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原子序 1到 4的原子基態和氫原子高階諧波產生的計算 

 

國立交通大學 物理研究所 碩士班 

 

摘  要 

 

  最近數十年隨著密度泛函理論(density functional theory)和電腦的發展，藉由數值方

法達成原子系統相關性質的準確計算逐漸可行。本研究目標在於對原子系統基態的

Kohn-Sham 計算以及研究透過 Krieger-Li-Iafrate(KLI)程序近似最佳等效位能(optimized 

effective potential)對自我交互作用修正後的準確性。在基態計算的基礎上，模擬在強場

下的原子系統是另一個目標。廣義擬值譜法(generalized pseudo-spectral method)是對於數

值解 Kohn-Sham 方程獲得 Kohn-Sham 軌域以及數值解 Poisson方程獲得 Hartree位能的

有效方法。對於時變計算，以分離運算子法(split operator method)處理時間算子。在結果

的部分，我們先從原子序 1 到 4 以不同的交換相關泛函的 Kohn-Sham 計算獲得總能和

其分量，再與前人的結果比較以驗證我們的計算可靠。再進一步，我們用 KLI程序近似

最佳等效位能並執行只有交換泛函的計算，結果顯示總能和游離能在自我交互作用修正

後的準確性。最後，我們模擬在雷射場的氫原子並獲得高階諧波產生頻譜。 

學生： 范力文  指導教授： 江進福 
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Calculation of the Ground State of Atom Z=1-4 and High-Order Harmonic 

Generation for Hydrogen Atom 

 

Student: Li-Wen Fan  Advisor: Tsin-Fu Jiang 

 

Institute of Physics 

National Chiao Tung University 

 

ABSTRACT 

 

  The accurate calculation about properties of many-electron atomic system may be 

performed by numerical method in recent few decades due to the development of density 

functional theory and computer. The aim of the present research was to perform Kohn-Sham 

(KS) calculations in ground state of atomic system and investigate the accuracy of the KS 

calculations with optimized effective potential (OEP) approximated by Krieger-Li-Iafrate 

(KLI) procedure to correct the self-interaction. Based on the calculation of ground state, 

simulating dynamics of atomic system in intense field is the other aim. Generalized 

pseudo-spectral (GPS) was the useful method to numerically solve KS equation to find KS 

orbitals and Poisson’s equation to find Hartree potential. For time-dependent calculations, 

spilt operator method was used to deal with the time operators. In the results section, we first 

obtained the total energies and their components from the KS calculations for atoms Z=1-4 

with various exchange-correlation functionals and compared them with other works to make 

sure our calculation is reliable. Next, we performed the KS calculations with exchange-only 

functional and OEP approximated by KLI procedure, and we displayed the accuracy of total 

energies and ionization energies without self-interaction. Finally, we simulated the dynamics 

of a hydrogen atom in the laser field and obtained the high-order harmonic generation (HHG) 

spectra. 
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Chapter 1

Intorduction

The fundamental works of DFT are proposed by Hohenberg and Kohn (1964) and Kohn

and Sham (1965). For decades in development, DFT has become an efficient way to

deal with the many-electron problem. The atomic system in stationary state has finite

number of electrons and fixed configuration in stationary state. DFT is very suitable

for exploring the properties of atom. We first aim to calculate the total energies and

the exchange-correlation energies of neutral atoms by Kohn-Sham (KS) calculation with

different exchange-correlation functionals. Comparing with other works (Davidson et al.,

1991; Kurth et al., 1999), it helps to establish the reliable KS calculation.

The exactly exchange-correlation functional is not yet known, so the approximation

of exchange-correlation energy functionals is always one of the notable issues in DFT.

The local spin-density approximation (LSDA) is widely employed. However, it has self-

interaction such that the long-range behavior is not correct. The one of subjects in the

present research is the correction to the self-interaction by the optimized effective potential

(OEP) method and Krieger-Li-Iafrate (KLI) approximation (Krieger et al., 1992a). Based

on the reliable KS calculation, we can establish the advanced techniques, OEP method

and KLI approximation, and carry out the correctly total energies and highest occupied

orbital energies for atomic system.

When an atomic or molecule system in intense field, the electronic response is highly

non-linear. The non-linear process displays many interesting phenomena and applications.

One consequence of them is the high-order harmonic generation (HHG) which converts

the frequency of intense field into many integer multiples of the frequency. HHG spectra

generally consist of a sharp decline, a plateau in which the harmonic intensity varies

1



weakly, and a sharp cut-off (see Figure 4.2.3). The maximum energy of harmonic photon

is given by the cut-off law (Krause et al., 1992).

Ecut ≈ EI + 3.17Up (1.0.1)

where EI is ionization energy, and Up is the pondermotive energy. The high-order har-

monic generation (HHG) is established as one of the best way to produce ultrashort

coherent light (Midorikawa, 2011). It is worth researching with a theoretical aspect. In

the present research, the other subject is the simulation of HHG of a hydrogen atom in

the intense field. We directly solve the time-dependent Schrödinger equation to find the

evolution of wave function and remark some features about HHG from the results. The

results are also compared with the work (Tong and Chu, 1997b) to confirm the result. It

is to build up our ability to deal with the time-dependent problems.

With the development of computer, the new device, graphics processing unit (GPU)

accelerator and programming interface, OpenACC, are used in our computation. We

perform the computation for the time iteration to simulate the HHG of a hydrogen atom

in the intense field. It has an apparent effect on the computational speed, and the cost

time is reduced to the acceptable range.

The necessarily numerical method for the present research are introduced in Chapter

2. Chapter 3 is a brief about density functional theory for the KS calculation. The

result and discussion are in Chapter 4. From now on all of equations are in atomic unit.

Following four fundamental constants are unity.

h̄ = e = me =
1

4πε0
= 1 (1.0.2)
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Chapter 2

Methods

2.1 Quadratures and Grids

The integrations occur frequently in the inner product of two wave functions or an expan-

sion in orthogonal basis. Its specific and non-uniform grids are also used in the generalized-

pseudo spectral method throughout the numerical calculations in the present research.

To numerical calculate these integrations, the quadrature and specific grids are necessary.

Gauss-Legendre quadrature and Gauss-Legendre-Lobatto quadrature are introduced in

this section.

2.1.1 Gaussian Quadrature

For the numerical integration, Gaussian quadrature has the highest accuracy in theory,

but its grids and coefficients are hard to calculate. The general formula of Gaussian

quadrature is
b∫

a

w(x)f(x)dx =
∑
i

Wif(xi) (2.1.1)

where w(x) is the weighting function, xi are specific grids called Gauss nodes or Gaus-

sian grids, and Wi are the weights on the Gaussian grids. When the interval [a, b] and

weighting function w(x) are given, the Wi and xi are determined.

There are many typical forms for the interval [a, b] and weighting function w(x) derived

from different orthogonal polynomials in (2.1.1). For a example, the interval [−1, 1] and

weighting function 1/
√
1− x2 in common use are derived from Chebyshev polynomials of

the first kind.
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2.1.2 Gaussian Grids and Weights

We only chose the [a, b] and w(x) based on the Legendre polynomials throughout the

present research. For Legendre polynomials, the valid interval is [−1, 1]. The weighting

function w(x) is a constant as follow

w(x) = 1 (2.1.2)

In practice, the unity lets us avoid calculating the weighting function for the integral

function. With the given interval [−1, 1] and weighting function w(x), there are three

unique sets of Gaussian grids xi and weights Wi. We used two of them in calculation.

The first set is the roots of Legendre polynomial PN(x), x = cos θ, with degree N .

The roots can be numerically calculated by the recurrence relations, (A.0.3) and (A.0.4),

and Newton’s method. The roots of PN(x) form following collocation points,

xi ∈ {x1, x2, . . . , xN−1, xN}. (2.1.3)

In this thesis, the set (2.1.3) of points is called Gauss-Legendre grids, abbreviated

to GL grids. They are non-uniformly distributed over the abscissa and symmetric (or

antisymmetry) to zero point. The relation between the polynomial degree N and the

number of GL grids NGL is

NGL = N (2.1.4)

The weights Wi for GL grids are (Abramowitz and Stegun, 1972, p.887)

Wi =
2

(1− xi)[P ′
N(x)]

2
(2.1.5)

The domain of GL grids is [−1, 1]. It is suitable for expressing the polar angle in spherical

coordinate in discreteness without mapping.

The other set is the roots of the first derivative of Legendre polynomial P ′
N(x), x =

cos θ, with degree N . The roots can be numerically calculated by recurrence relations,

(A.0.4) and (A.0.5) and Newton’s method. In addition, it includes the end points of

interval [−1, 1]. The roots and end points form the collocation points,

xi ∈ {x0 = −1, x1, x2, . . . , xN−1, xN = 1} (2.1.6)

where x0 and xN are end points, and x1, · · · , xN−1 are the roots of P ′
N(x). In this thesis,

the set (2.1.6) is called Gauss-Legendre-Lobatto grids, abbreviated to GLL grids.
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Their distribution is the same as GL grid. The relation between the polynomial degree

N and the number of GLL grids N ′
GLL is

N ′
GLL = N + 1. (2.1.7)

The weights Wi for GLL grids are (Abramowitz and Stegun, 1972, p.888)

Wi =
2

N(N + 1)[PN(xi)]2
. (2.1.8)

Because of the inaccuracy close to the end points of interval, the subset of GLL grids was

used more often than the GLL grids in actual calculation. The subset excluding the end

points, x0 and xN , only has the roots of P ′
N(x),

xi ∈ {x1, x2, ..., xN−1}. (2.1.9)

The relation between the polynomial degree N , the number of all GLL grids N ′
GLL, and

the number of this subset NGLL is

NGLL = N − 1 = N ′
GLL − 2. (2.1.10)

2.1.3 Mapping Funciton

The GLL grids xi of which valid domain is [−1, 1] can not express the radius r of which

valid domain is [0,∞] in spherical coordinates. The connection of different domain is

calledmapping. To achieve mapping, it requires a function which is also calledmapping

function.

Between the two intervals, x ∈ [−1,+1] and r ∈ [0,∞], there are two nonlinear map-

ping, algebraic mapping and exponential mapping, to use. We only used algebraic

mapping in the present research because the algebraic mapping is more accurate than

exponential mapping in practice. The algebraic mapping is

r(x) = L
1 + x+ β

1− x+ α
(2.1.11)

where α and β are constants to determine the boundaries, rmin and rmax. With x = −1,

r(−1) is the boundary rmin,

rmin = L
β

2 + α
. (2.1.12)

With x = 1, r(1) is the boundary rmax,

rmax = L
2 + β

α
. (2.1.13)
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When α = β = 0, the interval [−1, 1] can be map to the interval [0,∞].

The values of two constants α and β in (2.1.11) should be noted. The constant β may

not be used and let itself be zero.

β = 0 (2.1.14)

The other constant α should be added and let itself be non-zero to avoid divergence of

r(x) at the last GLL point, r(1). r(x), rmin, and rmax with the given β are redefined as

r(x) = L
1 + x

1− x+ α
(2.1.15)

rmin = 0 (2.1.16)

rmax = L
2

α
(2.1.17)

The other constant L in mapping functions, (2.1.11) and (2.1.15), is called length

scale. L affects the distribution of all collocation points, and it is important to accurately

calculate. Figure 2.1.1 shows how to change the distribution of 22 GLL grids by mapping

function with various L in a fixed range [0, rmax] = [0, 100]. There are nine horizontal

lines for nine distributions by mapping function with nine length scales.
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Figure 2.1.1: Influence of various length scale L by mapping function on grid-point dis-

tribution
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L = 1 does not change the distribution. The distribution shows that the most grids

are close to the origin, r = 0, and very dense near the origin, r = 0. It can not correctly

describe the shape of a function on the middle or far grids, and it may lead to inaccuracy

calculation when L = 1. On increase of L, the influence of L on the distribution decreases

gradually, and the distribution is changed a little. When L is over a value, the grids start

to approach to the rmax.

In practice, the length scale L depends on the variation of function. With the adapted

length scales for different problems, the grids can describe the functions well. In the

present research, the most functions are the wave functions in stationary state. The wave

functions oscillate near the nucleus and decay quickly, so we multiplied rmax/5 or rmax/10

to the mapping function r(x) as a length scale.

Map the interval [−1, 1] to interval [0, rmax] by the mapping function (2.1.15), and the

Gaussian quadrature requires a variable change,

r′(x) =
d

dx
r(x) = L

2 + α

(1− x+ α)2
, (2.1.18)

in term of x to work. The Gaussian quadrature with interval [−1, 1] and weighting function

w(x) = 1 becomes
rmax∫
0

f(r)dr =
∑
i

Wif(r(xi))
dr(xi)

dx
. (2.1.19)

where xi are GLL or GL grids, Wi are weights on GLL or GL grids.

More mapping functions that map finite interval to semi-infinite interval or infinite

interval can be found in Canuto et al. (2007, § 8.8 )
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2.2 Generalized Pseudo-Spectral Method (GPS)

Generalized pseudo-spectral method (GPS) is to solve the ordinary differential equations

(ODE) or partial differential equations (PDE). GPS uses a pseudo-spectral basis which is

constructed by orthogonal polynomials to represent the functions in a differential equation

on Gaussian grids. By GPS, ODE becomes an integration or eigenvalue problem. On the

Gaussian grids and pseudo-spectral basis, it is easy to deal with the integration and

eigenvalue problem. GPS plays a key role in the present research. This section and the

next two sections provide the principles and its applications.

2.2.1 Polynomial Interpolation and Cardinal Functions

Polynomial interpolation is one of interpolations methods. It is the generalization of linear

interpolation which is the simplest interpolation. The Lagrange interpolation is one of

algorithms to realize polynomial interpolation and better than other algorithms in time

complexity.

The Lagrange interpolation is known that a unknown function f(x) with some given

points xi is approximated by a polynomial p(x). In general, if there are N + 1 given

points, the unknown function f(x) is fitted by a degree-N polynomial pN(x) as follow

f(x) ≈ pN(x) =
N∑
i=0

f(xi)gi(x) (2.2.1)

where gi(x) are cardinal functions. With these given points xj, the cardinal functions are

defined by

gi(x) =
N∏
j=0
j ̸=i

x− xj
xi − xj

. (2.2.2)

In definition, it must satisfy following property,

gj(xi) = δij. (2.2.3)

The Lagrange interpolation with the given cardinal functions is also called cardinal

expansion or expansion in cardinal functions. The cardinal functions defined by

orthogonal polynomials form the pseudo-spectral basis.

8



2.2.2 Cardinal Functions for Orthogonal Polynomials

By GLL grids and Legendre polynomials, define the cardinal functions gj(x) as follow

(Canuto et al., 1988, p.64)

gj(x) = − 1

N(N + 1)PN(xj)

(1− x2)P ′
N(x)

x− xj
(2.2.4)

Following paragraphs show that the cardinal functions (2.2.4) have the property (2.2.3).

