numerically calculated by the matrix-vector product again. The relative errors of the first
derivative f’ and second derivatives f” on 21 GLL grids are represented in Table 2.2.1. It

is suitable to remark some properties of the differential matrix and GPS.

Table 2.2.1: Relative errors of the first derivatives and second derivatives numerically

calculated by method 1 and method 2 on 21 GLL grids.
Method 1 Method 2

i r(z;) f(r)=e7"
f/ f// f/ f//
0 000  5.00[-09] = 1.06-07] = '5.00[=09]  L06[-07  1.00[+00]
1 016 —228[-09] & 4.55(-09] —2.28(-09]  4.55[-09] - 8.52[—01]
2 | 054 22709 -—481=09] 227[-09] —4.81[-09]  5.82[-01]
3 116 -3.01[-09]  7.07[-09] 30109 < 7.07-09] 3.13[-01]
4 204  493[-09] —140[-08]  4.93[-09] —1.40[—08]  1.30[—01]
5 323 -945[-09]  3.80[-08] —9.45-09]  3.80[—08]  3.95[—02]
6 478  1.64[-08] —1.49[-07]  1.64[-08] —1.49[—07]  8.42[—03]
7 676  554[-08]  9.02[-07]  554[-08]  9.02[-07]  1.16(-03]
8 920 -243[-06] -9.45[-06] -2.43[-06] -9.45[-06]  9.19[<05]
9 1253 9.00[-05]  198[-04] 9.09[-05]  1.98-04]  3.63[-06]
10 16.67 | —6.53-03] <1.01[-02}" —6.53[-03] —1.01(-02]  5.78]-08]
11 2202 1.35[+00) 1.69[+00]  1.35[+00]  1.69[+00]  2.74[-10]
12 2000 —1.27403] —130[+03] —1.27[+03] —1.39[+03]  2.55(-13]
13 /3821 = 1003[+07] <1.03[+07]  1.03[+07]  1.03[+07]  2.54[-17]
14 | 5049 < —1.67[+12}  —1.59[+12} —L67[+12} —159[+12]  1.18[—22]
15 6697  1.70[+19]  1.50[+19]  1.70[+19]  1.59[+19]  8.27[—30]
16 ) 88.91 -404[+28] —3.74[+28] —4904[428)(—3.74[F28]  2.43[-39]
17 11720  5.51[440]  5.00[+40]  551[+40)w 5.09[440]  1.26[—51]
18 | 150.53 —1126[+55] —1.16[+55] —126[455=1.16[=E55]  4.24[466]
19 118237 7.98(+68]  7.39[+68]  7.98[+68]  7.39[168]  6.30[—80]
20, 200.00 « —7.60[+76] —5.59[+76] —7.60[+76] —5.59[+76]  138[-&7]

The relative errors on the far grids are huge. When r is large, the tiny values are hard
to be described by the pseudo-spectral basis. It-does not affect the numerical calculation
because the order of magnitude is too small. If the casesis that exp(—r) fast decay when
r increase, the values on the grids near the point, » = 0, are leading terms, and the values
on the grids far from the point, » = 0, can be ignored.

As listed in Table 2.2.1, the first derivatives f’ and second derivatives f” numerically
calculated by the method 1 and 2 are almost identical to each other. It is evident that the
accuracy of f” is less than the accuracy of f’ especially at the point r(xg). The round-off

errors occurring near the boundary are more than in the middle as same as the result

14



of Bayliss et al. (1995). The correction to round-off errors on the less grids is not easily
obvious in Table 2.2.1.

To show the efficacy of the technique for reducing the round-off errors, we present the
relative errors of the first derivative f’ and second derivative f” numerical calculated by
method 1 and method 2 at the point 7(zy), r(x¢) = 0, of various number of GLL grids in
Table 2.2.2. We used the mapping function (2.1.15) with length scale L = 20 to map r
domain [0,200] to@ domain [—1, 1] in the calculation for Table 2:2.2. The method 1 and
method 2 are the same as the method 1 and method 2 in Table 2:2.1. The exact values
of f" and f" at the point r(z() are —1 and 1.

Table 2.2.2: Relative errors of the first and second derivatives individually evaluated by

method 1'and method 2 at the first point r(x¢) = 0 of various numbers of GLL grid.

Method 1 Method 2
f/ f// fl f//
21 5.00[—09 1.06[—07]  5.00(—09]  1.06[—07

] = ]

51  8.49[—13]  1.13[-10] —1.79—14] —1.05[—13]
103 9.55[—14] —2.85[—10] —1.82[—14] —3.21[—11]
] - ]
] - ]

Nearr

203 4.21[-10 6.16[—07]  1.43[-13] —7.68[—11
403 —2.02[—09] —1.19[-05] —2.91[-13] —2.34]—09

As listed in Table 2.2.2, the relative errors of f" and f” evaluated by method 1 increase
considerably from Ngpp = 51to Nggp = 403 by 4 — 5 orders of magnitude. The increase
in relative errors indicates that the results have more the round-off error when more grids
are used. The [ evaluated by method 1 only has 4 significant figures behind the decimal
point if we use 403 GLL grids.

By method 2, the first derivatives f’ have about 12 — 13 significant figures behind the
decimal points They almost arrive the maximum accuracy of a double-precision number in
programming. The method 2 also reduce the relative errors of f” significantly while they
could not arrive the maximum' precision of double-precision number. The f” evaluated
by method 2 with 403 grids only remain 8 significant figures behind decimal point, so the
number of grid should be adequate. On the whole, the technique offered by Bayliss et al.

(1995) has beneficial effect on reducing the round-off errors.

15



2.3 Application of GPS to Schrodinger Equation

The time-independent Schrédinger equation, which is abbreviated to SE, reads

A~

Hy(r) = —;—mv%(r) + Vap(r) = Ev(r) (SI). (2.3.1)

Suppose the external potential V' only depends on radius r in spherical coordinates. By
separation of variables and variable change, u(r) = rR(r), the radial equation in atomic
unit is

1

(1+1)
e reaGhl

2r2

By the‘expansion in spherical harmonics, we only solved the radial equation.

+ V (r)|ulr) = Eu(r). (2.3.2)

The first application of GPS is a solver for Schrédinger equation. In this section,
remove the undesirable feature due to the non-linear mapping at first, and construct the
Hamiltonian matrix by-GPS=The technique to symmetrize the Hamiltonian matrix is also

introduced in this seetion:~We-solved the SE of a hydrogen atom in the last subsection.

