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Abstract: Modulation instability (MI) in a coupled resonator optical 

waveguide (CROW) and photonic-crystal waveguide (PCW) with nonlinear 

Kerr media was studied by using the tight-binding theory.  By considering the 

coupling between the defects, we obtained a discrete nonlinear evolution 

equation and termed it the extended discrete nonlinear Schrödinger (EDNLS) 

equation.  By solving this equation for CROWs and PCWs, we obtained the 

MI region and the MI gains, G(p,q), for different wavevectors of the incident 

plane wave (p) and perturbation (q) analytically. In CROWs, the MI region, 

in which solitons can be formed, can only occur for pa being located either 

before or after π/2, where a is the separation of the cavities. The location of 

the MI region is determined by the number of the separation rods between 

defects and the sign of the Kerr coefficient.  However, in the PCWs, pa in the 

MI region can exceed the π/2. For those wavevectors close to π/2, the MI 

profile, G(q), can possess two gain maxima at fixed pa. It is quite different 

from the results of the nonlinear CROWs and optical fibers.  By numerically 

solving the EDNLS equation using the 4
th

 order Runge-Kutta method to 

observe exponential growth of small perturbation in the MI region, we found 

it is consistent with our analytic solutions. 
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OCIS codes: (190.0190) Nonlinear optics; (130.2790) Guided waves; (230.7370) Waveguides; 

(230.5298) Photonic crystals. 
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1. Introduction 

Photonic crystals (PCs) are artificial structures in which the refractive index is periodically 

distributed at a length scale comparable to the operating wavelength [1, 2].  A photonic crystal 

waveguide (PCW) can be created by sequentially changing the radii or dielectric constant of 

the dielectric rods or changing the radii of periodic air holes in a dielectric slab; on the other 

hand, the coupled resonator optical waveguide (CROW) is created by arranging the cavities, 

made of point defects, periodically.  The electromagnetic (EM) wave can propagate in these 

channels, PCWs or CROWs, with a very low loss even through a sharp bend [3-5].  However, 

a pulse experiences serious dispersion in the PCWs and CROWs [6, 7]; therefore, it would 

hardly propagate within the waveguides without broadening.  There are two ideas to improve 

the situation of allowing the pulse propagation in the waveguides without broadening.  The 

first method is to design a proper structure to create a linear dispersion curve in the range of 

operating frequency; the second method is to add nonlinear Kerr media to provide solitons 

propagation [8-11].  However, in the latter case, the criteria of forming a soliton is that the 

wavevector of the incident wave must be located within the modulation instability (MI) 

regions [12-14], where the MI refers to a process in which small perturbations upon a uniform 

intensity beam would grow exponentially [14].  This phenomenon, which is commonly 

observed in nonlinear optical fibers [15], will also occur in the nonlinear PCWs and CROWs.   

Mathematical models of these nonlinear systems often lead to the discrete or continuum-

discrete evolution equations such as nonlinear Schrödinger (NLS), sine-Gordon, Klein-

Gordon, Korteweg-de Vries and Kadomtsev-Petviashvili equations [13].  In CROWs, the 

amplitudes of the electric field evolution in the cavities or point defects can be expressed as a 

discrete NLS equation by using the tight binding theory (TBT) [10, 16, 17] in which the field 

distribution (or wave function) of an individual cavity is localized at this point defect; thus the 

coupling between two next nearest-neighbor cavities can be neglected due to long distance. 

By solving the discrete NLS equation, spatiotemporal discrete solitons can propagate 

undistorted along a series of coupled resonators or defects by balancing of the effects of 

discrete lattice dispersion with material nonlinearity [10].  However, it is still lack of the 

criteria for solitons propagation in different structures of CROWs, e.g., different numbers of 

separation rods between two cavities with positive or negative Kerr media.  Moreover, in the 

PCWs the defect rods are so close that the next nearest-neighbor coupling cannot be neglected 

[18] and there are rare reports on pulse propagation in nonlinear PCWs.  Therefore, it is 

needed to take the advanced discussion about different kinds of CROWs and to derive the 
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extended discrete nonlinear Schrödinger (EDNLS) evolution equation for describing the 

nonlinear properties in the PCWs.  