When x = xi = xj on GLL grids, use a limit to approach.

lim
x→xi

gj(x) = − 1

N(N + 1)PN(xj)

(1− x2j)P
′
N(xj)

xj − xj
(2.2.5)

See both denominator and numerator are zero, so apply l’Hôpital’s rule to the limit.

lim
x→xi

gj(x) = − 1

N(N + 1)PN(xj)

[(1− x2)P ′
N(x)]

′

(x− xj)′
(2.2.6)

With the relation (A.0.6) in appendix A,

lim
x→xi

gj(x) = − 1

N(N + 1)PN(xj)

[−N(N + 1)PN(x)]

1
. (2.2.7)

The limit is a constant.

gj(xj) = − 1

N(N + 1)PN(xj)

[−N(N + 1)PN(xj)]

1
= 1 (2.2.8)

When x = xi ̸= xj on GLL grids,

gj(xi) = − 1

N(N + 1)PN(xj)

(1− x2i )P
′
N(xi)

xi − xj
(2.2.9)

Only the numerator is zero because (1−x2i ) = 0, or P ′
N(xi) = 0, and the other coefficients

are not zero.

gj(xi) = − 1

N(N + 1)PN(xj)

0

xi − xj
= 0 (2.2.10)

Combine two results, (2.2.8) and (2.2.10), and the cardinal functions satisfy the property

(2.2.3).

2.2.3 Derivatives of Cardinal Functions

The cardinal expansion lets the operators in differential equation work on the cardinal

functions to represent the operators in discrete variables. For the cardinal functions

(2.2.4), its first and second derivatives which we applied in practice are analysed (Wang

and Yan, 2012) and summarized (Telnov and Chu, 1999, appendix) in this subsection.

9



I From definition (2.2.4),

N(N + 1)PN(xj)(x− xj)gj(x) = −(1− x2)P ′
N(x). (2.2.11)

Differentiate both sides with respect to x.

N(N +1)PN(xj)gj(x) +N(N +1)PN(xj)(x− xj)
dgj(x)

dx
= − d

dx
[(1− x2)P ′

N(x)] (2.2.12)

Replace [(1− x2)P ′
N(x)]

′ by (A.0.6).

N(N + 1)PN(xj)gj(x) +N(N + 1)PN(xj)(x− xj)
dgj(x)

dx
= N(N + 1)PN(x) (2.2.13)

Eliminate the coefficient N(N + 1) occurring on both sides.

PN(xj)gj(x) + PN(xj)(x− xj)
dgj(x)

dx
= PN(x) (2.2.14)

When x = xi ̸= xj on GLL grids,

PN(xj)gj(xi) + PN(xj)(xi − xj)
dgj(xi)

dx
= PN(xi). (2.2.15)

gj(xi) = 0 because xi ̸= xj, and rearrange the equation.

dgj(xi)

dx
=

1

(xi − xj)

PN(xi)

PN(xj)
(2.2.16)

II Take the derivatives of the terms on both sides of (2.2.14) with respect to x.

2PN(xj)
dgj(x)

dx
+ PN(xj)(x− xj)

d2gj(x)

dx2
= P ′

N(x) (2.2.17)

When x = xi = xj on GLL grids, and x ̸= x0 ̸= xN ,

2PN(xj)
dgj(xj)

dx
+ PN(xj)(xj − xj)

d2gj(xj)

dx2
= P ′

N(xj). (2.2.18)

(xj − xj) and P
′
N(xj) are zero, and PN(xj) is not zero.

dgj(xj)

dx
= 0 (2.2.19)

III When x = xi = xj = x0 = −1 on GLL grids, from (2.2.17),

2PN(−1)
dgj(−1)

dx
+ PN(−1)(−1 + 1)

d2gj(−1)

dx2
= P ′

N(−1) (2.2.20)

The second term is zero, and the PN(±1) and P ′
N(±1) are given by (A.0.1) and (A.0.2)

in Appendix A.

2(−1)N
dgj(x0)

dx
+ 0 = (−1)N+1N(N + 1)

2
(2.2.21)
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Rearrange the equation.
dgj(x0)

dx
= −N(N + 1)

4
(2.2.22)

When x = xi = xj = xN = 1 on GLL grids, by the same way,

dgj(xN)

dx
=
N(N + 1)

4
(2.2.23)

Following equation summarizes the formulae, (2.2.16), (2.2.19), (2.2.22), and (2.2.23),

of the first derivative of the gj(x) on GLL grids.

dgj(xi)

dx
= g′j(xi) = d′ij

PN(xi)

PN(xj)
(2.2.24)

where

d′ij =



1

xi − xj
i ̸= j

0 i = j ̸= 0 ̸= N

−N(N + 1)

4
(i, j) = (0, 0)

N(N + 1)

4
(i, j) = (N,N)

(2.2.25)

The calculation of the second derivative of the gj(x) on GLL grids based on its first

derivative on GLL grids. Following paragraphs are the derivation of the formulae for the

second derivative of gj(x) on GLL grids.

I When x = xi ̸= xj on GLL grids, and xi ̸= 0 ̸= N , from (2.2.17),

2PN(xj)
dgj(xi)

dx
+ PN(xj)(xi − xj)

d2gj(xi)

dx2
= P ′

N(xi). (2.2.26)

P ′
N(xi) is zero, and the g′j(xi) where xi ̸= xj is given by (2.2.16).

2PN(xi)

xi − xj
+ PN(xj)(xi − xj)

d2gj(xi)

dx2
= 0 (2.2.27)

Rearrange the equation.
d2gj(xi)

dx2
= − 2

(xi − xj)2
PN(xi)

PN(xj)
(2.2.28)

II Differentiate both sides of (2.2.17) with respect to x.

3PN(x)
d2gj(x)

dx2
+ (x− xj)PN(xj)

d3gj(x)

dx3
= P ′

N(x) (2.2.29)

When x = xi = xj on GLL grids, xi = xj ̸= x0, and xi = xj ̸= xN ,

3PN(xj)
d2gj(xj)

dx2
+ (xj − xj)PN(xj)

d3gj(xj)

dx3
= P ′

N(xj). (2.2.30)
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The second term is zero because of its coefficient, (xj−xj) = 0. With the relation (A.0.10)

in Appendix A,

3PN(xj)
d2gj(xj)

dx2
+ 0 =

N(N + 1)PN(xj)

(x2j − 1)
. (2.2.31)

Rearrange the equation.

d2gj(xj)

dx2
=
N(N + 1)

(x2j − 1)

PN(xj)

PN(xj)
= −N(N + 1)

3(1− x2j)
(2.2.32)

Following equation summarizes the formulae, (2.2.28), (2.2.32), and remaining formu-

lae that we did not use in the present research.

d2gj(xi)

dx
= g′′j (xi) = d′′ij

PN(xi)

PN(xj)
(2.2.33)

where

d′′ij =



− 2

(xi − xj)2
i ̸= j (i, j) ̸= (0, N) ̸= (N, 0)

−N(N + 1)

3(1− x2j)
i = j (i, j) ̸= (0, 0) ̸= (N,N)

N(N + 1)− 2

4
(i, j) = (0, N) = (N, 0)

N(N + 1)[N(N + 1)− 2]

24
(i, j) = (0, 0) = (N,N)

(2.2.34)

Pseudo-spectral methods are closely related to the spectral methods. The famous

publications, Peyret (2002) and Canuto et al. (2007), about spectral methods also offer

the materials for pseudo-spectral methods.

2.2.4 Differential Matrix

(2.2.24) points out a direct application to numerical differential. Assume that f(r(x))

is a function which maps from the r domain to the x domain. Take the derivative with

respect to r.
df(r(x))

dr
=

dx

dr(x)

df(r(x))

dx
(2.2.35)

Expand f(x) in the cardinal functions (2.2.4).

df(r(x))

dr
=

1

r′(x)

∑
j

dgj(x)

dx
f(r(xj)) (2.2.36)

Discretize x on GLL grids, x = xi.

df(r(xi))

dr
=

1

r′(xi)

∑
j

dgj(xi)

dx
f(r(xj)) (2.2.37)
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Equation (2.2.37) is a matrix-vector product. With all GLL grids, xi and xj, the g
′
j(xi)

with the coefficient [r′(xi)]
−1 form a (N +1)× (N +1) matrix D. The element Dij of the

matrix D is

Dij =
1

r′(xi)

dg(xi)

dx
=

1

r′(xi)
d′ij
PN(xi)

PN(xj)
(2.2.38)

where d′ij is given by (2.2.25). If f(r(xi)) is given, the matrix-vector product of Dij and

f(r(xj)) can directly give the derivatives f ′(r(xi)) with respect to r without other tech-

niques. The work of D is the same as a differential operator, and D is called differential

matrix.

When more grids are used in a numerical calculation, more round-errors occur in

numerically calculating the derivatives by the differential matrix D. Bayliss et al. (1995)

offer a technique to reduce the round-off errors to make the derivatives more accurate. It

is easy to derive the technique. Let a operator d/dx work on a constant function, f(x) = c

where c is a constant.
d

dx
f(x) =

d

dx
c = 0 (2.2.39)

Discretize x on GLL grids, and substitute the operator by the differential matrix D.∑
j

Dijf(xj) = 0 (2.2.40)

Let the diagonal elements of D be correction terms.

Diif(xi) = −
∑
j

i̸=j

Dijf(xj) (2.2.41)

Divide both sides by c, and the diagonal elements now become

Dii = −
∑
j

j ̸=i

Dij. (2.2.42)

The off-diagonal elements follow the original definition. The diagonal elements (2.2.42)

eliminate the round-off errors of the off-diagonal elements. The differential matrix with

the correction is denoted Dcor.

For an example of which derivative is analysis and easy to calculate,

f(r(x)) = exp(−r(x)). (2.2.43)

We numerically calculated its first and second derivative with respect to r by the differ-

ential matrix D.
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By the mapping function (2.1.15) with L = 20, the valid interval of r is [0, 200].

21 GLL grids are used in the numerical calculation, and 21 derivatives are numerically

calculated by method 1 and method 2. For the numerical differential, the method 1 is

the matrix-vector product of the differential matrix D and f , and the method 2 is the

matrix-vector product of the differential matrix Dcor and f . The second derivatives are

numerically calculated by the matrix-vector product again. The relative errors of the first

derivative f ′ and second derivatives f ′′ on 21 GLL grids are represented in Table 2.2.1. It

is suitable to remark some properties of the differential matrix and GPS.

Table 2.2.1: Relative errors of the first derivatives and second derivatives numerically

calculated by method 1 and method 2 on 21 GLL grids.

i r(xi)
Method 1 Method 2

f(r) = e−r

f ′ f ′′ f ′ f ′′

0 0.00 5.00[−09] 1.06[−07] 5.00[−09] 1.06[−07] 1.00[+00]

1 0.16 −2.28[−09] 4.55[−09] −2.28[−09] 4.55[−09] 8.52[−01]

2 0.54 2.27[−09] −4.81[−09] 2.27[−09] −4.81[−09] 5.82[−01]

3 1.16 −3.01[−09] 7.07[−09] −3.01[−09] 7.07[−09] 3.13[−01]

4 2.04 4.93[−09] −1.40[−08] 4.93[−09] −1.40[−08] 1.30[−01]

5 3.23 −9.45[−09] 3.80[−08] −9.45[−09] 3.80[−08] 3.95[−02]

6 4.78 1.64[−08] −1.49[−07] 1.64[−08] −1.49[−07] 8.42[−03]

7 6.76 5.54[−08] 9.02[−07] 5.54[−08] 9.02[−07] 1.16[−03]

8 9.29 −2.43[−06] −9.45[−06] −2.43[−06] −9.45[−06] 9.19[−05]

9 12.53 9.09[−05] 1.98[−04] 9.09[−05] 1.98[−04] 3.63[−06]

10 16.67 −6.53[−03] −1.01[−02] −6.53[−03] −1.01[−02] 5.78[−08]

11 22.02 1.35[+00] 1.69[+00] 1.35[+00] 1.69[+00] 2.74[−10]

12 29.00 −1.27[+03] −1.39[+03] −1.27[+03] −1.39[+03] 2.55[−13]

13 38.21 1.03[+07] 1.03[+07] 1.03[+07] 1.03[+07] 2.54[−17]

14 50.49 −1.67[+12] −1.59[+12] −1.67[+12] −1.59[+12] 1.18[−22]

15 66.97 1.70[+19] 1.59[+19] 1.70[+19] 1.59[+19] 8.27[−30]

16 88.91 −4.04[+28] −3.74[+28] −4.04[+28] −3.74[+28] 2.43[−39]

17 117.20 5.51[+40] 5.09[+40] 5.51[+40] 5.09[+40] 1.26[−51]

18 150.53 −1.26[+55] −1.16[+55] −1.26[+55] −1.16[+55] 4.24[−66]

19 182.37 7.98[+68] 7.39[+68] 7.98[+68] 7.39[+68] 6.30[−80]

20 200.00 −7.60[+76] −5.59[+76] −7.60[+76] −5.59[+76] 1.38[−87]

The relative errors on the far grids are huge. When r is large, the tiny values are hard

to be described by the pseudo-spectral basis. It does not affect the numerical calculation

because the order of magnitude is too small. If the cases is that exp(−r) fast decay when

r increase, the values on the grids near the point, r = 0, are leading terms, and the values

on the grids far from the point, r = 0, can be ignored.

As listed in Table 2.2.1, the first derivatives f ′ and second derivatives f ′′ numerically

calculated by the method 1 and 2 are almost identical to each other. It is evident that the

accuracy of f ′′ is less than the accuracy of f ′ especially at the point r(x0). The round-off

errors occurring near the boundary are more than in the middle as same as the result
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of Bayliss et al. (1995). The correction to round-off errors on the less grids is not easily

obvious in Table 2.2.1.

To show the efficacy of the technique for reducing the round-off errors, we present the

relative errors of the first derivative f ′ and second derivative f ′′ numerical calculated by

method 1 and method 2 at the point r(x0), r(x0) = 0, of various number of GLL grids in

Table 2.2.2. We used the mapping function (2.1.15) with length scale L = 20 to map r

domain [0, 200] to x domain [−1, 1] in the calculation for Table 2.2.2. The method 1 and

method 2 are the same as the method 1 and method 2 in Table 2.2.1. The exact values

of f ′ and f ′′ at the point r(x0) are −1 and 1.

Table 2.2.2: Relative errors of the first and second derivatives individually evaluated by

method 1 and method 2 at the first point r(x0) = 0 of various numbers of GLL grid.