2.3.1 Radial Equation Represented in x Domain

For the application of GPS, discretize u(r) on_the GLL grids by the mapping function
(2.1.15). The non-linear mapping of the second derivative of u(r(z)) with respect to r
leads to the first derivative-of u(r(a)) with respect to & occurring in the radial equa-
tion. The elimination of the undesirable first derivative with respect to x is necessary for
symmetrizing the Hamiltonian matrix. This subsection represents how to eliminate the
redundant derivative.
Mapping «(r) from 7 domain to x domain, the first derivative of u(r) with respect to

ris

diiu(r(x)) = Z—f%u(r(x)) — %dixu(r(x)) (2.3.3)
Take a derivative of the terms on both sides with respect to r again.

2 " 2

Tu(r{e) S e @) (23.4)

With (2.3.4), the radial equation (2.3.2) becomes

1" d & I(1+1)
W[_F% @]U(T@))+[ 52

+ V(r)u(r(z)) = Eu(r(z)). (2.3.5)

To eliminate the first derivative, the variable change makes

dr(x)

u(r) = (0 f(@) = (') S () (23.6)

16



where the f(x) is a function which can be expanded in the cardinal functions (2.2.4) in «
domain, and the exponent C' is a undetermined coefficient. Determine C' by substituting

(2.3.6) into (2.3.4).

Pulr(@)) 1 "o, ed
dr2 - (r')? [__(C(T )C r +(T)O%)

+(C(C _ 1)(7“/)0_2 "

Rearrange and bra [

The given C' also lets the summation be zero.

The variable change (2.3.6) with the given exponent C', C' = 1/2, is

u(r(z)) = ()2 f(x). (2.3.13)



By the variable change (2.3.13), the second derivative of u(r(z)) with respect to r can be
found from (2.3.8), (2.3.9), and (2.3.12) with the given C,

d?u(r(z))

1 d?
dr? B (r")

S0 +0+ () 51 (0) = () 2=, (2.3.14)

N|=

and the radial equation (2.3.2) becomes

2 f(q ‘
AT G )

a
232 C 7- on and Symmetrization of Ha

(2). (2.3.15)

ian Matrix

niltonian

=E (@)Y gi(x:) f(x;)

(2.3.19)

Both sides of (2.3.19) are divided by [r/(z;)]2, and take the summation notation and f ()

18



out of the square brackets.

> {—%[r'(xi)]—2d2§jgc(2ﬂci) . (2l[(7{(;)1])2 + V(T(xi)))gj(xi)] f(z;)
j Z (2.3.20)
=B > gi(w)f(x;)

The GPS has been performed, : represented by discrete variables, x;
and z;, in x domai

In (2.3.20); is non-symmetric
due to the (t : netry leads to

generalize £ hich eigenva and e ; ave complex

numbpe

Because the proper

Eliminate the same coefficient, Py (z;)[r'(z;)] 7!, on both sides.

S - Lt e+ G L v, 4,
2 2[r(x;)]

j (2.3.24)

19



Because of d;;, the term, 7 = j, remains on the right side of the equation.

Z —l[r'(:ci)]‘ldg’j [ (x)] " + (W;_ll +V(r(z;))0;;| Aj = E A (2.3.25)
— L 2 2[r(z)]

The terms in the square brackets form a symmetric Hamiltonian matrix H. The elements

of the H are

(2.3.26)

The centrifuga s of the H. (2.3.25)

onditions,

is a sy

(2.3.27)

faces the bare

Coulomb pote
(2.3.28)

of nucleus. From (2.3.1), the full SE of'the electron with potential (2.3.28) under the
assumption of infinite nucleus mass reads

1 1

=5V = o (r) = By(r) (2.3.29)

The equation is analytically solvable. For bound states, the eigenvalues are

1
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and the eigenfunctions,
?,/)(I‘) = Rn,l(r)yi,m(ea Qs)a (2331)

are composed of the radial and angular parts. The solutions of the angular part are

spherical harmonics Y;,,(6, ¢), and the solutions of the radial part are

2

2r
72041 (=

)

(2.3.32)

where N, ; is the n guerre polynomials.

(2.3.30) a . : perical results.

Fo nly solve the

radia

3.33)

A rny = 1,
by the ma um radius is
Tmaz = 100 a.u

With the 101 x 101 Ha oniai q cigenvalues should be carried out. Table

2.3.1 gives the first 12 eigenvalues of (2.3.34) with angular quantum numbers, [ = 0 — 2.
On the 101 eigenvalues, only 8 eigenvalues are positive numbers, and the rest are negative
numbers. The negative and positive eigenvalues are the bound and continuous states of
hydrogen atom. The analysis formula of energy levels is only used for the the bound states,
so the relative errors of continuous states and exact values are denoted the abbreviation

of "not applicable”.
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Table 2.3.1: Energy levels of neutral hydrogen atom from the solution of radial equation

with angular quantum numbers, [ = 0 — 2, by GPS method.

n Numerical Ey, (1) Exact
=0 RE? =1 RE? =2 RE?
1 —5.0000[—01]  4.1078[—15] —5.0000[—01]
2 —1.2500(-01] 1.9762[—14] —1.2500[=01] | 14655[=14] ~1.2500[—01]
3 —5.5556[—02] 1.6986[—14] —5.5556[=02] = 2.4855[—14] —5B556(—02] 4.2466[—15] —5.5556[—02]
4 —3.1250[—02] 1.2858[—11] —3.1250[—02] 8.4733[—12] —3.1250[—02} 3.4517[—12] —3.1250[—02]
5  —2.0000[—02] <1.4248[—06] —2.0000[—02] 1.0685[—06] =2.0000[—02] / 5.7910[—07] —2.0000[—02]
6 —1.3868[—02] 1.4696[—03] —1:3872[—02] 1.2201[—03] —1.3877[—02] 8.4172[04] —1.3889[—02]
7 —9.5964[—03] \ 5.9555[-02] —9.6532[—03] 5.3990[—02] —9.7560[—03] 4:3917[-02] —1.0204[—02]
8  —4.6628[~03] 4.0316[—01] —4.8446[—03] 3.7980[—01] —5.1876[—03] 3.3599[<01] —7.8125[—03]
9 1.6561[—08] nja  1.3231]-03] nja  6.92438[—04] n/a < =6.1728]—03]
10 9.2667[—03] n/a  8.7639[—03] n/a  7.81785[=03] njfa  —5.0000[—03]
11 1.8084[—02] nja  1.7393[=02] nja- 1.61070[—02] nja  —4.1322[—03]
12 2:8055[(—02] nfa  2.7159[—02] n/a  2.55118[—02] nja  —3.4722[—03]

2°RE’ is the abbreviation of ’relative error’ of numerical and exact value.