In this paper, we first use the TBT to describe the EDNLS equation.  By considering a 

small perturbation superimposed on the plane wave solution, the gain of the perturbation 

which causes the MI can also be derived.  Second, by evaluating the coupling coefficients, we 

shall discuss the regions and gain coefficients of MI in both CROWs and PCWs.  In order to 

verify the correctness of our equations, a CROW and a PCW with square lattices were 

proposed to calculate the gain coefficients by using the forth-order Runge-Kutta scheme. The 

simulated results coincide with our analytic analyses. 

2. Theory 

We consider an optical waveguide which consists of a periodic sequence of identical single-

mode defects in the PCs with lattice constant aL.  The distance between successive defect 

points or cavities is a, and the Kerr media, in which the refraction index is proportional to the 

intensity of the incident wave, is put in the defect region, shown in Fig. 1.  Assuming the 

isolated point defect is a single mode with eigenfrequency of ω0, we can express the mode 

fields of each point defect as E(r,t) = E0(r)exp(-iω0t) and H(r,t) = H0(r)exp(-iω0t). The 

electric field 
0 ( , )t′E r and magnetic field 

0 ( , )t′H r
 
of the waveguide can be expressed as a 

superposition of the bound states, i.e., 
0 0
( , ) ( )m m

t b t′ = ∑E r E and 
0 0( , ) ( )m mt b t′ = ∑H r H , where 

0 0 ( )
m

ma= −E E r  and 
0 0 ( )

m
ma= −H H r . 

                     

Fig. 1. The structures of (a) a PCW, (b) a CROW with one separation rod and (c) a CROW 

with two separation rods, where a is the length of successive defect points and aL is the lattice 

constant of a PC. 

 

Under the tight-binding approximation, we consider the couplings up to the next nearest-

neighbor defects and obtain the EDNLS equation as [18] 

   
2

0 0 1 1 1 2 2 2
( ) ( ) ( ) 0.n

n n n n n n n

db
i c b c b b c b b b b

dt
ω γ+ − + −+ − + + + + + + =                 (1) 

Here the linear coupling coefficient cm is defined as [10] 

0 0 0

2 2

0 0 0
( )

n n m

m

n n

d E E
c

d H E

ω υ ε

υ µ ε

+∆ ⋅
=

+

∫∫∫
∫∫∫

,                                            (2) 

with ( ) ( ) ( )ε ε ε′∆ = −r r r  being the difference of dielectric constants of the waveguide 

( ( )ε ′ r ) and the point-defected PC ( ( )ε r ) and c0 representing a small shift in the 

eigenfrequency ω0 that arises from present of the neighbor defects or cavities.  The self-phase 

modulation strength γ is given by 
4

0 2 0 0 0

2 2

0 0 0

2
,

( )

n

n n

n n d E

d H E

ε ω υ
γ

υ µ ε
=

+

∫∫∫
∫∫∫

                                            (3) 

with n2 being the Kerr coefficient.  Let the plane wave with amplitude φ0, propagation 

wavevector p, and frequency ω in site n as bn = φ0 exp(inpa-iωt)  be the solution of Eq. (1). 

The dispersion relation of the nonlinear PCW can be derived as 
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2
0 0 1 2 0

( ) 2 cos( ) 2 cos(2 ) | | .pa c c pa c paω ω γ φ= − − − −              (4) 

Considering a small perturbation νn(t) superimposed on a plane wave, shown as [14] 
( )

0( ( )) ,i pna t
n nb v t e ωφ −= +                                           (5) 

we can substitute Eq. (5) into Eq. (1) to get 

1 1 1

2
*

2 2 2 0

( 2cos( ) )

( 2cos(2 ) ) ( ) 0.

n ipa ipa
n n n

ipa ipa
n n n n n

dv
i c v e v e pa v

dt
c v e v e pa v v vγ φ

−
+ −

−
+ −

+ + − +

+ − + + =
           (6)

 

Taking νn(t) as this form [14] 
*

1 2( ) ( ) ,iqna iqna i t
n t V e V e eν − − Ω= +                                     (7) 

where q and Ω are the wavevector and frequency of the modulation perturbation. V1 and V2
*  

represent small perturbation with perturbation wavevectors of q and - q.  Substituting vn(t) into 

Eq.(6), we osbtioned the dispersion relation of the perturbation:
    

2
0( , ) ( | | )p q B A A γ φΩ = ± − ,                                     (8) 

where 2 2

1 2
4 cos( ) sin ( ) 4 cos(2 )sin ( )