NGLL
Method 1 Method 2

f ′ f ′′ f ′ f ′′

21 5.00[−09] 1.06[−07] 5.00[−09] 1.06[−07]

51 8.49[−13] 1.13[−10] −1.79[−14] −1.05[−13]

103 9.55[−14] −2.85[−10] −1.82[−14] −3.21[−11]

203 4.21[−10] 6.16[−07] 1.43[−13] −7.68[−11]

403 −2.02[−09] −1.19[−05] −2.91[−13] −2.34[−09]

As listed in Table 2.2.2, the relative errors of f ′ and f ′′ evaluated by method 1 increase

considerably from NGLL = 51 to NGLL = 403 by 4− 5 orders of magnitude. The increase

in relative errors indicates that the results have more the round-off error when more grids

are used. The f ′′ evaluated by method 1 only has 4 significant figures behind the decimal

point if we use 403 GLL grids.

By method 2, the first derivatives f ′ have about 12− 13 significant figures behind the

decimal point. They almost arrive the maximum accuracy of a double-precision number in

programming. The method 2 also reduce the relative errors of f ′′ significantly while they

could not arrive the maximum precision of double-precision number. The f ′′ evaluated

by method 2 with 403 grids only remain 8 significant figures behind decimal point, so the

number of grid should be adequate. On the whole, the technique offered by Bayliss et al.

(1995) has beneficial effect on reducing the round-off errors.
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2.3 Application of GPS to Schrödinger Equation

The time-independent Schrödinger equation, which is abbreviated to SE, reads

Ĥψ(r) = − h̄2

2m
∇2ψ(r) + V ψ(r) = Eψ(r) (SI). (2.3.1)

Suppose the external potential V only depends on radius r in spherical coordinates. By

separation of variables and variable change, u(r) = rR(r), the radial equation in atomic

unit is

−1

2

d2

dr2
u(r) + [

l(l + 1)

2r2
+ V (r)]u(r) = Eu(r). (2.3.2)

By the expansion in spherical harmonics, we only solved the radial equation.

The first application of GPS is a solver for Schrödinger equation. In this section,

remove the undesirable feature due to the non-linear mapping at first, and construct the

Hamiltonian matrix by GPS. The technique to symmetrize the Hamiltonian matrix is also

introduced in this section. We solved the SE of a hydrogen atom in the last subsection.

2.3.1 Radial Equation Represented in x Domain

For the application of GPS, discretize u(r) on the GLL grids by the mapping function

(2.1.15). The non-linear mapping of the second derivative of u(r(x)) with respect to r

leads to the first derivative of u(r(x)) with respect to x occurring in the radial equa-

tion. The elimination of the undesirable first derivative with respect to x is necessary for

symmetrizing the Hamiltonian matrix. This subsection represents how to eliminate the

redundant derivative.

Mapping u(r) from r domain to x domain, the first derivative of u(r) with respect to

r is
d

dr
u(r(x)) =

dx

dr

d

dx
u(r(x)) =

1

r′
d

dx
u(r(x)). (2.3.3)

Take a derivative of the terms on both sides with respect to r again.

d2

dr2
u(r(x)) =

1

(r′)2
[−r

′′

r′
d

dx
+

d2

dx2
]u(r(x)) (2.3.4)

With (2.3.4), the radial equation (2.3.2) becomes

1

2(r′)2
[−r

′′

r′
d

dx
+

d2

dx2
]u(r(x)) + [

l(l + 1)

2r2
+ V (r)]u(r(x)) = Eu(r(x)). (2.3.5)

To eliminate the first derivative, the variable change makes

u(r) = (
dr(x)

dx
)Cf(x) = (r′)Cf(x) (2.3.6)
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where the f(x) is a function which can be expanded in the cardinal functions (2.2.4) in x

domain, and the exponent C is a undetermined coefficient. Determine C by substituting

(2.3.6) into (2.3.4).

d2u(r(x))

dr2
=

1

(r′)2
[
−r

′′

r′
(
C(r′)C−1r′′ + (r′)C

d

dx

)
+
(
C(C − 1)(r′)C−2(r′′)2 + C(r′)C−1r′′′ + 2C(r′)C−1r′′

d

dx
+ (r′)C

d2

dx2
)]
f(x)

(2.3.7)

Rearrange and bracket the first derivatives.

d2u(r(x))

dr2
=

1

(r′)2
[
C(C − 2)(r′)C−2(r′′)2 + C(r′)C−1r′′′

+
(
2C(r′)C−1r′′ − (r′)C−1r′′

) d
dx

+ (r′)C
d2

dx2
]
f(x)

(2.3.8)

Let the coefficient of the first derivative be zero

2C(r′)C−1r′′ − (r′)C−1r′′ = 0 (2.3.9)

Calculate the C.

C =
1

2
(2.3.10)

The exponent C is determined now.

With the given C, observe these terms without the first derivatives and second deriva-

tives in (2.3.8).

C(C − 2)(r′)C−2(r′′)2 + C(r′)C−1r′′′

=− 3

4
(r′)−

3
2 (r′′)2 +

1

2
(r′)−

1
2 r′′′

(2.3.11)

r(x) is given, and its derivatives, r′(x), r′′(x), and r′′′(x), are easy to derive.

C(C − 2)(r′)C−2(r′′)2 + C(r′)C−1r′′′

=− 3

4
[
(1− x+ α)2

2
]
3
2 [

4

(1− x+ α)3
]2 +

1

2
[
(1− x+ α)2

2
]
1
2

12

(1− x+ α)4

=− 3

4

(1− x+ α)3

2
√
2

16

(1− x+ α)6
+

1

2

(1− x+ α)√
2

12

(1− x+ α)4

= 0

(2.3.12)

The given C also lets the summation be zero.

The variable change (2.3.6) with the given exponent C, C = 1/2, is

u(r(x)) = (r′)
1
2f(x). (2.3.13)
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By the variable change (2.3.13), the second derivative of u(r(x)) with respect to r can be

found from (2.3.8), (2.3.9), and (2.3.12) with the given C,

d2u(r(x))

dr2
=

1

(r′)2
[0 + 0 + (r′)

1
2
d2

dx2
]f(x) = (r′)−

3
2
d2f(x)

dx2
, (2.3.14)

and the radial equation (2.3.2) becomes

−1

2
(r′)−

3
2
d2f(x)

dx2
+ [

l(l + 1)

2r2
+ V (r)](r′)

1
2f(x) = E(r′)

1
2f(x). (2.3.15)

2.3.2 Construction and Symmetrization of Hamiltonian Matrix

The discretization of the differential operator by GPS and symmetrization of Hamiltonian

matrix are introduced in this subsection.

Following paragraph describes how to apply GPS to the discretization of the differ-

ential operator. For the function f(x) in (2.3.15), expand f(x) in the cardinal functions

gj(x) defined by (2.2.4),

f(x) =
∑
j

gj(x)f(xj), (2.3.16)

and the differential operator with respect to x works on the cardinal functions gj(x) but

not f(xj).
d2f(x)

dx2
=

∑
j

d2g(x)

dx2
f(xj) (2.3.17)

With (2.3.16) and (2.3.17), the radial equation (2.3.15) is on the pseudo-spectral basis.

− 1

2
[r′(xi)]

− 3
2

∑
j

d2gj(x)

dx2
f(xj) +

( l(l + 1)

2[r(x)]2
+ V (r(x))

)
[r′(x)]

1
2

∑
j

gj(x)f(xj)

= E [r′(x)]
1
2

∑
j

gj(x)f(xj)

(2.3.18)

Subsequently discretize x on GLL grids, x = xi.

− 1

2
[r′(xi)]

− 3
2

∑
j

d2gj(xi)

dx2
f(xj) +

( l(l + 1)

2[r(xi)]2
+ V (r(x))

)
[r′(xi)]

1
2

∑
j

gj(xi)f(xj)

= E [r′(xi)]
1
2

∑
j

gj(xi)f(xj)

(2.3.19)

Both sides of (2.3.19) are divided by [r′(xi)]
1
2 , and take the summation notation and f(xj)
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out of the square brackets.∑
j

[
−1

2
[r′(xi)]

−2d
2gj(xi)

dx2
+ (

l(l + 1)

2[r(xi)]2
+ V (r(xi))

)
gj(xi)

]
f(xj)

= E
∑
j

gj(xi)f(xj)

(2.3.20)

The GPS has been performed, and whole equation is represented by discrete variables, xi

and xj, in x domain.

In (2.3.20), the square bracket is a Hamiltonian matrix H. The H is non-symmetric

due to the coefficient [r′(xi)]
−2 of the second derivative. The non-symmetry leads to

generalized eigenvalue problem of which eigenvalues and eigenfunction may have complex

numbers. The rest in the subsection is to symmetrize the H to avoid the complex number

occurring in solutions and speed up in solving the eigenvalue problem.

Substitute (2.2.3) and (2.2.33) into (2.3.20).∑
j

[
−1

2
[r′(xi)]

−2d′′ij
PN(xi)

PN(xj)
+
( l(l + 1)

2[r(xi)]2
+ V (r(xi))

)
δij

]
f(xj)

= E
∑
j

δijf(xj)

(2.3.21)

f(xj) multiplied by r′(xj)[PN(xj)]
−1 becomes Aj.∑

j

[
−1

2
[r′(xi)]

−2d′′ij
PN(xi)

r′(xj)
+
( l(l + 1)

2[r(xi)]2
+ V (r(xi))

)
δij
PN(xj)

r′(xj)

]
Aj

= E
∑
j

δij
PN(xj)

r′(xj)
Aj

(2.3.22)

where

Aj =
r′(xj)f(xj)

PN(xj)
. (2.3.23)

Because the property of δij, let

PN(xj)

r′(xj)
δij =

PN(xi)

r′(xi)
δij.

Eliminate the same coefficient, PN(xi)[r
′(xi)]

−1, on both sides.∑
j

[
−1

2
[r′(xi)]

−1d′′ij[r
′(xj)]

−1 +
( l(l + 1)

2[r(xi)]2
+ V (r(xi))

)
δij

]
Aj

= E
∑
j

δijAj

(2.3.24)
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Because of δij, the term, i = j, remains on the right side of the equation.∑
j

[
−1

2
[r′(xi)]

−1d′′ij[r
′(xj)]

−1 +
( l(l + 1)

2[r(xi)]2
+ V (r(xi))

)
δij

]
Aj = E Aj (2.3.25)

The terms in the square brackets form a symmetric Hamiltonian matrix H. The elements

of the H are

Hij = −1

2
[r′(xi)]

−1d
′′

ij[r
′(xj)]

−1 +
( l(l + 1)

2[r(xi)]2
+ V (r(xi))

)
δij. (2.3.26)

The centrifugal term and V (r(xi)) only occur on the diagonal elements of the H. (2.3.25)

is a symmetric eigenvalue problem. In physics, the Dirichlet boundary conditions,

A0 = AN = 0, (2.3.27)

are usually used for the wave functions in quantum mechanics. We used the subset of GLL

grids (2.1.9) that excludes the end points, x0 = −1 and xN = 1, to solve (2.3.25), and

found the eigenvalues {En|n = 1, . . . , N − 1} and the eigenstates {Aj|j = 1, . . . , N − 1}.

There are a brief of this section in Telnov and Chu (1999), and a similar work (Wang

et al., 1994) that applies GPS to a Schrödinger equation.

2.3.3 Example: Hydrogen Atom

GPS with dense mesh is a good method to treat a system with the central potential. The

dense mesh can effectively describe the variation near the point, r = 0, in the system. It

lets the numerical calculation for the system by GPS be more accurate. For a example,

we solved the Schrödinger Equation (SE) of a hydrogen atom that only has Coulomb

potential.

The hydrogen atom is the simplest atomic problem. The single electron faces the bare

Coulomb potential,

V (r) = − 1

4πε0

e2

r
(SI) = −1

r
, (2.3.28)

of nucleus. From (2.3.1), the full SE of the electron with potential (2.3.28) under the

assumption of infinite nucleus mass reads

[−1

2
∇2 − 1

r
]ψ(r) = Eψ(r) (2.3.29)

The equation is analytically solvable. For bound states, the eigenvalues are

En(l) = − 1

2n2
n = l + 1, l + 2, . . . , (2.3.30)
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and the eigenfunctions,

ψ(r) = Rn,l(r)Yl,m(θ, ϕ), (2.3.31)

are composed of the radial and angular parts. The solutions of the angular part are

spherical harmonics Yl,m(θ, ϕ), and the solutions of the radial part are

Rn,l(r) = Nn,l exp(−
r

n
)(
2r

n
)lL2l+1

n−l−1(
2r

n
) (2.3.32)

where Nn,l is the normalization constant, and L2l+1
n−l−1 is associated Laguerre polynomials.

(2.3.30) and (2.3.32) are the theoretical formulae to compare with numerical results.

For the numerical calculation, we suppose the angular part is given and only solve the

radial equation (2.3.2) with the potential (2.3.28),

−1

2

d2

dr2
u(r) + [

l(l + 1)

2r2
− 1

r
]u(r) = Eu(r). (2.3.33)

The radial equation of discretization is given by (2.3.25).∑
j

[
−1

2
[r′(xi)]

−1d′′ij[r
′(xj)]

−1 +
( l(l + 1)

2[r(xi)]2
− 1

r(xi)
)
)
δij

]
Aj = E Aj (2.3.34)

In programming, the eigenvalue problem is solved by the library, LAPACK, built in the

MKL (Math Kernel Library) which is developed and optimized by Intel. The numeri-

cal results are the eigenvalues and eigenfunctions. From the eigenfunctions, the radial

functions are

Rn,l(r(xj)) =
AjPN(xj)

r(xj)
√
r′(xj)

. (2.3.35)

Note that the Rn,l(r(xj)) are not normalized yet.

We discretized r on 101 GLL grids that exclude end points, x0 = −1 and xN = 1,

by the mapping function (2.1.15) with the length scale, L = 10. The maximum radius is

rmax = 100 a.u..

With the 101× 101 Hamiltonian matrix, 101 eigenvalues should be carried out. Table

2.3.1 gives the first 12 eigenvalues of (2.3.34) with angular quantum numbers, l = 0− 2.