For the various angular quantum number, [ =0—2, as listed in Table 2.3.1, the energy
levels n start from [ + 1. It matches the relation, [ = 0,1,...,n — 1, of angular quantum
number [ and principal quantum number n in theory.

The smallest order of magnitude for-the bound and continuous states is about —3
as indicated in tables 2.3.1. Under the conditions, the smallest order is the limit of the
numerical calculation by GPS. The bound states are dense when the states are close to
the boundary. On the finite pseudo-spectral basis and grids; it is hard to/numerically
calculate the dense states near the boundary, £ = 0, by GPS and thus leads to the limit.

From Table 2.3.1, the maximum number of bound states which can be evaluated by
GPS always occurs when [ = 0. The [ is increasing by 1, and the number of bound states
is decreasing by 1 or not changed. the number of bound states may have one at least.

The eigenfunctions corresponding to the eigenvalues are plotted in Figure 2.3.1. The
dot, dash, and solid lines are the exactly wave functions of n = 1, n = 2, and n = 3 with
various [. The discrete points, plotted by circles, crosses, x marks, squares, triangles, and

rhombuses, are the wave functions numerically calculated by GPS.
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Figure 2.3.1: Radial function of a neutral hydrogen atom evaluated by GPS and theoretical

formulae. The line is exact, and the points are numerical results.
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2.4 Application of GPS on Poisson’s Equation

The Hartree potential Vy(r) is a model that approximate the electrostatic interaction
of a electron due to all the other electrons in a system. The model assumes that the
summation of state of individual electron is straightforward to construct the charge density

distribution p(r). By integration of or all space, the Vi (r) is

ﬁ-
Iculate the integration due to tl

(2.4.1)

e other method

It is not ea

to calcu on by Gauss

2.4.3)

arge distri-

bution.

=5 > Vi, () (2.4.4)

\

PLm (") Yim (0, 0) (2.4.5)

l m

Assume that p(r) is azimuthal symmetry. The p(r) is independent of ¢, and let m = 0 in

the expansion.

ZZVI( )Yio(6, ) = Z“l Yio(6, 0) (2.4.6)

l

Zpl Yio(0, ) (2.4.7)
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Substitute the expansions of V(r) and p(r), (2.4.7) and (2.4.6), into Poisson’s equation
(2.4.3).

Yia(t,) | = 7 3 p(r)¥ia(0,0) (2.48)

Vig(h,6) =) Bpt P(x) (2.4.9)

have no work, and (2.4.8)

S

Because

where x = cosf, the d

becomes

Remaining steps are equation (2.4.13). Apply

variable change, (2.3.13) and (2.3. 0

Pt M Dy

[’ (2))2 fulw) = —47rp(r) (2.4.14)

This equation is mapped to = domain. Multiply [r/(x)]*/? to both sides of (2.4.14), and

the coefficient of f/’(x) becomes unity,

dz;;( ) l(l )(:/((j)) )2fl($) = _477“(96)[7"'(;5)]301(7“). (2‘4'15)
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Apply GPS to discretize the fj(x) on the pseudo-spectral basis. Expand f;(z) in the

cardinal functions (2.2.4).

S|P sy E o] ) = ~tm @ @) @)

2
- dx r(z)

Discretize x on GLL grid, z = z;.

Z [dQ%(—fi) — (! ) ’(xi)]%Pl(T(xi)) (2.4.17)

J

() and gz

(2.4.22)

(2.4.23)

Y Pa(ay)

b; = —4wr(xi)[r'(xi)]%%. (2.4.24)

If all a; are carried out directly from the linear system (2.4.21) without any correction,
the inaccuracy is unavoidable because boundary the conditions, ay and ay, are unknown.

The boundary conditions can be numerically calculated by Gaussian quadrature.
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2.4.3 Determination of Boundary Conditions

This subsection represents the numerical calculation of the boundary conditions by Gaus-

sian quadrature.

When the electric charge distribution p(r) is given, the potential can be calculated by

the integration over all space,

The expa al harmonics are

(2.4.25)

6) and (2.4.7).

(2.4.26)

4

4
=Z2l+

Vim

Y,

{and m =0

Because of

remain in (2.4

erty of Kronecker delta ¢;;, the terms

8).
uy

> = Yilb, o) 2dr' Y0 (6, 6) (2.4.30)
: ,

r

The coefficients of Y, ¢(6, ¢) provide

w(r 4 rt
17(0 ) _ T / rlil pu(r')r'dr (2.4.31)
>

The infinite interval [0, 0] is limited to the finite interval [ryim, F'mae] on the Gaussian

grids by the mapping function. Split the finite interval, [ryin, Tmaz], into two subintervals,

27



[Tmin, ] and [r, rpmae]. 7~ and r- are determined in individual subinterval. In the subin-
terval, [Fpmin, 7], 7> and r~ are r and 7’. In the other subinterval, [r, r,q.], 7~ and r- are

" and 7.

Tmax

w(r 47 / 7 rl
Vgl et [ erad e

Tmin

Rearrange the equation.

u ' : ' (2.4.33)

At the ] n, w(Tmin) is one of two bounda

e last point 7,4z,

2.4.37)

Discretize u ] i i and 7,4, are
ro and ry given b
equations, (2.4.35) and (2.4.37) ' -alculated by the relations, (2.3.13)
and (2.4.23). Actually, u;(7min)

are calculated by the

red because 7, = ro = 0 in (2.4.35).

2.4.4 Correction to Solver

With the given boundary conditions, ag and ay, correct and simplify (2.4.21) in this

subsection.
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the ap and ax do not need to be calculated from the system of linear equations again.

The first and last equations (in bold font) in (2.4.21) are for the ag and ay.

Do,o D0,1 s DO,N—l Do,N ap bo
D1,0 D1,1 ce Dl,N—l Dl,N 3] by
: : ' . : : = : (2.4.38)
Dn_1p Dy-1:1 bn_1
DN70 D bN
Remove the first and last eq n-bold font) i1 &), and the dimensions of matrix

and vecto C

1S a zero

(2.4.41)
Dy_11

where the D;;, a;, and b; are t > as (2.4.22), (2.4.23), and (2.4.24), but the lower
and upper bound of both indexes, ¢ and j, become 1 and N — 1.