2

qa
A c pa c pa qa= +  and 

1
2 sin( ) cos( )B c pa qa=

 

2
2 sin(2 )cos(2 )c pa qa+ .  If the dispersion relation Ω (p,q) is complex as A(A - γ|φ0|

2
) < 0, the 

perturbation field would become unstable.  The intensity growing rate G of MI, also called the 

MI gain, is related to the imaginary part of Ω (p, q), i.e.,  

G(p,q)=2*Im(Ω (p, q)) = 

1
2 2 42 22

0 0 0
Re(2 ( ) ) 2 Re ( 0.5 ) 0.25A A Aγ φ γ φ γ φ⋅ − = ⋅ − − + .   (9) 

 

Fig. 2.  (a) The electric field distribution (Ez) of point defect mode simulated by the plane wave 

expansion method in the square lattice with the dielectric constant, radii of dielectric rods and 

the radius (rd) of the defect rods being 12 , 0.2aL and 0.05aL for frequency f = 0.364 c/aL . (b) 

The field distribution of the red dash line in (a). 

 

3. Analyses and discussion 

In this section, we will further discuss about the MI regions and gains in both CROWs and 

PCWs made of point defects, shown in Fig. 1.  The electric field distribution (Ez) of a single 

point defect, simulated by the plane wave expansion method in the square lattice with the 

dielectric constant, radii of dielectric rods and the radius (rd) of the defect rods being 12, 0.2aL 

and 0.05aL for frequency f = 0.364 c/aL is shown in Fig. 2.  And the field profile along the red 

dash line in Fig. 2(a) is plotted in Fig. 2(b), it has the opposite sign when it extends to the 

nearest-neighbor defects for the PCW (E0(0,0)*E0(aL,0) < 0) and the CROW (E0(0,0)* 

E0(3aL,0) < 0) with even (2) separation rods.  To maintain a single mode propagating in the 

waveguides, the radii or the refraction index of the rods in the waveguides is reduced 

therefore ∆ε is negative in the following discussion.  Since the electric field is mainly 

localized around the dielectric rods of the waveguides, we can use the maximum values to 
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replace the integral values for a simple estimation in Eq. (2).  Therefore, c1 is positive in even-

separated-rod CROWs [16].  However, c2 would be two orders of magnitude smaller than c1 

so that we considered only the nearest-neighbor coupling in the CROWs and let c2 ≈ 0 [10, 18].   

On the other hand, E(0,0)*E(2aL,0) is positive in the odd-separation-rod (1) CROWs so c1 

would be negative and c2 ≈ 0.  

Because of c2 ≈ 0 for the CROWs, the coefficient A can be rewritten as 
2

1
4 cos( )sin ( / 2)A c pa qa= , in which the sign of A is determined only by pa and it changes 

sign at pa = π/2.  Here the region of pa (or qa) is defined between 0 and π. For positive 

(negative) A, γ must also be positive (negative) and γ|φ0|
2 

> A > 0 (γ|φ0|
2 

< A < 0) to support 

MI, which can be easily derived by Eq. (9); in other words, c1cos(pa)γ  must be positive in MI 

region.  Therefore, the boundary of MI must be located at pa = π/2.  In odd-separation-rod 

CROWs, c1 is negative, therefore A and γ must be both negative when 0 < pa < π/2 and 

positive as pa > π/2.  However, in even-separation-rod CROWs, c1 is positive, therefore A and 

γ must be both positive when 0 < pa < π/2 and negative as pa > π/2, shown in Table 1.  When 

the structure of the waveguide (c1) has been chosen, |A| increases if q increases at constant c1 

and p.  When we plot the gain profile as the graph of G vs. q at a given p and defined the gain 

maximum as the maximal values in the graph, from Eq. (9), the gain maximum would be 

located at A = 0.5γ|φ0|
2
 and cut off at A = γ|φ0|

2
 when 

2

1 04 | cos( ) | 0.5 | |c pa γ φ> ; otherwise, the 

gain maximum would be located at qa = π.  