On the 101 eigenvalues, only 8 eigenvalues are positive numbers, and the rest are negative

numbers. The negative and positive eigenvalues are the bound and continuous states of

hydrogen atom. The analysis formula of energy levels is only used for the the bound states,

so the relative errors of continuous states and exact values are denoted the abbreviation

of ”not applicable”.
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Table 2.3.1: Energy levels of neutral hydrogen atom from the solution of radial equation

with angular quantum numbers, l = 0− 2, by GPS method.

n
Numerical En(l) Exact

l = 0 REa l = 1 REa l = 2 REa

1 −5.0000[−01] 4.1078[−15] −5.0000[−01]

2 −1.2500[−01] 1.9762[−14] −1.2500[−01] 1.4655[−14] −1.2500[−01]

3 −5.5556[−02] 1.6986[−14] −5.5556[−02] 2.4855[−14] −5.5556[−02] 4.2466[−15] −5.5556[−02]

4 −3.1250[−02] 1.2858[−11] −3.1250[−02] 8.4733[−12] −3.1250[−02] 3.4517[−12] −3.1250[−02]

5 −2.0000[−02] 1.4248[−06] −2.0000[−02] 1.0685[−06] −2.0000[−02] 5.7910[−07] −2.0000[−02]

6 −1.3868[−02] 1.4696[−03] −1.3872[−02] 1.2291[−03] −1.3877[−02] 8.4172[−04] −1.3889[−02]

7 −9.5964[−03] 5.9555[−02] −9.6532[−03] 5.3990[−02] −9.7560[−03] 4.3917[−02] −1.0204[−02]

8 −4.6628[−03] 4.0316[−01] −4.8446[−03] 3.7989[−01] −5.1876[−03] 3.3599[−01] −7.8125[−03]

9 1.6561[−03] n/a 1.3231[−03] n/a 6.92438[−04] n/a −6.1728[−03]

10 9.2667[−03] n/a 8.7639[−03] n/a 7.81785[−03] n/a −5.0000[−03]

11 1.8084[−02] n/a 1.7393[−02] n/a 1.61070[−02] n/a −4.1322[−03]

12 2.8055[−02] n/a 2.7159[−02] n/a 2.55118[−02] n/a −3.4722[−03]

a ’RE’ is the abbreviation of ’relative error’ of numerical and exact value.

For the various angular quantum number, l = 0−2, as listed in Table 2.3.1, the energy

levels n start from l + 1. It matches the relation, l = 0, 1, . . . , n− 1, of angular quantum

number l and principal quantum number n in theory.

The smallest order of magnitude for the bound and continuous states is about −3

as indicated in tables 2.3.1. Under the conditions, the smallest order is the limit of the

numerical calculation by GPS. The bound states are dense when the states are close to

the boundary. On the finite pseudo-spectral basis and grids, it is hard to numerically

calculate the dense states near the boundary, E = 0, by GPS and thus leads to the limit.

From Table 2.3.1, the maximum number of bound states which can be evaluated by

GPS always occurs when l = 0. The l is increasing by 1, and the number of bound states

is decreasing by 1 or not changed. the number of bound states may have one at least.

The eigenfunctions corresponding to the eigenvalues are plotted in Figure 2.3.1. The

dot, dash, and solid lines are the exactly wave functions of n = 1, n = 2, and n = 3 with

various l. The discrete points, plotted by circles, crosses, x marks, squares, triangles, and

rhombuses, are the wave functions numerically calculated by GPS.
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Figure 2.3.1: Radial function of a neutral hydrogen atom evaluated by GPS and theoretical

formulae. The line is exact, and the points are numerical results.
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Figure 2.3.1 only displays the wave functions where r < 25 a.u. because they all rapidly

decay to zero. The oscillations of wave functions mostly occur near the original point,

r = 0. The wave functions fully utilize the feature of dense mesh.
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2.4 Application of GPS on Poisson’s Equation

The Hartree potential VH(r) is a model that approximate the electrostatic interaction

of a electron due to all the other electrons in a system. The model assumes that the

summation of state of individual electron is straightforward to construct the charge density

distribution ρ(r). By integration of ρ(r) over all space, the VH(r) is

VH(r) =

∫
ρ(r′)

|r− r′|
dr′. (2.4.1)

It is not easy to directly calculate the integration due to the |r−r′|−1, so the other method

to calculate the VH(r) is necessary. The VH(r) satisfies the Poisson’s equation by Gauss

law.

∇2VH(r) = −4πρ(r) (2.4.2)

Through solving the Poisson’s equation, the VH(r) can be found.

The second application of GPS is a solver for Poisson’s equation. The main body

of this section is the discretization of the derivatives by GPS and construction of the

the system equation. The boundary conditions can correct the solver, and make the

calculation more accurate. The end of this section is a example.

2.4.1 Separation of Radial Part from Poisson’s Equation

The Poisson’s equation in atomic unit reads

∇2V (r) = −4πρ(r) (2.4.3)

where V (r) is the potential due to the source ρ(r), and ρ(r) is the electric charge distri-

bution. Expand both V (r) and ρ(r) in spherical harmonics Yl,m(θ, ϕ).

V (r) =
∑
l

∑
m

Vl,m(r)Yl,m(θ, ϕ) (2.4.4)

ρ(r) =
∑
l

∑
m

ρl,m(r)Yl,m(θ, ϕ) (2.4.5)

Assume that ρ(r) is azimuthal symmetry. The ρ(r) is independent of ϕ, and let m = 0 in

the expansion.

V (r) =
∑
l

Vl(r)Yl,0(θ, ϕ) =
∑
l

ul(r)

r
Yl,0(θ, ϕ) (2.4.6)

ρ(r) =
∑
l

ρl(r)Yl,0(θ, ϕ) (2.4.7)
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Substitute the expansions of V (r) and ρ(r), (2.4.7) and (2.4.6), into Poisson’s equation

(2.4.3). ∑
l

∇2

[
ul(r)

r
Yl,0(θ, ϕ)

]
= −4π

∑
l

ρl(r)Yl,0(θ, ϕ) (2.4.8)

Because

Yl,0(θ, ϕ) =

√
2l + 1

4π
Pl(x) (2.4.9)

where x = cos θ, the differential operators with respect to ϕ have no work, and (2.4.8)

becomes∑
l

[
Yl,0(θ, ϕ)

1

r2
d

dr

(
r2
d

dr
(
ul(r)

r
)
)
+ (

ul(r)

r
)

1

r2 sin θ

d

dθ

(
sin θ

dYl,0(θ, ϕ)

dθ

)]
=− 4π

∑
l

ρl(r)Yl,0(θ, ϕ)

(2.4.10)

Yl,0(θ, ϕ) are the eigenfunctions of the angular momentum operator L2, so the angular

momentum operator L2, which works on its eigenfunctions Yl,0(θ, ϕ), can be replaced by

its eigenvalue −l(l + 1).∑
l

[
Yl,0(θ, ϕ)

r

d2ul(r)

dr2
− (

ul(r)

r
)
l(l + 1)

r2
Yl,0(θ, ϕ)

]
= −4π

∑
l

ρl(r)Yl,0(θ, ϕ) (2.4.11)

Take Yl,0(θ, ϕ) out of the square brackets, and multiply r to both sides.∑
l

[
d2ul(r)

dr2
− l(l + 1)

r2
ul(r)

]
Yl,0(θ, ϕ) = −4πr

∑
l

ρl(r)Yl,0(θ, ϕ) (2.4.12)

The coefficients of Yl,0(θ, ϕ) provide

d2ul(r)

dr2
− l(l + 1)

r2
ul(r) = −4πrρl(r) (2.4.13)

(2.4.13) is one of partially radial equations.

2.4.2 Construction of System of Linear Equations

Remaining steps are the discretization of the partially radial equation (2.4.13). Apply

variable change, (2.3.13) and (2.3.14), to (2.4.13).

[r′(x)]−
3
2
d2fl(x)

dx2
− l(l + 1)

r2
[r′(x)]

1
2fl(x) = −4πrρl(r) (2.4.14)

This equation is mapped to x domain. Multiply [r′(x)]3/2 to both sides of (2.4.14), and

the coefficient of f ′′
l (x) becomes unity,

d2fl(x)

dx2
− l(l + 1)(

r′(x)

r(x)
)2fl(x) = −4πr(x)[r′(x)]

3
2ρl(r). (2.4.15)
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Apply GPS to discretize the fl(x) on the pseudo-spectral basis. Expand fl(x) in the

cardinal functions (2.2.4).∑
j

[
d2gj(x)

dx2
− l(l + 1)(

r′(x)

r(x)
)2gj(x)

]
fl(xj) = −4πr(x)[r′(x)]

3
2ρl(r) (2.4.16)

Discretize x on GLL grid, x = xi.∑
j

[
d2gj(xi)

dx2
− l(l + 1)(

r′(xi)

r(xi)
)2gj(xi)

]
fl(xj) = −4πr(xi)[r

′(xi)]
3
2ρl(r(xi)) (2.4.17)

g′′j (xi) and gj(xi) are given by (2.2.24) and (2.2.33).∑
j

[
d′′ij
PN(xi)

PN(xj)
− l(l + 1)(

r′(xi)

r(xi)
)2δij

]
fl(xj) = −4πr(xi)[r

′(xi)]
3
2ρl(r(xi)) (2.4.18)

Inserting PN(xi)[PN(xj)]
−1 to δij as a coefficient does not affect this equation because of

the property of δij.∑
j

[
d′′ij
PN(xi)

PN(xj)
− l(l + 1)(

r′(xi)

r(xi)
)2δij

PN(xi)

PN(xj)

]
fl(xj) = −4πr(xi)(r

′(xi))
3
2ρl(r(xi))

(2.4.19)

Take [PN(xj)]
−1 out the square brackets, and eliminate PN(xi) on both sides.∑

j

[
d′′ij − l(l + 1)(

r′(xi)

r(xi)
)2δij

]
fl(xj)

PN(xj)
= −4πr(xi)[r

′(xi)]
3
2
ρl(r(xi))

PN(xi)
(2.4.20)

With all GLL grids {xi|i = 0, 1, · · · , N}, the partially radial equations form a system of

linear equations,
D0,0 D0,1 · · · D0,N−1 D0,N

D1,0 D1,1 · · · D0,N−1 D1,N

...
...

. . .
...

...

DN−1,0 DN−1,1 · · · DN−1,N−1 DN−1,N

DN,0 DN,1 · · · DN,N DN,N




a0
a1
...

aN−1

aN

 =


b0
b1
...

bN−1

bN

 (2.4.21)

where

Dij = d′′ij − l(l + 1)(
r′(xi)

r(xi)
)2δij, (2.4.22)

aj =
fl(xj)

PN(xj)
, (2.4.23)

bi = −4πr(xi)[r
′(xi)]

3
2
ρl(r(xi))

PN(xi)
. (2.4.24)

If all aj are carried out directly from the linear system (2.4.21) without any correction,

the inaccuracy is unavoidable because boundary the conditions, a0 and aN , are unknown.

The boundary conditions can be numerically calculated by Gaussian quadrature.
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2.4.3 Determination of Boundary Conditions

This subsection represents the numerical calculation of the boundary conditions by Gaus-

sian quadrature.

When the electric charge distribution ρ(r) is given, the potential can be calculated by

the integration over all space,

V (r) =

∫
ρ(r′)

|r− r′|
d3r′. (2.4.25)

The expansion of V (r) and ρ(r) in spherical harmonics are given by (2.4.6) and (2.4.7).∑
l′

ul′(r)

r
Yl′,0(θ, ϕ) =

∑
l′

∫
ρl′(r

′)Yl′,0(θ
′, ϕ′)

|r− r′|
d3r′ (2.4.26)

The fraction |r− r′|−1 can also be expanded in the spherical harmonic functional space.

1

|r− r′|
=

∑
l

∑
m

4π

2l + 1

rl<
rl+1
>

Y ∗
l,m(θ

′, ϕ′)Yl,m(θ, ϕ) (2.4.27)

With the expansion of |r− r′|−1, (2.4.26) becomes∑
l′

ul′(r)

r
Yl′,0(θ, ϕ)

=
∑
l′,l,m

4π

2l + 1
Yl,m(θ, ϕ)

∫
rl<
rl+1
>

ρl(r
′)r′2dr′

∫
Y ∗
l,m(θ

′, ϕ′)Yl′,0(θ
′, ϕ′)dΩ′

(2.4.28)

The integration of the production of two spherical harmonics is analysis by the orthogo-

nality of spherical harmonics,∫
Y ∗
l,m(θ, ϕ)Yl′,0(θ, ϕ)dΩ = δl,l′δm,0 (2.4.29)

Because of the property of Kronecker delta δij, the terms only with l′ = l and m = 0

remain in (2.4.28).∑
l

ul(r)

r
Yl,0(θ, ϕ) =

∑
l

4π

2l + 1

∫
rl<
rl+1
>

ρl(r
′)r′2dr′Yl,0(θ, ϕ) (2.4.30)

The coefficients of Yl,0(θ, ϕ) provide

ul(r)

r
=

4π

2l + 1

∫
rl<
rl+1
>

ρl(r
′)r′2dr (2.4.31)

The infinite interval [0,∞] is limited to the finite interval [rmin, rmax] on the Gaussian

grids by the mapping function. Split the finite interval, [rmin, rmax], into two subintervals,
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[rmin, r] and [r, rmax]. r> and r< are determined in individual subinterval. In the subin-

terval, [rmin, r], r> and r< are r and r′. In the other subinterval, [r, rmax], r> and r< are

r′ and r.

ul(r)

r
=

4π

2l + 1
[

r∫
rmin

r′l

rl+1
ρl(r

′)r′2dr′ +

rmax∫
r

rl

r′l+1
ρl(r

′)r′2dr′] (2.4.32)

Rearrange the equation.

ul(r) =
4π

2l + 1
[
1

rl

r∫
rmin

r′lρl(r
′)r′2dr′ + rl+1

rmax∫
r

ρl(r
′)

r′l−1
dr′] (2.4.33)

At the first point, r = rmin, ul(rmin) is one of two boundary conditions,

ul(rmin) =
4π

2l + 1
[

1

rlmin

rmin∫
rmin

r′lρl(r
′)r′2dr′ + rl+1

min

rmax∫
rmin

ρl(r
′)

r′l−1
dr′]. (2.4.34)

According to the definition of calculus, the first integration is zero, so

ul(rmin) =
4πrl+1

min

2l + 1

rmax∫
rmin

ρl(r
′)

r′l−1
dr′. (2.4.35)

At the last point rmax, u(rmax) is the other one of two boundary conditions,

ul(rmax) =
4π

2l + 1
[

1

rlmax

rmax∫
rmin

r′lρl(r
′)r′2dr′ + rl+1

max

rmax∫
rmax

ρl(r
′)

r′l−1
dr′]. (2.4.36)

By the same way, the second integration is zero, so

ul(rmax) =
4π

(2l + 1)rlmax

rmax∫
rmin

r′l+2ρl(r
′)dr′. (2.4.37)

Discretize ul(r) on the GLL grids by the mapping function (2.1.15). rmin and rmax are

r0 and rN given by (2.1.16) and (2.1.17). After ul(r0) and ul(rN) are calculated by the

equations, (2.4.35) and (2.4.37), a0 and aN can be calculated by the relations, (2.3.13)

and (2.4.23). Actually, ul(rmin) can be ignored because rmin = r0 = 0 in (2.4.35).

2.4.4 Correction to Solver

With the given boundary conditions, a0 and aN , correct and simplify (2.4.21) in this

subsection.
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the a0 and aN do not need to be calculated from the system of linear equations again.

The first and last equations (in bold font) in (2.4.21) are for the a0 and aN .
D0,0 D0,1 · · · D0,N−1 D0,N

D1,0 D1,1 · · · D1,N−1 D1,N

...
...