Numerically solve the system of linear equations, and find {a;[j =1,--- , N —1}. One
of w;(r) is numerically calculated through (2.4.23) and (2.3.13). With the various [, all
w (1) are solved. The potential V(r) is the summation of w;(r) by (2.4.4).

Many articles may not indicate how to calculate the Hartree potential. Jiang et al.

(2001) have a brief about the extension of GPS to solve the Poisson’s equation.
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2.4.5 Example: Potential Due to Square of Eigenstate

For a example, treat square of the eigenstate Wo1o(r) of a hydrogen atom as a source p(r),

2

* LA —
p(r) = [Raa(r) Yo (6, 8)Y10(60, 0) = e Y16, 6)Y10(6, 9), (2.4.42)
and solve the Poisson’s equation due-te this resource p(r) by GPS.

The components of p(r) in spheri 1, e

the end boundary

conditionsfirst he linear system (2.4.41) wit. o ary conditions
on the subset of G : o= l/
the relative errors on t rst 10 grid; d the last 10 grids are listed in Table 2.4.1.

All relative errors are plotted in Figure 2.4.1 versus the index ¢ of GLL grid. In Figure
2.4.1, the method 1 is dash line, and the method 2 is solid line. The relative error at the
end point, r = 1., is only listed in Table 2.4.1. There were 203 GLL grids used in the
numerical calculation, and discretized r domain, [0,200], on the subset of GLL grids by

the mapping function (2.1.15) with length scale, L = 20.
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Table 2.4.1: Relative errors of Hatree potential at the points near the boundaries from

the numerical solution of Poisson’s equation by GPS.

. method 1 method 2 exact

! T I1=0 1=2 1=0 1=2 1=0 1=2
1 0.00 2.04[—02] 1.14[+01] 1.09[—12] 1.14[+01] 8.86[—01] 8.71[—07]
2 0.01 2.04[-02] 1.29[—03] .3.80[— 1.29[-03] 8.86[—01] 7.86[—07]
3 2.04[=02] 16] ] 8.86[—01]  3.48[—06]
4 2.04] 6[ 8.86—01]  1.02[—05]
5 2.39[—05]
6 4.82[—05]

3.73(—05]
1.47[=04]

3.43[—08] 4:03[—13] :
9.83[—09] 3.37[-13] 1.21[-08
4.36[—09)

2:04[—02]

0 20 40 60 80 100 120 140 160 180 200

index

Figure 2.4.1: Logarithm of relatives errors of Hatree potential from the numerical solution

of Poisson’s equation by GPS.

31



The maximum relative error can be found in Figure 2.4.1. The maximum relative
error occurs at the points, r; or ry_i, close to the boundary. Not surprisingly, it is a
feature of GPS.

The Vy(r) by method 1 only has about 1 significant figure behind the decimal point
over all grids. The V5(r) by method 1 has better accuracy, but it can not rescue the
) because the )/is faridess than the V(7). The method

accuracy of total potential
1 is not reliable 1ly due

On the other har ¢ 1 oures behind the

decimal poi all o > erelative errors
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2.5 Split Operator Method

The state functions of system vary with time when the system is under a time-dependent
field. To carry out these state functions, it requires a method to deal with the time

variable of time-dependent equation. We chose the split operator method to split the total

ovides the introduction to split operator method,

Hamiltonian operator. This section

calculation of operato d the pro

2.5.1

states.
oer equation

employed

A is a sum of twc

scretize time ¢ by

or vice versa

(2.5.4)

The operator A is split into ation. The splitting forms, (2.5.3)

1
and (2.5.4), are called Lie splitting proposed by Trotter (1959).
The local truncation error of Lie splitting can be found by the Baker-Campbell-

Hausdorff formula. After a time step At, the Lie splitting give rise to the local truncation

error of

At?

T[Al, AjJu(t) + O(A) (2.5.5)
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where [Al, AQ] is the commutator of A; and A,. The local truncation error (2.5.5) has no
At term, so the Lie splitting is accurate in the first order.
The leading term in the local truncation error of Lie splitting is the antisymmetry of

Ay and A,. The observation on the antisymmetry leads to a symmetric splitting form,

u(t + At) ~ e = eAl%e’%AteAl%u(t), (2.5.6)

or vice versa
(2.5.7)

d (2.5.7), are
of Strang
me step

Extensio

t operato h e time-depend

onian !erator H may be decomposed into the ti

t oper-

(2.5.10)
For the present research for the target a  tl i amiltonian of hydrogen atom
with the variable change of radial part,
A 1?2 1
Hr)= —Z—+— — - 2.5.11
(r) 2 dr? + 2r2 (2.5.11)

where L? is the angular momentum operator. For the the intense field E injected along

the z axis, the V is the interaction between the intense field and atom.
V(r,t) =E(t)-r = (Eofs(t)&.) - (ré,) = Eor cos 0f,(t) (2.5.12)
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which Ej is the amplitude of field, and f,(¢) is the shape of field. The whole equation
(2.5.10) describes the time evolution of states of hydrogen atom in the intense field.
Now extend the Strang splitting in spherical coordinates to the time propagation of

the Schrodinger equation.

A

(r,t + At) ~ exp(—i 5

iVAt)e p(—iﬁo%)w(r,t) (2.5.13)

The time propagation o cted from three steps

=

to deal with

I Inene ime step

A

14)

At the end of one

ion ¢(r, t)
betwee 1 and e ransformation, the
operator is‘a va : so th of operator
on the wave functio 2 § 0 3 ; e function. The work
(Jiang and Chu, 1992 3 ) good example to apply split

operator method in two-dimens

2.5.3 Treatment of Hamiltonian Operator

Except the method to deal with the exponent operators in different space by Fourier
transform, there is a other method to deal with both exponent operator, exp(—iHOAt/2)
and exp —(iV At), in the real space. Tong and Chu (1997b) develop the method to deal
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with the operator exp(—iI:I 9At/2) in the real space by replacing the operator with its
eigenvalues and eigenvectors. The method is derived explicitly in this subsection.
Due to the time-dependent field E(r) along the z axis, the time evolution is indepen-

dent of the azimuthal angle ¢ in spherical coordinates,

(2.5.17)

and thus expand ) with a given [, [ = 0.