Table 1 MI regions of CROWs 

Separation rods Sign of c1 Sign of n2(γ)  MI regions (pa) 

Odd ━ 
┼┼┼┼ > π/2 

━ < π/2 

Even ┼┼┼┼ 
┼┼┼┼ < π/2 

━ > π/2 

In negative (positive) c1 for an odd-separation-rod (even-separation-rod) case, the 

dispersion relation slop is negative (positive) [19] and the frequency dispersion D defined as 

d
2ω/dk

2
 is negative (positive) when pa < π/2 and positive (negative) for pa > π/2 from Eq. (4). 

Therefore, for negative D (pa < π/2 for the odd-separation-rod case and pa > π/2 for the even-

separation-rod case), the negative γ is needed to support MI and positive γ is needed to 

support MI for positive D.  In other words, the MI regions of the CROWs in pa can also be 

decided by simply considering the parameters of D and γ. 

On the other hand, EnEn+1 or E0(0,0)*E0(aL,0) < 0 and EnEn+2 > 0 in PCWs with aL = a, 

therefore, c1 is positive and c2, which cannot be neglected, is negative.  First, we consider the 

positive Kerr media having positive n2 (or γ) so the criterion of the MI is γ|φ0|
2 
> A > 0.  From 

the criterion of 2 2

1 24 cos( )sin ( / 2) 4 cos(2 )sin ( )A c pa qa c pa qa= + > 0, since c2 is an order of 

magnitude smaller than c1, this criterion can be further reduced to cos(pa) > -

4|c2/c1|cos
2
(qa/2).  Under this circumstance, the MI region is determined not only by pa but 

also by qa, and pa in the MI region can exceed π/2, unlike in CROWs that the MI boundary 

for pa is located at π/2 and is independent of qa.  From the other criterion:  γ|φ0|
2
 > A, we 

found A is dominated by the c1 term as pa is located away from π/2, in this case the MI gain is 

similar to that in the CROWs with even separation rods.  Contrarily, when pa approaches to 

π/2, the c1 term is almost zero and A becomes dominated by the c2 term.  In this case, A would 

not increase as increasing qa.  From Eq. (9), we knew that the maximum of the gain profile, 

G(q), is located at A = 0.5γ|φ0|
2
 or dA/dq = 0.  For the latter case, the peak gain would be 
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smaller than that of the former condition.  When 4c2 cos(2pa) < 0.5γ|φ0|
2
, there would be two 

gain maxima at a fixed pa and the gain maxima is located at A = 0.5γ|φ0|
2
, but there would be 

only one gain maximum located at dA/dq = 0 as 4c2 cos(2pa) < 0.5γ|φ0|
2
.   

On the other hand, in the condition of negative γ, the first criterion is cos(pa) < -4|c2/c1|∙ 
cos

2
(qa/2).  We found the MI would happen only when pa > π/a.  However, when 0 > cos(pa) 

> -4|c2/c1|, the MI region is located at the higher q rather than the general case in which the 

perturbation would have gain at qa = 0
+
.   The cutoff gain is also decided by A = γ|φ0|

2
.  

4. Simulation results 

We consider a square lattice PC with the dielectric constant and radii of the dielectric rods 

being 12 and 0.2aL, where aL is the lattice constant of the PCs.  The radii (rd) of the defect rods 

are reduced to be 0.05aL and the Kerr media are introduced around the defects between one 

separation rod to create the CROW and sequentially to create the PCW.  The structures and 

dispersion relations of the CROW and PCW in TM polarization (the electric field parallels the 

rod axis) without Kerr media are shown in Fig. 3, which are simulated by the plane wave 

expansion method. 

 

Fig. 3. The dispersion relations of (a) a CROW with one separation rod and (b) a PCW in 

square lattices, which are simulated by the plane wave expansion method.  The dash red lines 

are the edges of the band gaps. 

 

Fig. 4. (a) The values of A and (b) the gains and regions of the MI of the CROW with 

γ|φ0|2=0.01 (2πc/aL). 
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First, the properties of the MI in the CROW would be discussed.  The coupling coefficient 

c1 is -0.00841 (2πc/aL), where c is the speed of light in the vacuum.  Because c1 is negative, 

the eigenfrequencies will decrease as increasing k.  Figure 4(a) shows A vs. qa with different 

p.  Let A’ be γ|φ0|
2－A so that G = 2 AA′ .  As aforementioned, the MI region is determined 

by the condition that A lies between 0 and γ|φ0|
2
 and the maximum of G appears when A 