. . .
...

...

DN−1,0 DN−1,1 · · · DN−1,N−1 DN−1,N

DN,0 DN,1 · · · DN,N−1 DN,N




a0

a1
...

aN−1

aN

 =


b0

b1
...

bN−1

bN

 (2.4.38)

Remove the first and last equations (in bold font) in (2.4.38), and the dimensions of matrix

and vector are reduced to N − 1×N − 1 and N − 1. D1,1 · · · D1,N−1

...
. . .

...

DN−1,1 · · · DN−1,N−1


 a1

...

aN−1

 =

 b1
...

bN−1

 (2.4.39)

Treat these terms,

{Di,0a0|i = 1, · · · , N − 1}

and

{Di,NaN |i = 1, · · · , N − 1},

involving a0 and aN in the matrix-vector product in (2.4.38) as correction terms. Add

these correction terms, Di,0a0 and Di,NaN , as two column vectors back to the matrix-

vector product. D1,1 · · · D1,N−1

...
. . .

...

DN−1,1 · · · DN−1,N−1


 a1

...

aN−1

+

 D1,0a0
...

DN−1,0a0

+

 D1,NaN
...

DN−1,NaN

 =

 b1
...

bN−1

 (2.4.40)

The a0 is zero because r(x0) = 0 on GLL grids, so the column vector Di,0a0 is a zero

vector. Move the column vector Di,NaN to the other side. D1,1 · · · D1,N−1

...
. . .

...

DN−1,1 · · · DN−1,N−1


 a1

...

aN−1

 =

 b1
...

bN−1

−

 D1,NaN
...

DN−1,NaN

 (2.4.41)

where the Dij, aj, and bi are the same as (2.4.22), (2.4.23), and (2.4.24), but the lower

and upper bound of both indexes, i and j, become 1 and N − 1.

Numerically solve the system of linear equations, and find {aj|j = 1, · · · , N −1}. One

of ul(r) is numerically calculated through (2.4.23) and (2.3.13). With the various l, all

ul(r) are solved. The potential V (r) is the summation of ul(r) by (2.4.4).

Many articles may not indicate how to calculate the Hartree potential. Jiang et al.

(2001) have a brief about the extension of GPS to solve the Poisson’s equation.
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2.4.5 Example: Potential Due to Square of Eigenstate

For a example, treat square of the eigenstate Ψ210(r) of a hydrogen atom as a source ρ(r),

ρ(r) = |R12(r)|2Y ∗
1,0(θ, ϕ)Y1,0(θ, ϕ) =

r2

24
e−rY ∗

1,0(θ, ϕ)Y1,0(θ, ϕ), (2.4.42)

and solve the Poisson’s equation due to this resource ρ(r) by GPS.

The components of ρ(r) in spherical harmonics Y1,0(θ, ϕ) are

ρ0(r) =

√
1

4π
|R12(r)|2 (2.4.43)

and,

ρ2(r) =

√
3

15π
|R12(r)|2. (2.4.44)

All other components are zero.

The components of potential Vl(r) corresponding to ρ0(r) and ρ2 are

V0(r) =

√
π

12
r−1[24− (r3 + 6r2 + 18r + 24)e−r] (2.4.45)

and,

V2(r) =

√
π

6
√
5
r−3[144− (r5 + 6r4 + 24r3 + 72r2 + 144r + 144)e−r] (2.4.46)

in theory. As same as ρl(r), all other components are zero.

We numerically solved the Poisson’s equations by method 1 and method 2. The

method 1 is the direct solution of the linear system (2.4.21) without the boundary con-

ditions only on the subset of GLL grids, {xi|i = 1, · · · , N − 1}, to avoid diverging at

the end point, r = 0. The method 2 is that perform the calculations of the boundary

conditions first, and solve the linear system (2.4.41) with the given boundary conditions

on the subset of GLL grids, {xi|i = 1, · · · , N − 1}.

the relative errors on the first 10 grids and the last 10 grids are listed in Table 2.4.1.

All relative errors are plotted in Figure 2.4.1 versus the index i of GLL grid. In Figure

2.4.1, the method 1 is dash line, and the method 2 is solid line. The relative error at the

end point, r = rmax, is only listed in Table 2.4.1. There were 203 GLL grids used in the

numerical calculation, and discretized r domain, [0, 200], on the subset of GLL grids by

the mapping function (2.1.15) with length scale, L = 20.
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Table 2.4.1: Relative errors of Hatree potential at the points near the boundaries from

the numerical solution of Poisson’s equation by GPS.

i ri
method 1 method 2 exact

l = 0 l = 2 l = 0 l = 2 l = 0 l = 2

1 0.00 2.04[−02] 1.14[+01] 1.09[−12] 1.14[+01] 8.86[−01] 8.71[−07]

2 0.01 2.04[−02] 1.29[−03] 3.80[−13] 1.29[−03] 8.86[−01] 7.86[−07]

3 0.01 2.04[−02] 1.16[−04] 4.55[−14] 1.16[−04] 8.86[−01] 3.48[−06]

4 0.02 2.04[−02] 3.66[−05] 7.37[−14] 3.66[−05] 8.86[−01] 1.02[−05]

5 0.03 2.04[−02] 1.15[−06] 1.76[−13] 1.15[−06] 8.86[−01] 2.39[−05]

6 0.04 2.04[−02] 7.21[−08] 2.35[−13] 6.99[−08] 8.86[−01] 4.82[−05]

7 0.06 2.04[−02] 2.58[−08] 3.78[−13] 2.80[−08] 8.86[−01] 8.73[−05]

8 0.07 2.04[−02] 3.43[−08] 4.03[−13] 3.66[−08] 8.86[−01] 1.47[−04]

9 0.09 2.04[−02] 9.83[−09] 3.37[−13] 1.21[−08] 8.86[−01] 2.32[−04]

10 0.12 2.04[−02] 4.36[−09] 2.24[−13] 2.10[−09] 8.86[−01] 3.50[−04]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

192 186.95 1.43[+01] 2.49[+00] 7.64[−13] 5.43[−13] 1.90[−02] 2.91[−06]

193 189.25 1.76[+01] 3.14[+00] 8.14[−13] 6.31[−13] 1.87[−02] 2.81[−06]

194 191.37 2.22[+01] 4.05[+00] 7.82[−13] 6.40[−13] 1.85[−02] 2.71[−06]

195 193.27 2.87[+01] 5.36[+00] 6.65[−13] 5.57[−13] 1.83[−02] 2.64[−06]

196 194.96 3.87[+01] 7.35[+00] 4.90[−13] 4.09[−13] 1.82[−02] 2.57[−06]

197 196.42 5.49[+01] 1.06[+01] 4.67[−13] 4.06[−13] 1.80[−02] 2.51[−06]

198 197.65 8.39[+01] 1.64[+01] 4.10[−13] 3.69[−13] 1.79[−02] 2.46[−06]

199 198.62 1.44[+02] 2.84[+01] 5.65[−13] 5.38[−13] 1.78[−02] 2.43[−06]

200 199.34 3.03[+02] 6.02[+01] 8.61[−13] 8.50[−13] 1.78[−02] 2.40[−06]

201 199.80 1.02[+03] 2.03[+02] 4.51[−13] 4.50[−13] 1.77[−02] 2.39[−06]

202 200.00 n/a n/a 1.96[−16] 0.00[+00] 1.77[−02] 2.38[−06]
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Figure 2.4.1: Logarithm of relatives errors of Hatree potential from the numerical solution

of Poisson’s equation by GPS.
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The maximum relative error can be found in Figure 2.4.1. The maximum relative

error occurs at the points, r1 or rN−1, close to the boundary. Not surprisingly, it is a

feature of GPS.

The V0(r) by method 1 only has about 1 significant figure behind the decimal point

over all grids. The V2(r) by method 1 has better accuracy, but it can not rescue the

accuracy of total potential V (r) because the V2(r) is far less than the V0(r). The method

1 is not reliable mainly due to the few significant figures.

On the other hand, the V0(r) by method 2 has over 10 significant figures behind the

decimal point over all grids as listed in Table 2.4.1. At the first point, the relative errors

of V2(r) by method 2 have the same order of magnitude as V2(r) by method 1. The V2(r)

has about 5 significant figures behind the decimal point. When sum all components, the

V (r) only has 5 significant figures behind the decimal point. The method 2 is better than

the method 1 on the whole. The correction terms has apparent effect on the numerical

calculation and lead to better accuracy.

If the numerical calculation needs to avoid the inaccuracy at the points near the

boundary, r = 0, increase in the length scale L of the mapping function (2.1.15) is a

possible ways. The increase in L can change the distribution of r(xi), and let the first

point r(x1) be located the point, r > 0.1 by the mapping function (2.1.15). As shown in

Table 2.4.1, the relative errors of V2(r) by method 2 on the grids, r > 0.1, are less than

10−8. It can decrease the maximum relative error over all grids because V2(r) by method

2 dominate the accuracy in method 2.
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2.5 Split Operator Method

The state functions of system vary with time when the system is under a time-dependent

field. To carry out these state functions, it requires a method to deal with the time

variable of time-dependent equation. We chose the split operator method to split the total

Hamiltonian operator. This section provides the introduction to split operator method,

calculation of operator, and the process in programming.

2.5.1 Intorduction

The time-independent Schrödinger equation (SE) by GPS gives the stationary states.

Treat the stationary states as a initial value, and the time-dependent Schrödinger equation

(TDSE) becomes a initial value problem. This split operator method is widely employed

to numerically solve the initial value problem.

Consider following differential equation with the initial condition u(t = 0).

d

dt
u(t) = Âu(t) (2.5.1)

where Â is a sum of two operators, Â1 and Â2, which do not commute.

Discretize time t by the time length ∆t. In a subinterval [t, t+∆t], the true solution

for the equation (2.5.1) is

u(t+∆t) = e(Â1+Â2)∆tu(t) (2.5.2)

The simplest approximations is divide and rule. Treat the one of operators first and the

other later.

u(t+∆t) ≈ eÂ1∆teÂ2∆tu(t), (2.5.3)

or vice versa

u(t+∆t) ≈ eÂ2∆teÂ1∆tu(t). (2.5.4)

The operator Â is split into Â1 and Â2 for the approximation. The splitting forms, (2.5.3)

and (2.5.4), are called Lie splitting proposed by Trotter (1959).

The local truncation error of Lie splitting can be found by the Baker-Campbell-

Hausdorff formula. After a time step ∆t, the Lie splitting give rise to the local truncation

error of
∆t2

2
[Â1, Â2]u(t) +O(∆t3) (2.5.5)
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where [Â1, Â2] is the commutator of Â1 and Â2. The local truncation error (2.5.5) has no

∆t term, so the Lie splitting is accurate in the first order.

The leading term in the local truncation error of Lie splitting is the antisymmetry of

Â1 and Â2. The observation on the antisymmetry leads to a symmetric splitting form,

u(t+∆t) ≈ eÂ1
∆t
2 eÂ2

∆t
2 (eÂ2

∆t
2 eÂ1

∆t
2 u(t)) = eÂ1

∆t
2 eÂ2∆teÂ1

∆t
2 u(t), (2.5.6)

or vice versa

u(t+∆t) ≈ eÂ2
∆t
2 eÂ1

∆t
2 (eÂ1

∆t
2 eÂ2

∆t
2 u(t)) = eÂ2

∆t
2 eÂ1∆teÂ2

∆t
2 u(t), (2.5.7)

to increase the accuracy by an order. The symmetric splittings, (2.5.6) and (2.5.7), are

called Strang splitting proposed by Strang (1968). The local truncation error of Strang

splitting can be found by the Baker-Campbell-Hausdorff formula, too. After a time step

∆t, the Strang splitting give rise to the local truncation error of

∆t3
( 1

12

[
Â2, [Â2, Â1]

]
− 1

24

[
Â1, [Â1, Â2]

])
u(t) +O(∆t4). (2.5.8)

The local truncation error (2.5.8) has no ∆t2 term, so the Strang splitting is accurate in

the second order. If Â1 and Â2 commute, all splittings form are exact.

2.5.2 Extension for Time-Dependent Schrödinger Equation

The split operator method help to solve the following time-dependent Schrödinger equa-

tion (TDSE),

i
∂

∂t
ψ(r, t) = Ĥψ(r, t). (2.5.9)

The total Hamiltonian operator Ĥ may be decomposed into the time-independent oper-

ator Ĥ0(r) and time-dependent operator V̂ (r, t).

i
∂

∂t
ψ(r, t) = (Ĥ0 + V̂ )ψ(r, t) (2.5.10)

For the present research for the target atom, the Ĥ0 is the Hamiltonian of hydrogen atom

with the variable change of radial part, u(r) = rR(r).

Ĥ0(r) = −1

2

d2

dr2
+
L̂2

2r2
− 1

r
(2.5.11)

where L̂2 is the angular momentum operator. For the the intense field E injected along

the z axis, the V̂ is the interaction between the intense field and atom.

V̂ (r, t) = E(t) · r = (E0fs(t)êz) · (rêr) = E0r cos θfs(t) (2.5.12)
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which E0 is the amplitude of field, and fs(t) is the shape of field. The whole equation

(2.5.10) describes the time evolution of states of hydrogen atom in the intense field.

Now extend the Strang splitting in spherical coordinates to the time propagation of

the Schrödinger equation.

ψ(r, t+∆t) ≈ exp(−iĤ0
∆t

2
) exp(−iV̂∆t) exp(−iĤ0

∆t

2
)ψ(r, t) (2.5.13)

The time propagation of wave function ψ from t to t+∆t is constructed from three steps

to deal with the three operators.

I In energy space spanned by Ĥ0, the wave function ψ(r, t) is propagated half time step

∆t/2

ψ1(r, t) = exp(−iĤ0∆t

2
)ψ(r, t) (2.5.14)

II Afterwards the wave function ψ(r, t) is transformed back to the real space and prop-

agated a time step ∆t in the field E.

ψ2(r, t) = exp(−iV̂∆t)ψ1(r, t) (2.5.15)

III At the end of one iteration, the wave function ψ(r, t) is transformed to the energy

space spanned by Ĥ0 and propagated the other half time step ∆t/2.

ψ(r, t+∆t) = exp(−iĤ0∆t

2
)ψ2(r, t) (2.5.16)

With the scheme, I ∼ III, the simplest method to transform the wave function ψ(r, t)

between real and energy space is the Fourier transform. After the transformation, the

operator is a value in the space corresponding to the operator, so the work of operator

on the wave function is the direct product of operator and the wave function. The work

(Jiang and Chu, 1992) through the Fourier transform is a good example to apply split

operator method in two-dimension.