(2.5.18)

omentum

+1).

h compone

1e eigenvalues €

(2.5.21)

Discretize r o .15), and ¢, are in

term of weighted s

(2.5.22)

Back to the expansion (2.5.18), let the operator exp(—iH°At/2) work on the wave
function v (r, 0),

exp(—iﬁIO%)qﬁ(r, ) = exp(— At Zul Yi0(6, QS (2.5.23)
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After the L? in H°(r) is substituted by its eigenvalue, the H°(r) of which the radial

operator remains is denoted to H? given by (2.5.19).

exp(—ilE00.0) = Y [exp(—i P S u(r)|Yiol0.0) (2520

Focus on the square brackets. With the linear_combination (2.5.20), the exp(—iHPAt/2)

further work on the eigenve

(2.5.25)

(2.5.29)

The operator exp(—iHAt product of the matrix S and

vector uy.

exp(—iH) At/2)uy(r(x:)) = Y Sy(Dw(r(x;)) (2.5.30)
J
The advantage of this method is all time propagation in the same space. It does need

the Fourier transform. The difficulty is how to find the eigenvalues and eigenvectors of a

operator.

37



2.5.4 Programming Scheme

The combination of Subsection 2.5.2 and Subsection 2.5.3 is actually used for the time
propagation in the present research. The practical process of computation is concluded
in the last subsection.

The wave function ¢ (r) is given in Subsection 2.5.2. The variation of wave function
is independent of the azin ) ole @ i oordinates, so the Legendre polyno-
mials P,(cosf) can repla » * O1) 0(6; ¢) for expansion of ¢(r). The
radius r is.discretiz 1 the C anetion (2.1.15), and

of the GLL

the in

gird

orthand

ach partial w @ u t

lmaz

V2 (ry, cos;,t,) = Zull(m,tk)Pl(cos 6;) (2.5.33)

For the second step i ! e opetator exp(—iV At)
and the wave funetion

L

V3 (1, cos 0, t1,) = exp(— i, co8 5 At)? (r;, cos 0, ty) (2.5.34)

where V(r,cos0,t) is defined by (2.5.12). Expand the ¢*(r,cos6,t) in Legendre polyno-
mials for the work of the other exp(—iHA/2).

2 + 1 &
uy (ri, 1) = —5 Z Wb (ry, cos 0;, ) Py(cos 6;) (2.5.35)
j=1
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where the W; are Gaussian weights on GL grids. For the third step III, compute the

matrix-vector product for each partial wave u; again.

Nerr

uf (ritess) = Y Sy (r;) (2.5.36)

J=1

The superscript returns to zero, and.accomplish the time propagation in the time subin-

terval [tg, tri1].

After the s

D e remaining steps

are the an
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Chapter 3

Z is the atomic n

tion of the Schrodi

wmerical method

ke much time. The ¢

books

about D y for atom

and mole o) nd formaliza-
tion of DFT and re

of DFT to the electronic s t

DFT is a tool in the present rese: : s to deal with the many-electron system

odern applications

in term of the SE of individual electron. DF'T is a huge theory, but this section do not cost
much space to discuss DFT itself. This section only provides the fundamental theories,

the concepts of exchange-correlation energy, and self-interaction correction.
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3.1.1 Kohn-Sham Theorem

The fundamental of DFT is based on two articles, Hohenberg and Kohn (1964) and Kohn
and Sham (1965). The fundamental theorems have two.
The first is that the density p is the basic variable. For a system in an external potential

V', the potential V' is unique unless the potential V' is a constant, and determined by the

particle density p in ground stat

The second is that a onal E[p] for the encrg erm of the particle density
p can be definec ] externa ential V. The exact
energy tional E[p]

particle

atomic syste

o is denoted the

eorems, the total energy E in ground state ¢ -

3.1.3)

e tiona ensity [ to find the
minimization. The K & ational equation of

the functiona
(3.1.4)

where HEXS is the Kohn-Sham effective Hamiltonian, and VX5 is Kohn-Sham effective
potential,

VES = Vo (r) + Vi (r) + Vie(r). (3.1.5)

(e

The Kohn-Sham equation (3.1.4) is a one-electron independent equation with the VX9
constructed by the self-consistent solutions and gives the consistent solutions ¢;,(r) also

called (Kohn-Sham) orbitals.
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With the the self-consistent solutions of (3.1.4), the components of E and VX% can be

calculated. The first component of E is non-interacting kinetic energy T,

Ts[pT’pi] = Zi<¢w(r) | _%V2 | ¢ia(r)>~ (316)

The second component of E is the interaction energy F.,; of the electrons within the

external potential V., (x) assu

(3.1.7)

al potential

in Section 2.4.

e a

Pyery.

_ 0Euclpr, p ‘
dps(r)

Both E,. and

3.1.2 Exchange a

The exchange-correlation energy functionals are key for the accurate calculation. There
are two classes of approximation introduced in this subsection.

The exchange-correlation energy E,. is a sum of two distinct terms, exchange energy

E, and correlation energy FE..

Euclpr, pi] = Ezlpt, pi] + Eclpt, po] (3.1.12)
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Both exchange and correlation terms are the quantum effects, so the Kohn-Sham calcu-
lation is a quantum treatment.

The exchange energy F, comes from a exchange interaction between identical particles.
There are two kinds of identical particles for the symmetry and antisymmetry. Our
target particles, electrons, are fermions. The famous theory for the exchange interaction
of fermions is the Pauli exelusion principle. In theory; the exchange interaction always

lowers the energy.-The exact exchange energy can be expressed in term of the orbitals

Vo (T).

1 w ww 9‘5 ( /)'wjﬂ(r) 3¢ PBr
E ;Z// |r_r,| d*r'd (3.1.13)

Generally, the amount of exchange energy is less than the Hartree energy Ey or kinetic
energy 1

The correlation energyF:might be defined by the difference between the exact solution
and a reference state;'so-the correlation energy has different definitions. The difference
between' the exact solution of Schrodinger Equation and the solution of Hartree-Fock
equation may be a well-defined chose for the correlation energy E.. The amount of
correlation energy is less than the exchange energy.