equals (or is the closest) to 0.5γ|φ0|
2
.  Figure 4(b) shows G(p,a) with γ|φ0|

2
=0.01 (2πc/aL). It 

can be seen that there is no MI gain when pa ≤ 0.5π and only a single gain maximum at given 

pa in the condition of pa > 0.576π.  
In PCWs, the coupling coefficients of c1 and c2 are 0.039 and -0.0047(2πc/a), and ω0-∆ω 

is 0.3632 (2πc/a).  The values of A at a given pa were shown in Fig. 5(a).  When pa is small, 

i.e., in [0, 0.4π], A is dominated by c1 term and A increases as qa increases.  Due to c1 is 

positive, the properties of MI would be similar to the CROWs with even separation rods that 

possesses a single gain maximum as the solid curve in Fig. 6(a) for pa = 0.4π. However, as pa 

is in (0.4π, 0.6π], A is not simple increasing or decreasing function of qa, shown in Fig. 5(b).  

At a given pa with positive Kerr media (γ > 0), when the values of A(q) is always smaller than 

0.5γ|φ0|
2
, e.g., γ|φ0|

2 
= 0.01 (2πc/a)

 
and pa = 0.6π, there would be a maximal gain as the solid 

curve in Fig. 6(d).  However, when A(q) is larger than 0.5γ|φ0|
2
, e.g., γ|φ0|

2
=0.01 (2πc/a) and 

pa = 0.49π and 0.55π, there would have 2 gain maxima, solid curves shown in Fig. 6(b) and 

(c).  And the MI region with positive γ can extend to pa = 0.6π, as shown in Fig. 5(c).  On the 

other hand, the MI region with negative Kerr media is shown in Fig. 5(d) which is located 

within π/2 < pa < π but having the MI region located at high qa as pa close to π/2.  

 

Fig. 5. (a) (b)The values of A in the PCW.  The region and gains of MI with (c) positive Kerr 

media (γ|φ0|2=0.01*2πc/a) and (d) negative Kerr media (γ|φ0|2=-0.01*2πc/a). 

 

Next, we would use the 4
th

 order Runge-Kutta method to simulate the evolution of the 

perturbation.  A plane wave with 10% initial sinusoidal perturbation is used as the input 
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source in a square-array PCW with γ|φ0|
2 

= 0.01 (2πc/a).  The perturbation will grow 

exponentially in the MI region to become a discrete soliton before it splits, as shown in Fig. 

7(a), but the perturbation would never grow outside the MI region in Fig. 7(b). We plot the 

gain coefficients with square dots in Fig. 6 by evaluating the growing rate by the Runge-Kutta 

method and then compare with gain profiles (solid curves) calculated by using Eq. (9).  The 

results show a quite good agreement.   

 

Fig. 6. The MI gain profiles gotten by analytic solution and the simulation by 4th order Runge-

Kutta method in different qa with γ|φ0|
2 = 0.01 (2πc/a). 

 

 

Fig. 7. The evolution of the perturbation in the PCW with (a) pa=0.4π and qa=0.1π (b) pa=0.6π 

and qa=0.1π. 
 

5. Conclusion 

We have successfully used the TBT to investigate MI in both CROWs and PCWs by 

considering growth of a small perturbation superimposed on a plane wave.  The number of 

separation rods in the CROWs would decide the signs of the nearest-neighbor coupling 

coefficients (c1) and the next nearest-neighbor coefficient (c2) can be neglected because it is 

more than 2 orders of magnitude smaller than c1.  This leads to positive dispersion for positive 
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coupling coefficient and vice versa.  Although the signs of the coupling coefficient could be 

different, the criteria: c1cos(pa)γ > 0 for obtaining modulation instability is the same for 

incident plane wave of wavevector p.  Therefore, the MI region can only be located in either 

pa < π/2 or pa > π/2 with only one gain maximum.  In the air-defect PCWs, c1 is positive and 

c2, which is no longer negligible, is negative.  It makes the MI gain of positive Kerr media 

located at low wavevectors in the first Brilluoin zone and vice versus. The boundary of gain 

region of pa is not exactly at π/2 due to the MI is mainly dominated by c2 term as pa 

approaches π/2 and there could exist two gain maxima.  Furthermore, the numerical 

simulation using the 4
th

 order Runge-Kutta method reveals exponentially growing 

perturbation intensity as it propagates and the growing rate matches with the gain coefficient 

of MI in the analytic solution.  
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