2.5.3 Treatment of Hamiltonian Operator

Except the method to deal with the exponent operators in different space by Fourier

transform, there is a other method to deal with both exponent operator, exp(−iĤ0∆t/2)

and exp−(iV̂∆t), in the real space. Tong and Chu (1997b) develop the method to deal
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with the operator exp(−iĤ0∆t/2) in the real space by replacing the operator with its

eigenvalues and eigenvectors. The method is derived explicitly in this subsection.

Due to the time-dependent field E(r) along the z axis, the time evolution is indepen-

dent of the azimuthal angle ϕ in spherical coordinates,

ψ(r) = ψ(r, θ), (2.5.17)

and thus expand the wave function in spherical harmonics Ylm(θ, ϕ) with a given l, l = 0.

ψ(r, θ) =
∑
l

ul(r)

r
Yl,0(θ, ϕ) (2.5.18)

When the operator Ĥ0 works on the component ul(r)Yl,0(θ, ϕ), the angular momentum

operator L̂2 in Ĥ0 works on its eigenfunctions Yl,0(θ, ϕ) and gives its eigenvalues −l(l+1).

After the work of L̂2, the Ĥ0 denoted Ĥ0
l only keeps the eigenvalue −l(l + 1).

Ĥ0
l (r) =

1

2

d2

dr2
− l(l + 1)

2r2
− 1

r
(2.5.19)

The Ĥ0
l (r) is the same as the operator in (2.3.34). All Ĥ0

l (r) only depend on the radius

r. Each component ul(r)/r gives a operator Ĥ0
l (r) with the given l.

The eigenvalues ϵk,l and eigenfunctions χn,l(r) of Ĥ
0
l (r) working on the ul(r) are carried

out by GPS in Subsection 2.3.3. ul(r) can be the linear combination of its normalized

eigenvector χn,l(r).

ul(r) =
∑
n

cnχnl(r) (2.5.20)

where the cn are the coefficients and can found by the orthogonality of χnl(r).

cn =

∫
χnl(r)ul(r)dr (2.5.21)

Discretize r on the GLL grids, r = r(xj), by the mapping function (2.1.15), and cn are in

term of weighted sum by Gaussian quadrature.

cn =
∑
j

Wjχnl(r(xj))ul(r(xj))
dr(xj)

dx
(2.5.22)

Back to the expansion (2.5.18), let the operator exp( ˆ−iH0∆t/2) work on the wave

function ψ(r, θ),

exp(−iĤ0∆t

2
)ψ(r, θ) = exp(−iĤ0∆t

2
)
[∑

l

ul(r)Yl,0(θ, ϕ)
]
. (2.5.23)
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After the L̂2 in Ĥ0(r) is substituted by its eigenvalue, the Ĥ0(r) of which the radial

operator remains is denoted to Ĥ0
l given by (2.5.19).

exp(−iĤ0∆t

2
)ψ(r, θ) =

∑
l

[
exp(−iĤ0

l

∆t

2
)ul(r)

]
Yl,0(θ, ϕ) (2.5.24)

Focus on the square brackets. With the linear combination (2.5.20), the exp(−iĤ0
l ∆t/2)

further work on the eigenvectors χn,l.

exp(−iĤ0
l

∆t

2
)ul(r) =

∑
n

cn exp(−iĤ0
l

∆t

2
)χn,l(r) (2.5.25)

Replace the operator Ĥ0
l on the exponent with its eigenvalues ϵn,l.

exp(−iĤ0
l

∆t

2
)ul(r) =

∑
n

cn exp(−iϵn,l
∆t

2
)χn,l(r) (2.5.26)

The coefficients cn are given in (2.5.22).

exp(−iĤ0
l

∆t

2
)ul(r)

=
∑
n

[
∑
j

Wjχn,l(r(xj))ul(r(xj))
dr(xj)

dx
] exp(−iϵn,l

∆t

2
)χn,l(r)

(2.5.27)

Discretize r on GLL grids, r = r(xi), by the mapping function (2.1.15), and rearrange

this equation.

exp(−iĤ0
l

∆t

2
)ul(r(xi))

=
∑
j

[
∑
n

χn,l(r(xi))χn,l(r(xj)) exp(−iϵn,l
∆t

2
)Wj

dr(xj)

dx
]ul(r(xj))

(2.5.28)

Treat the square bracket as a matrix S. The elements of S are

Sij(l) =
∑
k

χk,l(r(xi))χk,l(r(xj)) exp(−iϵk,l
∆t

2
)Wj

dr(xj)

dx
. (2.5.29)

The operator exp(−iĤ0
l ∆t/2) now becomes a matrix-vector product of the matrix S and

vector ul.

exp(−iĤ0
l ∆t/2)ul(r(xi)) =

∑
j

Sij(l)ul(r(xj)) (2.5.30)

The advantage of this method is all time propagation in the same space. It does need

the Fourier transform. The difficulty is how to find the eigenvalues and eigenvectors of a

operator.
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2.5.4 Programming Scheme

The combination of Subsection 2.5.2 and Subsection 2.5.3 is actually used for the time

propagation in the present research. The practical process of computation is concluded

in the last subsection.

The wave function ψ(r) is given in Subsection 2.5.2. The variation of wave function

is independent of the azimuthal angle ϕ in spherical coordinates, so the Legendre polyno-

mials Pl(cos θ) can replace the spherical harmonics Yl,0(θ, ϕ) for expansion of ψ(r). The

radius r is discretized on the subset of GLL grids by the mapping function (2.1.15), and

the inclination θ in cosine is discretized on GL grids (2.1.3). The number of the GLL

girds may not equal to the number of GL girds.

In a time subinterval, [tk, tk+1] = [t, t + ∆t], start form the expansion of ψ(r) in

Legendre polynomials up to lmax.

ψ0(ri, θj, tk) =
lmax∑
l=0

u0l (ri, tk)Pl(cos θj) (2.5.31)

The superscripts of ul and ψ denote the order of steps. The ri are the shorthand for r(xi).

For the first step I in 2.5.2, compute the matrix-vector for each partial wave ul to perform

the work of the operator exp(−iĤ0∆/2).

u1l (ri, tk) =

NGLL∑
j=1

Sij(l)u
0
l (rj) (2.5.32)

Combine the radial part with angular part for the next step.

ψ2(ri, cos θj, tk) =
lmax∑
l=0

u1l (ri, tk)Pl(cos θj) (2.5.33)

For the second step II in 2.5.2, directly compute the product of the operator exp(−iV̂∆t)

and the wave function in real space.

ψ3(ri, cos θj, tk) = exp(−iV (ri, cos θj, tk +
∆t

2
)∆t)ψ2(ri, cos θj, tk) (2.5.34)

where V (r, cos θ, t) is defined by (2.5.12). Expand the ψ3(r, cos θ, t) in Legendre polyno-

mials for the work of the other exp(−iĤ0∆/2).

u4l (ri, tk) =
2l + 1

2

NGL∑
j=1

Wjψ
3(ri, cos θj, tk)Pl(cos θj) (2.5.35)
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where the Wj are Gaussian weights on GL grids. For the third step III, compute the

matrix-vector product for each partial wave ul again.

u0l (ri, tk+1) =

NGLL∑
j=1

Sij(l)u
4
l (rj) (2.5.36)

The superscript returns to zero, and accomplish the time propagation in the time subin-

terval [tk, tk+1].

After the step (2.5.36), the wave function ψ(r, θ, tk+1) is given. The remaining steps

are the analysis from the given ψ(r, θ, tk+1).
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Chapter 3

Theory

3.1 Density Functional Theory (DFT)

Apply the Born-Oppenheimer approximation to a atomic system. Its Hamiltonian in

atomic unit reads

H =
1

2

N∑
i

p2i +
1

2

N∑
i,i′=1
i̸=i′

1

|r′i − r′i|
− Z

r
(3.1.1)

where Z is the atomic number. For the such Hamiltonian, it is hard to find the analytical

solution of the Schrödinger equation (SE). Even if use the numerical method to directly

solve the SE, the computation become complex and take much time. The one of good

approaches to deal with the Hamiltonian (3.1.1) is the density functional theory (DFT).

The DFT and related theories are developed for many years from the early 20th cen-

tury. The DFT is generally employed in physics, chemical, and material. Many textbooks

about DFT have been published. Parr and Yang (1989) give the DFT especially for atom

and molecules. Kryachko and Ludena (1990) represent a strict framework and formaliza-

tion of DFT and related theories in history. Martin (2004) has the modern applications

of DFT to the electronic structure.

DFT is a tool in the present research and helps to deal with the many-electron system

in term of the SE of individual electron. DFT is a huge theory, but this section do not cost

much space to discuss DFT itself. This section only provides the fundamental theories,

the concepts of exchange-correlation energy, and self-interaction correction.
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3.1.1 Kohn-Sham Theorem

The fundamental of DFT is based on two articles, Hohenberg and Kohn (1964) and Kohn

and Sham (1965). The fundamental theorems have two.

The first is that the density ρ is the basic variable. For a system in an external potential

V , the potential V is unique unless the potential V is a constant, and determined by the

particle density ρ in ground state.

The second is that a functional E[ρ] for the energy E in term of the particle density

ρ can be defined. The functional E[ρ] is valid for any external potential V . The exact

energy in ground state of this system is the global minimum value of the functional E[ρ]

with the particle density ρ which minimizes the functional E[ρ] and is the exact particle

density ρ0.

In the present research, the particle refers the electron because the electrons denomi-

nate atomic system. The total density ρ(r) and its components can be calculated via

ρ(r) =
∑
σ

Nσ∑
i

|ψiσ(r)|2 =
∑
σ

Nσ∑
i

ρiσ(r)

=ρ↑(r) + ρ↓(r) =

N↑∑
i

|ψi↑(r)|2 +
N↓∑
i

|ψi↓(r)|2
(3.1.2)

where σ is denoted the spin, and Nσ is the number of electrons with the same spin.

Based on the fundamental theorems, the total energy E in ground state of the inter-

acting electrons is defined by a functional of the densities.

E[ρ↑, ρ↓] = Ts[ρ↑, ρ↓] + Eext[ρ] + EH [ρ] + Exc[ρ↑, ρ↓] (3.1.3)

Take the functional derivative of total energy E respect to the density ρ(r) to find the

minimization. The Kohn-Sham equation is obtained from the the variational equation of

the functional derivative.

HKS
σ ψiσ(r) =

[
−1

2
∇2 + V KS

σ

]
ψiσ(r) = ϵiσψiσ(r) (3.1.4)

where HKS
σ is the Kohn-Sham effective Hamiltonian, and V KS

σ is Kohn-Sham effective

potential,

V KS
σ = Vext(r) + VH(r) + Vxc(r). (3.1.5)

The Kohn-Sham equation (3.1.4) is a one-electron independent equation with the V KS
σ

constructed by the self-consistent solutions and gives the consistent solutions ψiσ(r) also

called (Kohn-Sham) orbitals.
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With the the self-consistent solutions of (3.1.4), the components of E and V KS
σ can be

calculated. The first component of E is non-interacting kinetic energy Ts,

Ts[ρ↑, ρ↓] =
∑
σ

Nσ∑
i

⟨
ψiσ(r)

∣∣ −1

2
∇2

∣∣ ψiσ(r)
⟩
. (3.1.6)

The second component of E is the interaction energy Eext of the electrons within the

external potential Vext(r) assumed to be independent of spin.

Eext =

∫
ρ(r)Vext(r)d

3r, (3.1.7)

Without the injection of the additional field into the atomic system, the external potential

for electrons is the Coulomb potential,

Vext(r) = −Z
r

(3.1.8)

due to the nucleus. The third component of E is the Hartree energy EH . The Hartree

energy EH is the self-interaction energy due to the electron-electron repulsion.

EH [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
d3rd3r′ (3.1.9)

Its functional derivative is the Hartree potential VH stated in Section 2.4.

VH(r) =
δEH [ρ]

δρσ(r)
=

∫
ρ(r′)

|r− r′|
d3r′, (3.1.10)

The last component of E is the exchange-correlation energy Exc. The functional derivative

of Exc is the exchange-correlation potential Vxc,

Vxc,σ(r) =
δExc[ρ↑, ρ↓]

δρσ(r)
. (3.1.11)

Both Exc and Vxc are quantum terms and discussed in the next subsection.

3.1.2 Exchange and Correlation Functionals

The exchange-correlation energy functionals are key for the accurate calculation. There

are two classes of approximation introduced in this subsection.

The exchange-correlation energy Exc is a sum of two distinct terms, exchange energy

Ex and correlation energy Ec.

Exc[ρ↑, ρ↓] = Ex[ρ↑, ρ↓] + Ec[ρ↑, ρ↓] (3.1.12)

42



Both exchange and correlation terms are the quantum effects, so the Kohn-Sham calcu-

lation is a quantum treatment.

The exchange energy Ex comes from a exchange interaction between identical particles.

There are two kinds of identical particles for the symmetry and antisymmetry. Our

target particles, electrons, are fermions. The famous theory for the exchange interaction

of fermions is the Pauli exclusion principle. In theory, the exchange interaction always

lowers the energy. The exact exchange energy can be expressed in term of the orbitals

ψiσ(r).

Ex = −1

2

∑
σ

∑
i,j

∫ ∫
ψ∗
iσ(r)ψiσ(r

′)ψ∗
jσ(r

′)ψjσ(r)

|r− r′|
d3r′d3r (3.1.13)

Generally, the amount of exchange energy is less than the Hartree energy EH or kinetic

energy Ts.

The correlation energy Ec might be defined by the difference between the exact solution

and a reference state, so the correlation energy has different definitions. The difference

between the exact solution of Schrödinger Equation and the solution of Hartree-Fock

equation may be a well-defined chose for the correlation energy Ec. The amount of

correlation energy is less than the exchange energy.

The exchange-correlation energy functional must be approximated. The oldest ap-

proximation is local-density approximation (LDA) proposed by Kohn and Sham (1965).

Kohn and Sham (1965) consider that the solid system can be frequently treated as the

limit of homogeneous electron gas. In general, the LDA treats any inhomogeneous sys-

tem locally as a homogeneous electron gas. It simply expresses the exchange-correlation

energy Exc of the inhomogeneous system as an integration over the exchange-correlation

energy density,

ELDA
xc [ρ] =

∫
ρ(r)εhomo

xc (ρ(r))d3r (3.1.14)

where the εhomo
xc is the energy density, and, at any point, the εhomo

xc (ρ(r)) is assumed to be

the same as a homogeneous electron gas. The LDA is a universal functional of ρ, and it is

independent of any physical parameter. Thus the LDA is easily applied to the arbitrarily

inhomogeneous system.