The exchange-correlation energy functional must be approximated. The oldest ap-
proximation is local-density approximation (LDA) proposed by Kohn and Sham (1965).
Kohn and Sham (1965) consider that the solid system can be frequently treated as the
limit of homogeneous electron gas. In general, the LDA treats.any inhomogeneous sys-
tem locally as a homogeneous electron gas: It simply expresses the exchange-correlation
energy F,. of the inhomogeneous system as an integration over the exchange-correlation

energydensity,
E. o] = / p(r)eha™ (p(x))d’r (3.1.14)

is'the energy density, and, at-any point, the °"%(p(r)) is assumed to be

where the 5h°m°

the same as a homogeneous electron gas. The LDA is a universal functional of p, and it is
independent of any physical parameter. Thus the LDA is easily applied to the arbitrarily
inhomogeneous system.

LDA based on the assumption that the number of spin-up electrons is the same as the
number of spin-down electrons. The assumption does not satisfy the actual applications
generally. For the actual applications, the local spin-density approximation (LSDA) is

implemented in more general. The spin-dependent version of LDA proposed by von Barth
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and Hedin (1972) is

EEM i) = [ o0y 6) 6 (3.1.15

homo

where the €77

(p+(r), p (r)) is the exchange-correlation energy per particle in homoge-
neous electron gas with the spin-up and spin-down densities, p+(r) and p,(r). With the
work (Oliver and Perdew, 1979); the exchange energy EX°P4 in LSDA is

3 6
15

W=

ES Ay, p)] =

/(pTg (r) + pf (r))d’r (3.1.16)

in term of py and py. It can also be in term of the spin polar parameter,

((r) = pr(r) —pu(r) _ pi(r) — py(r)
p(r) pr(r) 4+ py(r)

For/the Kohn-Sham calculation in the present research, the exchange potential V,

(3.1.17)

referred to LSDA is the Xa potential (Slater etal:, 1969),

V8= Sal ()] (3113)

with an adjustable coefficient . The correlation energy E. and potential V. are not
completely known in analytic form, but they can be found by quantum Monte Carlo
calculation and parametrized to use. Perdew-Zunger (ZP81) are the parametrized cor-
relation energy and potential referred to LSDA in the present research. ZP81 is based
on the numerical results (Ceperley,1978; Ceperley and Alder, 1980) by quantum Monte
Carlo calculation and parametrized by Perdew and Zunger (1981).

To improve the LSDA, not only the local density-but also its gradients are added
into the construction of exchange-correlation functionals. In fact, after actual work, the
higher-order gradients do not raise the improvement of LSDA and even make worse. If
only keep the first-order gradient in approximation to savethe lost property of LSDA,
the approximation is called generalized-gradient-approximation (GGA). GGA is a class

of exchange-correlation functionals, and its general form is

ES pr.py] = /p(r)sxc(m(r),m(r), Vpi(r), Vo, (r))dr. (3.1.19)

Over many years, various GGAs are developed. For the Kohn-Sham calculations in the
present research, The functional referred to GGA is the non-empirical GGA, PBE (Perdew
et al., 1996; Perdew et al., 1997). PBE is one of the most popular GGA functionals. It
satisfies the properties as many as possible and retains the correct feature of LSD when

add others.
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3.1.3 Optimized Effective Potential (OEP)

Except the approximation of functional, we also can get the better exchange-correlation
potential through the optimized effective potential (OEP) method. The OEP leads to

an integral equation which it is hard to solve. The integral equation can be approxi-

equatio he simple introduction to OEP and the

mated and become a system of linea

approximation for the_integ equat e his subsection and the next

subsection. A
Because fective n-Shan (KS) potential V ional of the spin-

densitie i 8 i (T i JIL: functional

. By the
» oavdlicit o
,but the each-expl i
al of dens %

ma
1ge ene

the {1, } is a se

e fundamental th

Directly
(3.1.22)

The derivation by Krieger et al.

> / Vi () = Do (1) [0 (£ ()G (1, #)dPY + .. = 0 (3.1.23)

where v, (r) is the orbital-dependent potential,

oy L OBl{)]
Uacc,w( ) * (I‘) 51/)1'0(1') ) (3.1.24)

10
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and Gj,(r,r’) is the Green’s function,

Gjo(r, 1) Z¢k” Wio(r) (3.1.25)

— €ko
k#J

The integral equation (3.1.23) is the OEP equation. It allows to calculate the exchange-
Is through the solution of (3.1.23).

correlation potential V. ;,(r).fo e give rb

OEP brings the improvement; ] o-correlation potential. The most impor-
tant improvement i Orrec g b o1 CC ution due to Fy and the
approximat . 1.3). i io(r) b ght asymptotic

10

3.1.26)

(3.1.28)

In (3.1.28), the v, : 3.1.24 , as an exact exchange
energy F, given in (3 unrestricted potential of

single particle,
Pio(T') B 0 Eyelpio]

zc,io = - - 3.1.29

Vze,io (T) r—1| r 5 pun(r) ( )
The Vmc o and Ty, are the expectation of ngg and Vg i (T).

= (Yo Vs i) (3.1.30)

Facc,icf = <¢io|vxc,ia|¢ia> (3131)
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KLI approximation suggests that (VwLI — Uge,is) can be calculated through a solution of

following linear system,

No—1
—KII _ —s
> (Gijo = Mijo) (V" = Taejo) =V — Vroio
j=1 (3.1.32)

i=1,2,...., N, —1

(i} = El{thic}] =) ZG:{EH[%] + (3.1.37)

o
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Chapter 4

rst sectlo

he Kohn-Sham ec

tive

ergies

or the present calculations is stated as follows. Dis zed the r
domain, [0,74), € by the mapping functi ). e number of the
GLL grids was 10 and maximum radius r,,,, was

Ud U

100a.u. for Z =1—2 and 200 a o) — e scale L was 20 for Z = 1—4.

The L and r,,,, which keep within a proper range do not affect the result.

For the KS calculations, we used two classes of exchange-correlation functionals, LSDA
and GGA. For the LSDA, the exchange energy and potential were (3.1.16) and X« poten-
tial (3.1.18) with o = 2/3, and the correlation energy and potential were the parametriza-

tion ZP81 (Perdew and Zunger, 1981). For the GGA, we directly used the subroutine *. Tt

Tt can be downloaded from their website http://dft.uci.edu/index.php
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follows the instruction of Perdew et al. (1996). The KS equation was solved by GPS, and
the iteration for the self-consistent solution had 20 times. One sequential computation
only took few seconds by a modern computer.