LDA based on the assumption that the number of spin-up electrons is the same as the

number of spin-down electrons. The assumption does not satisfy the actual applications

generally. For the actual applications, the local spin-density approximation (LSDA) is

implemented in more general. The spin-dependent version of LDA proposed by von Barth
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and Hedin (1972) is

ELSDA
xc [ρ↑, ρ↓] =

∫
ρ(r)εhomo

xc (ρ↑(r), ρ↓(r))d
3r (3.1.15)

where the εhomo
xc (ρ↑(r), ρ↓(r)) is the exchange-correlation energy per particle in homoge-

neous electron gas with the spin-up and spin-down densities, ρ↑(r) and ρ↓(r). With the

work (Oliver and Perdew, 1979), the exchange energy ELSDA
x in LSDA is

ELSDA
x [ρ↑, ρ↓] =

3

4
(
6

π
)
1
3

∫
(ρ

4
3
↑ (r) + ρ

4
3
↓ (r))d

3r (3.1.16)

in term of ρ↑ and ρ↓. It can also be in term of the spin polar parameter,

ζ(r) =
ρ↑(r)− ρ↓(r)

ρ(r)
=
ρ↑(r)− ρ↓(r)

ρ↑(r) + ρ↓(r)
. (3.1.17)

For the Kohn-Sham calculation in the present research, the exchange potential Vx

referred to LSDA is the Xα potential (Slater et al., 1969),

V Xα
x (r) = −3

2
α[

6

π
ρσ(r)]

1
3 (3.1.18)

with an adjustable coefficient α. The correlation energy Ec and potential Vc are not

completely known in analytic form, but they can be found by quantum Monte Carlo

calculation and parametrized to use. Perdew-Zunger (ZP81) are the parametrized cor-

relation energy and potential referred to LSDA in the present research. ZP81 is based

on the numerical results (Ceperley, 1978; Ceperley and Alder, 1980) by quantum Monte

Carlo calculation and parametrized by Perdew and Zunger (1981).

To improve the LSDA, not only the local density but also its gradients are added

into the construction of exchange-correlation functionals. In fact, after actual work, the

higher-order gradients do not raise the improvement of LSDA and even make worse. If

only keep the first-order gradient in approximation to save the lost property of LSDA,

the approximation is called generalized-gradient approximation (GGA). GGA is a class

of exchange-correlation functionals, and its general form is

EGGA
xc [ρ↑, ρ↓] =

∫
ρ(r)εxc(ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r))d3r. (3.1.19)

Over many years, various GGAs are developed. For the Kohn-Sham calculations in the

present research, The functional referred to GGA is the non-empirical GGA, PBE (Perdew

et al., 1996; Perdew et al., 1997). PBE is one of the most popular GGA functionals. It

satisfies the properties as many as possible and retains the correct feature of LSD when

add others.
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3.1.3 Optimized Effective Potential (OEP)

Except the approximation of functional, we also can get the better exchange-correlation

potential through the optimized effective potential (OEP) method. The OEP leads to

an integral equation which it is hard to solve. The integral equation can be approxi-

mated and become a system of linear equation. The simple introduction to OEP and the

approximation for the integral equation are introduced in this subsection and the next

subsection.

Because the effectively Kohn-Shan (KS) potential V KS
σ is a functional of the spin-

densities ρσ(r), the KS orbitals ψiσ(r) can also be written as a spin-densities functional

ψiσ[ρσ] if the KS orbitals ψiσ(r) come from the Kohn-Sham equation with the V KS
σ . By the

relation (3.1.2), each explicit functional of density can be written as an explicit functional

of orbital, but the each explicit functional of orbital may not be written as an explicit

functional of density. The best example is the exchange energy (3.1.13).

By the same way, let the orbitals be the spin-densities functional, and the total energy

can be written as

E[ρσ] = E[{ψiσ[ρσ]}] = E[{ψiσ}] (3.1.20)

where the {ψiσ} is a set of orbitals from the KS equation.

The fundamental theories point out the unique relation between the density ρ and the

KS potential V KS
σ . It can substitute the minimization of the total energy E with respect

to ρ(r) by the minimization of the total energy E with respect to V KS
σ .

δE[{ψiσ}]
δV KS

σ

= 0 (3.1.21)

Directly calculate the functional derivative by the chain rule.

∑
σ′

Nσ′∑
i′

∫
δE[{ψiσ}]
δψi′σ′(r′)

δψi′σ′(r′)

δV KS
σ (r)

d3r′ + c.c. = 0 (3.1.22)

The derivation by Krieger et al. (1992a) gives∑
i

∫
[Vxc,σ(r

′)− vxc,iσ(r
′)]ψiσ(r)ψ

∗
iσ(r

′)Gjσ(r, r
′)d3r′ + c.c. = 0 (3.1.23)

where vxc,iσ(r) is the orbital-dependent potential,

vxc,iσ(r) =
1

ψ∗
iσ(r)

δExc[{ψiσ}]
δψiσ(r)

, (3.1.24)
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and Gjσ(r, r
′) is the Green’s function,

Gjσ(r, r
′) =

∞∑
k

k ̸=j

ψkσ(r
′)ψ∗

kσ(r)

ϵjσ − ϵkσ
. (3.1.25)

The integral equation (3.1.23) is the OEP equation. It allows to calculate the exchange-

correlation potential Vxc,iσ(r) for the given KS orbitals through the solution of (3.1.23).

OEP brings the improvements of the exchange-correlation potential. The most impor-

tant improvement is the correction to the self-interaction contribution due to EH and the

approximation of Exc in (3.1.3). The correction make Vxc,iσ(r) have the right asymptotic

behavior for r → ∞ like a static electric potential of a charge, which means

Vxc,iσ(r) → −1

r
when r → ∞ (3.1.26)

for the behavior of the exact exchange potential. The other improvements are shown in

the next chapter.

3.1.4 Krieger-Li-Iafrate Approximation (KLI)

Krieger, Li, and Iafrate (1990, 1992a, 1992b, 1993) offer an approximation to the integral

equation (3.1.23). The approximation is called KLI approximation.

The KLI approximation gives that

V KLI
OEP,σ(r) = Vext(r) +

∫
ρ(r′)

|r− r′|
d3r′ +

δExc[ρ↑, ρ↓]

δρσ(r)
+ V KLI

σ (r) (3.1.27)

where

V KLI
σ (r) =

∑
i

ρiσ(r)

ρσ(r)
vxc,iσ(r) +

∑
i

i ̸=Nσ

ρiσ(r)

ρσ(r)
(V

KLI

iσ − vxc,iσ). (3.1.28)

In (3.1.28), the vxc,iσ(r) is defined by (3.1.24). When we take the Exc as an exact exchange

energy Ex given in (3.1.13), the vxc,iσ(r) is the effectively spin-unrestricted potential of

single particle,

vxc,iσ(r) = −
∫

ρiσ(r
′)

|r− r′|
d3r′ − δExc[ρiσ]

δρiσ(r)
. (3.1.29)

The V
KLI

xc,iσ and vxc,iσ are the expectation of V KLI
xc,iσ and vxc,iσ(r).

V
KLI

iσ =
⟨
ψiσ|V KLI

σ |ψiσ

⟩
(3.1.30)

vxc,iσ =
⟨
ψiσ|vxc,iσ|ψiσ

⟩
(3.1.31)

46



KLI approximation suggests that (V
KLI

iσ − vxc,iσ) can be calculated through a solution of

following linear system,

Nσ−1∑
j=1

(δijσ −Mijσ)(V
KLI

jσ − vxc,jσ) =V
s

iσ − vxc,iσ

i =1, 2, . . . , Nσ − 1

(3.1.32)

where

Mij,σ =

∫
ρiσ(r)ρjσ(r)

ρσ(r)
d3r (3.1.33)

and,

V
s

iσ =
⟨
ψiσ

∣∣ Nσ∑
j

ρjσ(r)vxc,jσ(r)

ρσ(r)

∣∣ψiσ

⟩
. (3.1.34)

Tong and Chu (1997a) suggest the other way to treat V
KLI

iσ . Directly use V KLI
σ in

previous iteration to calculate V
KLI

iσ without solving the linear system (3.1.32), and it is

solved self-consistently with the equation (3.1.27). Both ways lead to converged result.

In KLI approximation, The exchange energy EKLI
x is defined as

EKLI
x = Ex[ρ↑, ρ↓]−

∑
σ

Nσ∑
i

{EH [ρiσ] + Ex[ρiσ]}, (3.1.35)

the correlation energy EKLI
c is defined as

EKLI
c = Ec[ρ↑, ρ↓]−

∑
σ

Nσ∑
i

{Ec[ρiσ]}, (3.1.36)

and the total energy EOEP by OEP method becomes

EOEP [{ψiσ}] = E[{ψiσ}]−
∑
σ

Nσ∑
i

{EH [ρiσ] + Exc[ρiσ]}. (3.1.37)
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Chapter 4

Results and Discussion

The results are divided into two sections by the time-dependent and time-independent

calculation.

4.1 Kohn-Sham Calculation of Neutral Atom

The first section is the time-independent calculations. It is mainly to self-consistently

solve the Kohn-Sham equation.

4.1.1 Kohn-Sham Calculation with Various Functionals

We first represent the basic Kohn-Sham (KS) calculation without optimized effective

potential (OEP). From the KS calculations, we numerically calculated the total energies

and exchange-correlation energies.

The specification for the present calculations is stated as follows. Discretized the r

domain, [0, rmax], on GLL grids by the mapping function (2.1.15). The number of the

GLL grids was 103 for Z = 1− 2 and 203 for Z = 3− 4. The maximum radius rmax was

100 a.u. for Z = 1−2 and 200 a.u. for Z = 3−4. The length scale L was 20 for Z = 1−4.

The L and rmax which keep within a proper range do not affect the result.

For the KS calculations, we used two classes of exchange-correlation functionals, LSDA

and GGA. For the LSDA, the exchange energy and potential were (3.1.16) and Xα poten-

tial (3.1.18) with α = 2/3, and the correlation energy and potential were the parametriza-

tion ZP81 (Perdew and Zunger, 1981). For the GGA, we directly used the subroutine 1. It

1It can be downloaded from their website http://dft.uci.edu/index.php
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follows the instruction of Perdew et al. (1996). The KS equation was solved by GPS, and

the iteration for the self-consistent solution had 20 times. One sequential computation

only took few seconds by a modern computer.

Table 4.1.1 contains the total energies from KS calculations without the OEP and the

exact values (Davidson et al., 1991). The LSDA underestimates the total energies, and

its relative errors are in the 1− 4% range. The most relative error for hydrogen atom is

about 4%. The LSDA may be useful in actual application to solid, but it may not enough

accurate to predict an atomic system.

The GGA also underestimates the total energise, but the total energies by GGA are

more closer to the exact values than the total energies by LSDA. All relative errors are

less than 1%. GGA has good properties in the estimation of total energies.

Table 4.1.1: Total energies (in atomic units) of atoms (Z=1-4) from the Kohn-Sham

calculations by the different exchange-correlation functionals, LSDA and GGA.

Z Atom LSDA GGA Exacta

1 H −0.4789 −0.5000 −0.5000

2 He −2.8343 −2.9029 −2.9037

3 Li −7.3422 −7.4745 −7.4781

4 Be −14.4462 −14.6664 −14.6674

a Davidson et al. (1991)

Table 4.1.2 contains the exchange energies from KS calculations with Xα potential,

PBE, and the results numerically calculated by Kurth et al. (1999). The exchange energies

are underestimated by LSDA. The relative errors are in the range, 14− 17%. Our results

of LSDA are in good agreement with the other work (Kurth et al., 1999). The LSDA

always has the typical error.

GGA significantly reduces the relative errors. All relative errors are less than 5%, and

the smallest one is about 1%. As similar as the results of LSDA, Our results of GGA are

in good agreement with the other work (Kurth et al., 1999), so our calculation is reliable.
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Table 4.1.2: Exchange energies (in atomic units) of atoms (Z=1-4) from the Kohn-Sham

calculations by the different exchange functionals, LSDA and GGA.

Z Atom LSDA LSDAa PBE PBEa Exactb

1 H −0.2564 0.2680 −0.3018 −0.3059 −0.3125

2 He −0.8617 0.8840 −1.0051 −1.0136 −1.0258

3 Li −1.5179 1.5379 −1.7513 −1.7572 −1.7807

4 Be −2.2905 2.3124 −2.6336 −2.6358 −2.6658

a Kurth et al. (1999)

b Exact result are numerically calculated from (3.1.13) by

Kurth et al. (1999).

Table 4.1.3 contains the correlation energies from KS calculations with ZP81, PBE,

and the results numerically calculated by Kurth et al. (1999). The magnitudes are almost

identical in our work and the work of Kurth et al. (1999)

The relative errors for correlation energy are much more than the relative errors for

exchange energy. LSDA overestimates the correlation energies by over 300% even if ac-

curate parametrization, ZP81, is used. GGA reduces the relative errors to about 1.5%

except the hydrogen atom. The ideal correlation functional does not give the correlation

energy for hydrogen atom.

Table 4.1.3: Correlation energies (in atomic units) of atoms (Z=1-4) from the Kohn-Sham

calculations by the different exchange-correlation functionals, LSDA and GGA.

Z Atom LSDA LSDAa PBE PBEa Exact b

1 H −0.0218 −0.0222 −0.0057 −0.0060 −0.0000

2 He −0.1109 −0.1125 −0.0411 −0.0420 −0.0420

3 Li −0.1498 −0.1508 −0.0510 −0.0514 −0.0455

4 Be −0.2234 −0.2240 −0.0854 −0.0856 −0.0950

a Kurth et al. (1999)

b Krieger et al. (1999)
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4.1.2 Kohn-Sham Calculation with OEP Method and KLI Ap-

proximation

For the present calculations in this subsection, we applied the OEP method and the KLI

approximation to find the correct potential and used it to make the calculations more

accurate. The most conditions of numerical calculations were the same as the conditions

of Subsection 4.1.1. The only difference was that we did not use the correlation functional.

It let us to construct the single-particle potential through (3.1.29) in KLI procedure more

easily.

Table 4.1.4 contains the exchange energies from exchange-only KS calculations. The

letter ’a’ is denoted the KLI procedure through the iteration of V KLI
σ , and letter ’b’

is denoted the KLI procedure through the traditional way to solve the system of linear

equations. The results by LSDA without the correlation energy and OEP perfectly match

the results of Chen et al. (1996). the LSDA underestimates the total energy by about

3− 8%.

Table 4.1.4: Total energies (in atomic unit) for atoms (Z=1-4) from KS calculations with

the exchange-only functional through the OEP method and KLI approximation.

Z Atom LSDA LSDAc KLI-LSDAa KLI-LSDAb KLI-LSDAc Exactd

1 H −0.4571 −0.4571 −0.5000 −0.5000 −0.5000 −0.5000

2 He −2.7236 −2.7236 −2.8717 −2.8717 −2.8617 −2.9037

3 Li −7.1934 −7.1934 −7.4437 −7.4466 −7.4342 −7.4781

4 Be −14.2233 14.2233 −14.5977 −14.6033 −14.5795 −14.6674

a the KLI procedure through the iteration of V KLI
σ .

b the KLI procedure through the traditional way to solve the linear system.

c Chen et al. (1996)

d Davidson et al. (1991)

With the performance of OEP method and KLI approximation, the relative errors are

significantly reduced to 0 − 1%. Especially for hydrogen atom, the relative error is 0%.

Not surprisingly the V KLI
σ is equal to the sum of VH and Vxc without correlation functional.

They have opposite signs and cancel each other in (3.1.27). The KS equation becomes the

Schrödinger equation of hydrogen atom with l = 0. The total energies (Z = 2−4) may be
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the best results as shown in Table 4.1.4 because of the KS calculations with exchange-only.

Table 4.1.5 contains the highest occupied atomic orbital (HOAO) energies from the

KS calculations with exchange-only functional. In orbital-dependent DFT, the HOAO

energy directly from the eigenvalues of KS equation should be equal to the ionization

energy. The ionization energy is noticeably smaller than the experimental value by about

50% because LSDA without the OEP has the incorrect long-range behavior. With the

implement of the OEP methods and KLI approximation, the results are improved, and

the relative errors reduced to 0 − 5%. Comparing with the work of Chen et al. (1996),

our values (Z = 2, 4) are better in accuracy, but the other value (Z = 3) is worse.

Table 4.1.5: Highest occupied orbital energies (in atomic unit) for atoms (Z=1-4) from

KS calculations with the exchange-only functional through the OEP method and KLi

approximation.

Z Atom LSDA LSDAc KLI-LSDAa KLI-LSDAb KLI-LSDAc Exactd

1 H −0.2469 −0.2690 −0.5000 −0.5000 −0.5000 −0.5000

2 He −0.5170 −0.5703 −0.9280 −0.9280 −0.9481 −0.9036

3 Li −0.1004 −0.1163 −0.2262 −0.2206 −0.1973 −0.1981

4 Be −0.1700 −0.2058 −0.3448 −0.3390 −0.3285 −0.3426

a the KLI procedure through the iteration of V KLI
σ .

b the KLI procedure through the traditional way to solve the linear system.

c reference Chen et al. (1996)

d Z=2-4 from reference Kramida et al. (2014)

We carried out the results shown in Table 4.1.4 and Table 4.1.5, and compared the

values with other works. On the whole, the KLI procedure is good approximation to OEP

for the improving of the LSDA energy functional.

To perform the KLI procedure, we used the method to iterate the V KLI
σ and the

traditional method to solve the linear system, and both methods led to the ideal results

shown in Table 4.1.4 and Table 4.1.5. The difference between them is very small. We

confirmed the suggestion of Tong and Chu (1997a). The method to iterate the V KLI
σ is a

simplified way to perform the KLI procedure.
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4.2 Hydrogen Atom in Intense Laser Fields

This section shows the time-dependent calculation. It is mainly to solve the time-

dependent Schrödinger equation (TDSE).

Recall Subsection 2.5.2. We assumed that the intense field E in (2.5.12) is subjected

into the system along the z-axis.

E(t) = E0fs(t)êz (4.2.1)

where E0 is the field amplitude, and fs(t) is a envelop function which models the intense

evolution of E. For the time-dependent calculations, we chose a ramped function to

reasonable simulate the unstable output when we turn on the device producing the intense

field in a experiment. The form of the ramped function is

fs(t) =


sin2(

πt

2T0
) sin(ω0t) t ≤ T0

sin(ω0t) T0 ≤ t

(4.2.2)

where T0 is the period from unstable output to stable output.

The intense field often refers to the laser. The laser wavelength λ and intense I were

775nm and 3× 1013W cm−2. We converted the λ and I to ω0 and E0 in atomic unit.

ω0 =
2π × 3× 108

λ× 4.1341× 1016
= 5.88× 10−2 (4.2.3)

E0 = −
√

I

3.51× 1016
= −2.92× 10−2 (4.2.4)

4.2.1 High-Order Harmonic Generation (HHG)

To investigate HHG, the most straightforward strategy is the direct solution of TDSE.

The specification for the calculation of TDSE is stated as follow. We used the mapping

function (2.1.15) to discretize the finite interval [0, rmax] on the GLL grids. There were

201 GLL grids without the end points, and we did not use the end points, x = −1 and

x = 1, in the present calculations. The maximum radius rmax was 200 a.u., and the length

scale L was 100. The L in the present calculation is much larger than the L in the time-

independent calculation in Section 4.1 because the wave spreads in the intense field. The

wave function is expanded in Legendre polynomials, and the maximum l is 19.
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A mask function was applied to the present calculations to avoid the reflection of the

spreading wave. The mask function fm(r) is the cosine form,

fm(r) =


1 r ≤ r0

cos
1
4 (

π(r − r0)

2(rmax − r0)
) r0 ≤ r

. (4.2.5)

The fm(r) makes the wave function gradually decay to 0 from r0 to rmax. We used

r0 = 100 a.u. for the present calculations.

For the time propagation, we turned on the laser field. First 10 optical cycles were

for turning on the laser, T0 = 10. The wave function was propagated for 30 optical cycles

under the intense field of the constant peak. There were total 40 optical cycles. A optical

cycle was divided into 2000 time steps. The procedure of time propagation is identical to

the procedure in Subsection 2.5.4.

Figure 4.2.1 shows the remaining probability of a hydrogen atom in the intense field

E. The remaining probability Pr(t) is calculated by

Pr(t) =
⟨
Ψ(r, t)|Ψ(r, t)

⟩
. (4.2.6)
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Figure 4.2.1: Remaining probability Pr(t) of a hydrogen atom in the laser field of the

wavelength 775nm and intensity 3× 1013W/cm2 duration 40 optical cycles.
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The Pr does not change for the first 10 optical cycles. After 10 optical cycles, the

Pr decays slowly and linearly. When the time propagation end, t = 40T , Pr still keeps

over 99 percent, and few electrons escape to free space. It means that we do not need to

consider the electronic emission from the hydrogen atom.

Figure 4.2.2 displays the dipole moment induced in a hydrogen atom by the laser field

E. The dipole moments of length form and acceleration from can be calculated from the

wave function ψ(r, t) at each time step as

dL(t) =
⟨
ψ(r, t)

∣∣ z ∣∣ ψ(r, t)⟩ =

∫
ψ(r, t)r cos θψ∗(r, t)d3r, (4.2.7)

dA(t) =
⟨
ψ(r, t)

∣∣ − z

r3
+E0fs(t)

∣∣ ψ(r, t)⟩ =

∫
ψ(r, t)[− z

r3
+E0fs(t)ψ

∗(r, t)]d3r. (4.2.8)
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Figure 4.2.2: Length-form dipole dL(t) induced in a hydrogen atom by a laser field with

the wavelength 775nm and intensity 3× 1013W/cm2.

The dipole moment in length form oscillates with the variation of fs(t). The ampli-

tude of oscillation is increasing during the first 10 optical cycles and keeps the constant

amplitude during the last 30 optical cycles.

Figure 4.2.3 shows the power (harmonic) spectrum of HHG of a hydrogen atom by

the laser field. The power spectra, PL(ω) and PA(ω), are square of Fourier transform of
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the dipole momentums, dL(t) and dA(t).

PL(ω) =

∣∣∣∣∣∣ 1

T2 − T1

T2∫
T1

dL(t)e
−iωtdt

∣∣∣∣∣∣
2

(4.2.9)

PA(ω) =

∣∣∣∣∣∣ 1

(T2 − T1)ω2

T2∫
T1

dA(t)e
−iωtdt

∣∣∣∣∣∣
2

(4.2.10)

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

1 5 9 13 17 21 25 29

P
(n

ω
0
)

harmonic order n

length form
accelerated form

Figure 4.2.3: Harmonic spectrum obtained from the Fourier transform that takes 15 cycles

from the 20th to the 35th cycle in figure 4.2.2.

We took 15 cycles from the 20th to the 35th cycle to perform the Fourier transform

and calculate the power spectra.

First we make sure the physics process of ionization. For the time-dependent system,

the ponderomotive energy Up and ionization energy EI are Up ≈ 0.062 and EI = 0.5 for

a hydrogen atom. By the Keldysh parameter,

γ =

√
EI

2Up

=

√
0.5

2.062
≈ 2.00 >> 1, (4.2.11)
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the ionization is a multiphoton process and may lead to HHG.

In physics, the spectra (see Figure 4.2.3) provide some features about HHG. The

difference between peaks is twice as large as the photon h̄ω0. Only odd harmonic peaks

occur in the power spectra. Both are the features of HHG and unchanged even if we

change the parameters of simulation over a adapted range. The cut-off law can determine

the maximum order by Up and EI ,

Ecut = 3.17Up + EI . (4.2.12)

For the spectra in Figure 4.2.3,

nω0 = 3.17× 0.062 + 0.5 = 0.696 (4.2.13)

n is about 12. It matches the fact that the values of peaks decay quickly from n = 13.

Tong and Chu (1997b) list the the peak values in their article. It can be compared

with us to make sure the accuracy. The peak values in Figure 4.2.3 and the results of

Tong and Chu (1997b) are listed in Table 4.2.1. The peak values, PL and PA ,converge to

the same values. The peak values (n = 3, 5, 9, 11) on the plateau are in good agreement

with the work (Tong and Chu, 1997b).

Table 4.2.1: Peak values in the HHG spectrum in

Figure 4.2.3

n PL(nω0) PA(nω0) PL(nω0)
a PA(nω0)

a

3 2.77[−06] 2.78[−06] 2.77[−06] 2.75[−06]

5 1.48[−06] 1.48[−06] 1.04[−06] 1.04[−06]

7 2.71[−07] 2.71[−07] 6.46[−08] 6.54[−08]

9 1.51[−07] 1.51[−07] 1.65[−07] 1.65[−07]

11 1.54[−07] 1.54[−07] 1.51[−07] 1.51[−07]

13 1.25[−08] 1.27[−08] 1.34[−08] 1.34[−08]

15 2.59[−10] 2.51[−10] 2.37[−10] 2.43[−10]

17 2.74[−12] 2.51[−12] 1.98[−12] 1.83[−12]

a Work of Tong and Chu (1997b)

The extra topic is the computational speed. For the present calculation, there were

80000 time steps in a time propagation. The time propagation only took about 100

seconds by Graphic Processing Unit (GPU) accelerator.
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Appendix A

Legendre Polynomials

Let

x = cos θ

Properties

PN(±1) = (±1)N (A.0.1)

P ′
N(±1) = (±1)N+1N(N + 1)

2
(A.0.2)

Recurrence Relation Following formula in term of Pl−1(x) and Pl−2(x) can be used

to find the Legendre polynomial with any l through iteration.

Pl(x) =
1

l
[(2l − 1)xPl−1(x)− (l − 1)Pl−2(x)] (A.0.3)

Following formula can be used to find the 1st derivative of Legendre polynomial with any

l by given Pl(x) and Pl−1(x).

P ′
l (x) =

1

1− x2
[−lxPl(x) + lPl−1(x)] (A.0.4)

Following formula can be used to find the 2nd derivative of Legendre polynomial with any

l by given P ′
l (x) and Pl(x).

P ′′
l (x) =

1

1− x2
[2xP ′

l (x)−N(N + 1)Pl(x)] (A.0.5)

Following relation is used in the proof.

d

dx
[(1− x2)P ′

l (x)] = [(1− x2)P ′
l (x)]

′ = −N(N + 1)Pl(x) (A.0.6)
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Orthogonality ∫ 1

−1

Pl(x)Pl′(x)dx =
2

2l + 1
δll′ (A.0.7)

Special Case Expand the differential term on left side of (A.0.6).

(1− 2x)P ′
l (x) + (1− x2)P ′′

l (x) = −N(N + 1)Pl(x) (A.0.8)

On Gauss-Legendre-Lobatto grids, x = xi ̸= x0 ̸= xN , the first term is zero because of

P ′
l (xi) = 0.

(1− x2i )P
′′
l (xi) = −N(N + 1)Pl(xi) (A.0.9)

Rearrange the equation.

P ′′
l (xi) =

N(N + 1)Pl(xi)

(x2 − 1)
(A.0.10)
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Appendix B

Numerical Calculations of Gradient

and Laplacian

In Kohn-Sham calculations, we need to numerically calculate the gradient of density ρ(r)

or Laplacian of orbital ψ(r) for the parameters of generalized gradient approximation

(GGA)

In spherical coordinates, the gradient and Laplacian generally read

∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

1

r sin θ

∂

∂ϕ
êϕ, (B.0.1)

and

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

∂2

∂ϕ2
. (B.0.2)

For the KS calculations in the present research, the orbitals and densities only have

two variables, r and θ. The numerical method to find the derivative respect to radius r

is provided in Subsection 2.2.4. This appendix provides the numerical differential with

respect to polar angle θ.

First, we expand the density ρ(r) in spherical harmonic with m = 0.

ρ(r) = ρ(r, θ) =
∑
l

ρl(r)Yl,0(θ, ϕ) (B.0.3)

where the coefficient ρl(r) is

ρl(r) =

∫
Yl,0(θ, ϕ)ρ(r, θ) sin θdΩ. (B.0.4)

The spherical harmonics with m = 0 can be in term of the Legendre polynomials Pl(x)

Yl0 =

√
2l + 1

4π
Pl(x) (B.0.5)
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where x = cos θ. The expansion becomes

ρ(r, θ) =
∑
l

2l + 1

4π
ρl(r)Pl(x). (B.0.6)

In the expansion, the radial and angular parts are separated. The differential operators

with respect to θ only work on the angular part. Apply the chain rule

dPl(x)

dθ
=
dPl(x)

dx

dx

dθ
= − sin θ

dPl(x)

dx
(B.0.7)

The 2nd-order differential operator works on Pl(x).

d2Pl(x)

dθ2
=

d

dθ
(− sin θ

dPl(x)

dx
)

= − cos θ
dPl(x)

dx
− sin θ

d

dθ

dPl(x)

dx

= − cos θ
dPl(x)

dx
− sin θ[(− sin θ)

d

dx
]
dPl(x)

dx

= − cos θ
dPl(x)

dx
+ sin2 θ

d2Pl(x)

dx2

(B.0.8)

P ′
l (x) and P ′′

l (x) are given in Appendix A. The angles θ can be calculated by inverse

cosine function of x.

In (B.0.2), there is a 2nd-order differential operator with respect to θ

1

sin θ

d

dθ
(sin θ

d

dθ
) =

1

sin θ
(cos θ

d

dθ
+ sin θ

d2

dθ2
) (B.0.9)

Let the 2nd-order differential operator works on Pl(x). With (B.0.7) and (B.0.8),

1

sin θ

d

dθ
(sin θ

dPl(x)

dx
) = −2 cos θ

dPl(x)

dx
+ sin2 d

2Pl(x)

dx2
. (B.0.10)

The numerical differential with respect to θ only need to perform once.
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