Table 4.1.1 contains the total energies from KS calculations without the OEP and the
exact values (Davidson et al., 1991). The LSDA underestimates the total energies, and

its relative errors are in the 0 g relative error for hydrogen atom is

about 4%. The LSDA ' b actual ar tion to solid; but it may not enough

accurate to predict &

The G O und i ise, bota ies by GGA are

1e exact values tha Tors are
GG

energies (1r ! E CC d‘l

potential,

PBE, an

are undere V DA. The relative errors are in the
of LSDA are‘in good a ."tg ment: ork_(k

always has the typical'erro

ge energies

%. Our results

999). The LSDA

0.,

GGA significantly reduces the relative errors. All relative errors are less than 5%, and
the smallest one is about 1%. As similar as the results of LSDA, Our results of GGA are

in good agreement with the other work (Kurth et al., 1999), so our calculation is reliable.
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Table 4.1.2: Exchange energies (in atomic units) of atoms (Z=1-4) from the Kohn-Sham
calculations by the different exchange functionals, LSDA and GGA.

Z Atom LSDA LSDA* PBE PBE?* Exact”

H —0.2564 0.2680 —0.3018 —0.3059 —0.3125
He —0.86 0.8840 00 —1.0136 —1.0258
Li 51 . . —1.7807

D)

1
2
3
4

(0 0.0420
).0510 0.05614 —0.0455
4 Be —0.2234 .22 0854 —0.0856 —0.0950

2 Kurth et al. (1999)
b Krieger et al. (1999)
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4.1.2 Kohn-Sham Calculation with OEP Method and KLI Ap-

proximation

For the present calculations in this subsection, we applied the OEP method and the KLI
approximation to find the correct potential and used it to make the calculations more
accurate. The most conditions of numerical caleulations were the same as the conditions
of Subsection 4.1.1. The only difference was that we did not use the correlation functional.
It let us to construct the single-particle potential through (3.1.29) in KLI procedure more
easily.

Table 4.1:4 contains the exchange energies from exchange-only KS calculations. The
letter ’a’is denoted the KLI procedure through the iteration of VAL “and letter b’
is denoted the KLI procedure through the traditional way to solve the system of linear
equations. The results by LSDA without the correlation energyiand OEP perfectly match
the results of Chen et al. (1996). the LSDA underestimates the total energy by about
3 — 8%.

Table 4.1.4: Total energies (in atomic unit) for atoms (Z=1-4) from KS calculations with

the exchange-only functional through the OEP method and KLI approximation.

Z Atom  LSDA LSDA®¢ KLI-LSDA® KLI-LSDA® KLI-LSDA¢ Exactd
1 H —-0.4571 —0.4571 —0.5000 —0.5000 —0.5000 / —0.5000
2 He —=2.7236 —<2.7236 —2.8717 —2.8717 —2.8617 +  +2.9037
3 Li —7.1934 —7.1934 —7.4437 —7.4466 —7.4342  —=T4781
4 Be —14.2233° 14.2233  —=14.5977  —=14.6033  —=14.5795 —14.6674

2 the KLI procedure through the iteration of V<.

b the KLI procedure through the traditional way to solve the linear system.
¢ Chen et al. (1996)

4 Davidson et al. (1991)

With the performance of OEP method and KLI approximation, the relative errors are
significantly reduced to 0 — 1%. Especially for hydrogen atom, the relative error is 0%.
Not surprisingly the VXX is equal to the sum of Vi and V. without correlation functional.
They have opposite signs and cancel each other in (3.1.27). The KS equation becomes the
Schrodinger equation of hydrogen atom with [ = 0. The total energies (Z = 2—4) may be
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the best results as shown in Table 4.1.4 because of the KS calculations with exchange-only.

Table 4.1.5 contains the highest occupied atomic orbital (HOAO) energies from the
KS calculations with exchange-only functional. In orbital-dependent DFT, the HOAO
energy directly from the eigenvalues of KS equation should be equal to the ionization
energy. The ionization energy is noticeably smaller than the experimental value by about
50% because LSDA without the OEP has the incorre¢t-long-range behavior. With the
implement of the OEP methods and KLI approximation, the results are improved, and
the relative errors reduced to 0 — 5%. Comparing with the work of Chen et al. (1996),

our values (Z =2, 4) are better in accuracy, but the other value (7 = 3) is‘worse.

Table 4.1.5:<Highest occupied orbital energies (in atomic unit) for atoms (Z=1-4) from
KS calculations with the exchange-only functional through the OEP method and KLi

approximation.

Z Atom _ LSDA LSDA¢  KLI-LSDA® KLI-LSDAP KLI-LSDA¢ Exactd

1 H -0.2469 —0.2690 —0.5000 —0.5000 —0.5000 —0.5000
2 He -0.5170 —0.5703 —0.9280 —0.9280 —0.9481 —0.9036
3 Li —-0.1004 —0.1163 —0.2262 —0.2206 —0.1973° —0.1981
4 Be —0.1700 —0.2058 —0.3448 —0.3390 —0.3285 —0.3426

% the KLI procedure through the iteration of V5.

b the KLI procedure through the traditional way to solve the linear system.
¢ reference Chen et al. (1996)

47=2-4 from reference Kramida et al. (2014)

We carried out the results shown in Table 4.1.4 and Table 4:1.5, and compared the
values with other works. On the whole, the KLI procedureis good approximation to OEP
for the improving of the LSDA energy functional.

To perform the KLI procedure, we used the method to iterate the VAU and the
traditional method to solve the linear system, and both methods led to the ideal results
shown in Table 4.1.4 and Table 4.1.5. The difference between them is very small. We
confirmed the suggestion of Tong and Chu (1997a). The method to iterate the VXM is a
simplified way to perform the KLI procedure.
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4.2 Hydrogen Atom in Intense Laser Fields

This section shows the time-dependent calculation. It is mainly to solve the time-
dependent Schrédinger equation (TDSE).
Recall Subsection 2.5.2. We assumed that the intense field E in (2.5.12) is subjected

into the system along the z-axis.
E(t) = Eyf.(t)e, (4.2.1)

where Ej is the field amplitude, and f;(¢) is a envelop function which models the intense
evolution of ‘E. < For the time-dependent calculations, we chose a ramped function to
reasonable simulate the unstable output when we turn on the device producing the intense
field in aexperiment. The form of the ramped function is
. g, Tt

sin (f) sin(wot) t <Tp
[s(t) = P (4.2.2)

sin(wot) T <1

where T is the period from unstable output to stable output.
The intense field often refers to the laser. The laser wavelength \ and intense I were

775nm and 3 x 1083W em 2. We converted the A\ and I to w, and Ej, in atomic unit.

27 x3x10°8
T A< 4.1341 %1016

I
Ey=—y/———— ©-292x 102 4.2.4
2 N I TS it (3-24)

4.2.1 <~ High-Order Harmonic Generation (HHG)

wo =588 x 1072 (4:2.3)

To investigate HHG, the most straightforward strategy is the direct solution of TDSE.
The specification for the calculation of TDSE is stated as follow. We used the mapping
function (2.1.15) to discretize the finite interval [0, 7y,..] on the GLL grids. There were
201 GLL grids without the end points, and we did not use the end points, x = —1 and
x = 1, in the present calculations. The maximum radius r,,,, was 200 a.u., and the length
scale L was 100. The L in the present calculation is much larger than the L in the time-
independent calculation in Section 4.1 because the wave spreads in the intense field. The

wave function is expanded in Legendre polynomials, and the maximum [ is 19.
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A mask function was applied to the present calculations to avoid the reflection of the

spreading wave. The mask function f,,(r) is the cosine form,

1 r <7y
fm(r) = Lo —1) o (4.2.5)
4/( —
cos (2(Tmaz - TO)) ="
The f,,(r) makes the we ' on gradually decay 0.from 79 tO Tpae. We used

ro = 100 a.u. for t \/ﬂmv_\
For the ti a0 , we turned on the laser fie

for turning on , Ty = 10. The wave function was propag
se field of the consta

ical cycles were

ptical cycles

40 op optical

divided into 2000 time ste , ‘ ic al to

brocedure in Subsection 2.5

WS the remsé

robabilityv /

5 10 15 20 25 30 35 40
time t/Tlaser

Figure 4.2.1: Remaining probability P,(¢) of a hydrogen atom in the laser field of the

wavelength 775 nm and intensity 3 x 1013 W/cm? duration 40 optical cycles.
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The P, does not change for the first 10 optical cycles. After 10 optical cycles, the
P, decays slowly and linearly. When the time propagation end, t = 407, P, still keeps
over 99 percent, and few electrons escape to free space. It means that we do not need to
consider the electronic emission from the hydrogen atom.

Figure 4.2.2 displays the dipole moment induced in a hydrogen atom by the laser field
E. The dipole moments of length form and acceleration from can be calculated from the

wave function ¢ (ryt) at each time step as

dp(t) =((r,t) | z | v(r,t)) = /@b(r,t)r cos G (x, t)d’r, (4.2.7)

=) | - + Eor.(t) | BEOY I EOIES b5 O et (125)

015 R L ' B | B BT G | ' WA TN S T '\

0.10 i

0.05 i

0.00 H

dr(t)

—0.05 [

—0.10 +

B S I e T T U U B T A L
0 5 10 15 20 25 30 35 40

time t/j—‘laSET‘

Figure 4.2.2: Length-form dipole d;(t) induced in-ahydrogen atom by a laser field with
the wavelength 775 nm and intensity 3-x 103/ /em?.

The dipole moment in length form oscillates with the variation of fs(¢). The ampli-
tude of oscillation is increasing during the first 10 optical cycles and keeps the constant
amplitude during the last 30 optical cycles.

Figure 4.2.3 shows the power (harmonic) spectrum of HHG of a hydrogen atom by

the laser field. The power spectra, Pr(w) and P4(w), are square of Fourier transform of
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the dipole momentums, dr,(t) and d4(t).
T 2

Pu(w) = T;Tl / dp(t)e i dt (4.2.9)

T

*****
""""""""

==

<
\

\

]

|
~

-

Figure 4.2. ) takes 15 cycles
from the 20 he

om the cycle to perform the Fourier transform

We took 15 cycles

and calculate the power spectra.
First we make sure the physics process of ionization. For the time-dependent system,

the ponderomotive energy U, and ionization energy E; are U, ~ 0.062 and E; = 0.5 for

a hydrogen atom. By the Keldysh parameter,

E; 0.5
- —/ ~2.00 >> 1 42.11
7=\ 2u, TV 2.062 >= 5 (42.11)
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the ionization is a multiphoton process and may lead to HHG.

In physics, the spectra (see Figure 4.2.3) provide some features about HHG. The
difference between peaks is twice as large as the photon hwy. Only odd harmonic peaks
occur in the power spectra. Both are the features of HHG and unchanged even if we

change the parameters of simulation over a adapted range. The cut-off law can determine

the maximum order by U, and
(4.2.12)

For the

*{—06] 1.48(—06] 1.04]—06]

7 2.71[-07] 2.71[-07] 6.46[—08]
1.51[—07]

a

]

1.04[—0
6.

* Work of Tong and Chu (1997b)

The extra topic is the computational speed. For the present calculation, there were
80000 time steps in a time propagation. The time propagation only took about 100
seconds by Graphic Processing Unit (GPU) accelerator.
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Appendix A

A.0.3)

ith any

(A.0.4)

Following formula can be ] ( v egendre polynomial with any
[ by given P/(x) and Py(z).

Pl/(a) = — 5 2aPl(x) ~ N(N + 1)P(a) (A.05)

Following relation is used in the proof.

L {1 ()] = (1 - )R @) = -N(V + DAG) (A05)
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Orthogonality

1
2

Special Case Expand the differential term on left side of (A.0.6).

(1—22)P/(z) + (L—2*)P/(x) = =N(N + 1) () (A.0.8)

On Gauss-Legendre=Lobatto gric ;) rstterm is zero because of

P(x;) = 0.

(1—a?)P(2;) = —N(N + )P, (A.0.9)

0.10)
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Appendix B

have

adius r
is provi ntial with
respect to ar

First, we expa

(B.0.3)
where the coefficient p;(r) is
pu(r) = / Yi0(6, 6)p(r, 0) sin 6. (B.0.A)
The spherical harmonics with m = 0 can be in term of the Legendre polynomials Pj(x)
20+1
Yo = ppm P(x) (B.0.5)
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where x = cosf. The expansion becomes

20+ 1
47

p(r,0) =

ou(r)Pi(x). (B.0.6)

In the expansion, the radial and angular parts are separated. The differential operators

with respect to 6 only work on the angular part. Apply the chain rule

a xr C
-
a

/ L
The 2nd-orde - operator works on Pj(x).

B(z) d, . ,dP(z)

ez @(_ .

=
=

(B.0.7)

and
> function o

(B.0.2), there is a
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